Universität des Saarlandes

Fachrichtung 6.1 – Mathematik

Preprint Nr. 324

Quasicomplexes and Lefschetz numbers

Jörg Eschmeier

Saarbrücken 2012

Quasicomplexes and Lefschetz numbers

Jörg Eschmeier

Saarland University Department of Mathematics P.O. Box 15 11 50 66041 Saarbrücken Germany eschmei@math.uni-sb.de

Edited by FR 6.1 – Mathematik Universität des Saarlandes Postfach 15 11 50 66041 Saarbrücken Germany

Fax: + 49 681 302 4443 e-Mail: preprint@math.uni-sb.de WWW: http://www.math.uni-sb.de/ Jörg Eschmeier

Dedicated to the memory of Béla Szőkefalvi-Nagy

In a recent paper of Tarkhanov and Wallenta [8] a definition of Lefschetz numbers for morphisms $a = (a^{\bullet})$ of Fredholm quasicomplexes $E^{\bullet} = (E^{\bullet}, d^{\bullet})$ with trace class curvature is proposed. In the present note we show that there always exist trace class perturbations of a and E^{\bullet} to a cochain mapping $A = (A^{\bullet})$ of a Fredholm complex $(E^{\bullet}, D^{\bullet})$, and we clarify the relation between the Lefschetz number of A relative to the perturbed complex $(E^{\bullet}, D^{\bullet})$ and the Lefschetz number of a relative to the original quasicomplex $(E^{\bullet}, d^{\bullet})$. Furthermore, we prove that the Lefschetz numbers relative to E^{\bullet} satisfy a natural commutativity property.

1 Quasicomplexes

For Banach spaces E and F and $1 \leq p < \infty$, we denote by $\mathcal{C}^p(E, F)$ the Schatten class consisting of all bounded operators $T \in L(E, F)$ for which the sequence $(\alpha_n(T))_n$ of approximation numbers

 $\alpha_n(T) = \inf\{\|T - S\|; S \in L(E, F) \text{ with } \dim(\operatorname{Im} S) < n\}$

is *p*-summable. We write $\mathcal{C}^{\infty}(E, F)$ for the set of all compact operators from E to F.

Let $d \in L(E^0, E^1), d' \in L(F^0, F^1)$ and $a^i \in L(E^i, F^i)(i = 0, 1)$ be bounded linear operators between Banach spaces. We call

a commuting square if $a^1d = d'a^0$. To indicate that the last identity only holds up to operators of Schatten class C^p , that is, $a^1d - d'a^0 \in C^p(E^0, F^1)$, we say that the square is *p*-essentially commuting. A complex of Banach spaces is a sequence

$$E^{\bullet}: 0 \to E^0 \xrightarrow{d^0} E^1 \xrightarrow{d^1} \dots \xrightarrow{d^{N-1}} E^N \to 0$$

of bounded linear operators between Banach spaces such that $d^{i+1}d^i = 0$ for all *i*. We denote by $H^i(E^{\bullet}) = \operatorname{Ker} d^i / \operatorname{Im} d^{i-1}$ $(i = 0, \dots, N)$ the cohomology groups of a complex E^{\bullet} as above and use the standard convention that nondefined spaces or maps have to be interpreted as the zero spaces or zero maps. Following [8] we call E^{\bullet} a quasicomplex of curvature C^p or a *p*-quasicomplex if $d^{i+1}d^i \in C^p(E^i, E^{i+2})$ for all *i*. The case of quasicomplexes with C^{∞} -curvature has also been studied in [2], where C^{∞} -quasicomplexes were called essential complexes.

