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Abstract

This article proposes an advanced image enhancement method that
is specifically tailored towards 3-D confocal and STED microscopy im-
agery. Our approach unifies image denoising, deblurring and interpo-
lation in one joint method to handle the typical weaknesses of these
advanced microscopy techniques: Out-of-focus blur, Poisson noise,
and low axial resolution. In detail, we propose the combination of
(i) Richardson–Lucy deconvolution, (ii) image restoration, and (iii)
anisotropic inpainting in one single scheme. To this end, we develop a
novel PDE-based model that realises these three ideas. First we con-
sider a basic variational image restoration functional that is turned
into a joint interpolation scheme by extending the regularisation do-
main. Next we integrate the variational representation of Richardson–
Lucy deconvolution into our model, and illustrate its relation to Pois-
son distributed noise. In the following step we supplement the com-
ponents of our model with subquadratic penalisation strategies, that
increase the robustness of the overall method. Finally we consider the
associated minimality conditions, where we exchange the occurring
scalar-valued diffusivity function by a so-called diffusion tensor. This
leads to an anisotropic regularisation that is aligned with structures
in the evolving image. As a further contribution of this article, we
propose a more efficient and faster semi-implicit iteration scheme that
also increases the stability. Our experiments on real data sets demon-
strate that this joint model achieves a superior reconstruction quality
of the recorded cell.

Keywords: Confocal laser scanning microscopy, stimulated emission depletion
microscopy, interpolation, regularisation, deconvolution, Richardson–Lucy,
anisotropic diffusion

Contents

1 Introduction 2

2 Simultaneous Interpolation and
Deconvolution 5
2.1 Variational Denoising and Interpolation . . . . . . . . . . . . . 5
2.2 Blur and Noise Model . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Richardson–Lucy Deconvolution . . . . . . . . . . . . . . . . . 7
2.4 Robust Regularised Richardson–Lucy Deconvolution . . . . . 8
2.5 Joint Variational Approach . . . . . . . . . . . . . . . . . . . . 9

1



3 Fibre Enhancement with Anisotropic
Regularisation 9

4 Fast and Stabilized Iteration Scheme 11

5 Space Discretisation 12

6 Experiments 15

7 Conclusion 22

A Minimality Conditions of Variational RL Deconvolution 26

B A Semi-implicit Relaxation Scheme for RL Deconvolution 27

1 Introduction

Driven by novel imaging and production techniques, nanotechnology has
found its way into modern life in the past years, and is well on track of
becoming omnipresent [1, 2]. Since such nano-scale particles are so small
that they might penetrate the human body and cells, the natural question
about their harmfulness comes up [3, 4, 5], and researchers start examining
the possibility of inflammatory or toxicological effects [6].
While the record-breaking lateral resolution of STimulated Emission Deple-
tion Microscopy (STED) [7] makes these studies possible, one has to be aware
that the underlying image acquisition process has several systematic draw-
backs. To understand these limitations, let us briefly discuss this process for
the case of confocal microscopy techniques [8].
Standard wide-field microscopes acquire the whole probe at once, whereas in
confocal microscopy the specimen is illuminated and scanned point-wisely.
To this end, a pinhole and a lens system in front of a light source focus a light
beam on one spot of the specimen. In Confocal Laser Scanning Microscopy
(CLSM) [9], this point illumination is realised by a laser. To block remain-
ing light coming from out-of-focus areas of the lens system, a second pinhole
is placed in front of the detector. Often, CLSM is extended by the fluo-
rescence technique [10, 9], where fluorophores are used to label sub-cellular
structures in the cell. By adjusting the laser beam to the specific wavelength
of the fluorophores, photons of a longer wavelength [10] are emitted. Using a
dichroic mirror, only these emitted photons arrive in the detector. Although
the CLSM principle allows very high resolutions, the excitation beam cannot
be focussed arbitrarily sharp: The size of both the illumination spot and the
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Figure 1: (a) Left: Volumetric visualisation of the filament network of a
cell, recorded with a 3-D confocal laser scanning microscope (CLSM). (b)
Right: Scaled point spread function (PSF).

acquisition point is bounded from below by the diffraction law [11]. Thus,
the physical resolution limit of CLSM is approximately half the used wave-
length. With STimulated Emission and Depletion (STED) microscopy, Hell
and Wichmann [7] show a way to break this limitation. By using a second
depletion beam, which is doughnut-shaped, already excited molecules can be
switched off again. This way, the diffraction law can be bypassed, and a lat-
eral resolution of a few nanometres can be reached. However, it is clear that
this idea cannot help to increase the resolution along the depletion beam.
Further, due to the two apertures and a second depletion beam, only very
few photons finally arrive at the detector. This naturally leads to Poisson
distributed noise. By increasing the size of the second pinhole, it is possible
to reduce the noise level at the expense of more blur. As a consequence, there
exists a natural trade-off between the noise and blur level. The amount of
blur, represented by the point spread function (PSF) of the device, can be
estimated: By aligning and averaging recordings of some small fluorescent
beads, software packages like Huygens6 allow to approximate the PSF within
a preprocessing step. A volumetric visualisation7 of an exemplary 3-D CLSM
image together with the estimated PSF is depicted in Figure 1.

