
Universität des Saarlandes

U
N

IV
E R S IT

A
S

S
A

R
A V I E N

S
I
S

Fachrichtung 6.1 – Mathematik

Preprint Nr. 323

Characterization of trace spaces of H(curl,Ω)
on curvilinear Lipschitz polyhedral domains Ω

Lucy Weggler

Saarbrücken 2013





Fachrichtung 6.1 – Mathematik Preprint No. 323
Universität des Saarlandes submitted: April 29, 2013

Characterization of trace spaces of H(curl,Ω)
on curvilinear Lipschitz polyhedral domains Ω

Lucy Weggler

Saarland University
Department of Mathematics

P.O. Box 15 11 50
66041 Saarbrücken

Germany
weggler@num.uni-sb.de



Edited by
FR 6.1 – Mathematik
Universität des Saarlandes
Postfach 15 11 50
66041 Saarbrücken
Germany

Fax: + 49 681 302 4443
e-Mail: preprint@math.uni-sb.de
WWW: http://www.math.uni-sb.de/



Characterization of trace spaces of H(curl,Ω) on
curvilinear Lipschitz polyhedral domains Ω

Trace spaces of the energy space H(curl,Ω) appear naturally in variational
formulations that result from the Maxwell equations. Their characterization
is a topic that has been intensively studied in the past ten years. The first
contributions treat the case of smooth manifolds [3, 4, 6] whereas Lipschitz
domains Ω are considered in recent papers [2]. Although focus is made on
the smooth case, Nédélec’s monograph is a pathleading reference as most
basic definitions of tangent vector spaces and surface differential operators
are presented. And thus, the generalizations presented in [2] build up nicely
on Nédélec’s exposition. The characterization of trace spaces of H(curl,Ω)
for general Lipschitz domains as presented in [2] is rather abstract and there
was the need to find yet another access leading an intuitive understanding
of the regularity in these function spaces. In the pioneering paper [1] ex-
plicit characterizations of the trace spaces of H(curl,Ω) are given under the
assumption that Γ be the boundary of a Lipschitz polyhedral domain Ω.
Explicit means that the regularity of the functionals is captured by integral
expressions which allow for numerical evaluation. The current developments
regarding high order methods require generalizations of the explicit charac-
terizations for curvilinear Lipschitz polyhedral domains Ω.
Let Ω be a curvilinear Lipschitz polyhedral domain whose boundary Γ allows
for an exact description by a regular mesh of the following kind.

Definition 1 Let Γ be the boundary of an open curvilinear Lipschitz polyhedral
domain. We assume that the following representation of Γ is given by

Γ =

N⋃
i=1

Γi =

N⋃
i=1

Γi ∪
Ne⋃
i=1

ei ∪
Nv⋃
i=1

vi . (1)

Here {Γi}Ni=1 denotes the set of all elements (faces) with smooth parametrisations
of the following kind

F̂ i : T̂ → Γi , F̂ i ∈ C∞(T̂ )3 , (2)

the set {ei}Ne
i=1 contains all edges with smooth parametrisations of the following

kind
Êi : (0, 1)→ ei , Êi ∈ C∞

(
[0, 1]

)3
. (3)

The vertices in the mesh are collected in the set {vi}Nv
i=1, respectively.

The parametrisations (2) can naturally be extended to parametrisations of
the closed elements Γi. In a regular mesh, the resulting edge parametrisations
are compatible with (3) meaning that they coincide up to orientation. Thus,
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Γ is globally continuous and it is given piecewise by triangular elements.
The elements are in general curved as their parametrisations are non-linear
functions.
This setting often allows to specify the abstract definitions of function spaces
because relevant regularity properties can be made explicit exploiting the
simple geometrical situation. As an example, consider a function ϕ ∈ H1/2(Γ).
The restriction of ϕ to an element is meaningful and we write ϕi = ϕ

