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The essential spectrum of Toeplitz tuples
with symbol in H∞ + C

Jörg Eschmeier

LetH2(D) be the Hardy space on a bounded strictly pseudoconvex
domain D ⊂ Cn with smooth boundary. Using Gelfand theory
and a spectral mapping theorem of Andersson and Sandberg [2]
for Toeplitz tuples with H∞-symbol, we show that a Toeplitz tuple
Tf = (Tf1 , . . . , Tfm) ∈ L(H2(σ))m with symbols fi ∈ H∞ + C is
Fredholm if and only if the Poisson-Szegö extension of f is bounded
away from zero near the boundary of D. Corresponding results are
obtained for the case of Bergman spaces. Thus we extend results
of McDonald [9] and Jewell [7] to systems of Toeplitz operators.

1 Introduction

Let D ⊂ Cn be a bounded strictly pseudoconvex domain with smooth bound-
ary. Extending results of McDonald [9] for the unit ball, Jewell proved in [7]
that a Toeplitz operator Tf with symbol in H∞ + C on the Bergman space
or Hardy space over D is Fredholm if and only if f , or its Poisson-Szegö ex-
tension in the case of the Hardy space, is bounded away from zero near the
boundary of D. A basic ingredient of the proof was the observation that, for
every multiplicative linear functional ϕ of H∞(D) belonging to the fibre of
the maximal ideal space of H∞(D) over a boundary point λ ∈ ∂D and any
function f ∈ H∞(D), the value ϕ(f) belongs to the cluster set of f at λ.

In the present note we replace single Fredholm operators Tf by tuples Tf =
(Tf1 , . . . , Tfm) of Toeplitz operators with symbol f ∈ (H∞+C)m. If the above
cluster value property ofH∞(D) were known to be true for tuples f ∈ H∞(D)m

instead of single functions, then the methods from [7] could be extended in a
straightforward way to calculate the essential spectrum of the essentially com-
muting multioperator Tf . However, the cluster value property for finite tuples
in H∞(D) is equivalent to the validity of the Corona Theorem for H∞(D).
This equivalence is well known and follows, for instance, as a direct applica-
tion of Theorem 1 from [5].

In the following we show that, in spite of this difficulty, properties of the
Poisson transform and suitable results from Gelfand theory can be used to
prove the spectral mapping formula

σe(Tf ) =
⋂

(f(U ∩D); U ⊃ ∂D open)
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for Toeplitz tuples Tf with symbol in f ∈ (H∞+C)m on Hardy and Bergman
spaces over strictly pseudoconvex domains. Here again, in the Hardy-space
case, the symbol f has to be interpreted as the Poisson-Szegö extension of f .

2 Preliminaries

Let D ⊂ Cn be a bounded strictly pseudoconvex domain with smooth bound-
ary and let H2(D) be the Hardy space on D. Since the point evaluation at
every point of D is continuous on H2(D), the space H2(D) is an analytic func-
tional Hilbert space and hence prossesses a reproducing kernel K : D×D → C.
Let σ be the normalized surface measure on ∂D. We shall identify H2(D) with
its image H2(σ) under the isometry

H2(D)→ L2(σ), f 7→ f ∗

associating with each function f ∈ H2(D) its non-tangential boundary value
f ∗. For z ∈ D, consider the function

P (z, ·) =
|K(·, z)∗|2

K(z, z)
∈ L2(σ).

As usual, we call P the Poisson-Szegö kernel and define the Poisson-Szegö
integral of a function f ∈ L2(σ) by

P[f ] : D → C, z 7→
∫
∂D

fP (z, ·)dσ.

The Poisson-Szegö integral reproduces functions in H2(D). For f ∈ C(∂D)
the Poisson-Szegö integral entends to a function F ∈ C(D) with F |∂D = f
(see[10] or [8] for both properties).

For f ∈ L∞(σ), we define the Toeplitz operator Tf ∈ L(H2(σ)) and the Hankel
operator Hf ∈ L(H2(σ), L2(σ)) with symbol f by

Tf = PMf |H2(σ) and Hf = (1− P )Mf |H2(σ).