Our contribution. Following the considerations above, the STED image
acquisition process suffers from three degradations: Poisson noise, a rela-
tively low axial resolution, and out-of-focus blur. The goal of this article is
to develop an advanced method to counteract these degradations after the

6Scientific Volume Imaging b.v., Huygens Software, http://www.svi.nl
7http://www.imagevis3d.org
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image has been acquired. This article is based on a conference publication
by Elhayek et al. (2011) [12]. Besides revisiting and discussing the latter
paper in detail, we extend its model in three aspects:

1. Instead of the isotropic regularisation of [12], we introduce an anisotropic
smoothing operator that is well suited for the elongated structures of
the cell filament. To accomplish this, the scalar-valued diffusivity is re-
placed by a tensor-valued quantity, which allows to direct the smooth-
ing along fibres.

2. We propose a novel semi-implicit numerical scheme that is more robust
and at the same time faster. More precisely, our scheme allows larger
amounts of regularisation and exhibits a significantly faster convergence
behaviour than the scheme in [12].

3. We provide extensive numerical experiments that validate the suitabil-
ity of our modifications. To this end, we evaluate our approach on real
world CLSM as well as STED images and compare it against competing
methods in literature.

Related work. While van Cittert [13] was one of the first researchers to
consider the task of deconvolution, Wiener popularised the discipline with his
seminal work [14]. Since then deconvolution has been the topic of numerous
publications. Among those, the methods of Richardson [15] and Lucy [16]
(RL deconvolution) are closely related to our approach. The work by Dey
et al. [17] develops variational models for the RL scheme, and introduces
a regularisation component into the process. Earlier variational non-blind
deconvolution models with total variation (TV) regularisation date back to
the work by Marquina and Osher [18], which also fits into the more general
model of Osher and Rudin [19]. Furthermore, blind deconvolution models
with simultaneous regularisation are proposed by Chan [20] and Yu-Li [21].
The anisotropic diffusion concepts of Weickert [22] have been introduced to
deconvolution by Welk et al. [23]. Sawatzki et al. [24, 25] consider primal-dual
algorithms to solve regularised RL deconvolution models.
In the context of image interpolation and inpainting [26], a joint model for
2-D image restoration and inpainting is proposed by Chan [27], who even
combined inpainting and blind deconvolution in [28].

Organisation. In the following Section 2, we revisit step by step the
isotropic model of Elhayek [12]. In Section 3 we present our first contri-
bution and introduce anisotropic smoothing into Elhayek’s model. Section 4
is devoted to our novel semi-implicit iterative scheme. The numerical aspects
and stability conditions of this scheme are discussed in Section 5. Finally
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Section 6 presents our experimental evaluation, and we conclude this article
with a summary in Section 7.

2 Simultaneous Interpolation and

Deconvolution

As already mentioned, we are confronted with image material whose (i) axial
resolution (z-direction) is significantly lower than its lateral resolution (x- and
y-direction), (ii) which is perturbed by strong noise, and (iii) which suffers
from blur. Hence, the goal of this section is to discuss the joint variational
model of Elhayek et al. [12], which is appropriate for such image material.

2.1 Variational Denoising and Interpolation

Let Ω ⊂ R3 denote the whole three-dimensional image domain, where the im-
age shall be reconstructed. Further, let D ⊂ Ω be the region where measured
image data is available. In practice, usually Ω is a cuboid, and D consists of
x-y-slices which are equidistantly spaced in z-direction. Assuming that the
recorded data f : D → R suffers from noise, we approximate a (piecewise)
smooth version u : D → R of f by minimising the following energy functional
on D:

E[u] :=

∫
D

(
(u− f)2︸ ︷︷ ︸
data term

+ α · Ψ(|∇u|2)︸ ︷︷ ︸
smoothness term

)
dx . (1)

Here, ∇ := (∂x, ∂y, ∂z)
> denotes the gradient operator. The functional (1)

consists of a so-called data term, which penalises deviations of the solution
u from the original data f , and a smoothness term whose importance can be
tuned via the regularisation parameter α > 0. Depending on the particular
choice of the positive increasing function Ψ : R+

0 → R+, different smooth-
ing behaviours can be achieved: Choosing Ψ(s2) := s2 leads to Whittaker-
Tikhonov regularisation [29, 30], while Ψ(s2) := |s| results in total variation
(TV) regularisation [31]. It is known that the quadratic data term is espe-
cially suitable if the data is perturbed with additive white Gaussian noise.
Following [27, 32], we realise the extension to simultaneous denoising and
interpolation by simply extending the regularisation domain to the whole
cuboid Ω and finding a minimiser u : Ω→ R of

E[u] :=

∫
Ω

(
χD · (u− f)2 + α ·Ψ(|∇u|2)

)
dx . (2)
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Here, the characteristic function χD : Ω → {0, 1} is 1 where information is
known (inside D) and 0 everywhere else. Thus, the reconstruction process
diffuses information into the unknown regions.
Although this functional realises denoising and interpolation, up to now it
does not include a blur model. Moreover, the quadratic data term is inap-
propriate for Poisson distributed noise, which is the primary noise type in
low photon techniques.

