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Cowen-Douglas operators and dominating sets

Jörg Eschmeier and Johannes Schmitt

It is shown that each Banach space of analytic functions with con-
tinuous point evaluations on an open set Ω ⊂ Cd possesses a dis-
crete dominating set. This result enables us to prove the existence
of spanning holomorphic cross-sections for Cowen-Douglas tuples
T = (T1, . . . , Td) of class Bn(Ω), generalizing a previous result of
Kehe Zhu for single Cowen-Douglas operators. As a consequence
we extend representation and classification results of Zhu to the
multivariate case.

0 Introduction

Let H be a complex Hilbert space and let Ω ⊂ Cd be a connected open set. A
commuting tuple T = (T1, . . . , Td) ∈ L(H)d of bounded linear operators on H
is called a Cowen-Douglas tuple of degree n over Ω if

(i) Tz : H → Hd, x 7→ ((zi − Ti)x)1≤i≤d, has closed range for every z ∈ Ω,

(ii) dim kerTz = n for every z ∈ Ω and

(iii)
∨
z∈Ω kerTz = H.

We write Bn(Ω) for the class of all Cowen-Douglas tuples of degree n over Ω.

It was observed by Cowen and Douglas in [2] for the single variable case d = 1,
and extended to the multivariable case in [3] and [4], that the complex geometry
of the associated hermitian holomorphic vector bundle

ET =
⋃
z∈Ω

{z} × kerTz

can be used to study invariants of the operator tuple T . For instance, two
Cowen-Douglas tuples of class Bn(Ω) are unitarily equivalent if and only if
the associated hermitian holomorphic vector bundles are equivalent. Global
holomorphic frames for ET give rise to realizations of T as the adjoint of the
multiplication tuple Mz = (Mz1 , . . . ,Mzd) with the coordinate functions on
suitable Cn-valued analytic functional Hilbert spaces on the complex conjugate
domain Ω∗ = {z; z ∈ Ω} ⊂ Cd.

In [11] Kehe Zhu suggested an alternative approach to the Cowen-Douglas
theory based on the notion of spanning holomorphic cross-sections. It was
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shown that in the case d = 1 every single Cowen-Douglas operator T ∈ L(H)
possesses a spanning holomorphic cross-section, that is, there is a holomorphic
function γ : Ω → H such that γ(z) ∈ kerTz for every z ∈ Ω and such that
H is the closed linear span of the range of γ. As a consequence, it was shown
among other things, that every single operator T ∈ L(H) of Cowen-Douglas
class Bn(Ω) is unitarily equivalent to the adjoint of the multiplication opera-
tor Mz on a scalar-valued analytic functional Hilbert space and that spanning
holomorphic cross-sections can be used to characterize Cowen-Douglas opera-
tors up to unitary equivalence and similarity.

The construction of a spanning holomorphic cross-section in [11] was based on
the observation that Jensen’s formula for the zeros of holomorphic funtions on
the unit disc can be used to prove the existence of discrete uniqueness sets for
Banach spaces of holomorphic functions with continuous point evaluations on
open sets in C. The purpose of this note is to extend the ideas of Kehe Zhu to
the multivariable case. As a result, which is perhaps of independent interest,
we prove the existence of discrete dominating sets and discrete uniqueness
sets for arbitrary Banach spaces of holomorphic functions with bounded point
evaluations on open sets in Cd.

In more detail, in Section 2 we prove the existence of discrete dominating sets
for analytic functional Banach spaces on open sets in Cd. In Section 3 we de-
duce the existence of spanning holomorphic cross-sections for Cowen-Douglas
tuples T = (T1, . . . , Td) over admissible domains in Cd and show their unitary
equivalence to the adjoints of multiplication tuples Mz = (Mz1 , . . . ,Mzd) on
suitable scalar-valued analytic functional Hilbert spaces. As an application we
characterize Cowen-Douglas tuples that are unitarily equivalent or similar and
describe their commutants in Section 4.

