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A New Fundamental Solution Method
Based on the Adaptive Cross
Approximation

M. Fleck, R. Grzhibovskis, S. Rjasanow
January 11, 2013

Abstract

A new adaptive Fundamental Solution Method (FSM) for the approxi-
mate solution of scalar elliptic boundary value problems is presented. The
construction of the basis functions is based on the Adaptive Cross Approx-
imation (ACA) of the fundamental solution of the corresponding elliptic
operator. An algorithm for an immediate computer implementation of the
method is formulated. A series of numerical examples for the Laplace and
Helmhotz equations in three dimensions illustrates the efficiency of the
method. Extensions of the method to elliptic systems are discussed.

1 Introduction

The Fundamental Solution Method (FSM) is also known as the Method of Fun-
damental Solutions, Charge Simulation Method or as a special version of the
Boundary Collocation Method. It resembles a Trefftz method [7], which means
that the solution to a Dirichlet boundary value problem in  C R3, I' = 90

Lu(x) = 0, forxeQ, (1)
u(z) = g(x), forxel, (2)

is approximated by a linear combination of £-harmonic functions. As the name
indicates the method uses fundamental solutions for basis functions, whose sin-
gularities are located outside 2. It was introduced by Kupradze and Aleksidze [4]
in 1963 for treating the Laplace equation. First investigations from a numerical
point of view were performed by Mathon and Johnston [5] in 1977. Compre-
hensive summaries of the attributes of the FSM were written, among others, by
Smyrlis [6] and Bogomolny [3].

Two peculiar aspects of the Fundamental Solution Method are an extremely fast
convergence, but also a very high condition number of the system matrix, both



with respect to the number of collocation points. We adress the problem of high
condition numbers by adaptively choosing a smaller number of collocation points
while keeping the local error below a given threshold, but not neccessarily equal
to zero, for the remaining collocation points. Thus an approximation is obtained,
while condition numbers are kept lower due to smaller system matrices. The
quality of the approximation is comparable to that of classical FSM. By means
of this approach problems that are to big for classical FSM can be treated. The
adaptive strategy features new basis functions, which vanish in collocation points
already treated and thus do not alter the corresponding local approximation.
The construction of these basis functions uses concepts from the Adaptive Cross
Approximation (ACA) [2].

In Section 2 we formulate a model problem and present the classical (collocation-
based) Fundamental Solution Method. Section 3 briefly summarizes the Adap-
tive Cross Approximation. The approximation algorithm presented therein leads
directly to the construction of basis functions for the Adaptive Fundamental So-
lution Method in Section 4. In Section 5 we present numerical results for the
adaptive method applied to the Laplace and Helmholtz equations respectively.

2 Formulation of the problem

We consider the following Dirichlet boundary value problem for an elliptic equa-
tion in R3

Lu(z) = 0, forze, (3a)
u(z) = g(r), forxel, (3b)

where £ is an elliptic differential operator of the second order and 2 C R? is
a Lipschitz domain with the boundary I'. In the classical setting, the Dirichlet
datum ¢ is assumed to be continuous on I' and the solution u is assumed to be
smooth, i.e.

u € C*Q) N CQ). (4)
In this paper, we will consider the Laplace operator
Lu=—Au (5)
and the Helmholtz operator
Lu=—Au—Ku. (6)

For these operators the corresponding fundamental solution u*, i.e. the solution
of the equation

Lu* =6 (7)



in the distributional sense, is known and given by

1 1
* = — — 8
W) = )
for the Laplace operator, and
1 em|m|
* = — 9
v = 3 ©

for the Helmholtz operator. In (7) § denotes the Dirac d-distribution.