A *p*-quasicomplex E^{\bullet} as above is called Fredholm if there are bounded operators $\epsilon^i \in L(E^i, E^{i-1})$ such that

$$d^{i-1}\epsilon^{i} + \epsilon^{i+1}d^{i} \in 1_{E^{i}} + \mathcal{K}(E^{i}) \ (i = 0, \dots, N).$$

1.1 Lemma. Suppose that

is a p-essentially commuting square of Banach spaces with $1 \leq p \leq \infty$ such that the operator d is Fredholm. Then there are operators $C^i \in \mathcal{C}^p(E^i, F^i)$ with the property that

$$(a^1 - C^1)d = d'(a^0 - C^0).$$

Proof. Since d is Fredholm, there is an operator $\epsilon \in L(E^1, E^0)$ such that

 $K^1 = d\epsilon - 1_{E^1}, \quad K^0 = 1_{E^0} - \epsilon d$

are finite-rank operators. Then the operator C^1 defined by

$$C^{1} = a^{1} - d'a^{0}\epsilon = (a^{1}d - d'a^{0})\epsilon - a^{1}K^{1}$$

belongs to $\mathcal{C}^p(E^1, F^1)$ and satisfies the identity $d'a^0 \epsilon = a^1 - C^1$. Because of

$$d'(a^0 - a^0 K^0) = d'a^0 \epsilon d = (a^1 - C^1)d$$

the assertion holds with C^1 as defined above and with $C^0 = a^0 K^0$.

Let us suppose that

is a diagram of bounded linear operators between Banach spaces such that the horizontal maps form complexes and such that the two squares in the diagram are *p*-essentially commuting.

1.2 Lemma. In the setting explained above suppose further that dim $H^i(E^{\bullet}) < \infty$ for i = 1, 2 and that there are topological direct complements N of the kernel of d^0 in E^0, M of the image of d^0 in E^1 . Then there are operators $C^i \in \mathcal{C}^p(E^i, F^i)$ (i = 1, 2) such that

$$(a^2 - C^2)d^1 = d'^1(a^1 - C^1).$$

Proof. Since the upper horizontal map in the *p*-essentially commuting square

is Fredholm, Lemma 1.1 implies that there are operators $C^2 \in \mathcal{C}^p(E^2, F^2)$ and $K \in \mathcal{C}^p(M, F^1)$ such that $(a^2 - C^2)d^1 = d'^1(a^1 - K)$ on M. Since the upper horizontal map in the *p*-essentially commuting square

$$\begin{array}{ccc} N & \stackrel{d^0}{\longrightarrow} & \operatorname{Im} d^0 \\ a^0 \downarrow & & \downarrow a^1 \\ F^0 & \stackrel{d'^0}{\longrightarrow} & F^1 \end{array}$$

is invertible, Lemma 1.1 shows that there are operators $K^1 \in \mathcal{C}^p$ (Im d^0, F^1) and $K^0 \in \mathcal{C}^p(N, F^0)$ with $(a^1 - K^1)d^0 = d'^0(a^0 - K^0)$ on N. In particular, it follows that $(a^1 - K^1)$ Im $d^0 \subset$ Im $d'^0 \subset$ Ker d'^1 . But then the operator

$$C^1 = (K^1, K) : E^1 = \operatorname{Im} d^0 \oplus M \longrightarrow F^1$$

belongs to $\mathcal{C}^p(E^1, F^1)$ and satisfies

$$d'^{1}(a^{1} - C^{1})(x \oplus y) = d'^{1}(a^{1} - K^{1})x + d'^{1}(a^{1} - K)y$$
$$= (a^{2} - C^{2})d^{1}y = (a^{2} - C^{2})d^{1}(x \oplus y)$$
m d^{0} and $y \in M$.

for all $x \in \text{Im } d^0$ and $y \in M$.

Let $E^{\bullet} = (E^n, d^n)_{n=0}^N$, $F^{\bullet} = (F^n, d'^n)_{n=0}^N$ be *p*-quasicomplexes of Banach spaces. A morphism between E^{\bullet} and F^{\bullet} is a sequence $a = (a^n)_{n=0}^N$ of bounded linear operators $a^n : E^n \to F^n$ such that $d'^n a^n - a^{n+1} d^n$ is of Schatten class \mathcal{C}^p for every *n*. Let us suppose in addition that the *p*-quasicomplexes E^{\bullet} and F^{\bullet} are Fredholm. Our next aim is to show that there are perturbations of Schatten class \mathcal{C}^p of E^{\bullet}, F^{\bullet} and *a* which form a commuting diagram of Fredholm complexes of Banach spaces.