1 Preliminaries

Let Ω ⊂ Cd be a domain, that is, a connected open set. Let T = (T1, . . . , Td) ∈
L(H)d be a Cowen-Douglas tuple of class Bn(Ω) over Ω. A standard construc-
tion going back to [2] can be used to turn the set

ET =
⋃
z∈Ω

{z} × kerTz

into a hermitian holomorphic vector bundle on Ω. We briefly indicate a possible
proof. For a given point z0 ∈ Ω, let N ⊂ H be a closed subspace sucht that
the direct sum decomposition

H = kerTz0 ⊕N

holds. Choose an open neighbourhood U of z0 such that Tz : N → Hd is
bounded below for every point z ∈ U . Then the operator-valued function
U → L(H,Hd), z 7→ Tz, is regular at the point z0 (see Chapter II.10 in [8] for
this notion). Fix a basis (e1, . . . , en) of kerTz0 and elements u1, . . . , un ∈ H
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with 〈ei, uj〉 = δij for i, j = 1, . . . , n. By shrinking U one can achieve that there
are analytic functions f1, . . . , fn ∈ O(U,H) with fi(z0) = ei, fi(z) ∈ kerTz for
i = 1, . . . , n and z ∈ U (Theorem II.11.9 in [8]) and such that all the matrices

(〈fi(z), uj〉)1≤i,j≤n (z ∈ U)

are invertible. An elementary exercise shows that the mappings

gU = gU,(fj) : U × Cn → ET |U , (z, α) 7→ (z,
n∑
j=1

αjfj(z))

obtained in this way are fibrewise linear homeomorphisms such that all coor-
dinate changes gU,V = g−1

V ◦ gU : (U ∩ V ) × Cn → (U ∩ V ) × Cn are of the
form

gU,V (z, α) = (z, hU,V (z)α)

with suitable holomorphic mappings hU,V : U ∩ V → L(Cn). Thus (ET , π),
where ET ⊂ Ω × H is equipped with its product topology and π : ET → Ω,
(z, x) 7→ z, denotes the canonical projection becomes a holomorphic vector
bundle on Ω.

For an open set U ⊂ Ω, the holomorphic sections of ET over U are precisely
the functions of the form γf : U → ET , z 7→ (z, f(z)), where f : U → H is
an analytic function with f(z) ∈ kerTz for z ∈ U . We write Γhol(U,ET ) for
the set of all holomorphic sections of ET over U and shall tacitly identify each
holomorphic section with the associated H-valued holomorphic function.

By a theorem of Grauert (Corollary 3.4 and Theorem 3.5 in [7]) every holomor-
phic vector bundle on a domain in C or a contractible domain of holomorphy
in Cd is holomorphically trivial or, equivalently, possesses a global holomorphic
frame. In the following by an admissible domain Ω in Cd we shall always mean
a domain of holomorphy such that every holomorphic vector bundle on Ω is
holomorphically trivial. Since holomorphic sections of the bundle ET over an
open set U ⊂ Ω can be identified with holomorphic functions f : U → H with
f(z) ∈ kerTz for every z ∈ U , the existence of a global holomorphic frame
for ET means precisely that there are analytic functions f1, . . . , fn ∈ O(Ω, H)
such that the elements f1(z), . . . , fn(z) form a basis of kerTz for every z ∈ Ω.

If (f1, . . . , fn) is a global holomorphic frame for ET on Ω, then the linear
mapping

j : H → O(Ω∗,Cn), j(x)(z) = (〈x, fi(z)〉)ni=1

is injective and intertwines componentwise the tuple T ∗ = (T ∗1 , . . . , T
∗
d ) on H

with the multiplication tuple Mz = (Mz1 , . . . ,Mzd) on O(Ω∗,Cn). The space
HT = jH ⊂ O(Ω∗,Cn) equipped with the norm ‖jx‖ = ‖x‖ becomes a Cn-
valued functional Hilbert space with reproducing kernel K : Ω∗×Ω∗ → L(Cn),
K(z, w) = γ(z)∗γ(w), where γ : Ω∗ → L(Cn, H) is given by

γ(z)(α) =
n∑
i=1

αifi(z).
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More details on this construction can be found in Curto and Salinas [4] (The-
orem 4.12).

Extending an idea from [11] we shall show that every Cowen-Douglas tuple
T of class Bn(Ω) over an admissible domain Ω ⊂ Cd is unitarily equivalent
to the adjoint of the multiplication tuple Mz = (Mz1 , . . . ,Mzd) on a scalar-
valued analytic functional Hilbert space. Throughout this paper by an analytic
functional Hilbert (Banach) space X on an open set Ω ⊂ Cd we shall mean
a Hilbert (Banach) space consisting of holomorphic complex-valued functions
such that the point evaluations δz : X → C, f 7→ f(z), are continuous for every
point z ∈ Ω.

2 Dominating sets

Let X be a linear space of complex-valued functions on an open set Ω ⊂ Cd and
let A ⊂ Ω be a subset. We write ‖f‖A = supz∈A |f(z)| for the supremum norm
of a function f ∈ X on A. We call A dominating forX if ‖f‖A = ‖f‖Ω for every
function f ∈ X. By definition the set A is a uniqueness set for X if the function
f ≡ 0 is the only function in X with f |A ≡ 0. Clearly every dominating set
for X is a uniqueness set. By a discrete dominating (uniqueness) set for X
we mean a discrete subset of Ω which is a dominating (uniqueness) set for X.
Note that a discrete subset of Ω is necessarily countable.