∣∣
Γi

. Now,
consider the open domain Γi1 ∪ ei ∪ Γi2 , where Γi1 and Γi2 are neighbouring
elements and ei denotes their common edge. Then, the weak continuity of ϕ
across the edge ei means that the following condition is necessarily fulfilled
[1, 5]

Ni(ϕ) =

∫
Γi1

∫
Γi2

∣∣ϕi1(x)− ϕi2(y)
∣∣2

|x− y|3
dσ(x) dσ(y) <∞ . (4)

Besides the classical Sobolev space H1/2(Γ) [5], we work with vector-valued
spaces as H1/2(Γ) = H1/2(Γ)3 and spaces of square integrable tangent vector
fields, namely,

L2
t (Γ) =

{
ϕ ∈ L2(Γ)3 : ϕ · n|Γ = 0 almost everywhere

}
,

H
1/2
− (Γ) =

{
ϕ ∈ L2

t (Γ) : ϕi ∈ H1/2(Γi)
3, 1 ≤ i ≤ N

}
.

The trace spaces of H(curl,Ω) are the functional spaces that render the trace
operators γR and γD surjective [1, 2], i.e.,

γR : H(curl,Ω)→ H−1/2(curlΓ,Γ) ,

γD : H(curl,Ω)→ H−1/2(divΓ,Γ) .

It has been shown in [2] that it holds

H−1/2(curlΓ,Γ) = gradΓ H1/2(Γ) + H
1/2
‖ (Γ) (5)

H−1/2(divΓ,Γ) = curlΓ H1/2(Γ) + H
1/2
⊥ (Γ) . (6)

Thus, either trace space of H(curl,Ω) can be characterized as algebraic sum
of two spaces. The topology of the first results from the classical Sobolev
space H1/2(Γ) together with the properties of the surface differential operators
curlΓ and gradΓ [2]. Explicit characterizations of the second spaces for the
case of Lipschitz polyhedral domains Ω have been developed in [1].

The objective of this paper is to generalize the characterizations of H
1/2
‖ (Γ)

and H
1/2
⊥ (Γ), respectively, such that curvilinear Lipschitz polyhedral domains

Ω are also covered. Let us, therefore, consider two neighbouring elements Γi1
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and Γi2 with common edge ei. Without restriction of any kind we assume
that

ei =
{
x ∈ Γ, x = Êi(ξ1) = F̂ i1(ξ) = F̂ i2(ξ), ξ1 ∈ (0, 1), ξ2 = 0

}
. (7)

The tangent planes at every point on Γi1 and Γi2 , respectively, are spanned
by the tangent vector fields as introduced in the following definition.

Definition 2 The natural tangent vector fields are given in terms of the local
parametrisations, i.e.,

{ε1,i1 , ε2,i1} on Γi1 with εl,i1(ξ) =
∂F̂ i1(ξ)

∂ξl
, l = 1, 2 , (8)

{ε1,i2 , ε2,i2} on Γi2 with εl,i2(ξ) =
∂F̂ i2(ξ)

∂ξl
, l = 1, 2 . (9)

The tangent vector fields actually span tangent planes at points x on the
physical boundary Γ meaning that

ε̃l,ij(x) = εl,ij

(
F̂
−1

ij
(x)
)
, l = 1, 2, j = 1, 2 .

As the physical point x can uniquely identified with its parameter coordinate
ξ, we will skip the tilde in the following and denote the tangent vector fields
at a point x ∈ Γij simply by εl,ij(x).
Note that the tangent vector fields are non-constant vector fields. We call
them natural or intrinsic as they are neither normalized nor point-wise or-
thogonal with respect to the Euclidean metric. However, to obtain a notion
of an Euclidean orthogonality we introduce the so-called cotangent vector
fields on the curvilinear elements.

Definition 3 The cotangent vector fields are the set of tangent vector fields which
are point-wise orthogonal to the tangent vector fields, i.e.,

{ε1,i1 , ε2,i1} on Γi1 such that εl,i1 · εk,i1 = δlk , k, l = 1, 2 , (10)

{ε1,i2 , ε2,i2} on Γi2 such that εl,i2 · εk,i2 = δlk , k, l = 1, 2 . (11)

The cotangent vector fields are obviously extrinsically defined because the
Euclidean metric is used in (10) and (11).