Here P : L2(σ)→ H2(σ) denotes the orthogonal projection and Mf : L2(σ)→
L2(σ), g 7→ fg, is the operator of multiplication with f . For z ∈ D, let
kz = K(·, z)∗/‖K(·, z)‖H2(σ) be the normalized reproducing kernel vector at
the point z. The Berezin transform of an operator T ∈ L(H2(σ)) is the
function

Γ(T ) : D → C, z 7→ 〈Tkz, kz〉.

The Berezin transform of the Toeplitz operator Tf with symbol f ∈ L∞(σ)
coincides with its Poisson-Szegö integral

Γ(Tf ) (z) = 〈Tfkz, kz〉H2(σ) =

∫
∂D

fP (z, ·)dσ.

2



It is well known (see for instance [5]) that the Berezin transform of a compact
operator K ∈ L(H2(σ)) vanishes on the boundary of D in the sense that

lim
z→∂D

Γ(K) (z) = 0.

For a given subset S ⊂ L∞(σ), the Toeplitz algebra with symbol class S is the
closed subalgebra of L(H2(σ)) defined by

T (S) = alg {Tf ; f ∈ S}.

Important choices for S are the set of all bounded analytic functions (or better
their boundary values), which will be denoted by H∞ = H∞(σ) in the sequel,
and the class C = C(∂D) consisting of all complex-valued continuous functions
on ∂D. A result of Aytuna and Chollet [1], generalizing a corresponding
observation of Rudin for the unit ball, shows that H∞+C = H∞(σ)+C(∂D) ⊂
L∞(σ) is a closed subalgebra. It is known (see for instance [4]) that the Toeplitz
algebra T (H∞ + C) contains the set K(H2(σ)) of all compact operators and
that the map

τ : H∞ + C → T (H∞ + C)/K(H2(σ)), f 7→ Tf +K(H2(σ))

is an isometric isomorphism of Banach algebras. In particular, Toeplitz tuples
Tf = (Tf1 , . . . , Tfm) with symbols fi ∈ H∞ + C essentially commute in the
sense that the commutators

[Tfi , Tfj ] = TfiTfj − TfjTfi (1 ≤ i, j ≤ m)

are compact.
The Koszul complex (cf. [6])

K•(T,H) : 0→ Λ0(H)
δ0T−→ Λ1(H)

δ1T−→ · · ·
δn−1
T−→ Λn(H)→ 0

of an essentially commuting tuple T ∈ L(H)m of bounded operators on a
Hilbert space H is an essential complex of Hilbert spaces in the sense that
δi+1
T ◦ δiT is compact for every i. The tuple T is called Fredholm if the Koszul

complex K•(T,H) possesses an essential homotopy, that is, there are bounded
operators εi : Λi(H)→ Λi−1(H) with

εi+1δiT − δi−1
T εi − 1Λi(H) ∈ K(Λi(H))

for all i. One can show (Lemma 2.6.10 and Theorem 10.2.5 in [6]) that the
tuple T is Fredholm if and only if the Koszul complex K•(LT , C(H)) of the
commuting tuple LT = (LT1 , . . . , LTm) consisting of the left multiplication
operators

LTi : C(H)→ C(H), [A] 7→ [TiA]

with Ti on the Calkin algebra C(H) = L(H)/K(H) is exact. The essential
spectrum of an essentially commuting tuple T ∈ L(H)m is defined as

σe(T ) = {z ∈ Cm; K•(z − T,H) is not Fredholm } = σ(LT , C(H)),

where σ(LT , C(H)) denotes the Taylor spectrum [11] of the commuting tuple
LT ∈ L(C(H))m.
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3 Main Result

To prove the spectral mapping theorem for the essential spectrum of Toeplitz
tuples with symbol in H∞+C, we need a result on the asymptotic multiplica-
tivity of the Poisson-Szegö transform.

1 Lemma. For f, g ∈ H∞ + C, the Poisson-Szegö transform satisfies

lim
z→∂D

|P[fg](z)−P[f ](z)P[g](z)| = 0.

Proof. We need some results on the Berezin transform that are implicitly
contained in [3]. Since every point z ∈ ∂D is a peak point for the Banach
algebra A(D) = {f ∈ C(D); f |D holomorphic}, it follows that A(D) is a
pointed function algebra in the sense of [3] (see Definition 2.1 and Theorem
2.3 in [3]). It is elementary to check that the Hardy space H2(D) is a quasi-free
Hilbert module over A(D) as defined in [3].

