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Derivations on Toeplitz algebras

Michael Didas and Jörg Eschmeier

Let H2(Ω) be the Hardy space on a strictly pseudoconvex do-
main Ω ⊂ C

n, and let A ⊂ L∞(∂Ω) denote the subalgebra of all
L∞-functions f with compact Hankel operator Hf . Given any
closed subalgebra B ⊂ A containing C(∂Ω), we describe the first
Hochschild cohomology group of the corresponding Toeplitz alge-
bra T (B) ⊂ B(H2(Ω)). In particular we show that every deriva-
tion on T (A) is inner. These results are new even for n = 1, where
it follows that every derivation on T (H∞+C) is inner, while there
are non-inner derivations on T (H∞ + C(∂Bn)) over the unit ball
Bn in dimension n > 1.

Introduction

A recent result of Cao (Theorem 3 in [2]) describes the first Hochschild coho-
mology group of the Toeplitz C∗-algebra generated by all Toeplitz operators
with continuous symbol on the Hardy space over a strictly pseudoconvex do-
main in Cn. Using a modification of Cao’s arguments and a result of Davidson
from 1977 (Corollary 4 in [5]) the first author showed in [7] that every contin-
uous derivation of the Toeplitz algebra T (H∞ + C) on the Hardy space of the
unit disc D is inner. It seems natural to ask if the first Hochschild cohomology
group vanishes in this case, that is, if the latter result remains true without the
continuity assumption and, secondly, if a generalization to higher dimensions
is possible. In the present note we answer both questions in the affirmative
by establishing a description of the first Hochschild cohomology group for a
variety of Hardy-space Toeplitz algebras on strictly pseudoconvex domains,
including the cases mentioned above.

Throughout this paper, we fix a bounded strictly pseudoconvex domain Ω ⊂ Cn

with C∞-boundary. The Hardy space H2(σ) with respect to the normalized
surface measure σ on ∂Ω can be defined as the norm closure of the set A(∂Ω) =
{f |∂Ω : f ∈ C(Ω), f |Ω holomorphic} in L2(σ). As usual, the Toeplitz operator
Tf ∈ B(H2(σ)) with symbol f ∈ L∞(σ) is given by the formula

Tf = PMf |H
2(σ),

where P : L2(σ) → H2(σ) denotes the orhogonal projection and Mf : L2(σ) →
L2(σ), g 7→ fg, is the operator of multiplication with f . A natural question
to ask is to what extent the membership of a function f to some special sym-
bol class S ⊂ L∞(σ) determines the behaviour of the corresponding Toeplitz
operator Tf . Besides this single-operator point of view, one may ask for the
properties of the so-called Toeplitz algebra

T (S) = alg{Tf : f ∈ S} ⊂ B(H2(σ))
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associated with the symbol class S. Among the most important choices for
S are the bounded holomorphic functions on Ω (more precisely, their non-
tangential boundary values) which will be denoted by H∞(σ) in the sequel
and the continuous functions C(∂Ω), which give rise to the algebra of all
analytic Toeplitz operators T (H∞(σ)) and the Toeplitz C∗-algebra T (C(∂Ω)),
respectively. Another natural symbol class, arising intrinsically in the theory
of Toeplitz operators, can best be expressed in terms of the corresponding
Hankel operators

Hf : H2(σ) → L2(σ), h 7→ (1 − P )(fh).

From the work of Davidson [5] for the unit disc, Ding and Sun [9] for the unit
ball, and Didas et al [8] for the strictly pseudoconvex case, it is known that
an operator S ∈ B(H2(σ)) commutes modulo the compact operators with all
analytic Toeplitz operators if and only if S = Tf +K where K is compact and
f belongs to the class

A = {f ∈ L∞(σ) : Hf is compact}.

