Universität des Saarlandes

Fachrichtung 6.1 – Mathematik

Preprint Nr. 318

Derivations on Toeplitz algebras

Michael Didas and Jörg Eschmeier

Saarbrücken 2012

Derivations on Toeplitz algebras

Michael Didas

Saarland University Department of Mathematics P.O. Box 15 11 50 66041 Saarbrücken Germany didas@math.uni-sb.de

Jörg Eschmeier

Saarland University Department of Mathematics P.O. Box 15 11 50 66041 Saarbrücken Germany eschmei@math.uni-sb.de

Edited by FR 6.1 – Mathematik Universität des Saarlandes Postfach 15 11 50 66041 Saarbrücken Germany

Fax: + 49 681 302 4443 e-Mail: preprint@math.uni-sb.de WWW: http://www.math.uni-sb.de/

Derivations on Toeplitz algebras

Michael Didas and Jörg Eschmeier

Let $H^2(\Omega)$ be the Hardy space on a strictly pseudoconvex domain $\Omega \subset \mathbb{C}^n$, and let $A \subset L^{\infty}(\partial\Omega)$ denote the subalgebra of all L^{∞} -functions f with compact Hankel operator H_f . Given any closed subalgebra $B \subset A$ containing $C(\partial\Omega)$, we describe the first Hochschild cohomology group of the corresponding Toeplitz algebra $\mathcal{T}(B) \subset B(H^2(\Omega))$. In particular we show that every derivation on $\mathcal{T}(A)$ is inner. These results are new even for n = 1, where it follows that every derivation on $\mathcal{T}(H^{\infty} + C)$ is inner, while there are non-inner derivations on $\mathcal{T}(H^{\infty} + C(\partial \mathbb{B}_n))$ over the unit ball \mathbb{B}_n in dimension n > 1.

Introduction

A recent result of Cao (Theorem 3 in [2]) describes the first Hochschild cohomology group of the Toeplitz C^* -algebra generated by all Toeplitz operators with continuous symbol on the Hardy space over a strictly pseudoconvex domain in \mathbb{C}^n . Using a modification of Cao's arguments and a result of Davidson from 1977 (Corollary 4 in [5]) the first author showed in [7] that every continuous derivation of the Toeplitz algebra $\mathcal{T}(H^{\infty} + C)$ on the Hardy space of the unit disc \mathbb{D} is inner. It seems natural to ask if the first Hochschild cohomology group vanishes in this case, that is, if the latter result remains true without the continuity assumption and, secondly, if a generalization to higher dimensions is possible. In the present note we answer both questions in the affirmative by establishing a description of the first Hochschild cohomology group for a variety of Hardy-space Toeplitz algebras on strictly pseudoconvex domains, including the cases mentioned above.

Throughout this paper, we fix a bounded strictly pseudoconvex domain $\Omega \subset \mathbb{C}^n$ with C^{∞} -boundary. The Hardy space $H^2(\sigma)$ with respect to the normalized surface measure σ on $\partial\Omega$ can be defined as the norm closure of the set $A(\partial\Omega) =$ $\{f|\partial\Omega : f \in C(\overline{\Omega}), f|\Omega$ holomorphic} in $L^2(\sigma)$. As usual, the Toeplitz operator $T_f \in B(H^2(\sigma))$ with symbol $f \in L^{\infty}(\sigma)$ is given by the formula

$$T_f = PM_f | H^2(\sigma),$$

where $P: L^2(\sigma) \to H^2(\sigma)$ denotes the orhogonal projection and $M_f: L^2(\sigma) \to L^2(\sigma), g \mapsto fg$, is the operator of multiplication with f. A natural question to ask is to what extent the membership of a function f to some special symbol class $S \subset L^{\infty}(\sigma)$ determines the behaviour of the corresponding Toeplitz operator T_f . Besides this single-operator point of view, one may ask for the properties of the so-called Toeplitz algebra

$$\mathcal{T}(S) = \overline{\operatorname{alg}}\{T_f : f \in S\} \subset B(H^2(\sigma))$$