2.1 Fundamental solution method

Let X C I' be a discrete set of N pairwise different control (collocation) points on
the boundary T' and Y C R?\ Q a discrete set of N pairwise different singularity
points. Consider a system of basis functions

P = {4,01,...,90]\;}, o) =u"(r—ye), €Y, =1,...,N. (10)
Since y, ¢ Q, £ =1,..., N, every basis function ¢, is £L-harmonic in  and the
function

un(z) = Zozgw(x) = ®(2)a, a=(o,...,ay)" €RY (11)
=1

can be considered as an approximation of the solution u of the boundary value
problem (3). The most simple choice for the coefficients «ay is the point collocation
for the boundary condition:

uy(z) =g(x), forze X. (12)

This can be equivalently formulated as a linear system for obtaining IV coefficients
(7R

N
Zaew(%) =g(zy), fork=1,...,N (13)
=1
or
N

The main properties of the FSM can be summarised as follows.

1. Since no topology of the discrete point sets X and Y is required, the FSM
can be considered as a meshfree numerical method.



2. The entries of the matrix F' in (14) are easy to compute as opposed to
matrix entries coming from Boundary Element Methods (BEM).

3. The dimension of the matrix F' is comparable to those of the BEM
(e.g. N ~ 10* — 105 for 3D problems).

4. The matrix F is fully populated as in the BEM and Mem(F) = O(N?).

5. The condition number of the matrix F' grows exponentially,
i.e. cond(F) = O(¢g") for some ¢ > 1.

For large N the application of a direct solver to the system (14) is expensive,
while an iterative solver does not converge due to the extremely high condition
number of the matrix F'.

However, for analytic boundary data the numerical results for small systems show
an exponential convergence of the method not only for the solution wu itself but
also for its gradient

ou Ou 8u>T

Dy’ Oy’ Dy

gradu = (

and even for its Hessian matrix

2 3
Hu = ( 0u ) )
&zrkaxg k=1

O(|u(z) — un(z)]) = O(|grad (u(z) — un(z))|)
= O(|[H (u(z) — un())]|
=0@™")

i.e.

F)

for x € 2. Note that the derivatives of the approximate solution uy can be easily
computed analytically.

In fact the rate of convergence depends on the smoothness of the boundary data.
A known result for two-dimensional problems on annular domains or domains
whose boundaries are analytic Jordan curves is that for C*(I')-data the error is
O(N'7Y) [6]. Numerical experiments confirm that the method has difficulties with
nonsmooth boundary data.

2.2 Choice of Pseudo Boundary

In the theoretical analysis of Fundamental Solution Methods one introduces the
concept of pseudo boundaries, i.e. surfaces where the singularity points are lo-
cated. Pseudo boundaries fulfilling the so-called embracing condition provide
for the suitability of corresponding fundamental solutions as basis functions [6].
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However, one still has great freedom of choice of an actual pseudo boundary and
in the subsequent choice of the location of singularity points.

We briefly present the definition and central theorem for pseudo boundaries. A
thorough overview can be found in [6].

Definition 1 (Segment condition). Let Q@ C R? be an open set. Q fulfills the
segment condition, if for every x € O0S) there exists a neighbourhood U(x) of x
and a nonzero vector £(x) € R, such that, if y € U(x) N Q, then y + té(x) €
Q, vt e (0,1).

Definition 2 (Embracing boundary). Let ,Q C R? open and connected.
embraces €1, if:

1. Qc Y

2. For each connected component V. of R\ Q there is an open connected
component V' of R\ ', such that V' C V.

Theorem 1. If Q C R? fulfills the segment condition and ' C R? embraces (2,
then for d > 3 and l > 0 the space X spanned by finite linear combinations of
Fundamental solutions

N
un (@) = ajut(z —y;)
j=1
with singularities y; € 0 is dense in
Vi={veC*Q): Av=0in Q}NCYQ)

with respect to the norm of CY(Q). For d = 2 the density result holds true for
X@{c-1]g:ceR}.

Proof. The proof can be found in [6]. O

Similar results exist for operators A™, m > 1, and A — k2, k > 0, [6, 3].

One can proof in the two-dimensional case that an increase in the distance be-
tween the boundary 02 and the pseudo boundary 0€) leads to both, better
approximation and larger condition number of F'. This is also observed in three-
dimensional settings.