Now, we have the tools at hand to characterize the spaces H
1/2
‖ (Γ), H

1/2
⊥ (Γ)

in case Γ be the boundary of a curvilinear Lipschitz polyhedral domain.
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Definition 4 Let Ω be the boundary of a curvilinear Lipschitz polyhedral domain.

The space H
1/2
‖ (Γ) contains functionals ϕ ∈ H

1/2
− (Γ) which exhibit a weak ‖-

continuity, i.e., for all edges ei in Γ it holds

N ‖i (ϕ) =

∫
Γi1

∫
Γi2

∣∣ϕi1(x) · ε1,i1(x)−ϕi2(y) · ε1,i2(y)
∣∣2

|x− y|3
dσ(x) dσ(y) <∞ . (12)

The space H
1/2
⊥ (Γ) contains functionals ϕ ∈ H

1/2
− (Γ) which exhibit a weak ⊥-

continuity, i.e., for all edges ei in Γ it holds

N⊥i (ϕ) =

∫
Γi1

∫
Γi2

∣∣JΓi1
ε2,i1(x) ·ϕi1(x)− JΓi2

ε2,i2(y) ·ϕi2(y)
∣∣2

|x− y|3
dσ(x) dσ(y) <∞ .

(13)

Definition 5 Let us assume that Ω is an open curvilinear Lipschitz polyhedral
domain (1). The mesh-dependent norms || · ||2‖,1/2,Γ, || · ||2⊥,1/2,Γ are defined as
follows

||ϕ||2‖,1/2,Γ :=
N∑
i=1

||ϕ||21/2,Γi
+

Ne∑
i=1

N ‖i (ϕ) , (14)

||ϕ||2⊥,1/2,Γ :=
N∑
i=1

||ϕ||21/2,Γi
+

Ne∑
i=1

N⊥i (ϕ) . (15)

The spaces H
1/2
‖ (Γ) and H

1/2
⊥ (Γ) are Hilbert spaces when endowed with the

norms (14) and (15), respectively. The proof of the Hilbert space property is

presented in [1]. The trace operator γR is furthermore surjective on H
1/2
‖ (Γ).

Proposition 0.1 The mapping γR : H1(Ω) → H
1/2
‖ (Γ) is linear continuous

and surjective.

Proof The proof given here follows [1]. The main difference is that, accord-
ing to (12), non-constant tangent vector fields must be considered.
The continuity of the mapping follows from the continuity of the standard
trace operator from H1(Ω) to H1/2(Γ) and the continuous embedding H

1/2
‖ (Γ) ↪→

H
1/2
− (Γ).

The surjectivity is proved by the construction of a compatible normal compo-
nent at every element Γi such that the resulting global vector-valued function
lies in H1/2(Γ). The latter can then be extended by standard arguments to a
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function in H1(Ω). Let us be given a partition of unity over Γ by three sets
of Lipschitz functions {χvi}Nv

i=1, {χei}Ne
i=1 and {χΓi

}Ni=1 such that

∀x ∈ Γ :
Nv∑
i=1

χvi(x) +
Ne∑
i=1

χei(x) +
N∑
i=1

χΓi
(x) = 1 .

By help of this partitioning, the construction of the normal component boils
down to three different cases, namely, extension in the neighbourhood of an
open element Γi, in the neighbourhood of an edge ei and in the neighbourhood
of a vertex vi.
In the neighbourhood of an open element Γi, the extension in normal direction
is chosen zero.
The situation is different in the neighbourhood of an edge as the extension
in normal direction is in general non-trivial. Let us fix an edge ei with
neighbouring elements Γi1 and Γi2 . Different from [1] and according to (12),

we assume that a tangent vector field ϕ ∈ H
1/2
‖ (Γ) is given in terms of natural

cotangent vector fields, i.e.,

ϕ =

ϕi1 = ϕ1,i1ε
1,i1 + ϕ2,i1ε

2,i1 on Γi1 ,

ϕi2 = ϕ1,i2ε
1,i2 + ϕ2,i2ε

2,i2 on Γi2 .
(16)