Our aim is to show that every analytic functional Banach space X on an open
set Ω ⊂ Cd possesses a discrete dominating set. We begin with a particular
case.

2.1 Proposition. Let Ω ⊂ Cd be open and let γ : Ω→ X ′ be a holomorphic
function into the topological dual of a Banach space X. Then the space Xγ =
{x̂;x ∈ X}, where x̂ : Ω→ C is defined by

x̂(z) = 〈x, γ(z)〉,

possesses a discrete dominating set A ⊂ Ω.

Proof. Let (Kn)n≥1 be a sequence of compact subsets Kn ⊂ Ω such that
Kn ⊂ Int(Kn+1) for all n ≥ 1 and

⋃
n∈NKn = Ω. We define K0 = ∅ and

Cn = Kn \ Int(Kn−1) for n ≥ 1. Since the sets Cn are compact, there are real
numbers 0 < δn < 1/n such that every point with distance less than δn to
some point in Cn is contained in Ω and such that

‖γ(z)− γ(w)‖ < 1

n

for all z, w ∈ Cd with w ∈ Cn and |z − w| < δn. For each n ≥ 1, there is a
finite subset An ⊂ Cn with

Cn ⊂
⋃
w∈An

Bδn/2(w).
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Then A =
⋃
n≥1An ⊂ Ω is a discrete subset. To see this note that, for any

compact subset K of Ω, the inclusions

A ∩K ⊂ A ∩ Int(KN) ⊂
⋃

1≤n≤N

An

hold for all sufficiently large N . To prove that A is dominating for Xγ, fix
a function f = 〈x, γ〉 ∈ Xγ. For z ∈ Cn, there is a point a ∈ An with
|z − a| < δn/2. Since f(z)− f(a) = 〈x, γ(z)− γ(a)〉, it follows that

|f(z)| ≤ |f(z)− f(a)|+ ‖f‖A ≤
‖x‖
n

+ ‖f‖A.

For an arbitrary point z ∈ Ω, choose an integer n ≥ 1 with z ∈ Int(Kn) and a
component C of Int(Kn) containing z. Since ∂C ⊂ ∂Kn ⊂ Cn, the maximum
principle implies that |f(z)| ≤ ‖f‖∂C ≤ (‖x‖/n) + ‖f‖A. Since every point
z ∈ Ω is contained in Int(Kn) for almost all n, it follows that A is dominating
for Xγ. �

An argument from [9] can be used to show that in the setting of the last
proposition each dominating set S for Xγ contains a discrete dominating set
for Xγ. Although not necessary for the sequel, we include the result.

2.2 Proposition. Let Ω and Xγ be given as in Proposition 2.1. Then each
dominating set S for Xγ contains a discrete dominating set for Xγ.

Proof. Let S ⊂ Ω be a dominating set for Xγ and let A ⊂ Ω be defined as in
the preceding proof. With the notation from there, for every n ≥ 1 and every
point a ∈ An, choose a point z ∈ S with |z − a| < δn/2 if this is possible.
In each component C of Ω which has non-trivial intersection with S choose a
point zC ∈ S. Let S ′ be the totality of all points selected in this way. To verify
that S ′ is discrete in Ω, fix a compact set K in Ω and choose an integer N ≥ 1
with K ⊂ Int(KN). Then for any natural number n > N such that there is a
point z ∈ K with dist(z, An) < δn/2, the inequalities

0 < dist(K, Int(KN)c) ≤ dist(K,Cn) < δn/2

hold. As δn converges to zero, there are only finitely many such n and hence
S ′ ∩K is finite.

Given a function f = 〈x, γ〉 ∈ Xγ, choose a sequence (zk)k≥1 in S with
|f(zk)| → ‖f‖Ω as k → ∞ and a sequence of integers nk ≥ 1 such that
zk ∈ Knk

\Knk−1 ⊂ Cnk
for all k. For each k ≥ 1, there is a point ak ∈ Ank

with |zk−ak| < δnk
/2. Hence there exists a point wk ∈ S ′ with |zk−wk| < δnk

.
The choice of δnk

implies that ‖γ(zk)− γ(wk)‖ < 1/nk. Hence we find that

|f(wk)| ≥ |f(zk)| − |〈x, γ(zk)− γ(wk)〉| ≥ |f(zk)| −
‖x‖
nk

.