For simple domain shapes the common choice of the singularity points consists
in shifting collocation points along the outer normal. This strategy may fail for
more complex domains. On the other hand the construction of pseudo boundaries
by means of distance functions can be computationally expensive.

In what follows we will introduce a new method with the same convergence
properties but almost without disadvantages of the FSM, i.e. without necessity
of the numerical solving of big, dense and badly conditioned systems of linear
equations. Our main tool is the Adaptive Cross Approximation.



3 Adaptive Cross Approximation

The initial analytical form of the ACA algorithm was designed to interpolate
and, hopefully, to approximate a given function K : X x Y — R of two variables
x and y by a degenerate function 9,,, i.e.

K(z,y) = S, = Zw(x)ve(y) : (15)
(=1
where u; : X - R, v, : Y - R, [ = 1,...,n. The construction is as follows. Let
X cXcR)and Y C Y C R? be discrete point sets.
Algorithm 1.
1. initialization
1.1 set initial residual and initial approximation
Ro(z,y) = K(z,y),  So(z,y) =0
1.2 choose initial pivot position

ro€X, y€Y, Ro(xo,yo) #0

2. recursion for k=0,1,...

2.1 new residual

Ry(z, yr) Ri(zk, y)

Ry (z,y) = Ry(z,y) — Ri(zk, yr)

2.2 new approximation

Rk(‘ru yk)Rk(‘rlm y)
Ry(zk, yr)

Sk—i-l(x?y) = Sk’<x>y> +

2.3 new pivot position
Trepr € X, Y1 €Y, Rppa(Trgr, Yrg1) # 0

After n > 1 steps of the ACA-Algorithm 1, we obtain a sequence of residu-
als Ro,..., R, and a sequence of approximations Sy, ...,S, with the following
properties.

1. Approximation property for k =0,...,n

Ri(z,y) + Sp(x,y) = K(z,y), 1€ X,y €Y (16)



2. Interpolation property for k=1,....,nand £ =0,..., k—1
Rk(xvyf) = Rk(@;y) = 07 S Xuy S (17)
or

Sk(%%) = K(Q%Z/é); T c X7 Sk<xfay) = K(xéuy)v Y ey (18>

3. Harmonicity property for k =0,...,n

If
L.K(z,y)=0, €
then
*CmRk(xay) - ﬁxSk(Iay) = Oa r €]
4. Non-recursive representation for k =1,...,n
Si(w,y) = ul (2)V, w(y) , Vie € REF g (2), wi(y) € R (19)
with -
Uk(l') = (K(flﬁ',yo), s 7K($7 yk’—l)) )
T
wk(y) - (K(an y)? R K(mk—lv y))
and

Vi = <K(a:i, yj)> o

i.j=0

The above properties, except the last one, can be easily seen. The proof of the
non-recursive representation is more technical and can be found in [2].

4 Adaptive FSM

In this section, we formulate a new adaptive FSM for the boundary value problem
(3). Let u* be the fundamental solution of the differential operator £, X C I'
a discrete set of the control points, Y C R?\ Q a discrete set of the singularity
points and e an upper threshold for the error in the collocation points.

Algorithm 2.
1. initialization
1.1 initial error and initial pivot position

Errory = Maxzex|g(z)|, 1 = ArgMax, .y |g(z)|



1.2 initial residual
Rl(xa y) = u*(:c - y) ;

1.3 first basis function

_ Rl(xayl)

<P1(£U) Rl(icl,%)

1.4 first approximation
u(z) = anpi(z),  ar=g(z)
2. recursion for k=1,2,...
2.1 new error and new pivot position
Errorgi1 = Maxzex|g(x) — ug(z)|,  p41 = ArgMax, . v|g(x) — ()]

2.2 stopping criteria
Stop if Errorgs; < e or k= # of points in X

2.3 next residual

Ry (z, yi) R (v, y)

Ri1(z,y) = Ri(x,y) — 20
2.4 next basis function
Ry (x,
gpk_‘—l (I‘) . k+1( yk‘-i-l) (21)