associated with the symbol class S. Among the most important choices for S are the bounded holomorphic functions on Ω (more precisely, their nontangential boundary values) which will be denoted by $H^{\infty}(\sigma)$ in the sequel and the continuous functions $C(\partial\Omega)$, which give rise to the algebra of all analytic Toeplitz operators $\mathcal{T}(H^{\infty}(\sigma))$ and the Toeplitz C^* -algebra $\mathcal{T}(C(\partial\Omega))$, respectively. Another natural symbol class, arising intrinsically in the theory of Toeplitz operators, can best be expressed in terms of the corresponding Hankel operators

$$H_f: H^2(\sigma) \to L^2(\sigma), \quad h \mapsto (1-P)(fh).$$

From the work of Davidson [5] for the unit disc, Ding and Sun [9] for the unit ball, and Didas et al [8] for the strictly pseudoconvex case, it is known that an operator $S \in B(H^2(\sigma))$ commutes modulo the compact operators with all analytic Toeplitz operators if and only if $S = T_f + K$ where K is compact and f belongs to the class

$$A = \{ f \in L^{\infty}(\sigma) : H_f \text{ is compact} \}.$$

The identity $H_{fg} = H_f T_g + (1 - P) M_f H_g$ valid for $f, g \in L^{\infty}(\sigma)$ shows that A is a closed subalgebra of $L^{\infty}(\sigma)$. Moreover, since Hankel operators with continuous symbol are compact in our setting (Theorem 4.2.17 in [16]), A always contains the space $H^{\infty}(\sigma) + C(\partial\Omega)$. According to [1] the latter space is also a closed subalgebra of $L^{\infty}(\sigma)$. By a classical result of Hartman [11], the equality $A = H^{\infty} + C$ holds on the open unit disc in \mathbb{C} , while the inclusion $H^{\infty}(\sigma) + C(\partial \mathbb{B}_n) \subset A$ is known [6] to be strict in the case of the open unit ball $\mathbb{B}_n \subset \mathbb{C}^n$ for n > 1.

Given any closed subalgebra $B \subset L^{\infty}(\sigma)$ with $C(\partial\Omega) \subset B \subset A$, our main result characterizes the first Hochschild cohomology group of the Toeplitz algebra $\mathcal{T}(B)$. We briefly recall the definition of the first Hochschild cohomology. Let \mathcal{A} be a Banach algebra and let \mathcal{E} be a Banach- \mathcal{A} -bimodule. A derivation from \mathcal{A} into \mathcal{E} is a (not necessarily continuous) linear map $D : \mathcal{A} \to \mathcal{E}$ satisfying the identity

$$D(AB) = D(A)B + AD(B) \qquad (A, B \in \mathcal{A}).$$

For a given element $S \in \mathcal{E}$, the commutator with S

$$D: \mathcal{A} \to \mathcal{E}, \quad D(X) = [X, S] = XS - SX$$

defines a derivation from \mathcal{A} into \mathcal{E} . Derivations arising in this way are called inner. Writing $Z^1(\mathcal{A}, \mathcal{E})$ for the space of all derivations from \mathcal{A} into \mathcal{E} and $N^1(\mathcal{A}, \mathcal{E}) \subset Z^1(\mathcal{A}, \mathcal{E})$ for the subspace consisting of all inner derivations, the first Hochschild cohomology group can defined as the quotient

$$H^1(\mathcal{A}, \mathcal{E}) = Z^1(\mathcal{A}, \mathcal{E})/N^1(\mathcal{A}, \mathcal{E}).$$

In particular, $H^1(\mathcal{A}, \mathcal{E})$ vanishes if and only if every derivation from \mathcal{A} into \mathcal{E} is inner.

Let us finally mention that, for a given Hilbert space H, we write $\mathcal{K}(H)$ for the ideal of all compact operators on H and that, for a subset $\mathcal{S} \subset B(H)$, we denote its essential commutant by

$$\mathcal{S}^{ec} = \{ X \in B(H) : [X, S] \in \mathcal{K}(H) \text{ for all } S \in \mathcal{S} \}.$$

Now we have gathered all the notations required for an adequate formulation of our main result.

A description of H^1 for Toeplitz algebras

The following theorem can be thought of as a Banach-algebra version of Cao's result (Theorem 3 in [2]) on the Toeplitz C^* -algebra.

