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Interface dynamics in discrete forward-backward diffusion equations

Michael Helmers∗ Michael Herrmann†

April 5, 2013

Abstract

We study the motion of phase interfaces in a diffusive lattice equation with bistable nonlinearity
and derive a free boundary problem with hysteresis to describe the macroscopic evolution in the
parabolic scaling limit.

The first part of the paper deals with general bistable nonlinearities and is restricted to nu-
merical experiments and heuristic arguments. We discuss the formation of macroscopic data and
present numerical evidence for pinning, depinning, and annihilation of interfaces. Afterwards
we identify a generalized Stefan condition along with a hysteretic flow rule that characterize the
dynamics of both standing and moving interfaces.

In the second part, we rigorously justify the limit dynamics for single-interface data and a
special piecewise affine nonlinearity. We prove persistence of such data, derive upper bounds for
the macroscopic interface speed, and show that the macroscopic limit can indeed be described by
the free boundary problem. The fundamental ingredient to our proofs is a representation formula
that links the solutions of the nonlinear lattice to the discrete heat kernel and enables us to derive
macroscopic compactness results in the space of continuous functions.

Keywords: forward-backward diffusion in lattices, coarse graining for gradient flows,
hysteretic models for phase transitions, pinning and depinning of interfaces,
regularization of ill-posed parabolic PDEs
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1 Introduction

Discrete forward-backward diffusion equations appear in many different applications such as edge-
detection in digital images [PM90], models for population dynamics based upon random walks on
lattices [HPO04], or phase transition problems with supercooling and superheating [Ell85]. In all
applications it is a common major problem to understand how the backward-parabolic regions affect
the dynamics on large scales. In this paper, we study the diffusion lattice

u̇j(t) = ∆ Φ′(uj(t)) (1.1)

for j ∈ Z, t ≥ 0, or equivalently
ẇj(t) = ∇−Φ′(∇+wj(t)). (1.2)

Here ∇−, ∇+ are the left- and right-sided discrete difference operators, ∆ denotes the standard
discrete Laplacian ∆ pj = pj+1− 2pj + pj−1, and uj , wj are connected via uj = ∇+wj . As illustrated
in Figure 1.1, we always suppose that Φ′ the derivative of a double-well potential Φ, so it consists of
two stable branches that enclose an unstable one.

Figure 1.1: Left. Bistable derivative of a general double-well potential Φ. The increasing and decreasing
branches of Φ′ are called stable and unstable, respectively, while spinodal region refers to the interval [u∗, u

∗]
on which Φ′ is decreasing. Right. Piecewise affine derivative of the degenerate double-well potential that is
studied in §3 and corresponds to u# = −2, u∗ = u∗ = 0, u# = +2.

Our goal is to characterize the effective dynamics of (1.1) in the parabolic scaling limit. Interpreting
t ≥ 0 and j ∈ Z as the microscopic variables, we introduce the macroscopic time τ ≥ 0 and space
ξ ∈ R by

τ = ε2t, ξ = εj, (1.3)

where ε > 0 is a small scaling parameter. We formally identify

uj(t) = U
(
ε2t, εj

)
(1.4)

and aim to describe the evolution of U in the limit ε → 0. The scaling (1.3) and (1.4) transforms
the microscopic dynamics (1.1) into

∂τU = ∆ε Φ′(U), (1.5)

where ∆ε is the standard finite difference approximation of ∂2
ξ on εZ, so the näıve continuum limit

as ε→ 0 reads
∂τU = ∂2

ξΦ′(U). (1.6)

This PDE, however, is ill-posed due to the unstable branches of Φ′ and can therefore not determine
the macroscopic limit of (1.1) completely. Actually, the lattice can be viewed as a regularization
of (1.6) that accounts for small scale effects and provides in the limit ε → 0 additional dynamical
information such as laws for the motion of phase interfaces or even measure-valued solutions. Other
notable regularizations of (1.6) are the Cahn-Hilliard equation

∂τU = ∂2
ξΦ′(U)− ε2∂4

ξU, (1.7)
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which has enjoyed a lot of attention over the last decades, and the viscous approximation(
1− ε2∂2

ξ

)
∂τU = ∂2

ξΦ′(U), (1.8)

studied in [NCP91, Plo94, EP04]. As discussed below, the available results indicate that the macro-
scopic limits of the scaled lattice equation (1.5) and the viscous approximation (1.8) are identical
but different from the limit of the Cahn-Hilliard model. In a formal way this can be understood by
expanding the spatial operators in powers of ε: Equations (1.1) and (1.8) share (up to a redefinition
of ε) the same leading order terms according to

∆ε P =
(
∂2
ξ +

ε2

12
∂4
ξ +O

(
∂6
ξ

))
P ,

(
1− ε2∂ξ

)−1
∂2
ξP =

(
∂2
ξ + ε2∂4

ξP +O
(
∂6
ξ

))
P,

with P being shorthand for Φ′(U), while (1.7) replaces the right hand side in (1.6) by ∂2
ξP − ε2∂4

ξU .
For ε > 0, however, the rescaled lattice and the viscous approximation are different and it remains
open whether there exists a unified theory that is capable of describing the limit ε → 0 for both
models.

A key feature of any regularization of (1.6) with double-well potential Φ are phase interfaces, which
evolve according to certain jump conditions and separate regions where U attains values in different
stable regions (phases). Other types of nonconvex potentials give rise to different phenomena such
as coarsening of localized spikes, see for instance [EG09].

Numerical simulations of (1.1) as performed in §2 with a generic double-well potential provide
evidence for the existence of two different types of phase interfaces. Type-I interfaces correspond
to piecewise smooth functions U and separate regions where U takes values in either one of the
phases U < u∗ and U > u∗, where [u∗, u

∗] is the spinodal interval. Type-II interfaces, however,
are related to measure-valued solutions of (1.6) and model a phase mixture on at least one side of
the interface. For both types, a phase interface can have a fixed position or move, depending on
the behavior of P = Φ′(U) near the interface. While P is smooth across a standing interface and
takes values in [p∗, p

∗] = [Φ′(u∗),Φ′(u∗)], a moving interface is driven by a jump in ∂ξP but requires
either P = p∗ or P = p∗ subject to the propagation direction. In the macroscopic limit we therefore
find hysteretic behavior in the sense that fronts moving into different phases comply with different
constraints, see Figure 1.2. Further intriguing properties of the macroscopic lattice dynamics are
sketched in Figure 1.3. Driven by the bulk diffusion, a standing interface can suddenly start to move
(depinning) and a moving interface can eventually come to rest (pinning). Moreover, two interfaces
can disappear after a collision (annihilation).