 Rio1 (kg1 Yt

2.5 next approximation
U1 (%) = u(®) + Qa1 Pr1 (@), At = g(Tht1) — we(Tpr1)

After n steps of the above algorithm, an approximation

up(z) = Zak%(x) (22)

is obtained. The basis functions ¢ are £-harmonic for all k =1,...,n
Lop(z) =0, forxeQ. (23)
Therefore, also the function w,, is £-harmonic

Lu,(z) =0, forxe. (24)



The function u,, fulfills the boundary condition pointwise in the pivot points
un(zg) = g(ag), fork=1,...,n (25)
and approximates the boundary condition in other points
lun(z) — g(z)| <e, forze X\ {z,...,2,}. (26)

Later on, our numerical examples will show that the number n of steps required to
obtain a given accuracy is rather small compared to, and seems to be independent
of, the number of control points N, i.e. n < N. Due to the ACA interpolation
property of the residuals Ry, the basis functions ¢, , k > 2 vanish on all previous
pivot points

or(z) =0, 0=1,...;k—1, k=2,....n (27)
and due to construction

Thus, the coefficients «y, in (22) can be easily computed as in Step 2.5 of the
Algorithm 2 without the need to solve a system of equations, or more precisely
by solving small system

Fa=g, F= (wg(xk)y ER™, ggcR" (29)

)

with the following triangular matrix

1 0 0 ... 0
o1(xn) wa(xn) @3(xn) ... 1

However, the price for the above simple and efficient algorithm is more compli-
cated evaluation of the basis functions ¢ and, therefore, also of the approxima-
tion u, in a given point x € ). We use the non-recursive representation (19) of
the ACA approximation S,,, the approximation property (16), and the definition
of the basis function in Step 2.4 of the Algorithm 2 to obtain

IR ot 7))
901< ) u*(xl _ y1> (3())
and for k=2,...,n

ot (mg — k) — up (21) 2
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with

up(z) = (u*(x —y1),...,u"(x — yk_l))T ,
2 = Vi lwe(yr), (32)
wilys) = (W (@ —yn), e (T — )

and

Vi, = (“(x N yj))::ll'

The vectors z, € R¥! as well as the normalising constants (u*(:z:l — yl)) and

(u* (zh — yi) — ug(mk)zk)_l can be precomputed during the algortihm as follows.
Let

‘/2 = L2U2 =1- U*(.Tl — yl) (33)

be the LU-decomposition of the 1 x 1-matrix V5. Then, making use of the LU-
decomposition of the (k — 1) x (k — 1)-matrix

‘/k:LkUka k':2,...,n—1,

we get for the k£ x k-matrix Vi,
L, 0\ (U, b
e (1 9) (%) o

Lib = wi(yr), a' Uy = uZ(xk) , c=u"(xp —yp) — a'b. (35)

with

For the vectors z;, we get
From equations (20) and (21) we see

Riyi(7,y) = Ri(z,y) — Ri(zr, v) Ry (vn, ) Ri (2, y)
= Ri(z,y) — Ri(xr, y)on(z)

k
)= Ri(z,y)pi(z) VE>0

7j=1
and thus
k
u'(z —y) = Ripa(w,y) + > Rz, y)ai(x) Yk >0. (37)
=1

10



This leads to

w (1 — 1) - w21 — k)
u vy —y1) o u (TR — Yi)
0 e 0 Ri(z1,y1) Ri(z1,y2) -+ Rz, yk)
_[e@) 1 o 0 0 Ry(x2,y2) -+ Ro(w2, k)
o1(zr) palmg) -+ 1 0 0 o Ry(xr, k)

Due to the uniqueness of the LU decomposition with unit diagonal entries we see
that
L,=F.

A numerical evaluation of the basis function ¢y in (31) requires the scalar product
u} (z)z and, therefore O(k) arithmetical operations. The approximate solution
u, will require O(n?) artithmetical operations for every evaluation.