For z ∈ D, consider the isometry

Vz : C→ H2(σ), t 7→ tkz.

The mapping Pz = VzV
∗
z is the orthogonal projection onto the one-dimensional

subspace of H2(σ) spanned by kz. For given operators S, T ∈ L(H2(σ)), the
estimate

|Γ(ST )(z)− Γ(S)(z)Γ(T )(z)| = |(V ∗z STVz − V ∗z SPzTVz)(1)|

= |V ∗S[T, Pz]Vz(1)| ≤ ‖S‖ ‖[T, Pz]|
holds for every point z ∈ D. For α ∈ ∂D, the set of all operators T ∈ L(H2(σ))
with the property that

lim
z→α
‖[T, Pz]| = 0

is a C∗-algebra containing the Toeplitz algebra T (A(D)|∂D) = T (C) (see the
proof of Theorem 3.2 in [3]). An elementary compactness argument shows that
limz→∂D ‖[T, Pz]‖ = 0 for every operator T ∈ T (C). Therefore the relation

lim
z→∂D

|Γ(ST )(z)− Γ(S)(z)Γ(T )(z)| = 0

holds for any pair of operators S ∈ L(H2(σ)), T ∈ T (C). Since for g ∈ C and
f ∈ L∞(σ), the semi-commutator TfTg − Tfg = PMfHg is compact (Theorem
4.2.17 in [12]), it follows that

|P[fg](z)−P[f ](z)P[g](z)| ≤ Γ(Tfg − TfTg)(z)|

+ |Γ(TfTg)(z)− Γ(Tf )(z)Γ(Tg)(z)|
tends to zero as z → ∂D. Using in addition the fact that P[fg] = P[f ]P[g]
for f, g ∈ H∞, one easily deduces the assertion. �

We begin by proving one half of our spectral mapping theorem in a particular
situation. For simplicity, we use the notation F = P[f ] = (P[f1], . . . ,P[fm])
for the Poisson-Szegö transform of a tuple f = (f1, . . . , fm) ∈ L∞(σ)m.
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2 Lemma. For given g ∈ (H∞)r, h ∈ Cs and f = (g, h), the spectral inclusion⋂
(F (U ∩D); U ⊃ ∂D open) ⊂ σe(Tf )

holds.

Proof. Suppose that Tf is Fredholm. It suffices to show that F = P[f ] is
bounded away from zero close to the boundary of D. Since Tf is Fredholm,
the row multiplication

H2(σ)m
Tf−→ H2(σ)

with m = r + s has finite-codimensional range. The orthogonal projection
Q ∈ L(H2(σ)) to the kernel of the operator TfT

∗
f has finite rank and TfT

∗
f +Q

is bounded below. Hence there is a constant c > 0 with

TfT
∗
f +Q ≥ c1H2(σ).

Since the Berezin transform Γ(Q)(z) tends to zero as z approaches the bound-
ary of D, there is an open neighbourhood U of ∂D such that

m∑
i=1

Γ(TfiT
∗
fi

)(z) = Γ(TfT
∗
f ) ≥ c/2

for all z ∈ U ∩D. An elementary calculation (Lemma 7 in [5]) yields that

Γ(TgiT
∗
gi

) = |Gi|2 (i = 1, . . . , r)

on D. Since ThiT
∗
hi
− T|hi|2 is compact and since by Lemma 1

P[|hi|2](z)− |P[hi](z)|2 z→∂D−→ 0,

it follows that

Γ(ThiT
∗
hi

)(z)− |Hi(z)|2 z→∂D−→ 0 (i = 1, . . . , s).

Summarizing we obtain that

m∑
i=1

|Fi(z)|2 − Γ(TfT
∗
f )(z) =

m∑
i=1

(|Hi(z)|2 − Γ(ThiT
∗
hi

)(z))→ 0

as z approaches the boundary of D. Thus the assertion follows. �

To prepare the proof of the opposite inclusion, we recall some results from
Gelfand theory. Consider a unital algebra homomorphism Φ : M → L(X)
from a unital commutative Banach algebraM into the algebra of all bounded
operators on a Banach space X. A spectral system on B = Φ(M) is a rule σ
that assigns to each finite tuple a ∈ Br a compact subset σ(a) ⊂ Cr which is
contained in the joint spectrum σB(a) = {z ∈ Cr; 1 /∈

∑r
i=1(zi− ai)B} of a in

B and which is compatible with projections in the sense that

p(σ(a, b)) = σ(a) and q(σ(a, b)) = σ(b),
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where p and q are the projections of Cr+s onto its first r and last s coordinates.