Our objective is to construct a function u ∈ H1/2(Γ),

u =

ui1 = ϕ1,i1ε
1,i1 + ϕ2,i1ε

2,i1 + ϕ3,i1ni1 on Γi1 ,

ui2 = ϕ1,i2ε
1,i2 + ϕ2,i2ε

2,i2 + ϕ3,i2ni2 on Γi2 ,
(17)

such that γR u = ϕ. The continuity conditions for u can be formulated
with respect to any basis of R3. Without restriction of any kind we choose
a moving frame spanned by the vectors {ε1,i1 , ε2,i1 ,ni1}. Thus, u ∈ H1/2(Γ)
in the neighbourhood of ei if (4) holds for all linear independent components
of u across ei, i.e.,∫

Γi1

∫
Γi2

∣∣ui1(x) · ε1,i1(x)− ui2(y) · ε1,i1(x)
∣∣2

|x− y|3
dσ(x) dσ(y) <∞ , (18)

∫
Γi1

∫
Γi2

∣∣ui1(x) · ε2,i1(x)− ui2(y) · ε2,i1(x)
∣∣2

|x− y|3
dσ(x) dσ(y) <∞ , (19)

∫
Γi1

∫
Γi2

∣∣ui1(x) · ni1(x)− ui2(y) · ni1(x)
∣∣2

|x− y|3
dσ(x) dσ(y) <∞ . (20)
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Recall that the tangent vector field ε1,i1 is continuous across ei as ε1,i1

∣∣
ei

=

ε1,i2

∣∣
ei

due to (7). Thus, there exists a constant c such that for all x ∈ ei it
holds∣∣ui1(x) · ε1,i1(x)− ui2(y) · ε1,i1(x)

∣∣2
|x− y|3

≤
∣∣ϕ1,i1(x)− ϕ1,i2(y)

∣∣2
|x− y|3︸ ︷︷ ︸

<∞ by (12)

+
c

|x− y|

This means that (18) is necessarily fulfilled by any ϕ ∈ H
1/2
‖ (Γ). Different

from (18), the remaining conditions (19) and (20) serve to determine contri-
butions to the unknown scalar-valued functionals ϕ3,i1 , ϕ3,i2 ∈ H1/2(Γ) in the
neighbourhood of ei. Due to (10), the integrand in (19) contains only ϕ3,i2

and, thus, (19) is sufficient to determine an appropriate contribution ϕ3,i2 .
Afterwards, ϕ3,i1 can be defined through condition (20).
Similar arguments apply for the extension in the neighbourhood of a vertex.
We consider a vertex vi. The set of elements that share vi is denoted {Γil}nl=1

where n ≥ 3. As in the previous case, on each edge, the two conditions
(19) and (20) are necessary and sufficient to determine ϕ3,i1 and ϕ3,i2 in the
neighbourhood of this particular edge. Different from before is that for each
Γil there are two edges and, thus, two extensions each of which belongs to
one of the edges. In order to combine them to one functional that is weakly
continuous across both edges, a simple blending function is used [1].

Proposition 0.2 The mapping γD : H1(Ω)→ H
1/2
⊥ (Γ) is linear and surjec-

tive.

Proof Let ϕ⊥ ∈ H
1/2
⊥ (Γ). Consider ϕ‖ = ϕ⊥ × n ∈ H

1/2
‖ (Γ). According to

the preceding proposition there exists an extension U ∈ H1(Ω) with γRU =
ϕ‖ and, therefore, γDU = ϕ⊥.