The adaptive Fundamental Solution Method also allows for alternative strate-
gies for choosing the singularity points y;. Instead of introducing fixed pairs
(x;, ;) of collocation and singularity points we may equip a simply shaped pseudo
boundary, e.g. an ellipsoid, with a large number of uniformly distributed candi-
date points. The adaptive FSM can be tuned to pick from those candidates
the singularity point that maximizes the current basis function’s pivot element

Ryr1(zp41,9) in (21).

5 Numerical examples

In order to investigate the features of the adaptive Fundamental Solution Method,
we perform numerical experiments for the BVP (3) with Laplace or Helmholtz
operators. We compare results of classical FSM, adaptive FSM with given thresh-
olds as well as a threshold-free adaptive method. For the latter method we store
the maximal local error of an iteration step and terminate, if no improvement is
achieved after a given number of further iterations. By dropping the coefficients
associated with these additional steps the currently best result (with respect to
local errors) is restored.

Indicated condition numbers are calculated using LAPACK routines [1]. Con-
dition number of respective system matrices are labeled conds,s, while those of
matrices required for basis function evaluation in the adaptive method are labeled
condry. In the latter case we only indicate condition numbers of the respective
largest matrix, i.e. the matrix used in the evaluation of the basis function with
highest index.

11



threshold Cmax e condgys condry | # nodes

classical | 8.80-10719 | 1.01-10"" | 1.42 - 10" - 5120
10~ 9.78-107° | 1.08-107° 1.91-10% | 4.53 - 10" 415
1076 1.01-107% | 1.10- 1078 3.26 - 10% | 8.00 - 10*2 711
108 1.05-107% | 1.13-10719 | 4.94-10% | 7.26- 10 1069
1071 1 1.09-1071 ] 1.11-107*2 | 6.09-10% | 9.81-10' | 1531

Table 1: Laplace equation on the unit ball, N = 5120.

In the result tables relative errors e are presented in L?*(T')-norm evaluated by
numerical integration. In addition the maximum of the error in the used Gauss
points ey is indicated.

5.1 Laplace equation

We consider the model problem

—Av(z) = 0, forxeQ, (38)
v(z) = g(x), forxe i, (39)

with the known analytical solution

v(x) = sin(2mwy)T00” ™3 g = v|r,
in order to display some general observations regarding the adaptive FSM, which
are also relevant for other equation types we have considered. In our experiments
() is chosen as the unit ball, a brick-shaped domain or a crankshaft-shaped do-
main. Singularity points are obtained by shifting collocation points by 1 along
the surface normal, or in case of the crankshaft domain placed on an ellipsoidal
pseudo boundary matched to the domain’s shape and scaled by a factor of 1.1.

Performance of the adaptive FSM

As one can see in Table 1 the adaptive method uses only a small number of
collocation points, which increases when a lower threshold is set. Even the accu-
racy of the full FSM can be reached with a relatively small subset of collocation
points. This reduction leads to condition numbers of the involved matrices, which
are significantly lower than those of the full method’s system matrix. Since the
approximation space of the adaptive method is always a subset of the full FSM
approximation space, the outperformance in the last row of the table can only be
explained by a loss of accuracy due to high condition numbers.

12
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Figure 1: Evolution of maximal local error for a Laplace equation on a brick-
shaped domain.

Evolution of maximal local error

The strategy of the adaptive method consists in eliminating the currently largest
error of all collocation points, while not altering those in collocation points al-
ready treated. However, there is no guarantee that after any elimination step the
new maximal error is actually smaller than the previous one. In fact, while the
maximal error assymptotically decreases during the elimination process, short-
term increases are rather typical (cf. Figure 1 for a brick-shaped domain).

For tight thresholds the adaptive method uses a number of collocation points
compareable to that of classical FSM. For very large problems this may lead to
errors in the evaluation of basis functions (evaluation of 2 in (32)) and ultimately
to an assymptotic increase of the maximal local error. For these cases it is handy
to store information about the “best” step so far and restore the corresponding
result. Thus, although the threshold is not met, in these extreme cases results
are far better than those of the classical method.