Assuming that the lattice data pj = Φ′(uj) converge as ε→ 0 to a sufficiently regular function P
and that any phase interface is of type I, the dynamics in the parabolic scaling limit can described
by combining bulk diffusion via (1.6) with the generalized Stefan condition

|[P ]| = 0,
dξ∗

dτ
|[U ]|+ |[∂ξP ]| = 0 (1.9)

and the hysteretic flow rule

P = p∗ for
dξ∗

dτ
|[U ]| > 0, P = p∗ for

dξ∗

dτ
|[U ]| < 0, (1.10)

where ξ∗(τ) is the position of an interface and |[·]| denotes the jump across this interface. These
conditions have also been proposed in [EP04] to model the propagation of type-I interfaces in the
limit of the viscous approximation and are naturally related to the notion of entropy solutions, see
also [MTT09] and the discussion below. For the Cahn-Hilliard equation (1.7), the parabolic scaling
limit does not imply any hysteresis. Here each interface corresponds to P = 0 and evolves therefore
according to the classical Stefan condition, see for instance [BBMN12] for a rigorous proof. We also
note that there exists at least one other macroscopic limit for (1.7), which is, however, not related
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Figure 1.2: Left. Cartoon of the macroscopic hysteresis for the potentials from Figure 1.1. The arrows
indicate the temporal jump of U when it undergoes a phase transition at a fixed position ξ. In particular,
P = p∗ holds at any interface that moves into the phase U < u∗, whereas propagation into U > u∗ requires
P = p∗. The dashed lines represent standing interfaces, at which P takes values in [p∗, p

∗].

Figure 1.3: Cartoon of three macroscopic type-I interfaces. The first interface (moving) and the second one
(standing) eventually collide with each other and disappear (annihilation). The third one is initially at rest,
starts to move at a later time(depinning) and stops eventually again (pinning).

to the parabolic scaling (1.3): In the regime of almost vanishing bulk diffusion, interfaces move and
merge on a much slower time scale which is exponentially small in ε [ABF91, BH92].

In the case of hysteretic interface motion, there seems to be no rigorous result – neither for the
lattice nor the viscous approximation – that derives (1.9) and (1.10) rigorously from the dynamics for
ε > 0. Previous results for the lattices (1.1) or (1.2) are either restricted to standing interfaces, see
[GN11] and [BGN13] for type-I and type-II interfaces, respectively, or do not capture the dynamics
of moving interfaces completely, e. g. [BNP06].

As a first step towards a mathematical justification of the macroscopic evolution laws for type-I
interfaces, we study in §3 the special case of

Φ(u) = 1
2 min

{
(u− 1)2, (u+ 1)2}. (1.11)

At the cost of being discontinuous at u = 0, the derivative Φ′ of (1.11) has two advantages over a
generic bistable function. First, the nonlinearity in (1.1) is piecewise affine and second, the spinodal
region has shrunk to the point u = 0, see the right panel of Figure 1.1. These properties simplify the
dynamical system (1.1) significantly and enable us to represent solutions to the nonlinear lattice by
a summation formula that involves delayed and shifted versions of the discrete heat kernel.

Due to the degenerate nature of (1.11), it is not our intention to identify the most general
class of admissible initial data for which the macroscopic limit can be described by a free boundary
problem. On the contrary, in order to keep the presentation as simple as possible, we restrict our
considerations in §3 to initial data that produce a single type-I interface which cannot change its
direction of propagation. Our main findings are formulated in Theorems 3.2, 3.16, and 3.18, and can
informally be summarized as follows.

Main result. The lattice (1.1) with (1.11) has the following properties.

1. Microscopic single-interface solutions: Type-I interfaces are naturally related to a class of lat-
tice states that is invariant under the dynamics. Specifically, intervals of linear diffusion are
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interrupted by an increasing sequence of phase transition times (t∗k)k≥k1
such that uk switches

from negative to positive sign at t = t∗k.

2. Macroscopic evolution: When starting with macroscopic single-interface initial data, the limit
ε→ 0 can be characterized as follows.

(a) Convergence: The lattice data uj converge in a strong sense to a function U that is
smooth outside of an interface curve τ 7→ ξ∗(τ), where ξ∗ is Lipschitz continuous and
nondecreasing. Moreover, the function P = U − sgnU is continuous across the interface.

(b) Limit dynamics: For almost all times τ ≥ 0 we have either

P (τ, ξ∗(τ)) ∈ [−1,+1] and
d

dτ
ξ∗(τ) = 0

or

P (τ, ξ∗(τ)) = +1 and
d

dτ
ξ∗(τ) > 0,

and P solves the linear heat equation outside of the interface.

(c) Uniqueness: U and ξ∗ are uniquely determined by the macroscopic initial data and the
limit model.

The rest of the paper is organized as follows. In §2.1 we employ the gradient flow structure of
(1.1) to describe the formation of macroscopic data on a heuristic level. Afterwards we report on
our numerical investigations for general double-well potentials. We present several examples for the
macroscopic motion of type-I and type-II interfaces in §2.2, and proceed in §2.3 with discussing the
key features of the microscopic dynamics near moving interfaces. These are: sequentiality of phase
transitions, small-scale fluctuations, and existence of multiple time scales. Finally, in §2.4 we give
a more detailed description of the macroscopic limit model for type-I interfaces and interpret the
hysteretic flow rule in terms of entropy inequalities.
§3 contains our analytical results for the special case (1.11). We first employ ODE arguments

in §3.1 in order to prove the persistence of single-interface data. In particular, in Corollary 3.7
we establish the aforementioned representation formula. In §3.2 we then introduce the concept of
macroscopic single-interface initial data and derive upper bounds for the macroscopic interface speed
from the properties of the discrete heat kernel, see also Appendix A. The main technical work is done
in §3.3, were we establish macroscopic compactness results for ξ∗ and P in the spaces of Lipschitz
and Hölder continuous functions, respectively. In §3.4 we finally pass to the limit ε → 0. To this
end, we first justify the limit model along subsequences, and obtain afterwards both uniqueness and
convergence by adapting some arguments from the theory of free boundary problems with hysteresis
operators.

2 Heuristic arguments and numerical simulations

In this section we employ heuristic arguments as well as numerical simulations in order to gain a
qualitative understanding of the key dynamical features of the nonlinear lattice diffusion with double-
well potential. In particular, we discuss (i) the underlying gradient flow structure and the formation
of macroscopic data during a fast initial transient regime, (ii) the microscopic and macroscopic
dynamics of phase interfaces, and (iii) the macroscopic evolution equations in the limit ε→ 0.

To keep the presentation as simple as possible, we use a finite dimensional lattice with j =
−N, . . . , N and close the resulting ODE system by imposing homogeneous Neumann boundary con-
ditions

u−N−1(t) = u−N (t) , uN+1(t) = uN (t). (2.1)
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The natural scaling parameter on such a finite lattice is ε = 1/N , that means the macroscopic
space variable ξ takes values in the interval [−1, 1]. The numerical simulations presented below are
computed by the explicit Euler scheme, where the time step size is chosen sufficiently small so that
the energy, see (2.2) below, is strictly decreasing. Moreover, all simulations are performed with

Φ(u) =
2
(
1− u2

)2
1 + u2

, Φ′(u) = 4u− 16u

(1 + u2)2 ,

which is convenient for numerical computations since the linear growth of Φ′ for |u| → ∞ allows to
use a relatively large time-step size.