2.2 Blur and Noise Model

Confocal microscopy suffers from two main sources of degradation during the
imaging process. On the one hand, blur is a big problem due to the imper-
fectly blocked light from out-of-focus areas. On the other hand, typically the
light intensity is so low, that only few photons hit the detector. Hence, strong
noise is the result. This problem especially appears in STED microscopy.
To describe these degradations mathematically, let g : R3 → R+ represent the
original image without degradation, and let f : R3 → R+ denote the acquired
image. Since blur is a redistribution of light energy which we assume to be
independent of the location, it can be described mathematically in terms of
a convolution operation

(h ∗ g) (x) :=

∫
R3

h(x− s) · g(s) ds (3)

with the so-called point spread function (PSF) h : R3 → R+. Contrary to
blind deconvolution methods [20, 33, 21], in this work we assume the PSF to
be known.
Further, we assume also the noise to be a spatially independent function
η : R → R. Thus, the complete image acquisition process can be expressed
as

f(x) = η ((h ∗ g)(x)) , x ∈ D. (4)

In the typical confocal microscopy setting mainly two different types of noise
appear: On the one hand, additive white Gaussian noise, which is indepen-
dent of the light intensity, is caused by the imaging sensor and by signal
amplification. On the other hand, the dominant type of noise in this setting
follows a Poisson distribution. Due to the point-wise illumination, the low
energy fluorescent light, and the aperture in front of the sensor only a few
photons find their way to the detector. The probability of k ∈ N photon
impacts complies with the Poisson distribution

Pλ(X = k) =
λk

k!
e−λ , (5)
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where λ ∈ R+ is both the mean and the variance of the distribution.

2.3 Richardson–Lucy Deconvolution

According to Dey et al. [17], under the assumption that the photon impacts
follow a Poisson distribution, the probability p(f |g) of acquiring the image
f , given that the true object is g, reads

p(f |g) =
∏
x∈D

(
((h ∗ g)(x))f(x)

f(x)!
e−(h∗g)(x)

)
. (6)

Here we assume that all points x∈D are independent. By a maximum-
likelihood approach, the original image g can be estimated as the maximiser
of probability p with respect to the observed image f . Hence, by taking the
negative logarithm of (6), one obtains the following energy functional [34],
whose minimiser u is an approximation to the sought original image g:

ERL
f,h [u] :=

∫
D

(
(h ∗ u− f)− f · ln

(
h ∗ u
f

))
dx . (7)

Note the equivalence to Csiszár’s information divergence [35]. The fact that
the latter functional cannot have a unique minimiser is obvious, since any
additive perturbation that is removed by convolving with h induces an addi-
tional solution.
Concerning the minimisation of (7), the associated minimality condition
reads

h∗ ∗
(

1− f

h ∗ u

)
· u = 0 . (8)

This can be verified by employing the multiplicative Euler-Lagrange formal-
ism (see A). By introducing a fixed point iteration in k, and making use of
h∗ ∗ 1 = 1, where 1 is the constant function 1, we obtain

uk+1 =

(
h∗ ∗ f

h ∗ uk

)
· uk , (9)

where h∗(x) := h(−x) is the adjoint of the PSF h. As initialisation for the
latter scheme serves the observed image u0 := f , and its only parameter is
the number of iterations.
The latter iteration scheme is nothing else than the well known Richardson–
Lucy (RL) deconvolution algorithm [16, 15]. It is a common post-processing
method in confocal microscopy and astronomical imaging [36] which produces
with every iteration successively sharpened images uk. Note that the min-
imisation of (7) via the Richardson–Lucy iteration (9) is already proposed
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in [17, 34]. In the absence of noise, i.e. f = h ∗ g, the undisturbed image g is
one fixed point of the RL iteration. However, in practice if noise is present,
the scheme has to be stopped after a certain number of iterations since it is
known to diverge for k →∞ [37].

2.4 Robust Regularised Richardson–Lucy Deconvolu-
tion

The goal of this section is to combine the regularisation ideas from Section
2.1 with the deconvolution model from the last section.
Hence, analogously to [17, 25, 24, 37], we extend the energy functional (7)
with a regularisation term:

ERRL
f,h [u] :=

∫
D

(
h ∗ u− f − f ln

(
h ∗ u
f

)
︸ ︷︷ ︸

deconvolution

+ α · Ψ(|∇u|2)︸ ︷︷ ︸
smoothness

)
dx , (10)

As for the regularisation functional (1), the amount of regularisation is
steered by the parameter α. Besides its denoising effect, the regularisation
term also suppresses oscillations and ringing artefacts which are typical for
standard deconvolution methods.
Employing the multiplicative Euler-Lagrange framework, the associated min-
imality condition [37] is stated by the partial differential equation (PDE)(

h∗ ∗
(

1− f

h ∗ u

)
− α · div

(
Ψ′(|∇u|2) ∇u

))
· u = 0 . (11)

Furthermore, we follow [37], and introduce the concept of robust statistics [38]
to the data term. To this end, we apply a non-negative increasing penalisa-
tion function Φ : R+

0 → R+
0 to the deconvolution expression and obtain the

so-called Robust Regularised Richardson–Lucy (RRRL) scheme

ERRRL
f,h [u] :=

∫
D

(
Φ

(
h ∗ u− f − f ln

(
h ∗ u
f

)
︸ ︷︷ ︸

=:rf (h∗u)

)
+ α ·Ψ(|∇u|2)

)
dx .