Distribution of errors

Both methods, classical as well as adaptive FSM, control errors in the collocation
points only. Therefore the question arises, how errors behave inside the domain
as well as on the boundary between the collocation points.

13
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Figure 2: Absolute values of errors for Laplace problem on brick-shaped domain
measured on a line segment. Downward spikes correspond to changes of sign.

Fundamental solutions as well as the derived basis functions of the adaptive
method are £-harmonic. Due to the maximum principle for Laplace equations
the error assumes its maximum on the boundary of 2. This can be illustrated
in an error plot along the line segment (¢,¢,¢)7, t € [—3, 3], through the brick-
shaped domain [—2.5,2.5] x [—0.5,0.5]% (cf. Figure 2). The errors of the gradient
and the Hessian show a similar behaviour.

Looking at the error on the boundary in case of the adaptive method one observes
a pattern of low error speckles (cf. Figure 3). These correspond to collocation
points where local errors have been eliminated. In this example the singularity
points were located on an ellipsoidal pseudo boundary adapted to the domain’s
shape. One can observe a higher concentration of speckles in regions closer to
the pseudo boundary. This is in agreement with the theory of classical FSM,
where a lower distance between the boundaries leads to higher stability but slower
convergence [6].

5.2 Helmholtz equation

We perform experiments for the Helmholtz equation

Av(z) +K*v(z) = 0, k=2" n=1,...,5 forxeQ, (40)
v(z) = g(x), forxe i, (41)

14
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Figure 3: Absolute error for Laplace problem on the boundary of a crankshaft
domain.

Figure 4: Approximations of unit sphere with 20, 80 and 320 triangles respec-
tively.
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k | e (FSM) |e (aFSM, e =10""") | # nodes (¢ = 107'1)
1 | 4.57-10713 1.42 .10~ 976
2 1292-1071 7.84-10712 1019
4 16.46-1071 6.18 - 10712 1102
8 [ 1.43-10712 5.85-10712 1277
16 | 3.00 - 10712 5.94-10712 1792
321 1.80-10~1 259101 3653 (no ¢)
Table 2: Helmholtz equation, varying x, N = 20480.
threshold Cmax e condgys condry | # nodes
classical | 3.96-10710 | 1.43-10~'Y | 3.11-10% - 1280
1078 1.20-107% | 7.40-107Y | 8.36-10% | 2.67- 10 721
10~? 1.43-107° | 8.69-10719| 9.18-10% | 2.73- 10! 872
10719 5.39-10719 | 1.86-1071° | 1.01-10% | 4.94-10'? 1042
10~ 3.94-1071° | 1.47-1071° | 1.08-10% | 1.44- 10" 1200
1012 3.96-1071° | 1.43-107'° | 1.11-10% | 2.64 - 10" 1276
10713 3.96-1071° | 1.43-1071° | 1.12-10° | 2.66 - 10" 1278
Table 3: Helmholtz equation, x = 8, N = 1280.

threshold Cmax e condgys condry | # nodes

classical | 2.08-107" | 1.43-107'2 | 1.26 - 10* - 20480
10~19 9.86-107" [ 6.06-107 | 3.13-10° | 2.72-10" 1086
10~ 1.01-107* | 5.85-107'2 | 3.43-10% | 1.70 - 10*3 1277
1012 1.02-107*2 | 6.15-10713 | 3.65-10% | 1.80- 10" 1493
10713 1.08-10713 | 5.97-107* | 3.98-10% | 2.36 - 10*° 1753
none 7.83-107" | 4.80-107™ | 4.00-10% | 3.99 - 10%° 1781

Table 4: Helmholtz equation, k = 8, N = 20480.
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with the known analytical solution
K . . K
v(z) = exp(—ﬁml)xg sm(ﬁzg) ., g=uvlp.