The identity Hfg = HfTg + (1 − P )MfHg valid for f, g ∈ L∞(σ) shows that
A is a closed subalgebra of L∞(σ). Moreover, since Hankel operators with
continuous symbol are compact in our setting (Theorem 4.2.17 in [16]), A
always contains the space H∞(σ) + C(∂Ω). According to [1] the latter space
is also a closed subalgebra of L∞(σ). By a classical result of Hartman [11], the
equality A = H∞ + C holds on the open unit disc in C, while the inclusion
H∞(σ) + C(∂Bn) ⊂ A is known [6] to be strict in the case of the open unit
ball Bn ⊂ Cn for n > 1.

Given any closed subalgebra B ⊂ L∞(σ) with C(∂Ω) ⊂ B ⊂ A, our main result
characterizes the first Hochschild cohomology group of the Toeplitz algebra
T (B). We briefly recall the definition of the first Hochschild cohomology. Let
A be a Banach algebra and let E be a Banach-A-bimodule. A derivation from
A into E is a (not necessarily continuous) linear map D : A → E satisfying the
identity

D(AB) = D(A)B + AD(B) (A, B ∈ A).

For a given element S ∈ E , the commutator with S

D : A → E , D(X) = [X, S] = XS − SX

defines a derivation from A into E . Derivations arising in this way are called
inner. Writing Z1(A, E) for the space of all derivations from A into E and
N1(A, E) ⊂ Z1(A, E) for the subspace consisting of all inner derivations, the
first Hochschild cohomology group can defined as the quotient

H1(A, E) = Z1(A, E)/N1(A, E).

In particular, H1(A, E) vanishes if and only if every derivation from A into E
is inner.

2



Let us finally mention that, for a given Hilbert space H , we write K(H) for
the ideal of all compact operators on H and that, for a subset S ⊂ B(H), we
denote its essential commutant by

Sec = {X ∈ B(H) : [X, S] ∈ K(H) for all S ∈ S}.

Now we have gathered all the notations required for an adequate formulation
of our main result.

A description of H1 for Toeplitz algebras

The following theorem can be thought of as a Banach-algebra version of Cao’s
result (Theorem 3 in [2]) on the Toeplitz C∗-algebra.

1 Theorem. Let B ⊂ L∞(σ) be a closed subalgebra with C(∂Ω) ⊂ B ⊂ A.

Then every derivation D : T (B) → B(H2(σ)) is inner and the map

δ : H1(T (B), T (B)) −→ T (B)ec/T (B), δ([D]) = [S] if D = [·, S],

is a well-defined isomorphism of linear spaces. �

We postpone the proof of this theorem for a moment in order to demonstrate
some of its consequences. Let us first remark that, as A contains C(∂Ω),
the algebra T (A) contains the Toeplitz C∗-algebra T (C(∂Ω)) and hence all
compact operators on H2(σ) (Theorem 4.2.24 in [16]). Together with the
description of T (H∞(σ))ec established in Corollary 4.8 of [8], we obtain the
chain of inclusions

T (A)ec ⊂ T (H∞(σ))ec = {Tf + K : f ∈ A, K ∈ K(H2(σ))} ⊂ T (A).

The identity Tfg − TfTg = −PMfHg for f, g ∈ L∞(σ) shows that T (A) is
essentially commutative. Hence we can complete the above chain with the
inclusion T (A) ⊂ T (A)ec, which shows that in fact equality holds at each
stage. In particular, we have

T (A)ec = T (H∞(σ))ec = T (A).

As a consequence we obtain the following special case of Theorem 1 which
applies for example to the algebra B = H∞(σ) + C(∂Ω).

2 Corollary. If the algebra B ⊂ A from Theorem 1 contains H∞(σ), then we

have H1(T (B), T (B)) ∼= T (A)/T (B) ∼= A/B as linear spaces.