2.1 Gradient flow structure and onset of macroscopic data

The lattice diffusion (1.1) can be regarded as a discrete analogue to the H−1-gradient flow of a
nonlinear bulk energy. More precisely, defining the energy

E(u) := ε

N∑
j=−N

Φ(uj) (2.2)

and the metric potential

R(u̇) =
ε

2

N∑
j=−N

(
∇+vj

)2
with −∆ vj = u̇j for j = −N, . . . , N and v±(N+1) = v±N

we readily verify – using discrete integration by parts along with the boundary conditions (2.1) –
that (1.1) is equivalent to

∂u̇R(u̇) + ∂uE(u) = 0,

where the metric tensor ∂u̇R is formally given by (−∆)−1. In particular, we obtain the energy
balance

dE
dt

= ε2 dE
dτ

= −ε2D, D(u) := ε−1
N∑

j=−N

(
∇+Φ′(uj)

)2
,

where the dissipation D gives the squared and rescaled length of the energy gradient with respect
to the metric induced by R. Notice that E , R, and D are scaled macroscopically, that means the
identification (1.4) implies

E(U) =

∫ +1

−1
Φ(U) dξ, D(U) =

∫ +1

−1

(
∂ξΦ

′(U)
)2

dξ (2.3)

as well as

R(∂τU) = 1
2

∫ +1

−1
(∂ξV )2 dξ with − ∂2

ξV = ∂τU and ∂ξV |ξ=±1 = 0 (2.4)

provided that U is sufficiently smooth with respect to τ and ξ. The formal gradient flow corresponding
to (2.3) and (2.4), however, is the ill-posed PDE (1.6) and can hence not govern the limit dynamics.

A further important observation is that the nonlinear lattice (1.1) admits a comparison principle
on the increasing branches of Φ′. Specifically, using standard arguments for ODEs we easily show

sup
t≥0

sup
|j|≤N

uj(t) ≤ max
{
u#, sup

|j|≤N
uj(0)

}
, inf

t≥0
inf
|j|≤N

uj(t) ≥ min
{
u#, inf

|j|≤N
uj(0)

}
.
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-1.0 0.0 +1.0

-2.2

+0.0

+2.2
snapshot of u at Τ = 0 and Τ = 0+

-1.0 0.0 +1.0

-7.8

+0.0

+7.8
snapshot of p at Τ = 0 and Τ = 0+

-1.0 -0.23 0.0 +1.0

-1.4

+0.0

+1.4
snapshot of u at Τ = 0 and Τ = 0+

-1.0 0.0-0.23 +1.0

-3.2

+0.0

+3.2
snapshot of p at Τ = 0 and Τ = 0+

Figure 2.1: Illustration of the initial transient regime for N = 50, using snapshots of uj and pj (left and
right column, respectively) against ξ = εj at time τ = 0 (gray) and a short time τ = 0+ afterwards (black).
The shadowed regions in the left column indicate the intervals [u∗, u

∗] and [u#, u
#]; the dotted horizontal

lines in the right column represent the critical values {p∗, p∗}. The vertical lines describe the macroscopic
phase interfaces. Top row. In this example, the initial data uj(0) at τ = 0 do not penetrate the spinodal
interval. The lattice data uj and pj at τ = 0+ therefore resemble macroscopic functions U and P , which are
discontinuous and continuous, respectively, at the phase interface. Bottom row. Part of the initial data uj(0)
are now taken from the spinodal interval. At time τ = 0+, the lattice data uj can no longer be described
by macroscopic functions but only by Young measures. The data pj , however, still approximate a continuous
macroscopic function P .

This implies E(t) = O(εN) = O(1) for all t ≥ 0 and hence
∫∞

0 D(u(t)) dt = O(1) provided that the
initial data uj(0) are bounded independently of ε.

We next discuss the small-time dynamics. For 0 < ε� 1 the initial evolution of (1.1) is related to a
very fast transient regime – where ‘fast’ refers to the macroscopic time τ – during which the system
quickly approaches a state with macroscopic behavior of pj and dissipation of order O(1). This is
illustrated in Figure 2.1, which depicts two prototypical examples of initial data at τ = 0 along with
the state of the system at a small macroscopic time τ = 0+ afterwards.

In the top row of Figure 2.1, we start with microscopic (i. e., oscillatory) initial data that are
confined to the two stable regions u ∈ (−∞, u∗) and u ∈ (u∗,+∞). Due to the oscillations, the initial
dissipation is of order O(ε−1N) = O(ε−2). The initial energy gradient is therefore also very large
and drives the system rapidly. At time τ = 0+ ≈ O(ε2), the dissipation and the energy gradient
eventually become of order O(1). This implies that the discrete data pj resemble a macroscopic
function P that admits a weak spatial derivative and is hence continuous with respect to ξ. We also
observe that the discrete data uj at τ = 0+ approximate a piecewise continuous function U which
satisfies P = Φ′(U) and jumps across the interface located at ξ = 0. In particular, the phase fraction
µ defined by

µ := χ[u∗,+∞)(U)− χ(−∞,u∗)(U)

takes the values −1 and +1 outside of the interface, where χJ denotes the indicator function of the
interval J .

The second example, see the bottom row in Figure 2.1, is different since now some of the initial
data uj(0) belong to the spinodal interval [u∗, u

∗], in which the discrete diffusion coefficient is negative.
In the numerical simulation we therefore observe that each of those uj quickly leaves the spinodal
interval (spinodal decomposition) and that the data for adjacent j can be attracted by different
stable regions. In particular, the data at time τ = 0+ ≈ O(ε2) exhibit a phase interface near
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ξ ≈ −0.23, in the sense that uj is non-oscillatory on the left but highly oscillatory on the right of
the interface. The fine structure of these oscillations depends on the microscopic details and each
reasonable macroscopic theory must describe them in terms of a Young measure ν = ν(τ, ξ, du),
which provides a probability distribution with respect to u for any macroscopic point (τ, ξ). The
discrete data pj , however, still resemble a macroscopic function P because otherwise the dissipation
could not be of order O(1). Since pj and uj are coupled by Φ′, we then conclude that the u-support
of the Young measure ν consists of only two points. This reads

ν(τ, ξ, du) =
1− µ(τ, ν)

2
δβ−(P (t, ξ))(du) +

1 + µ(τ, ν)

2
δβ+(P (t, ξ))(du). (2.5)

Here, δβ(du) is the Dirac distribution at β, the functions β−, β+ denote the two stable branches of
the inverse of Φ′, and the phase fraction µ takes values in [−1,+1].

The simulations from Figure 2.1 reveal that there exist (at least) two different types of macroscopic
phase interfaces: Type-I interfaces separate regions where the microscopic data uj are confined to
either one of the phases (−∞, u∗) and (u∗,+∞), whereas type-II interfaces describe that the lattice
data oscillate between the two phases on at least one side of the interface. Below we argue that type-I
interfaces can be described by a free boundary value problems, which exhibits hysteresis and involves
only the macroscopic fields P and µ ∈ {−1,+1}. Type-II interfaces, however, are more complicated
and their investigation is postponed to future research.

2.2 Examples of macroscopic interface dynamics

In this section we study the dynamics of type-I interfaces in numerical simulations. In particular, we
investigate the macroscopic jump conditions across such interfaces and provide numerical evidence
for pinning, depinning, and annihilation. At the end we also present an example of a type-II interface.

For simplicity, and in view of the discussion in the previous section, we always impose initial data
uj(0) such that pj(0) = Φ′(uj(0)) resemble a macroscopic function ξ 7→ P (0, ξ). In all simulations
we observe – for, loosely speaking, most of the macroscopic times τ > 0 – that the discrete data
pj
(
τ/ε2

)
approximate a macroscopic function ξ 7→ P (τ, ξ). We therefore expect that the macroscopic

limit ε → 0 can in fact be characterized by a PDE for P and the phase field µ, or equivalently, in
terms of a free boundary problem for P = Φ′(U) and the interface curves. There exist, however,
small macroscopic times intervals in which the discrete data pj(t) exhibit strong temporal and spatial
fluctuations near a moving phase interface. These fluctuations are discussed in the next section.