If (nk)k≥1 contains a bounded subsequence, then by passing to a suitable sub-
sequence, we can achieve that (zk) converges to a point z ∈ Ω. But then f is
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constant on the component C of z in Ω and S ′∩C 6= ∅. Hence we may assume
that (nk)→∞ as k →∞. The observation that

‖f‖S′ ≥ lim
k→∞

(|f(zk)| −
‖x‖
nk

) = ‖f‖Ω

completes the proof. �

A linear space of X of complex-valued functions on an open set Ω ⊂ Cd is of
the form

X = {〈x, γ〉; x ∈ X}

for some holomorphic mapping γ : Ω → X ′ with values in the dual of a
Banach space X if and only if there is a complete norm on X which turns X
into an analytic functional Banach space. Indeed, if X is an analytic functional
Banach space, then the mapping

γ : Ω→ X ′, γ(z) = δz (δz(f) = f(z))

is holomorphic and X = {〈f, γ〉; f ∈ X}. Conversely, if γ : Ω → X ′ is a
holomorphic map into the dual of a Banach space X, then the mapping

ρ : X/⊥γ(Ω)→ Xγ, [x] 7→ 〈x, γ〉

is a vector-space isomorphism and the norm ‖〈x, γ〉‖ = ‖[x]‖ turns Xγ into an
analytic functional Banach space.

2.3 Corollary. Let X be an analytic functional Banach space on on open set
Ω ⊂ Cd. Then each dominating set S for X contains a discrete dominating
set. In particular, there is a discrete uniqueness set for X. �

In [9] this result was proved for the case where X is the Banach space of all
bounded analytic functions on an open set in C.

In strong contrast to the result contained in Corollary 2.3, basic complex analy-
sis shows that on a domain of holomorphy Ω ⊂ Cd the space of all holomorphic
functions on Ω cannot possess any discrete uniqueness set.

2.4 Lemma. Let S ⊂ Ω be a discrete subset of a domain of holomorphy Ω ⊂
Cd. Then every complex-valued function f : S → C extends to a holomorphic
function on Ω. In particular, the space O(Ω) of all analytic functions on Ω has
no discrete uniqueness set.

Proof. Choose a point a ∈ Ω \ S. Then A = S ∪ {a} ⊂ Ω is a discrete
and hence analytic subset. By a well known theorem in complex analysis
(Theorem V.1.9 in [5]) every holomorphic function on an analytic subset of a
Stein manifold X extends to a holomorphic function on all of X. Since every
function f : A→ C is holomorphic as a function on the analytic subset A ⊂ Ω,
the assertion follows. �
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3 Spanning holomorphic cross sections

Let T = (T1, . . . , Td) ∈ L(H)d be a Cowen-Douglas tuple of class Bn(Ω) on a
domain Ω ⊂ Cd. Following [11] we call a holomorphic section γ : Ω → H of
the associated vector bundle ET a spanning holomorphic cross-section for T if

H =
∨
{γ(z); z ∈ Ω}.

Our aim in this section is to show that every Cowen-Douglas tuple of class
Bn(Ω) over an admissible domain Ω ⊂ Cd possesses a spanning holomorphic
cross-section. Since Ω is supposed to be admissible, there is a global holomor-
phic frame (γ1, . . . , γn) for ET on Ω. By induction on n we shall prove that there
are holomorphic functions ϕ1, . . . , ϕn ∈ O(Ω) such that γ = ϕ1γ1 + · · ·+ϕnγn
is a spanning holomorphic cross-section for T . For later use, we shall show that
the functions ϕ1, . . . , ϕn can be chosen simultaneously with respet to finitely
many different Cowen-Douglas tuples.

For simplicity, let us say that a given set of functions γ1, . . . , γn : Ω→ H spans
H if

H =
∨
{γk(z); k = 1, . . . , n and z ∈ Ω}.

3.1 Lemma. Let Ω ⊂ Cd be a domain of holomorphy and let Hi (1 ≤ i ≤ m)
be Hilbert spaces such that each of the spaces Hi is spanned by two analytic
functions γi1, γ

i
2 ∈ O(Ω, Hi). Then there exists a holomorphic function ϕ ∈

O(Ω) such that the function γi = ϕγi1 + γi2 also spans Hi for every 1 ≤ i ≤ m.

Proof. For i = 1, . . . ,m, we define a holomorphic function δi : Ω∗ → H ′i into
the Banach space dual of Hi by setting

δi(z)(x) = 〈x, γi2(z)〉.

Using Proposition 2.1 we obtain discrete subsets Ai ⊂ Ω such that the sets
A∗i ⊂ Ω∗ are uniqueness sets for the resulting spaces Hδi = {x̂; x ∈ Hi}, where

x̂(z) = 〈x, δi(z)〉 = 〈x, γi2(z)〉 (z ∈ Ω∗).