1 Theorem. Let $B \subset L^{\infty}(\sigma)$ be a closed subalgebra with $C(\partial \Omega) \subset B \subset A$. Then every derivation $D : \mathcal{T}(B) \to B(H^2(\sigma))$ is inner and the map

$$\delta: H^1(\mathcal{T}(B), \mathcal{T}(B)) \longrightarrow \mathcal{T}(B)^{ec} / \mathcal{T}(B), \quad \delta([D]) = [S] \quad \text{if} \quad D = [\cdot, S],$$

is a well-defined isomorphism of linear spaces.

We postpone the proof of this theorem for a moment in order to demonstrate some of its consequences. Let us first remark that, as A contains $C(\partial\Omega)$, the algebra $\mathcal{T}(A)$ contains the Toeplitz C^* -algebra $\mathcal{T}(C(\partial\Omega))$ and hence all compact operators on $H^2(\sigma)$ (Theorem 4.2.24 in [16]). Together with the description of $\mathcal{T}(H^{\infty}(\sigma))^{ec}$ established in Corollary 4.8 of [8], we obtain the chain of inclusions

$$\mathcal{T}(A)^{ec} \subset \mathcal{T}(H^{\infty}(\sigma))^{ec} = \{T_f + K : f \in A, K \in \mathcal{K}(H^2(\sigma))\} \subset \mathcal{T}(A).$$

The identity $T_{fg} - T_f T_g = -PM_f H_g$ for $f, g \in L^{\infty}(\sigma)$ shows that $\mathcal{T}(A)$ is essentially commutative. Hence we can complete the above chain with the inclusion $\mathcal{T}(A) \subset \mathcal{T}(A)^{ec}$, which shows that in fact equality holds at each stage. In particular, we have

$$\mathcal{T}(A)^{ec} = \mathcal{T}(H^{\infty}(\sigma))^{ec} = \mathcal{T}(A).$$

As a consequence we obtain the following special case of Theorem 1 which applies for example to the algebra $B = H^{\infty}(\sigma) + C(\partial \Omega)$.

2 Corollary. If the algebra $B \subset A$ from Theorem 1 contains $H^{\infty}(\sigma)$, then we have $H^1(\mathcal{T}(B), \mathcal{T}(B)) \cong \mathcal{T}(A)/\mathcal{T}(B) \cong A/B$ as linear spaces.

Proof. For the first identification, it suffices to observe that $\mathcal{T}(A) = \mathcal{T}(A)^{ec} \subset \mathcal{T}(B)^{ec} \subset \mathcal{T}(H^{\infty}(\sigma))^{ec} = \mathcal{T}(A)$ holds and to apply Theorem 1. The second identification is given by the map $A/B \to \mathcal{T}(A)/\mathcal{T}(B)$, $[f] \mapsto [T_f]$, which is easily seen to be a vector-space isomorphism. For the details, see the remarks following Lemma 8.

For $B = A = \{f \in L^{\infty}(\sigma) : H_f \text{ compact}\}$ the assertion of Corollary 2 deserves to be stated separately.

3 Corollary. The first Hochschild cohomology group $H^1(\mathcal{T}(A), \mathcal{T}(A))$ vanishes on every bounded strictly pseudoconvex domain $\Omega \subset \mathbb{C}^n$ with C^{∞} -boundary. In particular, every derivation on $\mathcal{T}(H^{\infty}(\sigma) + C(\partial \mathbb{D}))$ is inner on the unit disc \mathbb{D} .

As mentioned before, it was observed by Davie and Jewell in [6] that the inclusion $H^{\infty}(\sigma) + C(\partial \mathbb{B}_n) \subset A$ is strict for every n > 1. Thus in contrast to the case n = 1, by Corollary 2, there exist non-inner derivations on the Toeplitz algebra $\mathcal{T}(H^{\infty}(\sigma) + C(\partial \mathbb{B}_n))$ for every n > 1.