(12)
By that, we gain robustness against outliers and imprecisions in the deconvo-
lution model, originating e.g. from an incorrectly estimated PSF. We chose
Φ(s) := 2

√
s+ β with the small regularisation constant β > 0. The associ-

ated minimality condition is(
h∗ ∗

(
Φ′(rf (h ∗ u))

(
1− f

h ∗ u

))
− α · div(Ψ′(|∇u|2)∇u)

)
· u = 0 .

(13)

8



2.5 Joint Variational Approach

To solve both tasks of deconvolution and interpolation, we could apply the
methods for interpolation from Section 2.1 and deconvolution from Sec-
tion 2.4 sequentially. However, as Chan et al. [28] point out, such a naive
solution is disadvantageous: Interpolation followed by deconvolution prop-
agates blurred information into missing regions. By reversing the order of
application, the support of the PSF overlaps with the unknown areas. More-
over, the acquired data contains information about the signal in the domain
to be inpainted due to the convolution that is part of the image acquisition
process.
This motivates a joint variational solution as advocated by Chan et al. [28] in
the context of blind deconvolution, and by Elhayek et al. [12] in the setting
of RRRL deconvolution. There, the following energy functional for simulta-
neous interpolation and RRRL deconvolution (IRRRL) is proposed:

EIRRRL
f,h [u] :=

∫
Ω

(
χD · Φ

(
h ∗ u− f − f ln

h ∗ u
f

)
+ α ·Ψ(|∇u|2)

)
dx ,

(14)
which performs simultaneous interpolation and deconvolution. The corre-
sponding minimality condition reads(
h∗ ∗

(
χD · Φ′(rf (u ∗ h))

(
1− f

u ∗ h

))
− α · div(Ψ′(|∇u|2)∇u)

)
· u = 0 .

(15)
The latter joint variational model forms the basis of our anisotropic regular-
isation scheme, which is described in the next section.

3 Fibre Enhancement with Anisotropic

Regularisation

So far, we have discussed several interpolation and deconvolution models,
which all utilise the concept of regularisation in some sense. Mathematically,
such smoothness terms, which penalise the derivative of the unknown, cause
a divergence expression of type

div
(

Ψ′(|∇u|2)∇u
)

(16)

in the associated minimality conditions. Such expressions are known to lead
to scalar-valued (isotropic) diffusion [39].
However, the aim of this study is the enhancement and reconstruction of
tube-like patterns as e.g. the microtubules, which are part of the intracellular
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structure of cells. For this particular application, the isotropic behaviour of
the latter class of processes is not well suited. Thus, in order to enhance
one-dimensional structures in 3-D space, we apply the idea of anisotropic
diffusion (see e.g. [22]), which can adapt its smoothing behaviour to local
directional information. To this end we replace the scalar-valued diffusivity
Ψ′ ∈ R in (16) by a tensor-valued quantity D ∈ R3×3 leading to:

div (D ∇u) . (17)

In contrast to the scalar diffusivity, which is space-variant but can only treat
all directions equally, the so-called diffusion tensor allows to handle different
directions differently.
An established method for gathering local directional information is to con-
sider the eigendecomposition of the so-called structure tensor [40]

Jρ(∇uσ) := Kρ ∗ (∇uσ∇u>σ ) , (18)

where uσ := Kσ ∗ u abbreviates Gaussian convolution with standard devia-
tion σ, and the outer convolution is applied to all entries of the tensor in the
argument. The directional information is contained in the eigenvectors and
eigenvalues of this positive semi-definite tensor. The essential idea is that the
image value does not vary along a fibre. Hence, we are searching for the di-
rection of lowest contrast, which is given by the eigenvector v3 corresponding
to the smallest eigenvalue µ3 of

Jρ(∇uσ) = (v1|v2|v3)

µ1

µ2

µ3

v>1
v>2
v>3

 , (19)

we consider the diffusion tensor as a function of the structure tensor, that
applies diffusivity functions to the eigenvalues of its argument. Consequently,
using the decomposition (19), we design the diffusion tensor as

D(Jρ(∇uσ)) := (v1|v2|v3)

Ψ′(µ1)
Ψ′(µ2)

1

v>1
v>2
v>3

 , (20)

where Ψ′(s2) = 1/
√

1 + s2/λ2 is the Charbonnier diffusivity function [41].
Setting the third eigenvalue to 1 corresponds to homogeneous diffusion along
the eigenvector v3. As reasoned above, this choice is suitable to enhance the
tube-like structures of microtubules.

10



Finally, we replace the diffusivity in (15) accordingly and obtain(
h∗∗
(
χD · Φ′(rf (u ∗ h))

(
1− f

u ∗ h

))
− α div (D(Jρ(∇uσ))∇u)

)
· u= 0 .

(21)
The latter PDE is the central topic in the following two sections, where the
issues of how to efficiently solve and discretise the equation are discussed.