According to Lemma 2.4 there exist holomorphic functions ϕi ∈ O(Ω) \ {0}
such that ϕi vanishes on Ai. Define ϕ = ϕ1 · · ·ϕm and γi = ϕγi1 + γi2 for
1 ≤ i ≤ m. To show that γi spans Hi, fix an element x ∈ γi(Ω)⊥. Since ϕ
vanishes on Ai and since A∗i is a uniqueness set for Hδi , we find that x ∈ γi2(Ω)⊥.
Since the zero set of ϕ has no interior point, it follows that x ∈ γi1(Ω)⊥. Thus
we have shown that x = 0. This observation completes the proof. �

An inductive argument allows us to prove a corresponding result for the case
that the spaces Hi are spanned by an arbitrary finite number of holomorphic
functions.

3.2 Lemma. Let Ω ⊂ Cd be a domain of holomorphy and let Hi (1 ≤ i ≤ m)
be Hilbert spaces such that each of the spaces Hi is spanned by holomor-
phic functions γi1, . . . , γ

i
n ∈ O(Ω, Hi). Then there exist holomorphic functions

ϕ1, . . . , ϕn−1 such that the mapping γi = ϕ1γ
i
1 + . . .+ϕn−1γ

i
n−1 +γin also spans

Hi for i = 1, . . . ,m.
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Proof. For n = 2, the assertion follows from Lemma 3.1. Suppose that
the assertion has been proved for some natural number n ≥ 2 and that
γi1, . . . γ

i
n+1 ∈ O(Ω, Hi) are spanning functions for Hi (1 ≤ i ≤ m). Define

H ′i =
∨
{γij(z); z ∈ Ω and j = n, n+ 1} (1 ≤ i ≤ m).

By Lemma 3.1 there is a function ϕn ∈ O(Ω) such that δin = ϕnγ
i
n+γin+1 spans

H ′i for 1 ≤ i ≤ m. Then Hi is spanned by the functions

γi1, . . . , γ
i
n−1, δ

i
n (1 ≤ i ≤ m),

and by induction hypothesis, we find holomorphic maps ϕ1, . . . , ϕn−1 ∈ O(Ω)
such that, for i = 1, . . . ,m, the function

γi = ϕ1γ
i
1 + . . .+ ϕn−1γn−1 + δn

spans Hi. �

Note that if, in the setting of the preceding lemma, the vectors γi1(z), . . . , γin(z)
are linearly independent for every z ∈ Ω, then the resulting function γi cannot
have any zeros.

As a first application we prove that, on an admissible domain Ω ⊂ Cd, every
Cowen-Douglas tuple T ∈ L(H)d of class Bn(Ω) possesses a spanning holo-
morphic cross-section.

3.3 Theorem. Let Ω ⊂ Cd be an admissible domain and let T ∈ L(H)d be a
Cowen-Douglas tuple of class Bn(Ω). Then T possesses a spanning holomor-
phic cross-section γ : Ω→ H such that γ(z) 6= 0 for every z ∈ Ω.

Proof. Since Ω is supposed to be admissible, there exist spanning holomorphic
functions γ1, . . . , γn : Ω→ H for H such that the vectors γ1(z), . . . , γn(z) form
a basis of kerTz for every point z ∈ Ω. By Lemma 3.2 there is a spanning
holomorphic function γ : Ω → H for H such that 0 6= γ(z) ∈ kerTz for every
z ∈ Ω. �

Exactly as in the one-variable case (Corollary 1.13 in [2]), it follows that the
defining conditions for a Cowen-Douglas tuple of class Bn(Ω) are preserved
when Ω is replaced by a smaller domain Ω0 ⊂ Ω. For completeness sake, we
indicate the argument.

3.4 Lemma. Let Ω0 ⊂ Ω be connected open sets and let T ∈ L(H)d be
a Cowen-Douglas tuple of class Bn(Ω). Then T is of class Bn(Ω0). If γ :
Ω→ H is a spanning holomorphic cross-section for T , then γ|Ω0 is a spanning
holomorphic cross-section for T regarded as a Cowen-Douglas tuple of class
Bn(Ω0).

Proof. Let x ∈ H be orthogonal to kerTz for every z ∈ Ω0. To prove that
T is of class Bn(Ω0) it suffices to show that x = 0. Assume that w ∈ Ω is a
boundary point of the open set V = Int({z ∈ Ω; x ⊥ kerTz}). Let f1, . . . , fn be
a holomorphic frame of ET on a connected open neighbourhood U of w. Then
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the holomorphic functions 〈fi, x〉 vanish on the non-empty open set V ∩U ⊂ U
and hence, by the identity theorem, on all of U . This leads to the contradiction
that U ⊂ V . Since Ω is connected, it follows that V = Ω. Hence x = 0.