For a given set M , let us denote by c(M) the set of all finite tuples of elements
in M . Standard results going back to J.L. Taylor (see, e.g., Proposition 2.6.1
in [6]) show that, for a spectral system σ as above, the set

∆Φ,σ = {λ ∈ ∆M; f̂(λ) ∈ σ(Φ(f)) for all f ∈ c(M)}

is the unique closed subset of the maximal ideal space ∆M ofM with f̂(∆Φ,σ) =
σ(Φ(f)) for all f ∈ c(M). Here Φ(f) = (Φ(f1), . . . ,Φ(fr)) and the Gelfand
transform f̂ = (f̂1, . . . , f̂r) are formed componentwise for f ∈Mr.

Let Φ0 : M → L(X) be the restriction of Φ to a unital closed subalgebra
M0 ⊂M, and let σ0 denote the spectral system on B0 = Φ(M0) obtained by
restricting σ. An elementary exercise, using the uniqueness property of ∆Φ0,σ0 ,
shows that the restriction map

r : ∆Φ,σ → ∆Φ0,σ0 , λ 7→ λ|M0

is well defined, surjective and continuous (relative to the Gelfand topologies).

As before, let H2(σ) be the Hardy space on a bounded strictly pseudoconvex
domain D ⊂ Cn with smooth boundary. We apply the above remarks to the
Banach algebras M0 = H∞,M = H∞ + C and the algebra homomorphism
Φ :M→ L(C(H2(σ))), f 7→ LTf , mapping f ∈M to the operator LTf of left
multiplication with Tf on the Calkin algebra C(H2(σ)). Let σ be the spectral

system on B = Φ(M) associating with each tuple a ∈ Br its Taylor spectrum
as a commuting tuple of bounded operators on C(H2(σ)). We write σ0 for the
restriction of σ to B0 = Φ(M0).

Recall that, for a tuple f ∈ c(L∞(σ)), we write F = P[f ] for its Poisson-
Szegö transform. As usual we shall identify functions f ∈ H∞(σ) with their
Poisson-Szegö transform F = P[f ] ∈ H∞(D). It was shown by Andersson
and Sandberg [2] (Theorem 1.2) that the spectral mapping fomula

σ(Φ(f)) = σe(Tf ) =
⋂(

f(U ∩D); U ⊃ ∂D open
)

holds for every tuple f ∈ c(H∞). Let π = (π1, . . . , πn) be the tuple of coordi-
nate functions. Using Theorem 1 in [5] we obtain that

f̂(λ) ∈
⋂(

f(U ∩D); U open neighbourhood of π̂(λ)
)

for f ∈ c(H∞) and every functional λ ∈ ∆Φ0,σ0 .

3 Proposition. For g ∈ (H∞)r, h ∈ Cs and f = (g, h), the spectral inclusion
formula

σe(Tf ) ⊂
⋂(

F (U ∩D); U ⊃ ∂D open
)

holds.
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Proof. Suppose that 0 ∈ σe(Tf ). It suffices to show that 0 is contained in the
intersection on the right. By the remarks preceding the proposition there is a
functional λ ∈ ∆Φ,σ with 0 = f̂(λ) = (ĝ(λ), ĥ(λ)). Since λ|C ∈ ∆C , there is a
point z0 ∈ ∂D with

λ(ϕ) = ϕ(z0) (ϕ ∈ C).

In particular, it follows that limz→z0 H(z) = h(z0) = 0. The above cited results
from [2] and [5] imply that

0 = ĝ(λ) ∈
⋂(

g(U ∩D); Uopen neighbourhood of z0

)
.

Hence there is a sequence (zk)k≥1 in D with limk→∞ zk = z0 and

lim
k→∞

(g(zk), H(zk)) = 0.

This observation completes the proof. �

Our next aim is to show that Lemma 2 and Proposition 3 remain true for
arbitrary symbols f ∈ (H∞ + C)m.