Finally, we obtain the result of Cao mentioned at the beginning which was the starting point of our considerations. Note that $\mathcal{T}(C(\partial\Omega))^{ec} = \{T_{z_1}, \ldots, T_{z_n}\}^{ec}$ (see, e.g., Lemma 4.1 in [8]).

4 Corollary. (Cao) For the Toeplitz C^* -algebra on a bounded strictly pseudoconvex domain $\Omega \subset \mathbb{C}^n$ with C^{∞} -boundary we have the isomorphism

$$H^{1}(\mathcal{T}(C(\partial\Omega)), \mathcal{T}(C(\partial\Omega))) \cong \{T_{z_{1}}, \dots, T_{z_{n}}\}^{ec} / \mathcal{T}(C(\partial\Omega)).$$

Proof of Theorem 1

Theorem 1 can be proved using a general structure theorem due to Chernoff for derivations of operator algebras $\mathcal{A} \subset B(E)$ that contain the finite-rank operators on a normed linear space E (see Theorem 3.3 in [3]). Combining ideas of Cao [2] and Davidson [5] we give a short C^* -theoretic proof of the Hilbert-space version of Chernoff's theorem.

5 Proposition. If \mathcal{B} is a closed subalgebra of B(H) containing the compact operators $\mathcal{K}(H)$ and the identity 1_H , then every derivation from \mathcal{B} into B(H) is inner, that is, $D = [\cdot, S]$ for some operator $S \in B(H)$.

Proof. First observe that the set of operators $\mathcal{K}_1 = \mathcal{K}(H) + \mathbb{C} \cdot 1_H \subset \mathcal{B}$ is a self-adjoint closed subalgebra of B(H) and hence is a unital C^* -algebra. So if $D : \mathcal{B} \to B(H)$ is any derivation, then its restriction $D_1 : \mathcal{K}_1 \to B(H)$, $D_1 = D|\mathcal{K}_1$, is a derivation from the C^* -algebra \mathcal{K}_1 into B(H) (viewed as a Banach \mathcal{K}_1 -bimodule) and therefore is continuous by a result of Ringrose (see Theorem 2 in [13] or Corollary 5.3.7 in [4]).

Our first aim is to show that D maps the space $\mathcal{K}(H)$ into itself. Since every element of the C^* -algebra \mathcal{K}_1 is a finite linear combination of unitary elements in \mathcal{K}_1 , it suffices to show that $D(U) \in \mathcal{K}(H)$ for every unitary operator $U \in$ \mathcal{K}_1 . Since $\mathcal{K}_1/\mathcal{K}(H)$ is contained in the centre of the Calkin algebra $\mathcal{C}(H) =$ $B(H)/\mathcal{K}(H)$, for every integer m > 0, we obtain the identity

$$[D(U^m)] = [\sum_{i=1}^m U^{i-1}D(U)U^{m-i}] = m[U^{m-1}D(U)]$$

in $\mathcal{C}(H)$. Using the fact that multiplication with a unitary element in a C^* -algebra is isometric, we find that

$$m \| [D(U)] \| = \| [D(U^m)] \| \le \| D_1 \|$$

for all integers m > 0. Hence $D(U) \in \mathcal{K}(H)$ as was to be shown.

As a derivation of $\mathcal{K}(H)$ into itself, the restriction $D|\mathcal{K}(H)$ can be written as the commutator with some fixed operator $S \in B(H)$ (Corollary 4.1.7 in [14]). More explicitly, there exists an operator $S \in B(H)$ such that

$$D(K) = KS - SK \qquad (K \in \mathcal{K}(H)).$$

Since the identity

$$D(A)K + AD(K) = D(AK)$$

= $AKS - SAK$
= $(AKS - ASK) + (ASK - SAK)$
= $AD(K) + (AS - SA)K$

holds for every $A \in \mathcal{B}$ and $K \in \mathcal{K}(H)$, it follows that $D = [\cdot, S]$. This observation completes the proof.

6 Corollary. If in the setting of the last proposition the quotient algebra $\mathcal{B}/\mathcal{K}(H)$ is commutative and semi-simple, then every derivation $D: \mathcal{B} \to \mathcal{B}$ has the form $D(X) = XS - SX \ (X \in \mathcal{B})$ for some fixed operator $S \in \mathcal{B}^{ec}$ in the essential commutant of \mathcal{B} .