If γ : Ω→ H is a spanning holomorphic cross-section for T and x is orthogonal
to γ(Ω0), then again by the identity theorem 〈γ(z), x〉 = 0 for all z ∈ Ω. This
observation completes the proof. �

Although global spanning holomorphic cross-sections need not exist for general
Cowen-Douglas tuples of class Bn(Ω), the preceding results imply that at least
the restriction to every admissible subdomain Ω0 ⊂ Ω is a Cowen-Douglas
tuple with a global spanning holomorphic cross-section. The following result
shows that every Cowen-Douglas tuple of class Bn(Ω) is unitarily equivalent
to the adjoint of the multiplication tuple Mz = (Mz1 , . . . ,Mzd) on a suitable
scalar-valued analytic functional Hilbert space.

3.5 Theorem. Let T ∈ L(H)d be a Cowen-Douglas tuple of class Bn(Ω) over
an admissible domain Ω ⊂ Cd. Then there exist an analytic functional Hilbert
space Ĥ on Ω∗ and a unitary operator U : H → Ĥ such that UTiU

∗ = M∗
zi

for
i = 1, . . . , d, where

Mzi : Ĥ → Ĥ, f 7→ zif

is the multiplication operator with the i-th coordinate function.

Proof. By Theorem 3.3 there is a spanning holomorphic cross-section γ :
Ω → H for T . Then γ̃ : Ω∗ → H ′, γ̃(z) = 〈·, γ(z)〉, defines a holomorphic
function into the Banach space dual of H. As seen in the section preceding
Corollary 2.3, the space Ĥ = {x̂;x ∈ H}, where x̂ = 〈x, γ̃〉, equipped with the
norm ‖x̂‖ = ‖x‖ becomes an analytic functional Hilbert space on Ω∗. The map

U : H → Ĥ, x 7→ x̂, defines a unitary operator which intertwines the tuples
T ∗ = (T ∗1 , . . . , T

∗
d ) on H and Mz = (Mz1 , . . . ,Mzd) on Ĥ componentwise. �

In the setting of Theorem 3.5 the reproducing kernel of the analytic functional
Hilbert space Ĥ is given by K : Ω∗ × Ω∗ → C, (z, w) 7→ 〈γ(w), γ(z)〉. Indeed,

for w ∈ Ω∗, the function K(·, w) = Uγ(w) belongs to Ĥ and satisfies

〈x̂, K(·, w)〉 = 〈Ux, Uγ(w)〉 = 〈x, γ(w)〉 = x̂(w)

for all x ∈ H.

4 Applications

In this section we extend several classification results obtained in [11] for single
Cowen-Douglas operators to the multivariable case. More precisely, we char-
acterize Cowen-Douglas tuples which are unitarily equivalent or similar, and
compute their commutants.

Recall that, for Hilbert spaces H1, H2, two tuples S ∈ L(H1)d, T ∈ L(H2)d are
called unitarily equivalent if there exists a unitary operator U : H1 → H2 such
that USi = TiU for i = 1, . . . , d.
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4.1 Theorem. Let S ∈ L(H1)d, T ∈ L(H2)d be two Cowen-Douglas tuples
of class Bn(Ω) on an admissible domain Ω ⊂ Cd. Then the following are
equivalent:

(a) S and T are unitarily equivalent,

(b) the hermitian holomorphic bundles ES and ET are equivalent,

(c) there exist spanning holomorphic cross-sections γS for S and γT for T
such that ‖γS(z)‖ = ‖γT (z)‖ for all z ∈ Ω.

Proof. Let U : H1 → H2 be a unitary operator such that USi = TiU for
i = 1, . . . , d. Since U kerSz = kerTz for z ∈ Ω, the operator U induces a
fibrewise linear homeomorphism

f : ES → ET , (z, x) 7→ (z, Ux).

Using the charts of ES and ET described in the preliminaries, it easily follows
that f is a biholomorphic map and hence an isomorphism of holomorphic
vector bundles. Since f is fibrewise isometric, it defines an isomorphism of
hermitian holomorphic vector bundles.