It was shown in Theorem 10.2.5 of [2] for the case $p = \infty$, and in Theorem 3.1 of [8] for the general case, that there are Schatten *p*-class perturbations D^n of d^n and D'^n of d'^n such that $(E^{\bullet}, D^{\bullet})$ and $(F^{\bullet}, D'^{\bullet})$ are Fredholm complexes of Banach spaces. Since the result in [8] was shown under the stronger Fredholm condition that there are operators $\epsilon^i \in L(E^i, E^{i-1})$ such that

$$d^{i-1}\epsilon^{i} + \epsilon^{i+1}d^{i} \in 1_{E^{i}} + \mathcal{C}^{p}(E^{i}) \quad (i = 0, \dots, N),$$

we include a proof which shows that the latter condition holds automatically.

1.3 Theorem. Let $E^{\bullet} = (E^n, d^n)_{n=0}^N$ be a *p*-quasicomplex with $1 \leq p \leq \infty$. Suppose that E^{\bullet} is Fredholm, that is, there are operators $\epsilon^i \in L(E^i, E^{i-1})$ such that

$$d^{i-1}\epsilon^{i} + \epsilon^{i+1}d^{i} \in 1_{E^{i}} + \mathcal{K}(E^{i}) \quad (i = 0, \dots, N).$$

Then there are operators $\tau^i \in \mathcal{C}^p(E^i, E^{i+1})$ with

$$(d^{i+1} - \tau^{i+1})(d^i - \tau^i) = 0 \qquad (i = 0, ..., N - 1)$$

and operators $h^i \in L(E^i, E^{i-1})$ such that

$$d^{i-1}h^i + h^{i+1}d^i \in 1_{E^i} + \mathcal{C}^p(E^i) \quad (i = 0, \dots, N).$$

Proof. The existence of the operators τ^i can be proved by induction on N. For N = 1, nothing has to be shown. Let $E^{\bullet} = (E^n, d^n)_{n=0}^N$ be a Fredholm p-quasicomplex with N > 1. Set $K = \ker d^{N-1}$. By Lemma 2.6.13 in [2] the operator d^{N-1} has finite-codimensional range and there is a topological direct complement L of K in E^{N-1} . Then the operator

$$\delta: L \to \operatorname{Im} d^{N-1}, x \mapsto d^{N-1}x$$

is a topological isomorphism and the composition

$$\tau: E^{N-2} \xrightarrow{d^{N-2}} E^{N-1} \xrightarrow{d^{N-1}} \operatorname{Im} d^{N-1} \xrightarrow{\delta^{-1}} L \hookrightarrow E^{N-1}$$

defines an operator $\tau \in C^p(E^{N-2}, E^{N-1})$. Obviously the operator defined as $P = \delta^{-1} d^{N-1}$ is the projection of E^{N-1} onto L with kernel K. Therefore we obtain that

$$d^{N-1}(d^{N-2} - \tau) = d^{N-1}d^{N-2} - d^{N-1}\tau = d^{N-1}(1 - P)d^{N-2} = 0.$$

Define $D^{N-2} = d^{N-2} - \tau \in L(E^{N-2}, K)$. Then it is elementary to check that

 $E^{\bullet}: 0 \to E^0 \xrightarrow{d^0} E^1 \xrightarrow{d^1} \dots \xrightarrow{d^{N-3}} E^{N-2} \xrightarrow{D^{N-2}} K \to 0$

is a Fredholm *p*-quasicomplex again. Hence a straightforward inductive argument completes the proof of the existence of the operators τ^i .