Proof. For the first identification, it suffices to observe that T (A) = T (A)ec ⊂
T (B)ec ⊂ T (H∞(σ))ec = T (A) holds and to apply Theorem 1. The second
identification is given by the map A/B → T (A)/T (B), [f ] 7→ [Tf ], which is
easily seen to be a vector-space isomorphism. For the details, see the remarks
following Lemma 8. �

For B = A = {f ∈ L∞(σ) : Hf compact} the assertion of Corollary 2 deserves
to be stated separately.
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3 Corollary. The first Hochschild cohomology group H1(T (A), T (A)) van-

ishes on every bounded strictly pseudoconvex domain Ω ⊂ Cn with C∞-

boundary. In particular, every derivation on T (H∞(σ) + C(∂D)) is inner on

the unit disc D. �

As mentioned before, it was observed by Davie and Jewell in [6] that the
inclusion H∞(σ) + C(∂Bn) ⊂ A is strict for every n > 1. Thus in contrast
to the case n = 1, by Corollary 2, there exist non-inner derivations on the
Toeplitz algebra T (H∞(σ) + C(∂Bn)) for every n > 1.

Finally, we obtain the result of Cao mentioned at the beginning which was the
starting point of our considerations. Note that T (C(∂Ω))ec = {Tz1

, . . . Tzn
}ec

(see, e.g., Lemma 4.1 in [8]).

4 Corollary. (Cao) For the Toeplitz C∗-algebra on a bounded strictly pseu-

doconvex domain Ω ⊂ C
n with C∞-boundary we have the isomorphism

H1(T (C(∂Ω)), T (C(∂Ω))) ∼= {Tz1
, . . . Tzn

}ec/T (C(∂Ω)).

�

Proof of Theorem 1

Theorem 1 can be proved using a general structure theorem due to Chernoff
for derivations of operator algebras A ⊂ B(E) that contain the finite-rank
operators on a normed linear space E (see Theorem 3.3 in [3]). Combining
ideas of Cao [2] and Davidson [5] we give a short C∗-theoretic proof of the
Hilbert-space version of Chernoff’s theorem.

5 Proposition. If B is a closed subalgebra of B(H) containing the compact

operators K(H) and the identity 1H , then every derivation from B into B(H)
is inner, that is, D = [·, S] for some operator S ∈ B(H).

Proof. First observe that the set of operators K1 = K(H) + C · 1H ⊂ B is
a self-adjoint closed subalgebra of B(H) and hence is a unital C∗-algebra. So
if D : B → B(H) is any derivation, then its restriction D1 : K1 → B(H),
D1 = D|K1, is a derivation from the C∗-algebra K1 into B(H) (viewed as a
Banach K1-bimodule) and therefore is continuous by a result of Ringrose (see
Theorem 2 in [13] or Corollary 5.3.7 in [4]).
Our first aim is to show that D maps the space K(H) into itself. Since every
element of the C∗-algebra K1 is a finite linear combination of unitary elements
in K1, it suffices to show that D(U) ∈ K(H) for every unitary operator U ∈
K1. Since K1/K(H) is contained in the centre of the Calkin algebra C(H) =
B(H)/K(H), for every integer m > 0, we obtain the identity

[D(Um)] = [

m∑

i=1

U i−1D(U)Um−i] = m[Um−1D(U)]

in C(H). Using the fact that multiplication with a unitary element in a C∗-
algebra is isometric, we find that

m‖[D(U)]‖ = ‖[D(Um)]‖ ≤ ‖D1‖
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for all integers m > 0. Hence D(U) ∈ K(H) as was to be shown.

As a derivation of K(H) into itself, the restriction D|K(H) can be written as
the commutator with some fixed operator S ∈ B(H) (Corollary 4.1.7 in [14]).
More explicitly, there exists an operator S ∈ B(H) such that

D(K) = KS − SK (K ∈ K(H)).

Since the identity

D(A)K + AD(K) = D(AK)

= AKS − SAK

= (AKS − ASK) + (ASK − SAK)

= AD(K) + (AS − SA)K

holds for every A ∈ B and K ∈ K(H), it follows that D = [·, S]. This
observation completes the proof. �

6 Corollary. If in the setting of the last proposition the quotient algebra

B/K(H) is commutative and semi-simple, then every derivation D : B → B
has the form D(X) = XS − SX (X ∈ B) for some fixed operator S ∈ Bec in

the essential commutant of B.