Definition 4 is a generalization of the setting treated in [1]. Assume that Γ
is the boundary of a Lipschitz polyhedral domain and consider two neigh-
bouring elements Γi1 and Γi2 with common edge ei. The elements are plane
triangles and, thus, it is possible to fix on the both elements piecewise con-
stant tangent vectors which are orthonormal with respect to the Euclidean
metric, namely,

{τ i, τ i1} on Γi1 with τ i =
1

Jei
ε1,i1 , τ i1 =

JΓi1

Jei
ε2,i1 ,

{τ i, τ i2} on Γi2 with τ i =
1

Jei
ε1,i2 , τ i2 =

JΓi2

Jei
ε2,i2 .
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Here Jei denotes the Jacobian of the edge parametrisation (3) and JΓil
, l =

1, 2, the Jacobians of the element parametrisations (2). Accordingly, the

functionals N ‖i and N⊥i simplify to the following expressions

N ‖i (ϕ) = Jei

∫
Γi1

∫
Γi2

∣∣ϕi1(x) · τ i −ϕi2(y) · τ i

∣∣2
|x− y|3

dσ(x) dσ(y) , (21)

N⊥i (ϕ) = Jei

∫
Γi1

∫
Γi2

∣∣τ i1 ·ϕi1(x)− τ i2 ·ϕi2(y)
∣∣2

|x− y|3
dσ(x) dσ(y) . (22)

A scaling by the constant edge-based Jacobian Jei leads to the functionals
which were originally presented in [1], i.e.,∫

Γi1

∫
Γi2

∣∣ϕi1(x) · τ i −ϕi2(y) · τ i

∣∣2
|x− y|3

dσ(x) dσ(y) , (23)

∫
Γi1

∫
Γi2

∣∣τ i1 ·ϕi1(x)− τ i2 ·ϕi2(y)
∣∣2

|x− y|3
dσ(x) dσ(y) . (24)

Note that in (23) and (24) geometrical information about the edge ei is
used, namely, the orthonormal system relies on the normalized edge tangent
vector τ i. This is not the case in the generalized functionals (21) and (22)
that result from (12) and (13), respectively. For curvilinear elements, the
tangent and cotangent vector fields are non-constant and the edge tangent
vector is, therefore, not meaningful on the element interiors. Ultimately, (23)
and (24) are restricted to the boundaries of polyhedral Lipschitz domains.
There are more reasons that motivate to establish the characterizations (12)

and (13). Recall the decompositions (5) and (6), i.e., the trace spaces H
1/2
‖ (Γ)

and H
1/2
⊥ (Γ) are actually auxiliarly spaces for the definition of the trace spaces

that belong to H(curl,Ω). From classical discretization theory and differen-
tial geometry it is known that the transformation behaviour of the vector-
valued surface differential operators gradΓ and curlΓ differ from each other
[2]. Let ϕ ∈ H1/2(Γ) be given piecewise in terms of parameter coordinates,
i.e.,

ϕ
∣∣
Γi

(x) = ϕ
(
F̂
−1

i (x)
)

= ϕ̂(ξ), ξ = (ξ1, ξ2)> ∈ T̂ . (25)

Then, the surface gradient of ϕ is locally given in terms of cotangent vector
fields, i.e.,

gradΓϕ
∣∣
Γi

=
∂ϕ̂

∂ξ1

ε1,i +
∂ϕ̂

∂ξ2

ε2,i , (26)
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whereas the vector-valued surface curl operator reads

curlΓϕ
∣∣
Γi

=
1

JΓi

(
∂ϕ̂

∂ξ2

ε1,i −
∂ϕ̂

∂ξ1

ε2,i

)
. (27)

By means of (26) and (27) together with (5) and (6) the characterizations
(12) and (13) are natural. From a differential point of view the point-wise
scalar multiplication of a tangent vector with a cotangent vectors corresponds
to the evaluation of differential form on a vector field. In this context, the
surface gradient leads to a differential one form and the vector-valued surface
curl operator leads to a multivector one field. The projections that appear in
(12) and (13) are evaluation of differential forms leading to a characterization
of the regularity in the trace space H−1/2(curlΓ,Γ) in terms of its dual space
H−1/2(divΓ,Γ) and vice versa.
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