Define $D^i = d^i - \tau^i$ (i = 0, ..., N-1). Then $(E^n, D^n)_{n=0}^N$ is a Fredholm complex of Banach spaces. It is well known (see the proof of part (b) of Theorem 2.6.13 in [2]) that in this case there are operators $h^i \in L(E^i, E^{i-1})$ such that

$$1_{E^{i}} - (D^{i-1}h^{i} + h^{i+1}D^{i}) \in L(E^{i})$$

are finite-rank projections. Clearly this observation completes the proof. \Box

To prove that a morphism of Fredholm *p*-quasicomplexes $E^{\bullet} = (E^n, d^n)_{n=0}^N$ and $F^{\bullet} = (F^n, d'^n)_{n=0}^N$ admits perturbations of Schatten class \mathcal{C}^p to a cochain mapping of Fredholm complexes, we proceed in two steps. We first replace E^{\bullet} and F^{\bullet} by Fredholm complexes \tilde{E}^{\bullet} and \tilde{F}^{\bullet} using the previous result. Then the following result will allow us to replace the morphism by a cochain mapping of the complexes \tilde{E}^{\bullet} and \tilde{F}^{\bullet} .

1.4 Theorem. Let $E^{\bullet} = (E^n, d^n)_{n=0}^N$ and $F^{\bullet} = (F^n, d'^n)_{n=0}^N$ be Fredholm complexes of Banach spaces and let $a = (a^n)_{n=0}^N$ be a sequence of bounded linear operators $a^n \in L(E^n, F^n)$ such that

$$d'^n a^n - a^{n+1} d^n \in \mathcal{C}^p(E^n, F^{n+1})$$

for all n. Then there are operators $C^n \in \mathcal{C}^p(E^n, F^n)$ such that

$$d^{\prime n}(a^n - C^n) = (a^{n+1} - C^{n+1})d^n \quad (n = 0, \dots, N-1).$$

Proof. Since E^{\bullet} is a Fredholm complex, the closed subspaces Ker $d^n \subset E^n$ and Im $d^n \subset E^{n+1}$ possess topological direct complements and the cohomology groups $H^n(E^{\bullet}) = \text{Ker } d^n/\text{Im } d^{n-1}$ are finite dimensional for all n (Lemma 2.6.13 in [2]).

By Lemma 1.2 there are operators $C^N \in \mathcal{C}^p(E^N, F^N), \tilde{C}^{N-1} \in C^p(E^{N-1}, F^{N-1})$ such that

$$d'^{N-1}(a^{N-1} - \tilde{C}^{N-1}) = (a^N - C^N)d^{N-1}.$$

Define $\tilde{a}^{N-1} = a^{N-1} - \tilde{C}^{N-1}$. Then the horizontal lines in the diagram

are Fredholm complexes of Banach spaces such that all squares are *p*-essentially commuting. Again as an application of Lemma 1.2 we obtain the existence of operators $\hat{C}^{N-1} \in \mathcal{C}^p(\operatorname{Ker} d^{N-1}, \operatorname{Ker} d'^{N-1}), \tilde{C}^{N-2} \in \mathcal{C}^p(E^{N-2}, F^{N-2})$ such that

$$d'^{N-2}(a^{N-2} - \tilde{C}^{N-2}) = (\tilde{a}^{N-1} - \hat{C}^{N-1})d^{N-2}.$$

Choose a closed subspace $L \subset E^{N-1}$ with $E^{N-1} = \operatorname{Ker} d^{N-1} \oplus L$. Then the operator

$$C^{N-1}: E^{N-1} = \operatorname{Ker} d^{N-1} \oplus L \to F^{N-1}, x \oplus y \mapsto \tilde{C}^{N-1}(x \oplus y) + \hat{C}^{N-1}x$$

belongs to $\mathcal{C}^p(E^{N-1}, F^{N-1})$ and satisfies the identities

$$d'^{N-1}(a^{N-1} - C^{N-1}) = (a^N - C^N)d^{N-1}$$

and

$$d'^{N-2}(a^{N-2} - \tilde{C}^{N-2}) = (a^{N-1} - C^{N-1})d^{N-2}$$

Continuing in this way, we find operators $C^n \in \mathcal{C}^p(E^n, F^n) (0 \le n \le N)$ which satisfy the required intertwining relations.