4 Fast and Stabilized Iteration Scheme

Computing a solution of (21) is a non-trivial task. For the related isotropic
case (11), Dey et al. [17] propose the following fixed point iteration:

uk+1 −
(
h∗ ∗ f

h ∗ uk

)
· uk − α div

(
Ψ′(|∇uk|2)∇uk

)
· uk+1 = 0 . (22)

In their scheme, the divergence term is evaluated at the old time step k, but
multiplied with uk+1. Solving for uk+1 yields

uk+1 =
uk

1− α div (Ψ′(|∇uk|2)∇uk) ·
(
h∗ ∗ f

h ∗ uk

)
. (23)

As one can see, the divergence term is part of the denominator. To prevent
singularities and negative values, the amount of regularisation has to be
limited by allowing only small values for α.
As a remedy, Welk [37] refrains from strictly multiplying the divergence term
in (13) with uk+1 from the new time step. Instead, he chooses the old time
step uk, if the divergence term has positive sign. Else, he proposes to multiply
with uk+1, to obtain

(
h∗ ∗ Φ′kD

)
uk+1−

(
h∗ ∗

(
Φ′kD ·

f

h ∗ uk

))
uk−α div

(
Ψ′(|∇uk|2)∇uk

)
uk+ν = 0 .

(24)
Here, we use the abbreviation Φ′kD := χD ·Φ′(rf (h ∗uk)) and set ν := 1, if the
divergence term is negative, and ν := 0 else. Solving for uk+1 leads to the
iteration scheme

uk+1 =
h∗ ∗

(
Φ′kD ·

f
h∗uk

)
+ α [div

(
Ψ′(|∇uk|2) ∇uk

)
]+

h∗ ∗ Φ′kD − α [div (Ψ′(|∇uk|2) ∇uk)]−
· uk , (25)

where we adopt the notation [z]± := 1
2
(z ± |z|) from [37].
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Although this case distinction ensures the non-negativity of the overall scheme,
our experiments show that it still behaves unsatisfactory when high levels of
regularisation are used.
We will now propose a novel fixed point iteration with better stability prop-
erties: Instead of evaluating the divergence expression completely at the old
time step, we propose a semi-implicit realisation, and decide to multiply
with uk from the old time step at the end. By applying this novel fixed point
iteration to (21), also the more general anisotropic model can be written as

(h∗∗Φ′kD) uk+1−
(
h∗∗

(
Φ′kD

f

h ∗ uk

))
uk−α div

(
D(Jρ(∇ukσ)) ∇uk+1

)
uk = 0 .

(26)
In each iteration, three convolution operations have to be performed. Since
each convolution is computationally expensive, we propose to replace the
factor uk in the first subtrahend by uk+1. This new semi-implicit scheme
reduces the number of necessary convolutions per iteration by one, and leads
to(
h∗ ∗

(
Φ′kD ·

(
1− f

h ∗ uk

)))
uk+1 − α div

(
D(Jρ(∇ukσ)) ∇uk+1

)
uk = 0 .

(27)
The actual solution of the latter equation is carried out using the steepest
descent method, to which end we introduce the relaxation parameter τ :

−
(
h∗ ∗

(
Φ′kD ·

(
1− f

h ∗ uk

)))
uk+1 + α div

(
D(Jρ(∇ukσ)) ∇uk+1

)
uk

=
uk+1 − uk

τ
. (28)

Of course, this novel semi-implicit method can also be transferred to the
original Richardson–Lucy approach just by omitting interpolation and setting
Φ(s) := s, α := 0 (see B).
In the following section, the discretisation of this fixed point iteration scheme
is discussed.

5 Space Discretisation

Let a 3-D cell image be sampled on a regular grid of size Nx×Ny×Nz =: N
with sampling distances hx, hy, hz in x-, y- and z-direction, respectively.
Hence a discrete version of the Interpolating Robust (An)Isotropic Regu-
larised Richardson–Lucy (AIRRRL) deconvolution scheme (28) has to fulfil
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the following equation in each voxel (i, j, `) ∈ {1, . . . , Nx} × {1, . . . , Ny} ×
{1, . . . , Nz}:

−
[
h∗ ∗

(
Φ′kD ·

(
1− f

h ∗ uk

))]
i,j,`︸ ︷︷ ︸

D1

·uk+1
i,j,` + α · [div(D(uk)∇uk+1)]i,j,`︸ ︷︷ ︸

A(uk)uk+1

·uki,j,`︸︷︷︸
D2

=
uk+1
i,j,` − uki,j,`

τ
. (29)

Using a single-index notation (e.g. row-major ordering), we arrange 3-D
signals u : R3→R in vectors u ∈ RN . This allows to represent the diffusion
term, which is discretised using finite differences, in terms of a matrix-vector
multiplication A(uk)uk+1. The diagonal matrices D1,D2 ∈ RN×N are used
to express the pointwise multiplication. For realising the two convolution
operations, we exploit the convolution theorem: Spatial convolution becomes
multiplications in the Fourier domain. Consequently, we obtain the following
vector-valued scheme:

−
(
D1(uk)− α ·D2(uk) ·A(uk)

)
· uk+1 =

uk+1 − uk

τ
, (30)

which leads to a system of equations Bx = b to be solved in every iteration
step: (

I + τ(D1(uk)− α ·D2(uk) ·A(uk))
)︸ ︷︷ ︸

B

·uk+1︸︷︷︸
x

= uk︸︷︷︸
b

. (31)

In every iteration k of this scheme the system (31) has to be solved. To
this end, we split A = Adiag +Arest into diagonal and off-diagonal parts and
compute the solution using the Jacobi relaxation method with parameter
ω > 0:

xm+1 = (1− ω)xm + ωD−1(T xm + b), x0 = uk, m = 0, 1, 2, . . . (32)

where
D = I + τ ·

(
D1(uk)− α ·D2(uk) ·Adiag(uk)

)
,

T = τ · α ·D2(uk) ·Arest(u
k) .