4 Theorem. For f ∈ (H∞ + C)m, the formula

σe(Tf ) =
⋂(

F (U ∩D); U ⊃ ∂D open
)

holds.

Proof. Let f = g + h ∈ (H∞ + C)m be given with g ∈ (H∞)m and h ∈ Cm.
Using a particular case of the analytic spectral mapping theorem for the Taylor
spectrum, we obtain that

σe(Tf ) = σe(Tg + Th) = σ(LTg + LTh)

= {z + w; (z, w) ∈ σ(LTg , LTh)} = {z + w; (z, w) ∈ σe(Tg, Th)}.

If (z, w) ∈ σe(Tg, Th), then by Proposition 3 there is a sequence (uk) in D
converging to some point u ∈ ∂D such that

(z, w) = lim
k→∞

(G,H) (uk).

But then
z + w = lim

k→∞
(G+H) (uk) = lim

k→∞
F (uk).

Hence σe(Tf ) is contained in the intersection on the right-hand side. Con-
versely, if ξ is a point in the intersection on the right-hand side, then there is
a sequence (uk) in D converging to a point u ∈ ∂D such that

ξ = lim
k→∞

F (uk) = lim
k→∞

(G(uk) +H(uk)).

But then w = limk→∞H(uk) = h(u) exists and hence also z = limk→∞G(uk)
exists. By Lemma 2 we know that (z, w) ∈ σe(Tg, Th). Hence ξ = z + w ∈
σe(Tf ) as was to be shown. �
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For a tuple T = (T1, . . . , Tn) ∈ L(H)n of operators on a Hilbert space H, the
right essential spectrum σre(T ) is usually defined as the set of all points z ∈ Cn

for which the range of the row multiplication

Hn H.................................................................................................................................................................................................................. ............
(z1−T1,...,zn−Tn)

is not finite codimensional or, equivalently, the row multiplication

C(H)n C(H)........................................................................................................................................................................................................................................... ............
(z1−LT1

,...,zn−LTn )

is not onto (see e.g. Lemma 2.6.10 in [6] for the equivalence). Hence the right
essential spectrum σre(T ) of T coincides with the right spectrum σr(LT , C(H))
of the multiplication tuple LT on the Calkin algebra. Since Lemma 2 remains
true with σe(Tf ) replaced by σre(Tf ) (see the proof of Lemma 2) and since the
analytic spectral mapping formula used in the proof of Theorem 4 also holds
for the right Taylor spectrum (Corollary 2.6.8 in [6]), we obtain the following
consequence.

5 Corollary. For f ∈ (H∞ + C)m, the formula

σe(Tf ) = σre(Tf ) =
⋂(

F (U ∩D); U ⊃ ∂D open
)

holds. �

Our main result (Theorem 4) can also be proved for Toeplitz tuples Tf ∈
L(L2

a(D))m with symbol f ∈ (H∞(D)+C(D)m on the Bergman space L2
a(D) =

{f ∈ O(D); ‖f‖2 =
∫
D
|f |2dλ < ∞} formed with respect to the volume

measure λ on a strictly pseudoconvex domain D ⊂ Cn with smooth boundary.
It suffices to replace the spectral mapping formula for Toeplitz tuples with
H∞-symbol of Andersson and Sandberg from [2] by the corresponding spectral
mapping formula for the Bergman space (Theorem 8.2.6 in [6]) and to replace
the Poisson-Szegö transform by the Poisson-Bergman transform. All properties
needed for the Poisson-Bergman integral can be found in [8]. We only state
the corresponding result in the Bergman case.

6 Theorem. Let D ⊂ C be a bounded strictly pseudoconvex domain with
smooth boundary. Then for f ∈ (H∞(D) +C(D))m, the essential spectrum of
the Toeplitz tuple Tf ∈ L(L2

a(D))m on the Bergman space L2
a(D) is given by

σe(Tf ) = σre(Tf ) =
⋂(

f(U ∩D); U ⊃ ∂D open
)
.

�

The reader should observe that, since the Poisson-Bergman transform of a
continuous function h ∈ C(D)m extends to a continuous function H ∈ C(D)m

with H|∂D = h|∂D, the intersection on the right-hand side does not change
when f is replaced by its Poisson-Bergman transform F .
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