Combining Theorem 1.3 and Theorem 1.4 we obtain our main perturbation result for morphisms of quasicomplexes with Schatten class curvature.

1.5 Corollary. Let $E^{\bullet} = (E^n, d^n)_{n=0}^N$, $F^{\bullet} = (F^n, d'^n)_{n=0}^N$ be Fredholm *p*-quasicomplexes of Banach spaces with $1 \le p \le \infty$ and let $a = (a^n)_{n=0}^N$ be a sequence of bounded linear operators $a^n : E^n \to F^n$ with

$$d'^n a^n - a^{n+1} d^n \in \mathcal{C}^p(E^n, F^{n+1})$$

for all n. Then there are perturbations D^n of d^n , D'^n of d'^n and A^n of a^n of Schatten class \mathcal{C}^p such that $(E^{\bullet}, D^{\bullet})$, $(F^{\bullet}, D'^{\bullet})$ are Fredholm complexes and

$$D'^n A^n = A^{n+1} D^n$$

holds for all n. In the case that $E^{\bullet} = F^{\bullet}$ one can choose $D^{\bullet} = D'^{\bullet}$.

2 Lefschetz numbers

Let $E^{\bullet} = (E^n, d^n)_{n=0}^N$ be a Fredholm quasicomplex of trace class curvature consisting of Hilbert spaces E^n and let $a = (a^n)_{n=0}^N$ be a morphism of E^{\bullet} , that is, a sequence of bounded operators $a^n : E^n \to E^n$ such that

$$d^n a^n - a^{n+1} d^n \in \mathcal{C}^1(E^n, E^{n+1})$$

for all n. By Theorem 1.3 there exist operators $\epsilon^i \in L(E^i, E^{i-1})$ with

$$d^{i-1}\epsilon^{i} + \epsilon^{i+1}d^{i} \in 1_{E^{i}} + \mathcal{C}^{1}(E^{i}) \quad (i = 0, \dots, N).$$

According to Corollary 1.5 we can choose trace class perturbations D^n of d^n , A^n of a^n such that $(E^n, D^n)_{n=0}^N$ is a complex and $A = (A^n)_{n=0}^N$ is a cochain mapping of $(E^n, D^n)_{n=0}^N$ into itself. Then the relations

$$D^{i-1}\epsilon^{i} + \epsilon^{i+1}D^{i} = 1_{E^{i}} - r^{i} \quad (i = 0, \dots, N)$$

define trace class operators r^i on E^i . In Theorem 4.2 of [8] it was shown that

$$\sum_{i=0}^{N} (-1)^{i} \operatorname{tr}(A^{i}, H^{i}(D^{\bullet})) = \sum_{i=0}^{N} (-1)^{i} \operatorname{tr}(A^{i} - (A^{i} \epsilon^{i+1})d^{i} - d^{i-1}(A^{i-1} \epsilon^{i})).$$

To see what happens if the operators A_i on the right-hand side are replaced by the operators a_i , we recall the arguments from [8]. The relations

$$(A^{i}\epsilon^{i+1})D^{i} + D^{i-1}(A^{i-1}\epsilon^{i}) = A^{i} - A^{i}r^{i} \quad (i = 0, \dots, N)$$

show that the cochain mappings $(A^n)_{n=0}^N$ and $(A^n r^n)_{n=0}^N$ of the complex $(E^{\bullet}, D^{\bullet})$ are homotopic, and hence induce the same cohomology maps. Using Theorem 19.1.5 from [4], we find that