(33)

It remains to prove that if xm contains only positive entries, the same holds
for xm+1:
Let us first consider the factor D−1 in (32). Negative entries in this diagonal
matrix can appear for large τ , since D1 can have entries of arbitrary sign.

13



Hence, we derive the following bound on τ :

∀ p ∈ {1, . . . , N} : Dp,p > 0

⇔ [I + τ (D1 − α ·D2 ·Adiag)]p,p > 0

⇔ [D1 − α ·D2 ·Adiag]p,p > −
1

τ
.

(34)

The latter inequality must hold for all α > 0, and since −α ·D2 ·Adiag > 0
we obtain:

minp [D1 − α ·D2 ·Adiag]p,p > minp [D1]p,p > −
1

τ
. (35)

At this point we distinguish two cases: If minp[D1]p,p ≥ 0, the condition is
fulfilled for all τ > 0 anyway. Otherwise, the theoretical step size of the
gradient descent is restricted by the inequality

τ <
−1

minp[D1]p,p
. (36)

Please note that this bound is necessary to ensure the positivity of the solu-
tion.
Next, let us discuss the remaining component of (32) that might become
negative: Since the matrix T contains the off-diagonal entries of the discrete
anisotropic diffusion operator A, the positivity of the term T xm + b cannot
be guaranteed. Thus, we have to ensure for all p ∈ {1, . . . , N}

(1− ω)[xm]p > −ω
[
D−1(T xm + b)

]
p
. (37)

The latter inequality is just critical for voxels, where the right hand side is
positive. Hence, the following bound on the relaxation parameter can be
established:

ω < min
p

[xm]p
[xm]p −min{[D−1(T xm + b)]p , 0}

. (38)

Note that in the isotropic case, the positivity of the off-diagonals of A is
guaranteed anyway, so no relaxation is necessary (ω = 1). Furthermore, the
latter bound is derived for arbitrarily negative entries in A. In practice, we
can safely set ω in [0.9, 1.0] without observing any experimental problems in
practice.

14



6 Experiments

Our experiments are carried out with images that are provided by the Nano-
Cell Interaction group of the Leibniz Institute for New Materials (INM) in
Saarbrücken. We use a 3-D Confocal Laser Scanning Microscopy (CLSM)
image as well as a STimulated Emission Depletion (STED) microscopy image
of cells. The image of the 3-D confocal microscope has a resolution of 1024×
1024 × 50 voxels with a grid size of (6.2/6.2/12.6) nm. Correspondingly, a
PSF is estimated at a grid size of (2.5/2.5/12.6) nm. Since the PSF must
have the same grid size than the reconstruction, we have to resample it
accordingly: For doubling the depth resolution and leaving the grid in x and
y direction unaltered, we need (6.2/6.2/6.3) nm. Hence, the given PSF must
be subsampled in lateral direction and supersampled in axial direction. For
the supersampling, we use linear interpolation.
Although all our experiments are performed in 3-D, we depict distinctive
2-D slices of the processed volumes for the sake of a better recognisability.
Figure 2 shows one such slice of the original CLSM image, along with two
levels of magnification. For the rest of this section, we will discuss our results
on the basis of these magnifications, since the fine-scale details are better
comparable on high magnification levels.

Our first experiment addresses the stability of the semi-implicit scheme (28)
for the interesting case of relatively large α. In the isotropic setting, typ-
ical choices for α are in the interval [0.001, 0.05]. In Figure 3, we present
results for isotropic regularisation and compare our scheme against the one
of Elhayek et al. [12]. While the numerical scheme of the latter method
exhibits chequerboard-like instabilities with increasing α, we show that our
semi-implicit scheme remains stable even for very high regularisation weights.

With our next experiment, we illustrate the behaviour of the anisotropic
smoothing strategy. To this end, we superimpose a 2-D image slice with a
visualisation of the main smoothing orientation in Figure 4. This visualisa-
tion is computed by projecting the 3-D eigenvector of the structure tensor
that corresponds to the smallest eigenvalue into the 2-D slice. One can see
that our anisotropic strategy yields good estimates for the sought smoothing
directions.