Proof. By the preceding proposition, there is an operator $S \in B(H)$ with $D = [\cdot, S]$. In particular D induces a continuous derivation

$$\widehat{D}: \mathcal{B}/\mathcal{K}(H) \to \mathcal{B}/\mathcal{K}(H), \quad [X] \mapsto [D(X)].$$

Since $\mathcal{B}/\mathcal{K}(H)$ is supposed to be commutative and semi-simple, the Singer-Wermer theorem (Theorem 1 in [15]) implies that $\widehat{D} = 0$. Hence $D(\mathcal{B}) \subset \mathcal{K}(H)$ and $S \in \mathcal{B}^{ec}$.

7 Corollary. Let $\mathcal{B} \subset B(H)$ be a unital closed subalgebra containing the compact operators $\mathcal{K}(H)$ such that the quotient algebra $\mathcal{B}/\mathcal{K}(H)$ is commutative and semi-simple. Then the mapping $\delta : H^1(\mathcal{B}, \mathcal{B}) \to \mathcal{B}^{ec}/\mathcal{B}$,

$$\delta([D]) = [S] \text{ if } D = [\cdot, S]$$

is a well-defined vector-space isomorphism.

Proof. Let $D : \mathcal{B} \longrightarrow \mathcal{B}$ be a given derivation. By Corollary 6 there is an operator $S \in \mathcal{B}^{ec}$ in the essential commutant of \mathcal{B} such that $D = [\cdot, S]$. If $T \in B(H)$ is another operator with $D = [\cdot, T]$, then $T - S \in \mathcal{B}^c \subset \mathcal{K}(H)^c = \mathbb{C}\mathbf{1}_H \subset \mathcal{B}$ and hence the equivalence classes of T and S in $\mathcal{B}^{ec}/\mathcal{B}$ coincide. If D is inner, then it follows that the operator S chosen above belongs to \mathcal{B} . Thus the map δ is well defined. Obviously, it is linear and injective. To complete the proof, observe that every operator $S \in \mathcal{B}^{ec}$ in the essential commutant of \mathcal{B} induces a well defined derivation $D : \mathcal{B} \to \mathcal{B}, A \mapsto [A, S]$. Hence δ is also surjective.

In the setting of Corollary 7 the first Hochschild cohomology group $H^1(\mathcal{B}, \mathcal{B})$ of \mathcal{B} vanishes if and only if \mathcal{B} is equal to its essential commutant \mathcal{B}^{ec} in B(H). It is elementary to check that this happens if and only if the quotient algebra $\mathcal{B}/\mathcal{K}(H)$ is a maximal abelian subalgebra of the Calkin algebra $\mathcal{C}(H) = B(H)/\mathcal{K}(H)$. This remark shows in particular that the quotient $\mathcal{T}(A)/\mathcal{K}(H)$ is a maximal abelian subalgebra of the Calkin algebra $\mathcal{C}(H)$.

Moreover, the proof of the main theorem can be completed by showing that the Toeplitz algebra $\mathcal{T}(B)$ induced by the symbol class $B \subset L^{\infty}(\sigma)$ occurring in the statement of Theorem 1 satisfies the requirements of Corollary 7. This will be done in the following lemma.

8 Lemma. Let $B \subset L^{\infty}(\sigma)$ be a closed subalgebra with $C(\partial \Omega) \subset B \subset A$. Then the mapping $\tau : B \to \mathcal{T}(B)/\mathcal{K}(H^2(\sigma))$ defined by

$$\tau(f) = T_f + \mathcal{K}(H^2(\sigma))$$

is an isometric isomorphism between commutative semi-simple Banach algebras.