$$\sum_{i=0}^{N} (-1)^{i} \operatorname{tr}(A^{i}, H^{i}(D^{\bullet})) = \sum_{i=0}^{N} (-1)^{i} \operatorname{tr}(A^{i}r^{i}, H^{i}(D^{\bullet}))$$
$$= \sum_{i=0}^{N} (-1)^{i} \operatorname{tr}(A^{i}r^{i}) = \sum_{i=0}^{N} (-1)^{i} \operatorname{tr}(A^{i} - A^{i}\epsilon^{i+1}D^{i} - D^{i-1}A^{i-1}\epsilon^{i}).$$

Since the alternating sum of the traces of the operators

$$a^{i}\epsilon^{i+1}d^{i} - A^{i}\epsilon^{i+1}D^{i} + d^{i-1}a^{i-1}\epsilon^{i} - D^{i-1}A^{i-1}\epsilon^{i}$$

$$=a^{i}\epsilon^{i+1}(d^{i}-D^{i})+(d^{i-1}-D^{i-1})a^{i-1}\epsilon^{i}+(a^{i}-A^{i})\epsilon^{i+1}D^{i}+D^{i-1}(a^{i-1}-A^{i-1})\epsilon^{i}$$

is zero, it follows that

$$\sum_{i=0}^{N} (-1)^{i} \operatorname{tr}(A^{i}, H^{i}(D^{\bullet})) - \sum_{i=0}^{N} (-1)^{i} \operatorname{tr}(A^{i} - a^{i}) = \sum_{i=0}^{N} (-1)^{i} \operatorname{tr}(a^{i} - a^{i} \epsilon^{i+1} d^{i} - d^{i-1} a^{i-1} \epsilon^{i}).$$

As proposed in [8], we call the number occurring on the right-hand side of the last equation, the Lefschetz number of the morphism a relative to $(E^{\bullet}, d^{\bullet})$.

2.1 Definition. Let $E^{\bullet} = (E^n, d^n)_{n=0}^N$ be a Fredholm quasicomplex of Hilbert spaces with trace class curvature and let $a = (a^n)_{n=0}^N$ be a morphism of E^{\bullet} . Then the Lefschetz number of a relative to E^{\bullet} is defined as

$$L_{E^{\bullet}}(a) = \sum_{i=0}^{N} (-1)^{i} \operatorname{tr}(a^{i} - a^{i} \epsilon^{i+1} d^{i} - d^{i-1} a^{i-1} \epsilon^{i}),$$

where $\epsilon^i \in L(E^i, E^{i-1})$ are arbitrary operators with $d^{i-1}\epsilon^i + \epsilon^{i+1}d^i \in 1_{E^i} + C^1(E^i)$ for all *i*.

Note that the remarks leading to the above definition show that the alternating sum of traces defining $L_{E^{\bullet}}(a)$ is independent of the particular choice of the operators ϵ^i . An inspection of the proofs of Theorem 1.3 and Theorem 1.4 shows that one can always choose trace class perturbations D^n of d^n and A^n of a^n in such a way that $A = (A^n)$ is a cochain mapping of the Fredholm complex $(E^{\bullet}, D^{\bullet})$ with

$$L_{E^{\bullet}}(a) = \sum_{i=0}^{N} (-1)^{i} \operatorname{tr}(A^{i}, H^{i}(D^{\bullet})).$$

As in the classical situation the Lefschetz numbers possess a certain commutativity property.