Let f : ES → ET be an isomorphism of hermitian holomorphic vector bundles.
Then f acts as f(z, x) = (z, Fzx), where Fz : kerSz → kerTz are suitable
unitary operators. Since Ω is admissible, there is a global holomorphic frame
γ1, . . . , γn : Ω→ H1 for ES. Since f is an isomorphism of holomorphic vector
bundles, the functions δi : Ω → H2, z 7→ Fzγi(z), form a global holomorphic
frame for ET . According to Lemma 3.2 there are functions ϕ1, . . . ϕn ∈ O(Ω)
such that

γ : Ω→ H1, z 7→ ϕ1(z)γ1(z) + . . .+ ϕn(z)γn(z)

and
δ : Ω→ H2, z 7→ ϕ1(z)δ1(z) + . . .+ ϕn(z)δn(z)

are spanning holomorphic cross-sections for S and T , respectively. By con-
struction it follows that ‖δ(z)‖ = ‖Fzγ(z)‖ = ‖γ(z)‖ for every z ∈ Ω.

Now assume that there exist spanning holomorphic cross-sections γS for S
and γT for T such that ‖γS(z)‖ = ‖γT (z)‖ for all z ∈ Ω. By Theorem 3.5
and the following remarks, the tuples S∗ and T ∗ are unitarily equivalent to
the multiplication tuples Mz = (Mz1 , . . . ,Mzd) on analytic functional Hilbert

spaces ĤS and ĤT given by the reproducing kernels KS, KT : Ω∗ × Ω∗ → C,

KS(z, w) = 〈γS(w), γS(z)〉, KT (z, w) = 〈γT (w), γT (z)〉.

Since these functions are holomorphic in z, conjugate holomorphic in w and
coincide on the diagonal {(z, z); z ∈ Ω∗}, a well known result from complex
analysis shows that KS = KT (see Exercise 3 in Chapter 8 of [6]). But then
the functional Hilbert spaces given by these kernels coincide and hence S and
T are unitarily equivalent. �
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Note that by the remark following Lemma 3.2 one can achieve in addition that
the spanning holomorphic cross-sections γS for S and γT for T in condition
(iii) of Theorem 4.1 have no zeros on Ω.

The following variant of the preceding theorem can be seen as a generalization
of a result from [2] (see Theorem 4.15 in [4] for a multivariable version) stating
that the curvature of the hermitian holomorphic vector bundle ET is a complete
unitary invariant for operators of Cowen-Douglas class B1(Ω).

4.2 Theorem. Let S ∈ L(H1)d, T ∈ L(H2)d be Cowen-Douglass tuples of
class Bn(Ω) over a connected open set Ω ⊂ Cd. Then the following are equiv-
alent:

(i) S and T are unitarily equivalent,

(ii) the hermitian holomorphic bundles ES and ET are equivalent,

(iii) there exist a connected open set ∅ 6= Ω0 ⊂ Ω and spanning holomorphic
cross-sections γS for S and γT for T on Ω0 such that

∂j∂k log ‖γS(z)‖ = ∂j∂k log ‖γT (z)‖

for all z ∈ Ω0 and j, k = 1, . . . , d.

Proof. As in the proof of Theorem 4.1 it follows that condition (i) implies
condition (ii). Suppose that ES and ET are unitarily equivalent as hermitian
holomorphic vector bundles. Fix an arbitrary admissible domain Ω0 ⊂ Ω. By
Lemma 3.4 the tuples S and T are of Cowen-Douglas class Bn(Ω0). Hence
Theorem 4.1 and the following remark imply that there are spanning holo-
morphic cross-sections γS for S and γT for T on Ω0 without zeros such that
‖γS(z)‖ = ‖γT (z)‖ for z ∈ Ω0.

To complete the proof, let us suppose that condition (iii) holds. By shrinking
Ω0 we may suppose that Ω0 ⊂ Ω is an open euclidean ball. Condition (iii)
means precisely that the function

u : Ω0 → R, u(z) = log ‖γS(z)‖ − log ‖γT (z)‖

is pluriharmonic (see Section 4.4 in [10]). By Theorem 4.4.9 in [10], there is
an analytic function f ∈ O(Ω0) with u = Ref on Ω0. But then we obtain

‖γS(z)‖ = eu(z)‖γT (z)‖ = ‖ef(z)γT (z)‖

for z ∈ Ω0. Since S, T are of class Bn(Ω0) and since γS, e
fγT are spanning

holomorphic cross-sections for S and T on Ω0, it follows from Theorem 4.1
that S and T are unitarily equivalent. �

In the remaining parts of this paper we briefly indicate that also the results
from [11] concerning similarity orbits and commutants of Cowen-Douglas oper-
ators extend to the multivariable case. We need some basic properties of pos-
itive definite functions (see e.g. [1]). Let Ω be an arbitrary set. If γ : Ω→ H
is a function into a complex Hilbert space, then the function

Kγ : Ω× Ω→ C, (z, w) 7→ 〈γ(z), γ(w)〉
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is positive definite. Indeed, for z1, . . . , zn ∈ Ω and t1, . . . , tn ∈ C, we obtain
that ∑

1≤i,j≤n

Kγ(zi, zj)tjti = ‖
∑

1≤i≤n

tiγ(zi)‖2 ≥ 0.