Proof. Obviously the map τ is linear. By Corollary 3.6 in [8] the equality of norms

$$\|f\|_{L^{\infty}(\sigma)} = \|T_f + \mathcal{K}(H^2(\sigma))\|$$

holds for every function $f \in L^{\infty}(\sigma)$. Hence τ is isometric. Since $B \subset A$, the formula

$$T_f T_g - T_{fg} = -PM_f H_g \quad (f, g \in L^{\infty}(\sigma))$$

shows that τ is an algebra homomorphism. The identity

$$T_{f_1}\cdots T_{f_r} - T_{f_1\cdots f_r} = T_{f_1}(T_{f_2}\cdots T_{f_r} - T_{f_2\cdots f_r}) + (T_{f_1}T_{f_2\cdots f_r} - T_{f_1\cdots f_r})$$

together with an elementary induction implies that

$$T_{f_1}\cdots T_{f_r} + \mathcal{K}(H^2(\sigma)) = T_{f_1\cdots f_r} + \mathcal{K}(H^2(\sigma))$$

belongs to the range of τ for all $f_1, \ldots f_r \in B$. Since the range of τ is closed, this argument yields the surjectivity of τ . As a unital closed subalgebra of the commutative C^* -algebra $L^{\infty}(\sigma)$, the Banach algebra B is semi-simple. This observation completes the proof.

Let $B \subset L^{\infty}(\sigma)$ be a closed subalgebra as in Lemma 8. If $f \in L^{\infty}(\sigma)$ is a function with $T_f + \mathcal{K}(H^2(\sigma)) \in \mathcal{T}(B)/\mathcal{K}(H^2(\sigma))$, then there is a function $g \in B$ with $T_{f-g} = T_f - T_g \in \mathcal{K}(H^2(\sigma))$ and hence $f = g \in B$. Therefore in the setting of Corollary 2, the mapping

$$A/B \to \mathcal{T}(A)/\mathcal{T}(B), \ f + B \to T_f + \mathcal{T}(B)$$

is a vector-space isomorphism as we claimed there.

References

- A. Aytuna, A.M. Chollet, Une extension d'une resultat de W. Rudin, Bull. Soc. Math. France 104 (1976), 383-388.
- [2] G. Cao, Toeplitz algebras on strongly pseudoconvex domains, Nagoya Math. J. 185 (2007), 171-186.
- [3] P.R. Chernoff, Representations, automorphisms, and derivations of some operator algebras, J. Funct. Anal. 12 (1973), 275-289.
- [4] H.G. Dales, Banach algebras and automatic continuity, London Mathematical Society Monographs, New Series, vol. 24, Clarendon Press, Oxford, 2000.
- [5] K.R. Davidson, On operators commuting with Toeplitz operators modulo the compact operators, J. Funct. Anal. 24 (1977), 291-302.
- [6] A.M. Davie, N.P. Jewell, Toeplitz operators in several variables, J. Funct. Anal. 24 (1977), 291-302.
- [7] M. Didas, Every continuous derivation of $\mathcal{T}(H^{\infty}+C(\mathbb{T}))$ is inner, Preprint Nr. 317, Department of Mathematics, Saarland University.
- [8] M. Didas, J. Eschmeier, K. Everard, On the essential commutant of analytic Toeplitz operators associated with spherical isometries, J. of Funct. Anal. 261 (2011), 1361-1383.
- [9] X. Ding, S. Sun, Essential commutant of analytic Toeplitz operators, Chinese Science Bulletin 42, No.7 (1997), 548-552.
- [10] R.G. Douglas, Banach algebra techniques in operator theory, Second edition. Graduate Texts in Mathematics 179, Springer, New York, 1998.
- [11] P. Hartman, On completely continuous Hankel operators, Proc. Amer. Math. Soc. 9 (1958), 862-866.
- [12] N.P. Jewell, S.G. Krantz, Toeplitz operators and related function algebras on certain pseudoconvex domains, Transactions of the AMS, Volume 252 (1979), 297-312.
- [13] J.R. Ringrose, Automatic continuity of derivations of operator algebras, J. London Math. Soc. (2) 5 (1972), 432-438.
- [14] S. Sakai, C^{*}-algebras and W^{*}-algebras, Springer, Berlin, 1971.
- [15] I.M. Singer and J. Wermer, Derivations on commutative normed algebras, Math. Annalen, Bd. 129 (1955), S. 260-264.
- [16] H. Upmeier, Toeplitz operators and index theory in several complex variables, Oper. Theory Adv. Appl., vol. 81, Birkhäuser, Basel, 1996.