Figure 2.2 depicts lattice simulations with two different values of N , showing that the macroscopic
plots of the discrete data are basically independent of N . In this example, we initialize two macro-
scopic phase interfaces which are located at ξ = 0 and ξ = 0.6 and separate regions with U > u#,
U ∈ [u#, u∗], and U ∈ [u∗, u#]. The first interface moves to the right while the second one clearly
keeps its initial position. At the later time τ ≈ 0.18 both interfaces annihilate each other in a colli-
sion process, see also Figure 2.4, and the macroscopic evolution afterwards is governed by nonlinear
diffusion inside the phase U ∈ [u∗,∞). Figure 2.3 provides numerical evidence for the jump rules
across the interface: The moving interface is driven by a jump in ∂ξP whereas P is smooth across the
standing interface. Moreover, while P = p∗ holds on the moving interface, P evolves on the standing
interface and takes values in [p∗, p

∗].
A further dynamical feature of the lattice (1.1), namely the pinning of interfaces, is illustrated

in Figure 2.5. At time τ = 0, we initialize a single macroscopic interface that separates regions with
U ≥ u∗ and U ∈ [u#, u∗], where the data are chosen such that P > p∗ and P < p∗ holds locally on
the left and on the right of the interface, respectively. This interface starts propagating to the right
but stops moving at τ ≈ 0.02 because the bulk diffusion behind the interfaces enforces P ≤ p∗ for
τ & 0.02. The inverse process, that is the depinning of interfaces, is shown in Figure 2.6. There,
a single macroscopic interface is initially at rest with P ∈ (p∗, p

∗) but propagates with P = p∗ for
τ & 0.03.
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-1.0 0. 0.6 +1.0

-1.4

+1.4

+4.3
snapshot of u, Τ = 0.00

-1.0 0. 0.6 +1.0

-1.4

+0.6

+2.7
snapshot of u, Τ = 0.10

-1.0 0. 0.6 +1.0

-1.4

+0.6

+2.7
snapshot of u, Τ = 0.17

-1.0 0. 0.6 +1.0

-1.4

+0.6

+2.7
snapshot of u, Τ = 0.20

Figure 2.2: Annihilation of a moving and a standing type-I interface for two different simulations with
N = 200 (thick gray curves) and N = 500 (thin black curves). The snapshots show uj against the macroscopic
position ξ = εj at fixed macroscopic times τ ; the vertical lines indicate the interface positions and the two
shaded regions represent the intervals [u∗, u

∗] and [u#, u
#].

-1.0 0. 0.6 +1.0

-1.0

+8.0

+17.0
snapshot of p, Τ = 0.01

-1.0 0. 0.6 +1.0

-1.0

+8.0

+17.0
snapshot of p, Τ = 0.05

Figure 2.3: Snapshots of pj for the example from Figure 2.2. The horizontal line represents p = p∗.

0.00 0.10 0.17 0.20

+0.0

+0.6

evolution of interfaces

0.00 0.10 0.17 0.20

+0.5

+2.8

evolution of energy

Figure 2.4: Macroscopic positions of the interfaces and the energy as function of τ for the example from
Figure 2.2.

The last example is shown in Figure 2.7 and concerns the dynamics of type-II interfaces. The
discrete initial data uj(0) resemble a smooth function U that penetrates the spinodal region, and the
initial transient regime therefore leads to spinodal decomposition. This means the lattice dynamics
forms a phase interface that separates a region with U > u∗ from a region with strong microscopic
oscillations, where the latter can be regarded as an approximation of a nontrivial Young measure
ν. The interface is initially at rest but depins at τ ≈ 0.02 and propagates into the oscillatory phase
afterwards. The dynamics of type-II interfaces are not yet well-understood. In particular, since
there exist many microscopic realizations of a given Young measure ν, it is not clear whether the
macroscopic evolution can be completely characterized in terms of the fields P and µ ∈ [−1,+1],
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-1.0 0.0 0.7 +1.0
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snapshot of u, Τ = 0.00
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snapshot of u, Τ = 0.01
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-1.4

+0.1

+1.6
snapshot of u, Τ = 0.04

0.00 0.02 0.04

+0.6

+0.8

evolution of interface

Figure 2.5: Pinning of a type-I interface with N = 400. The vertical lines indicate the initial and the current
position of the interface.

-1.0 0.0 0.3 +1.0

-1.4

+1.6

+4.7
snapshot of u, Τ = 0.00

-1.0 0.0 0.3 +1.0

-1.4

+1.6

+4.7
snapshot of u, Τ = 0.03

-1.0 0.0 0.3 +1.0

-1.4

+0.8

+3.1
snapshot of u, Τ = 0.12

0.00 0.03 0.12

+0.3

+0.6

evolution of interface

Figure 2.6: Depinning of a type-I interface with N = 500.

or whether further macroscopic quantities are needed. All subsequent considerations are therefore
restricted to type-I interfaces.

2.3 Microscopic dynamics of phase interfaces

To conclude our numerical investigations, we now discuss the microscopic dynamics of moving type-
I interfaces in greater detail. In this way we not only obtain a better understanding of the lattice
dynamics but also gain some inside into the analytical problems that must be addressed when passing
to the limit ε→ 0.

For a moving type-I interface that is isolated – i. e., sufficiently far from any other interface and
the boundary of the computational domain – the key numerical observations are illustrated in Figures
2.8 and 2.9 and can be summarized as follows.

1. Sequentiality. At each time there exists at most one index k such that uk is inside the spinodal
interval [u∗, u

∗]. In other words, the interface moves because the uj ’s undergo the phase tran-
sition one after another, where ‘phase transition’ means passage through the spinodal interval.
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+3.0

+7.4
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snapshot of u, Τ = 0.16
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evolution of interface

-1.0 0. 0.6 +1.0
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snapshot of p, Τ = 0.06

-1.0 0. 0.6 +1.0

-1.0
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+17.0
snapshot of p, Τ = 0.10

Figure 2.7: Type-II interface with N = 50 that propagates into a region with microscopic oscillations. In
the macroscopic limit, these oscillations cannot be described by a function U but only in terms of a Young
measure ν, see 2.5.

2. Fluctuations near the interface. Each phase transition produces strong microscopic fluctuations.
These fluctuations are initially very localized, correspond to relatively large dissipation, and
are spread out before the next phase transition occurs.

3. Temporal scale separation. The time needed to spread out the fluctuations is as least as large
as the time to undergo a phase transition. Moreover, both times are typically much smaller
than the time between two subsequent phase transition.

The fundamental sequentiality property can – at least in an idealized single-interface setting – be
derived from elementary comparison principles for ODEs. The underlying idea is that as long as uk
is inside of [u∗, u

∗], the lattice equation ensures that any other uj cannot enter the spinodal interval.
For the piecewise quadratic potential, we employ a similar argument in the proof of Theorem 3.2 in
order to show the persistence of single-interface data.