Using this formula one can easily show that, for two functions γi : Ω → Hi

(i = 1, 2) with values in complex Hilbert spaces Hi, there is a constant c ≥ 0
such that cKγ1−Kγ2 is positive definite if and only if there is a bounded linear
operator A : H1 → H2 with Aγ1(z) = γ2(z) for all z ∈ Ω. To indicate that this
relation holds, we shall use the notation γ2 ≺ γ1. We write γ1 ∼ γ2 if γ1 ≺ γ2

and γ2 ≺ γ1.

Let S ∈ L(H1)d, T ∈ L(H2)d be two Cowen-Douglass tuples of class Bn(Ω)
over a connected open set Ω ⊂ Cd. Suppose that S possesses a spanning
holomorphic cross-section γS : Ω → H1. The above remarks yield a natural
identification between the set

I(S, T ) = {A ∈ L(H1, H2); ASi = TiA for i = 1, . . . , d}

of all intertwining operators for S and T and the set of all global sections

CγS(T ) = {γ ∈ Γhol(Ω, ET ); γ ≺ γS}

of ET dominated by γS.

4.3 Lemma. For S, T and γS as above, the mapping

ρ : I(S, T )→ CγS(T ), A 7→ AγS

is a well defined bijection. An operator A ∈ I(S, T ) has dense range if and
only if ρ(A) is a spanning holomorphic cross-section for T .

Proof. The inclusion A kerSz ⊂ kerTz holds for every operator A ∈ I(S, T )
and every point z ∈ Ω. Hence ρ is well defined. As seen abvove, every section
γ ∈ CγS(T ) is of the form γ = AγS with a suitable operator A ∈ L(H1, H2).
Since γS : Ω → H1 spans H1, the operator A is uniquely determined and the
intertwining relations

TjAγS(z) = Tjγ(z) = zjγ(z) = ASjγS(z) (z ∈ Ω, j = 1, . . . , d)

imply that A ∈ I(S, T ). Obviously an operator A ∈ I(S, T ) has dense range if
and only if the induced function AγS is spanning for H2. �

Two commuting tuples S ∈ L(H1)d, T ∈ L(H2)d are said to be similar if there
is an invertible operator A ∈ L(H1, H2) such that ASi = TiA for i = 1, . . . , d.

4.4 Theorem. Let S ∈ L(H1)d, T ∈ L(H2)d be Cowen-Douglas tuples of
class Bn(Ω) on an admissible domain Ω ⊂ Cd. Then S and T are similar if
and only if there exist spanning holomorphic cross-sections γS : Ω→ H1 for S
and γT : Ω→ H2 for T such that γS ∼ γT .

12



Proof. According to Theorem 3.3 there is a spanning holomorphic cross-
section γS : Ω → H1 for S. If A ∈ I(S, T ) is an invertible operator, then
γ = AγS is a spanning holomorphic cross-section for T with γ ∼ γS.

Conversely, if γS, γT are spanning holomorphic cross-sections for S and T on
Ω such that γS ∼ γT , then by Lemma 4.3 there are bounded operators A ∈
I(S, T ) and B ∈ I(T, S) such that γT = AγS and γS = BγT . The identities
γT = ABγT and γS = BAγS imply that A is invertible with inverse B. Hence
S and T are similar. �

As another immediate application of Lemma 4.3 one obtains that, for two
Cowen-Douglas tuples S ∈ L(H1)d, T ∈ L(H2)d of class Bn(Ω) on an admissi-
ble domain Ω ⊂ Cd, there is an intertwining operator A ∈ I(S, T ) with dense
range if and only if there are spanning holomorphic cross-sections γS : Ω→ H1

for S and γT : Ω→ H2 for T with γT ≺ γS.

As a final result we deduce a description of the commutant (T )′ = I(T, T ) of
Cowen-Douglas tuples T .

4.5 Theorem. Let T ∈ L(H)d be a Cowen-Douglas tuple of class Bn(Ω) on
an admissible domain Ω ⊂ Cd and let γT : Ω→ H be a spanning holomorphic
cross-section for T . Then the map

(T )′ → CγT (T ), A 7→ AγT

is a well defined bijection.

Proof. It suffices to apply Lemma 4.3 with S = T . �
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