In our third experiment, we compare our method with the original Richardson–
Lucy and the isotropic regularisation strategy of [12]. To assess the interpo-
lation quality of these techniques, we show in Figure 5 an in-between slice
of the data set. For the special case of RL deconvolution, we have to fill-in
the missing slice by linear interpolation in advance. Richardson–Lucy de-
convolution results in very sharp contrasts after 200 iterations. The main
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Figure 2: Slice 13 of the 3-D CLSM image (grey values rescaled to [0, 255]).
(a) Top left: Slice of the complete volume of size 1024×1024×50. The white
rectangle indicates the origin of the first zoom–in. (b) Top right: Slice of
the volume segment (376×244×24) of (a). Again, the white rectangles show
the position of the second level magnifications. (c) Bottom left: Central
slice of the estimated point spread function (PSF) (24 × 24 × 33). Its scale
fits the second magnification level. (d) Bottom centre and (e) right:
Two second-level magnifications.

drawback of the RL algorithm, however, is its sensitivity to noise and the
creation of over- and undershoots. As a consequence, the deconvolved images
have sharp contrasts, but the fibre structures are inhomogeneous, particu-
larly in crossings. The regularisation component in the methods of Dey et al.
and Elhayek et al. suppresses these over- and undershoots. With increasing
degree of regularisation, the fibres become more and more smooth and homo-
geneous. However, at the same time, the radii of single fibres grow and fine
structure details melt together, which is shown in Figure 5 (b) and (c). The
strength of our anisotropic regularisation becomes obvious by considering
Figure 5 (d).
Figure 6 documents the suitability of our anisotropic scheme for STED im-
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Figure 3: Numerical stability with respect to large amount of isotropic regu-
larisations (rescaled to [0, 255]). From Top to Bottom (a) Row 1: Result of
the method of Welk and Elhayek et al. 2011 [12, 37], α = 0.1, 11 iterations.
(b) Row 2: Semi-implicit approach with isotropic regularisation α = 0.1,
11 iterations. (c) Row 3: Same with 900 iterations and α = 0.1. (d) Row
4: With 900 iterations and α = 0.5.
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Figure 4: Orientations of the eigenvectors corresponding to the smallest
eigenvalues of the structure tensor (19) projected to the actual slice.

ages. The original data of resolution 1057 × 1059 × 65 is acquired with a
sampling distance of (4.0/4.0/16) nm. The beads for the PSF estimation are
recorded with a sampling distance of (4.0/4.0/8.4) nm, which is already the
required grid size for doubling the z-resolution.
The final experiment analyses the runtime of our scheme (28). To show
that our novel scheme is significantly faster than the numerical interpolation
scheme of Elhayek et al., we compute an approximate steady state using
10,000 iterations of the latter scheme. To reduce the experimentation time,
we restrict our computations to a region of size 105 × 89 × 47. In Figure 7
we show the input region along with the approximate solution. Next, we run
the scheme of Elhayek et al. as well as our scheme (with a diffusion tensor
that realises the same isotropic behaviour) and plot the average difference
per voxel between the actual iterate and the approximate solution in Figure
8. One can clearly see the superior convergence rate of our method. Fur-
thermore, we measure the time until the average difference per voxel drops
below 0.1 and summarise these computation times in Table 1. All runtime
experiments are performed with a C implementation on Intel Xeon Proces-
sor W3565 (8M Cache, 3.20 GHz, 4.80 GT/s Intel) CPU with 24 GB RAM
using a single-threaded implementation. The upper bound for the relaxation
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Figure 5: Reconstructed slice between slices 13 and 14 of the CLSM cell
image (rescaled to [0, 255]). From Top to Bottom (a) Row 1: Richardson–
Lucy deconvolution (200 iterations) with preceding linear interpolation. (b)
Row 2: Isotropic method of Elhayek et al., α = 0.0006. (c) Row 3: Ditto
with α = 0.002. (d) Row 4: Our anisotropic fibre enhancement method,
α = 0.0004, ρ = 1.5, σ = 0.6, λ = 0.1.

19



Original Elhayek et al.
α=0.0004

Elhayek, et al.
α=0.001

RL, 250 iterations Ours,
α=0.0002, σ = 0.6

Ours,
α=0.0002, σ = 1.5

Figure 6: STED experiment. Reconstruction of cell fibres recorded with
a STED microscope. Cut-outs (87 × 111 px) of an interpolated slice. All
images are rescaled to [0, 255]. (a) Top left: Original input slice. (b) Top
centre: Result of the method of Elhayek et. al, α = 0.0004. (c) Top right:
Ditto with α = 0.001. (d) Bottom left: RL deconvolution result after
250 iterations. (e) Bottom centre: Our anisotropic scheme from (21),
α = 0.0002, ρ = 2.0, σ = 0.6, λ = 0.1. (f) Bottom right: Ditto with
σ = 1.5.

parameter τ = 1.5 is determined experimentally. This speed-up can be ex-
plained by two facts: On the one hand, the novel semi-implicit scheme only
performs two instead of three convolutions per iteration, which leads to a
speed-up factor of 1.5. On the other hand, the number of required iterations
is decreased by a factor of 2.2.

20



Figure 7: (a) Left: Original input CLSM region (rescaled to [0, 255]). (b)
Right: Result after 10,000 iterations using the scheme of Elhayek et al.
(2011) with α = 0.001.
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Figure 8: Average L1 difference between the approximate solution and the
iterated signal. Note the logarithmic scaling of the y-axis. Dotted line:
Elhayek et al. (2011). Solid line: Our semi-implicit iteration scheme, τ =
1.5.

Table 1: Computation times of Elhayek et al. and our novel semi-implicit
scheme.