The microscopic fluctuations are much harder to describe rigorously. More precisely, although it
is relatively simple to understand the onset of fluctuations heuristically, it is not obvious, at least to
the authors, how to estimate their spatial and temporal decay in the case of a generic double-well
potential Φ. For the piecewise quadratic potential, however, the fluctuations can be controlled by
splitting p = Φ′(u) into a regular part related to linear diffusion and a sum over delayed and shifted
variants of the discrete heat kernel, see the discussion in §3.

A further challenge for any rigorous treatment is to give a suitable description of the different time
scales in the problem. For instance, in order to guarantee that each interface propagates with finite
speed on the macroscopic scale, one has to show that the microscopic time between two adjacent
phase transitions is of order O(ε−1). Moreover, proving that any limit function P is in fact continuous
at the interface requires to show that both the time for each phase transition and the decay time
of the fluctuations are much smaller than O(ε−1). For piecewise quadratic Φ, the problem is again
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Figure 2.8: Microscopic dynamics of a moving type-I interface: snapshots of uj(t) (black) and pj (gray,
rescaled) against j ∈ Z at six non-equidistant times; the vertical line indicates the interface position at j = k.
At time t1, the value uk has just crossed u∗ from below. Afterwards, it passes rapidly through the spinodal
interval [u∗, u

∗] and evokes microscopic fluctuations which are of order 1 but localized near j ≈ k. At time t3,
the value uk leaves the spinodal interval but the fluctuations are still present and not spread out before the
time t5. Between t5 and t6, the data change only little but prepare uk+1 for the next phase transition, that
means uk(t6) > u∗ and uk+1(t6) = u∗.

Figure 2.9: Microscopic dynamics of a type-I interface that moves from j = 1 to j = 8. The black curves
represent the time trajectory of u4, and the gray curves describe the (rescaled) dissipation of the system. Top.
Φ is a smooth double well-potential and each interval I∗k contains all times at which uk is inside of the spinodal
interval. Bottom. For the piecewise quadratic potential, each interval I∗k is degenerate and consists of a single
time t∗k with uk(t∗k) = 0.

much simpler. At first, phase transitions take place at precise times due to the degenerate spinodal
region, and second, all other time scales can be related to the properties of the discrete heat kernel.

2.4 Effective evolution equations for the macroscopic dynamics

We now derive the free boundary problem for the dynamics of type-I interfaces on a heuristic level.
Since our arguments are very similar to those for the viscous approximation, we only sketch the main
ideas and refer to [EP04] for more details.

We first suppose that the lattice data uj and pj converge strongly as ε → 0 to macroscopic
functions U and P which are sufficiently regular. For simplicity we also assume that there is only a

12



single interface located at ξ∗(τ) and that U satisfies the phase condition

U > u∗ for ξ < ξ∗ an U < u∗ for ξ > ξ∗. (2.6)

Under these assumptions, and using the weak formulation of (1.5), we readily verify that that macro-
scopic evolution is governed by bulk diffusion via

∂τU = ∂2
ξP with P = Φ′(U) for all τ ≥ 0, ξ 6= ξ∗(τ) (2.7)

and the generalized Stefan condition

|[P ]| = 0 and
dξ∗

dτ
|[U ]|+ |[∂ξP ]| = 0 for ξ = ξ∗(τ), (2.8)

which ensures that (2.7) holds in a distributional sense even across of the interface. Here |[U ]| denotes
as usual the jump of U across the interface, this means

|[U ]|(τ) = U+(τ)− U−(τ), U±(τ) := lim
h↘0

U(τ, ξ∗(τ)± h).

The nontrivial part is to identify a further dynamical interface condition since (2.7) and (2.8) do
not the determine the evolution of ξ∗ completely. In view of the numerical results, we propose the
following hysteretic flow rule, see Figures 1.2 and 1.3: At almost each time τ > 0, the interface is
either

1. standing with |[P ]| = |[∂ξP ]| = d
dτ ξ
∗ = 0 and P ∈ [p∗, p

∗], or

2. propagating into U < u∗ with P = p∗, d
dτ ξ
∗ > 0, and |[U ]| = u∗ − u# < 0, or

3. propagating into U > u∗ with P = p∗,
d
dτ ξ
∗ < 0, and |[U ]| = u# − u∗ < 0.

Notice that the combination of phase condition, bulk diffusion, Stefan condition, and flow rule pro-
vides – at least on a formal level – a well-posed free boundary value problem and that the limit model
can easily be generalized to an interface with U < u∗ for x < ξ∗ and U > u∗ for ξ > ξ∗, and to the
case of finitely many phase interfaces.

The interface laws can also be derived in a more sophisticated way. For the viscous approximation,
it has been shown in [EP04] – also assuming sufficiently strong convergence as ε→ 0 – that any limit
solution must satisfy the distributional entropy condition

∂τΨ(U)− ∂ξ
(
Υ(P )∂ξP

)
≤ 0 (2.9)

where Υ is an arbitrary but increasing function and Ψ defined by Ψ′(U) = Υ
(
Φ′(U)

)
. This family

of local entropy inequalities can also be established in the lattice case. In fact, the scaled equation
(1.5) implies

∂τΨ(U) = Υ(P ) ∆ε P = ∇+ε

(
Υ(P )∇−εP

)
−
(
∇+εΥ(P )

)(
∇+εP

)
≤ ∇+ε

(
Υ(P )∇−εP

)
due to Υ′ ≥ 0, and passing to ε → 0 in the weak formulation of (1.5) we get (2.9). The key
observation is that (2.9) combined with (2.8) yields

dξ∗

dτ

(
|[Ψ(U)]| −Υ(P )|[U ]|

)
≤ 0 and hence

dξ∗

dτ

(∫ U+

U−

Υ
(
Φ′(s)

)
−Υ(P ) ds

)
≤ 0,

where U− > U+ and P− = P+ = P hold thanks to (2.6) and (2.8). The flow rule now follows from
evaluating the latter inequality for appropriately chosen functions Υ, see again [EP04] for the details.

In the special case that Φ is given by the piecewise quadratic potential (1.11), the bulk diffusion can
be written as

∂τP = ∂2
ξP for all τ ≥ 0, ξ 6= ξ∗(τ),
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whereas the Stefan condition simplifies to

|[P ]| = 0 and 2
d

dτ
ξ∗ = |[∂ξP ]| for ξ = ξ∗(τ).

In the space of distributions, both equations can be combined to

∂τ (P + µ) = ∂2
ξP for all τ ≥ 0, ξ ∈ R, (2.10)

where the phase field

µ(τ, ξ) := sgn
(
ξ∗(τ)− ξ

)
(2.11)

is well-defined outside of the interface and takes values in {−1,+1}. We mention that the hysteretic
flow rule can be encoded as

µ =M[P ] (2.12)

whereM is a particular relay operator, see for instance [Vis94, BS96], and that well-posedness of the
initial value problem for (2.10) and (2.12) has been proven in [Vis06]. For our purposes, however,
the differential relations from above are more convenient than the discontinuous hysteresis operator
M. In particular, under the sharpened phase condition

U(τ, ξ) ≥ u# = −2 for ξ > ξ∗(τ),

which implies that the interface is either at rest or propagates to the right, the flow rule is equivalent
to

P
(
τ, ξ∗(τ)

)
∈ [−1,+1] with P

(
τ, ξ∗(τ)

)
= +1 for

dξ∗

dτ
(τ) > 0. (2.13)

In §3 we prove that the simplified free boundary value problem (2.10) with (2.11) and (2.13) indeed
governs the parabolic scaling limit of (1.1) with (1.11) provided that we impose macroscopic single-
interface initial data as described in Assumption 3.6.