Proof. By the preceding proposition, there is an operator S ∈ B(H) with
D = [·, S]. In particular D induces a continuous derivation

D̂ : B/K(H) → B/K(H), [X] 7→ [D(X)].

Since B/K(H) is supposed to be commutative and semi-simple, the Singer-

Wermer theorem (Theorem 1 in [15]) implies that D̂ = 0. Hence D(B) ⊂ K(H)
and S ∈ Bec. �

7 Corollary. Let B ⊂ B(H) be a unital closed subalgebra containing the com-

pact operators K(H) such that the quotient algebra B/K(H) is commutative

and semi-simple. Then the mapping δ : H1(B,B) → Bec/B,

δ([D]) = [S] if D = [·, S]

is a well-defined vector-space isomorphism.

Proof. Let D : B −→ B be a given derivation. By Corollary 6 there is an
operator S ∈ Bec in the essential commutant of B such that D = [·, S]. If
T ∈ B(H) is another operator with D = [·, T ], then T − S ∈ Bc ⊂ K(H)c =
C1H ⊂ B and hence the equivalence classes of T and S in Bec/B coincide. If D
is inner, then it follows that the operator S chosen above belongs to B. Thus
the map δ is well defined. Obviously, it is linear and injective. To complete
the proof, observe that every operator S ∈ Bec in the essential commutant of
B induces a well defined derivation D : B → B, A 7→ [A, S]. Hence δ is also
surjective. �
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In the setting of Corollary 7 the first Hochschild cohomology group H1(B,B)
of B vanishes if and only if B is equal to its essential commutant Bec in
B(H). It is elementary to check that this happens if and only if the quo-
tient algebra B/K(H) is a maximal abelian subalgebra of the Calkin algebra
C(H) = B(H)/K(H). This remark shows in particular that the quotient
T (A)/K(H) is a maximal abelian subalgebra of the Calkin algebra C(H).

Moreover, the proof of the main theorem can be completed by showing that
the Toeplitz algebra T (B) induced by the symbol class B ⊂ L∞(σ) occurring
in the statement of Theorem 1 satisfies the requirements of Corollary 7. This
will be done in the following lemma.

8 Lemma. Let B ⊂ L∞(σ) be a closed subalgebra with C(∂Ω) ⊂ B ⊂ A.

Then the mapping τ : B → T (B)/K(H2(σ)) defined by

τ(f) = Tf + K(H2(σ))

is an isometric isomorphism between commutative semi-simple Banach alge-

bras.

Proof. Obviously the map τ is linear. By Corollary 3.6 in [8] the equality of
norms

‖f‖L∞(σ) = ‖Tf + K(H2(σ))‖

holds for every function f ∈ L∞(σ). Hence τ is isometric. Since B ⊂ A, the
formula

TfTg − Tfg = −PMfHg (f, g ∈ L∞(σ))

shows that τ is an algebra homomorphism. The identity

Tf1
· · ·Tfr

− Tf1···fr
= Tf1

(Tf2
· · ·Tfr

− Tf2···fr
) + (Tf1

Tf2···fr
− Tf1···fr

)

together with an elementary induction implies that

Tf1
· · ·Tfr

+ K(H2(σ)) = Tf1···fr
+ K(H2(σ))

belongs to the range of τ for all f1, . . . fr ∈ B. Since the range of τ is closed,
this argument yields the surjectivity of τ . As a unital closed subalgebra of the
commutative C∗-algebra L∞(σ), the Banach algebra B is semi-simple. This
observation completes the proof. �

Let B ⊂ L∞(σ) be a closed subalgebra as in Lemma 8. If f ∈ L∞(σ) is
a function with Tf + K(H2(σ)) ∈ T (B)/K(H2(σ)), then there is a function
g ∈ B with Tf−g = Tf − Tg ∈ K(H2(σ)) and hence f = g ∈ B. Therefore in
the setting of Corollary 2, the mapping

A/B → T (A)/T (B), f + B → Tf + T (B)

is a vector-space isomorphism as we claimed there.
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