2.2 Theorem. Let $E^{\bullet} = (E^n, d^n)_{n=0}^N$ be a Fredholm quasicomplex of Hilbert spaces with trace class curvature and let $a = (a^n)_{n=0}^N$, $b = (b^n)_{n=0}^N$ be morphisms of E^{\bullet} . Then $ab = (a^n b^n)_{n=0}^N$ and $ba = (b^n a^n)_{n=0}^N$ are morphisms of E^{\bullet} and

$$L_{E^{\bullet}}(ab) = L_{E^{\bullet}}(ba).$$

Proof. By Corollary 1.5 and its proof, there are trace class perturbations D^n of d^n , A^n of a^n and B^n of b^n such that $(E^{\bullet}, D^{\bullet})$ is a complex and such that $D^n A^n = A^{n+1} D^n$ and $D^n B^n = B^{n+1} D^n$ for all n. Since ab and ba are morphisms of E^{\bullet} and since

$$A^n B^n - a^n b^n, B^n A^n - b^n a^n \in \mathcal{C}^1(E^n)$$

for all n, we find that

$$L_{E^{\bullet}}(ab) = \sum_{i=0}^{N} (-1)^{i} \operatorname{tr}(a^{i}b^{i} - a^{i}b^{i}\epsilon^{i+1}d^{i} - d^{i-1}a^{i-1}b^{i-1}\epsilon^{i})$$

$$= \sum_{i=0}^{N} (-1)^{i} \operatorname{tr}(A^{i}B^{i}, H^{i}(D^{\bullet}))) - \sum_{i=0}^{N} (-1)^{i} \operatorname{tr}(A^{i}B^{i} - a^{i}b^{i})$$

$$= \sum_{i=0}^{N} (-1)^{i} \operatorname{tr}(B^{i}A^{i}, H^{i}(D^{\bullet})) - \sum_{i=0}^{N} (-1)^{i} \operatorname{tr}(B^{i}A^{i} - b^{i}a^{i})$$

$$+ \sum_{i=0}^{N} (-1)^{i} \operatorname{tr}(B^{i}A^{i} - b^{i}a^{i} - A^{i}B^{i} + a^{i}b^{i})$$

$$= L_{E^{\bullet}}(ba) + \sum_{i=0}^{N} (-1)^{i} \operatorname{tr}((B^{i} - b^{i})A^{i} + b^{i}(A^{i} - a^{i}) - (A^{i} - a^{i})B^{i} - a^{i}(B^{i} - b^{i}))$$

$$= L_{E^{\bullet}}(ba) + \sum_{i=0}^{N} (-1)^{i} \operatorname{tr}((B^{i} - b^{i})(A^{i} - a^{i}) - (A^{i} - a^{i})(B^{i} - b^{i})) = L_{E^{\bullet}}(ba),$$

where the operators ϵ^i are chosen as in Definition 2.1.

If E^{\bullet} and F^{\bullet} are Fredholm quasicomplexes of Hilbert spaces with trace class curvature, a is a morphism from E^{\bullet} into F^{\bullet} and b is a morphism of F^{\bullet} into E^{\bullet} , then exactly as in the proof of Theorem 2.2 it follows that $L_{F^{\bullet}}(ab) = L_{E^{\bullet}}(ba)$.

In [8] the question arose whether, for every morphism $a = (a^n)_{n=0}^N$ of a Fredholm quasicomplex $E^{\bullet} = (E^n, d^n)_{n=0}^N$ of Hilbert spaces with trace class curvature, there are trace class perturbations D^n of d^n such that $(E^{\bullet}, D^{\bullet})$ is a complex and a is a cochain mapping of $(E^{\bullet}, D^{\bullet})$. We give an elementary counterexample.

Assume that there were a positive answer. Denote by $H^2 = H^2(\mathbb{T})$ and $H^{\infty} = H^{\infty}(\mathbb{T})$ the Hardy space on the unit circle and its multiplier space. For $f \in L^{\infty}(\mathbb{T})$, let $T_f \in L(H^2)$ be the Toeplitz operator with symbol f. Since $T_{\overline{z}}$ is Fredholm with $[T_{\overline{z}}, T_z] \in \mathcal{C}^1(H^2)$, there would have to be an operator $C \in \mathcal{C}^1(H^2)$ with

$$T_z(T_{\overline{z}} + C) = (T_{\overline{z}} + C)T_z.$$

Since the commutant of T_z consists of all Toeplitz operators with symbol in H^{∞} , there would be a function $g \in H^{\infty}$ with $T_{\overline{z}} + C = T_g$. But it is well known that there are no non-zero compact Toeplitz operators on H^2 . Thus we obtain the contradiction that $\overline{z} = g \in H^{\infty}$.