Method Iterations Time speed up (time)

Elhayek et al. (2011) 6276 9827 s 1

Semi-implicit τ = 1.5 2879 2982 s 3.3
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7 Conclusion

We have presented a PDE method for the post-processing and enhancement
of modern low photon light microscope imagery arising e.g. in CLSM and
STED imaging. The recorded 3-D data typically suffers from blur, Poisson
noise and low resolution in the depth direction. To solve these three problems
simultaneously, we advocate a combined model that performs deconvolution,
denoising, and inpainting. Deconvolution under Poisson noise is taken care
of by a Richardson–Lucy term that benefits from additional robustification
and regularisation. The regularisation term involves an anisotropic diffusion
operator that is also well-suited for inpainting. Moreover, its anisotropy is
designed in such a way that it enhances the filament structures of cells. This
anisotropic model yields a higher quality of the reconstrution results than its
isotropic predecessor from [12]. Moreover, we have discretised our anisotropic
model with a novel numerical scheme that preserves the positivity of the so-
lution. Compared to our conference paper [12], it uses explicit and implicit
terms in a more powerful way such that its advantages are twofold: It is more
stable, and it gains higher efficiency needing less iterations and by saving one
out of three convolutions in each iteration step.
Our work shows the benefits of an integrated view on modelling and numerics:
Restoring all degradations of the input data simultaneously in a dedicated
model guarantees high quality, while an adequate numerical algorithm com-
bines stability and efficiency. We hope that such an integrated view of joint
modelling and adequate numerics will become more common in algorithms
that support state-of-the-art imaging.
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[41] P. Charbonnier, L. Blanc-Féraud, G. Aubert, and M. Barlaud. De-
terministic edge-preserving regularization in computed imaging. IEEE
Transactions on Image Processing, 6(2):298–311, 1997.

[42] T. J. Holmes and Yi-Hwa Liu. Acceleration of maximum-likelihood
image restoration for fluorescence microscopy and other noncoherent
imagery. Journal of the Optical Society of America A, 8(6):893–907,
1991.

A Minimality Conditions of Variational RL

Deconvolution

Let us derive the minimality conditions corresponding to the basic energy
functional from equation (7). According to [37], we consider the functional

Ef,h[u] =

∫ (
h ∗ u− f − f · lnh ∗ u

f

)
︸ ︷︷ ︸

=rf (h∗u)

dx , (39)

and apply the multiplicative Euler-Lagrange formalism as follows: We per-
turb a minimiser u of Ef,h in a multiplicative sense by a test function v, i.e.
u · (1 + εv). Since we obtain the original minimiser for ε→ 0, we analyse the
derivative of Ef,h with respect to ε in this point

0 =
d

dε
Ef,h[u · (1 + εv)]

∣∣∣∣
ε=0

=
d

dε

∫ (
h ∗ (u · (1 + εv))− f − f ln

h ∗ (u(1 + εv))

f

)
dx

∣∣∣∣
ε=0

=

∫ ((
1− f

(u · (1 + εv)) ∗ h

)
· (uv ∗ h)

)
dx

∣∣∣∣
ε=0

=

∫ ((
1− f

u ∗ h

)
· (h ∗ uv)

)
dx . (40)

Applying the definition of convolution, we obtain

d

dε
Ef,h[u · (1 + εv)]

∣∣∣∣
ε=0

=

∫ ∫ ((
1− f

u ∗ h

)
(x) · h(x− s) u(s)v(s)

)
ds dx ,

(41)
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and changing the order of integration yields

d

dε
Ef,h[u(1 + εv)]

∣∣∣∣
ε=0

=

∫ (
h∗ ∗

(
1− f

u ∗ h

)
(s) · u(s)v(s)

)
ds . (42)

As one can see, this derivative of Ef,h evaluates to zero for all test functions
v if

h∗ ∗
(

1− f

u ∗ h

)
· u = 0 . (43)

The latter condition leads to the Richardson–Lucy scheme by introducing
the fixed point iteration from Equation (9).

B A Semi-implicit Relaxation Scheme for RL

Deconvolution

The novel semi-implicit iteration scheme can be used to accelerate the stan-
dard Richardson–Lucy deconvolution scheme. To this end, we proceed anal-
ogously to Section 4, and consider the fixed point iteration (27) for Φ′kD = 1
and α = 0: (

h∗ ∗
(

1− f

h ∗ uk

))
· uk+1 = 0 . (44)

Applying again the steepest descent method yields

−
(
h∗ ∗

(
1− f

h ∗ uk

))
· uk+1 =

uk+1 − uk

τ
, (45)

which is a semi-implicit version of Holmes’ scheme [42]. Finally, we solve for
uk+1:

uk+1 =

(
1 + τ

(
1− h∗ ∗ f

h ∗ uk

))−1

· uk . (46)

As for the RL scheme (9), if noise is negligible, i.e. f = h∗g, the undisturbed
signal g is a fixed point of the latter scheme. The equivalence for Φ′kD = 1,
α = 0, and ω = 1 also holds in the discrete case (32):

uk+1 =
(
I + τ ·D1(uk)

)−1 · uk . (47)

The derived condition for τ (36) carries over as well. Compared to the
standard Richardson–Lucy scheme, this semi-implicit method requires only
about half as many iterations.
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