3 Rigorous analysis for the piecewise quadratic potential

In this section we characterize the lattice dynamics with piecewise quadratic potential. In particular,
from now on we suppose that

Φ′(u) = u− sgnu, (3.1)

where we define the sign function by

sgnu =

{
−1 for u < 0,
+1 for u ≥ 0.

(3.2)

The condition sgn 0 = +1 is essential for establishing global existence and uniqueness of single-
interface solutions, see the proof of Theorem 3.2 and the remark afterwards.

Our goal in this section is to prove (i) that a certain class of well-prepared microscopic initial data
give rise to a single phase interface that moves in a certain direction, and (ii) that the macroscopic
dynamics for ε→ 0 can in fact be described by the simplified free boundary problem from §2.4.

14



3.1 Existence of single-interface solutions

In order to make precise what we mean by single-interface solution, we define for each k ∈ Z the
state space

Xk =
{
u ∈ `∞(Z) : 0 < inf

j<k
uj ≤ sup

j<k
uj <∞, −2 < inf

j≥k
uj ≤ sup

j≥k
uj < 0

}
,

see Figure 3.1 for an illustration. As shown below, the dynamics for initial data chosen from Xk is as
follows: The system stays inside Xk until some maximal time t∗k > 0 with limt→t∗k uk(t) = 0 at which
uk undergoes a phase transition by crossing the spinodal value 0 from below. For times t > t∗k, the
system evolves inside of Xk+1 until uk+1 changes from negative to positive phase at time t∗k+1 > t∗k.
By iteration we therefore find a phase interface that moves to the right, where we allow for t∗k =∞
to account for standing interfaces.

Figure 3.1: States from Xk have a single phase interface at k (left panel, uk−1 and uk are highlighted). Under
the dynamics, this interface is either stationary for all times or shifts eventually to the right due to a phase
transition of uk, because the system can reach the boundary ∂Xk only via uk = 0. When this happens at time
t∗k (right panel), we also have uk−1(t∗k) > 2 and u̇k jumps from u̇k(t∗k − 0) ≥ 0 to u̇k(t∗k + 0) ≥ 4. Afterwards
the state of the system belongs to Xk+1 until uk+1 undergoes a phase transition at time t∗k+1.

Definition 3.1 (single-interface solution). A continuous function u : [0,∞)→ `∞(Z) is called single-
interface solution to (1.1) with potential (3.1) if there exists k1 ∈ Z along with a sequence (t∗k)k≥k1

⊂
(0,∞] such that the following conditions are satisfied with t∗k1−1 := 0:

1. For all k ≥ k1, we have either t∗k−1 =∞ or t∗k−1 < t∗k,

2. The function u solves u̇j = ∆ Φ′(uj) for all times t ∈ [0,∞) \ {t∗k : k ≥ k1},

3. We have uk(t
∗
k) = 0 and limt↘t∗k u̇k(t) > 0 for all k ≥ k1 with t∗k <∞,

4. The function u takes values in Xk on each time interval (t∗k−1, t
∗
k) with t∗k−1 <∞.

Moreover, a single-interface solution with t∗k =∞ for all k ≥ k1 is called a standing-interface solution.

For single-interface solutions in the sense of Definition 3.1, any uk is continuous at the phase
transition time t∗k, whereas pk jumps at t∗k from +1 to −1. Notice that it is the other way around
in the macroscopic limit: when ε tends to 0, p becomes continuous with respect to both τ and ξ,
whereas u jumps from 0 to +2 at the phase interface, see Figure 2.9 for an illustration.

As first main result we prove that single-interface solutions exist.

Theorem 3.2 (existence and uniqueness of single-interface solutions). For given initial data in Xk1,
there exists a unique single-interface solution to (1.1) with (3.1). Moreover, this solution satisfies

sup
t∈[0,∞)

sup
j∈Z

uj(t) ≤ D := max
{

2, sup
j∈Z

uj(0)
}
,
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and we have

uk−1(t∗k) > 2, t∗k+1 − t∗k ≥ ln

√
D + 2

D − 2
, u̇k(t

∗
k) = lim

t↘t∗k
u̇k(t) = 4 + lim

t↗t∗k
u̇k(t) ≥ 4

for all k ≥ k1 with t∗k <∞.

Proof. We assume, without loss of generality, that k1 = 1 and derive all claims by induction with
respect to k ≥ k1.

Dynamics inside of X1: For states u ∈ X1 we have sgnuj = − sgn (j − 1) and hence

u̇j = ∆ Φ′(uj) = ∆uj + 2δ0
j − 2δ1

j , (3.3)

where δkj is the Kronecker delta. In particular, the right hand side of (3.3) is Lipschitz continuous
with respect to the `∞-norm of u and this implies the local existence of a unique solution that is
smooth in time and takes values in the open set X1. From the definition of X1 we also infer that

0 ≤ u̇j(t) + 2uj(t) ≤ 2D for j < 1,
0 ≤ u̇j(t) + 2uj(t) ≤ D + 2 for j = 0,
−4 ≤ u̇j(t) + 2uj(t) for j = 1,
−4 ≤ u̇j(t) + 2uj(t) ≤ 0 for j > 1,

and the comparison principle for scalar ODEs gives

e−2tuj(0) ≤ uj(t) ≤ e−2tuj(0) +
(
1− e−2t

)
D for j < 1,

e−2tuj(0)− 2
(
1− e−2t

)
≤ uj(t) for j ≥ 1,

uj(t) ≤ e−2tuj(0) for j > 1.

Using these estimates, we now conclude that the local solution with values in X1 either exists for all
times (in which case we set t∗1 := ∞) or reaches the boundary of X1 at some time 0 < t∗1 < ∞ via
u1(t∗1) = 0. Moreover, since both u1 and u̇1 are continuous at any t ∈ [0, t∗1) we have limt↗t∗1 u̇1(t) ≥ 0.

Phase transition at t∗1: Now suppose that t∗1 < ∞. From (3.3) and the above estimate for uj(t)
we conclude that uj(t) converges for any j ∈ Z as t ↗ t∗1 to some well-defined limit uj(t

∗
1), where

u1(t∗1) = 0 as well as

0 < inf
j<1

uj(t
∗
1) ≤ sup

j<1
uj(t

∗
1) < D, −2 < inf

j>1
uj(t

∗
1) ≤ sup

j>1
uj(t

∗
1) < 0.