We conclude the paper with an elementary one-dimensional example in which an integral formula for the Lefschetz number can be given.

2.3 Example. Let $f, g \in C^{\infty}(\mathbb{T})$ be smooth functions on the unit circle. It is well known that the essential spectrum of T_g is given by $\sigma_e(T_g) = g(\mathbb{T})$, that $T_{fg} - T_f T_g \in \mathcal{C}^1(H^2)$ and that

tr
$$[T_f, T_g] = \frac{1}{2\pi i} \int_{\partial \mathbb{D}} f(d_z g) dz,$$

where the integral is the contour integral along the unit circle and $d_z g \in C^{\infty}(\mathbb{T})$ is given by $(zd_z g)(e^{it}) = -i\frac{d}{dt}(g(e^{it}))$ (see e.g. Section 1 in [3]).

Suppose that $0 \notin g(\mathbb{T})$. Then T_g is Fredholm and $1 - T_g T_{g^{-1}}$, $1 - T_{g^{-1}} T_g$ are both trace class. Hence the Lefschetz number of T_f relative to T_g can be calculated as

$$L_{T_g}(T_f) = \operatorname{tr} \left(T_f - T_f T_{g^{-1}} T_g \right) - \operatorname{tr} \left(T_f - T_g T_f T_{g^{-1}} \right)$$
$$= \operatorname{tr} \left[T_g, T_f T_{g^{-1}} \right] = \operatorname{tr} \left[T_g, T_{fg^{-1}} \right]$$
$$= \frac{1}{2\pi i} \int_{\partial \mathbb{D}} g d_z (fg^{-1}) dz = \frac{1}{2\pi i} \int_{\partial \mathbb{D}} \left(d_z (f) + g f d_z (g^{-1}) \right) dz = -\frac{1}{2\pi i} \int_{\partial \mathbb{D}} \frac{f(d_z g)}{g} dz.$$

=

By choosing f = 1, we obtain the well known index formula

$$\operatorname{ind}(T_g) = L_{T_g}(1) = -\frac{1}{2\pi i} \int_{\partial \mathbb{D}} \frac{d_z g}{g} dz.$$

References

- C. Ambrozie, F.-H. Vasilescu, Banach space complexes, Kluwer Acacemic Publishers, Dordrecht, 1995.
- [2] J. Eschmeier, M. Putinar, Spectral decompositions and analytic sheaves, LMS Monograph Series, Vol. 10, Clarendon Press, Oxford 1996.
- [3] J.W. Helton, R. Howe, Integral operators, commutator traces, index and homology, in: Proceedings of a conference on operator theory, Springer Lecture Notes 345, Springer, Berlin, 1973.
- [4] L. Hörmander, The analysis of linear partial differential operators III, Springer, Berlin 1994.
- [5] R. Levy, Algebraic and topological K-functors of commuting n-tuples of operators, J. Operator Theory 21 (1989), 219-254.
- [6] M. Putinar, Some invariants for semi-Fredholm systems of essentially commuting operators, J. Operator Theory 8 (1982), 65-90.
- [7] M. Putinar, F.-H. Vasilescu, Continuous and analytic invariants for deformations of Fredholm complexes, J.Operator Theory 9 (1983), 3-26.
- [8] N. Tarkhanov, D. Wallenta, The Lefschetz number of sequences of trace class curvature, Preprint 2012, Universität Potsdam.

FACHRICHTUNG MATHEMATIK, UNIVERSITÄT DES SAARLANDES, SAARBRÜCKEN, GERMANY *E-mail address: eschmei@math.uni-sb.de*