Here €) is the unit ball; its surface I' is approximated by triangulated surface
meshes. These meshes are obtained by quasi-uniform refinement starting from
an icosahedron (cf. Figure 4). The collocation points are derived as barycenters
of the mesh triangles, singularity points are obtained by shifting the collocation
points along the surface normal. Although Fundamental Solution Methods do
not require an actual mesh, we will stick to this term, since the collocation points
are derived from meshes. In the examples presented here the distance between
boundary and pseudo boundary is uniformly chosen as 1.

Performance of the adaptive FSM

As one would expect, for both, classical and adaptive FSM, the quality of results
gets worse with increasing x (cf. Table 2). While classical FSM suffers from a
loss of approximation quality, the adaptive method compensates for this by use
of a larger number of basis functions. For strict thresholds the adaptive method
reaches the accuracy of the classical method on coarser meshes (cf. Table 3)
and even outperforms it on fine meshes (cf. Table 4). On such meshes classical
F'SM suffers from extremely high condition numbers condgys of the system matrix
leading to a loss of accuracy.

Number of required collocation points

An interesting observation is that, when increasing the number of available col-
location points, the number of steps required in the adaptive method to reach a
certain threshold does not seem to grow (cf. Figure 5). As can be seen in Table
5 on smaller clusters, where the threshold is reached faster, results are worse.
This is due to the fact that on small clusters the lower number of available basis
functions does not allow for the same level of accuracy, which is possible on larger
clusters. Nevertheless, theoretically any threshold can be reached by eliminat-
ing all (or almost all) errors in the collocation points. In this case the adaptive
method is equivalent to full FSM.

Effects of large condition numbers

Figure 6 shows the loss of accuracy in the classical Fundamental Solution Method.
When the number of collocation points grows beyond a critical value, the error
starts to grow slowly. While this growth does not neccessarily lead to very large
errors, if a better approximation is desired, one has to repeat the calculation with
fewer collocation points. In the same figure the growth of the condition number
is indicated.
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Figure 5: Number of iteration steps required to reach a certain threshold for a
varying number of collocation points.

To the same problem the adaptive FSM is applied (cf. Figure 7). It can be seen
that there exists a critical step after which the maximal local error will grow due
to loss of accuracy in floating point operations. This loss leads to errors in the
evaluation of basis functions, eventually causing the method to fail. However, we
can still use stored data from the previous steps in order to obtain reasonable
results. Note that the optimal step number is lower for the adaptive method
than it is for classical FSM, while results are comparable. Thus it can be seen
that adaptive FSM makes use of a more efficient basis than classical FSM with

uniform refinement.

N e (FSM) e (aFSM) | # nodes
1280 | 1.43-10710 ] 1.43.10719 1276
5120 | 5.85-1071% | 6.47-10713 1523
20480 | 1.43-107'2 | 6.15-10713 1493
81920 - 5.92-10713 1505

Table 5: Helmholtz equation, x = 8, different geometries, threshold ¢ = 1072,
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Figure 6: Full FSM: Condition number and loss of accuracy for large numbers of
collocation points.

6 Conclusion and Outlook

When applied to large problems the Fundamental Solution Method features sys-
tem matrices with extremely large condition numbers. We have presented an
adaptive method where dimensions, and therefore also condition numbers, of the
matrices involved are reduced by several orders. Numerical results show that the
quality of approximations is comparable to that of the classical method. Also,
the new method leads to reasonable results even in scenarios, where the classical
method fails.

The present study shows, that the adaptive FSM can be used to find an approx-
imation to the solution of the BVP (3) by means of a linear combination of basis
functions (30,31) with a prescribed accuracy. If this prescribed accuracy is not
achievable in the framework of the FSM (due to the high condition numbers and
the finite errors of floating point operations), then the method returns the best
approximation, which is attainable in the given settings.

Future work will include the extension of the adaptive method to vector-valued
problems, with a special focus on elastostatics. We also plan to investigate the
convergence of the method in a theoretical context.
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Figure 7: Adaptive FSM: Maximal local error, Helmholtz equation, k = 8, N =
81920.
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