We therefore have

sup
j∈Z

∣∣∆ Φ′
(
uj(t

∗
1)
)∣∣ ≤ C

for some constant C. On the other hand, u0(t∗1) > 0 and −2 < u2(t∗1) < 0 ensure that

∆ Φ′
(
u1(t∗1)

)
=
(
u0(t∗1) + u2(t∗1)

)
−
(

sgnu0(t∗1) + sgnu2(t∗1)− 2 sgn 0
)
> 0

thanks to sgn 0 = +1. These results reveal that the vector field of the dynamical system u̇ = ∆ Φ′(u)
is well defined in the state u(t∗1) ∈ ∂X1∩∂X2 and points into X2, where ∂Xk denotes the topological
boundary of Xk in `∞(Z). We therefore find a time t∗ > t∗1 such that the local solution to the
microscopic dynamics from the first step has unique continuation to the time interval [0, t∗) with
u(t) ∈ X2 for all t ∈ (t∗1, t∗). By construction, uj and u̇j are continuous at t∗1 for j 6= 1, whereas

u1(t∗1) = lim
t→t∗1

u1(t) = 0, u̇1(t∗1) = lim
t↘t∗1

u̇1(t) = 4 + lim
t↗t∗1

u̇1(t) ≥ 4.

thanks to sgnu1(t∗1) = limt↘t∗1 sgnu1(t) = +1 and limt↗t∗1 u1(t∗1) = −1. Finally, repeating all ar-
guments from the first step we show that this solution in X2 exists uniquely until a time t∗2 with
t∗1 < t∗2 ≤ ∞ and u2(t∗2) = 0 in case of t∗2 <∞.
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Condition for u0(t∗1) and lower bound for t∗2 − t∗1: For 0 < t < t∗1 we infer from (3.3) that

u̇1(t) =
(
u0(t) + u2(t)− 2u1(t)

)
−
(
(+1) + (−1)− 2(−1)

)
≤ u0(t) + u2(t)− 2u1(t)− 2.

Passing to the limit t↗ t∗1 we therefore get

0 ≤ u̇1(t∗1) ≤ u0(t∗1) + u2(t∗1)− 2 < u0(t∗1)− 2

and hence u0(t∗1) > 2. In the same way we prove u1(t∗2) > 2 and conclude that the interface can shift
from k = 1 to k = 2 at time t∗2 only if

2 < u1(t∗2).

Moreover, u(t) ∈ X2 for all t ∈ (t∗1, t
∗
2) implies

u̇1(t) =
(
u0(t) + u2(t)− 2u1(t)

)
−
(
(+1) + (−1)− 2(+1)

)
≤ D + 2− 2u1(t).

By the comparison principle we therefore have

u1(t) ≤
(

1− e−2t+2t∗1
)D + 2

2
,

and setting t = t∗2 we obtain the estimate for t∗2 − t∗1.
Final step: All arguments derived above can easily be iterated, so the assertions of Theorem 3.2

are proved by induction. In particular, the lower bound for t∗k+1− t∗k ensures that the solution exists
for all times t ≥ 0.

Remark 3.3. Theorem 3.2 can be adapted to finite lattice systems with j = 1, . . . ,M provided that
the corresponding ODE system is closed by imposing

1. either homogeneous Neumann boundary conditions via u0(t) = u1(t) and uM+1(t) = uM (t),

2. or inhomogeneous Dirichlet boundary conditions via u0(t) ≡ c1 > 0 and uM+1(t) ≡ c2 < 0,

where j = 0 and j = M + 1 are the ghost indices.

The proof of Theorem 3.2 reveals that the condition sgn 0 = 1 (or equivalently, the right-sided
continuity of Φ′) is crucial for the microscopic dynamics to be well defined after the phase transition
time t∗k as it guarantees that uk(t

∗
k) = 0 implies the strict inequality u̇k(t

∗
k + 0) > 0. Our convention

(3.2) is therefore implicitly but intimately related to phase interfaces that propagate into the phase
u < 0 (to observe phase propagation into to the other phase u > 0, one has to set sgn 0 = −1). This
subtle direction selection reflects that the spinodal region is actually an isolated point and can be
regarded as the degenerate analogue to the hysteresis flow rule (1.10).

Corollary 3.4 (criterion for standing interfaces). For single-interface initial data

u(0) ∈ Xk1 with sup
j∈Z

uj(0) ≤ 2

we find t∗k1
=∞ and hence a standing-interface solution.

We finally characterize the evolution of pj(t) = Φ′(uj(t)) for single-interface solutions. The key
observations are as follows:

1. p solves the linear discrete heat equation ṗ = ∆ p on each time interval (t∗k, t
∗
k+1) because

u(t) ∈ Xk implies pj(t) = uj(t) + sgn (j − k) and hence ṗj(t) = u̇j(t).

2. At each phase transition time t∗k <∞, the value of pk jumps down according to

lim
t↗t∗k

pk(t) = +1, lim
t↘t∗k

pk(t) = −1

but we have limt↗t∗k pj(t) = limt↘t∗k pj(t) for all j 6= k.
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The dynamics of p can therefore be interpreted as solving the linear discrete heat equation for t ≥ 0
where at each phase transition time t∗k we perturb the system by adding −2δkj to the current state.
Combining this interpretation with the superposition principle we conclude that p consists of a regular
part q and a singular part r, which account for effects of the initial data and the perturbations induced
by the phase transitions, respectively. In particular, denoting by g the discrete heat kernel, that is

ġj(t) = ∆ gj(t),

gj(0) = δ0
j ,

(3.4)

we arrive at the following result, see also Figure 3.2.

Corollary 3.5 (decomposition of p). For each single-interface solution we have

pj(t) = qj(t) + rj(t),

with

rj(t) := −2
∑
k≥k1

χ{t≥t∗k}(t)gj−k(t− t
∗
k),

where q is the solution of the discrete heat equation with initial data qj(0) = pj(0) and χJ denotes
the indicator function of the set J .

Figure 3.2: Left. Cartoon of the discrete heat kernel g (the thin lines represent interpolating splines and are
drawn for better illustration). Right. The lattice function r is at any time t given by a finite sum of shifted
and delayed version of the discrete heat kernel.

The decomposition formula from Corollary 3.5 is crucial for our analysis. In particular, the decay
and continuity properties of the discrete heat kernel, see appendix A, enable us to estimate the
impact of the sequence of singularities induced by the phase transitions. Notice however, that the
evolution of p is still nonlinear as the phase transition times t∗k depend on p itself.

3.2 Upper bounds for the macroscopic interface speed

In Theorem 3.2 we have shown that single-interface solutions exist. In order to pass to the macro-
scopic limit, we must however guarantee that the corresponding macroscopic interface speed is at
most of order O(1). More precisely, for a given macroscopic distance δ > 0 we have to ensure that
the macroscopic time ε2t∗bδ/εc is bounded from below by some constant independent of ε, where bxc
is shorthand for the integer part of x. The derivation of this lower bound is actually at the heart of
our convergence proof and requires a careful quantitative analysis of the lattice dynamics. In this
paper we restrict ourselves to the most simple case and suppose that the initial data are compatible
with the macroscopic limit model. We also assume without loss of generality that the macroscopic
interface is initially located at ξ = 0.

Assumption 3.6 (macroscopic single-interface initial data). The initial data u(0) belong to X1 and
p(0) = Φ′(u(0)) satisfies

|∆ p0(0)| ≤ βε, sup
j∈Z
|∇+pj(0)| ≤ αε, sup

j 6=0
|∆ pj(0)| ≤ αε2.

for two constants α and β independent of ε.
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Assumption 3.6 is motivated by the limit dynamics, see also Figure 3.3 for an illustration. In
fact, the prototypical example for macroscopic single-interface data is

pj(t) = Pini(εj) + cε, uj(0) = pj(t) + sgn (−j) (3.5)

where cε is a constant and Pini some given macroscopic function independent of ε such that:

1. Pini is bounded and continuous for all ξ ∈ R with

Pini(ξ) > 1 for ξ < 0 and − 1 < Pini(ξ) < 1 for ξ > 0

and

lim inf
ξ→−∞

Pini(ξ) > 1 and − 1 < lim inf
ξ→+∞

Pini(ξ) ≤ lim sup
ξ→+∞

Pini(ξ) < +1.

2. Pini is twice continuously differentiable for ξ < 0 and ξ > 0 with

β := lim
ξ↘0

∣∣P ′ini(+ξ)− P ′ini(−ξ)
∣∣ <∞, α := sup

ξ 6=0

∣∣P ′ini(ξ)
∣∣+
∣∣P ′′ini(ξ)

∣∣ <∞,
3. cε > 0 is sufficiently small with cε → 0 as ε → 0 and chosen such that t∗1 > 0, that means
uj(0) > 0 for all j ≤ 0 and uj(0) < 0 for all j ≥ 1.

Corollary 3.7 (bounds for the regular part q). We have

|∇+qj(t)| ≤ αε and |q̇j(t)| = |∆ qj(t)| ≤ αε2 + βεg0(t)

for all t ≥ 0, j ∈ Z, and ε > 0.

Proof. By construction and Assumption 3.6 we have

d
dt q̇j(t) = ∆ q̇j(t), |q̇j(0)| = |ṗj(0)| = |u̇j(0)| = |∆ pj(0)| ≤ αε2 + βεδ0

j

as well as

d
dt∇+qj(t) = ∆∇+qj(t), |∇+qj(0)| = |∇+pj(0)| ≤ αε.

The claim now follows using both the superposition and the maximum principle for the discrete heat
equation.

We remark that the assertions of Corollary 3.7 are sufficient for showing that the macroscopic
interface speed is bounded. All results derived below therefore hold (with different constants) even
in the case that

1. |∇+pj(0)| ≤ αε and |∆ pj(0)| ≤ βε for all j ∈ Z,

2. |∆ pj(0)| ≤ αε2 for almost all j ∈ Z,

that means the derivative of the function Pini from (3.5) can even be discontinuous at finitely many
points.

We are now able to derive upper bounds for the macroscopic interface speed. To this end we prove that
Assumption 3.6 implies that the time t∗k+1− t∗k between two adjacent phase transitions is mesoscopic
as it can be bounded from below by 1/ε (recall that Theorem 3.2 provides only t∗k+1−t∗k ≥ 2/(D − 2)).
Our considerations are based on the estimate

2 ≤ pk
(
t∗k+1

)
− pk(t∗k) =

∫ t∗k+1

t∗k

ṗk(t) dt =

∫ t∗k+1

t∗k

q̇k(t) dt− 2

k∑
n=1

∫ t∗k+1

t∗k

ġk−n(t− t∗n) dt, (3.6)

which follows from combining the conditions uk(t
∗
k) = 0 and uk(t

∗
k+1) ≥ 2 with the representation

formula from Corollary 3.5.
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Figure 3.3: For initial data as in Assumption 3.6, the discrete data pj(0) resemble a macroscopic function
Pini that is continuous and piecewise twice continuously differentiable. In particular, the initial velocities
u̇j(0) = ṗj(0) satisfy ṗ0(0) = βε and |ṗj(0)| ≤ αε2 for j 6= 0.

Lemma 3.8 (refined lower bound for the time between two phase transitions). For any τfin > 0
there is a constant d∗ > 0, which depends on α, β, and τfin, along with a constant 0 < ε∗ < 1, which
depends only on α and β, such that

ε
(
t∗k+1 − t∗k

)
≥ 2d∗

holds for all k ≥ 1 with 0 ≤ t∗k ≤ τfin/ε
2 provided that ε ≤ ε∗.

Proof. In what follows we consider k ≥ 1 with t∗k < τfin/ε
2 and denote by c and C generic constants

independent of α, β, and ε.
Weaker variant of (3.6): In order to study the implications of (3.6), we first simplify the right

hand side as follows. By Lemma A.2 we have

−
k∑

n=1

∫ t∗k+1

t∗k

ġk−n(t− t∗n) dt ≤ −
k∑

n=1

∫ t∗k+1

t∗k

ġ0(t− t∗n) dt =
k∑

n=1

g0(t∗k − t∗n)−
k∑

n=1

g0

(
t∗k+1 − t∗n

)
.

whereas Corollary 3.7 provides∫ t∗k+1

t∗k

q̇k(t) dt ≤
∫ t∗k+1

t∗k

(
αε2 + βεg0(t)

)
dt

Rearranging terms and using g0(0) = 1, inequality (3.6) becomes

k∑
n=1

g0(t∗k+1 − t∗n) ≤ 1

2

∫ t∗k+1

t∗k

(
αε2 + βεg0(t)

)
dt+

k−1∑
n=1

g0(t∗k − t∗n),

and writing sk := t∗k+1 − t∗k we arrive at

k∑
n=1

g0(sk + · · ·+ sn) ≤ 1

2

∫ t∗k+sk

t∗k

(
αε2 + βεg0(t)

)
dt+

k−1∑
n=1

g0(sk−1 + · · ·+ sn). (3.7)

In the remainder of this proof we transform this inequality into a lower bound for sk.
Estimate for k = 1: Inequality (3.7) combined with Lemma A.1 provides

g0(s1) ≤ 1
2

∫ t∗1+s1

t∗1

(
αε2 + βεg0(t)

)
dt ≤ 1

2

∫ s1

0

(
αε2 + βεg0(t)

)
dt,

and we deduce that there exists ε∗ > 0, which depends on α and β, such that s1 ≥ 1 for all ε ≤ ε∗.
We employ Lemma A.2 again to estimate

c
√
s1
≤ C

(
αε2 + βε

√
s1

)
,

and this gives
εs1 ≥ d1 > 0
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for some constant d1 which depends on α and β but not on ε. For β = 0 we even find ε4/3s1 ≥ d1.
Estimate for k > 1 in a special case: For the following considerations we further suppose that

sk < min
n=1,...,k−1

sn.

Since g0 is strictly decreasing, we therefore get

g0(sk + · · ·+ sn+1) > g0(sk−1 + · · ·+ sn)

for all n = 1, . . . , k − 1, and hence

g0(sk + · · ·+ s1) <
1

2

∫ t∗k+sk

t∗k

(
αε2 + βεg0(t)

)
dt,

thanks to (3.7). This implies fk(sk) < 0 for

fk(s) := g0(s+ t∗k)−
1

2

∫ t∗k+s

t∗k

(
αε2 + βεg0(t)

)
dt,

where we used that g0(sk+ · · ·+s1) = g0(sk+ t∗k− t∗1) ≥ g0(sk+ t∗k). The properties of g0, see Lemma
A.1 once more, guarantee that the function fk is convex, continuous, and strictly decreasing in s.
Therefore, and in view of fk(0) > 0 and lims→∞ fk(s) = −∞, we conclude that fk has a unique zero
s̄k with s̄k < sk. Due to convexity of fk we also find

ŝk < s̄k < sk,

where ŝk := −fk(0)/f ′k(0) is the first approximation to s̄k when starting the Newton algorithm at
s = 0. By direct computations we now verify

ŝk =
g0(t∗k)

−ġ0

(
t∗k
)

+ αε2

2 + βε
2 g0(t∗k)

,

and using t∗k ≥ s1 ≥ 1 as well as Lemma A.2 we obtain

ŝk ≥
c(t∗k)

−1/2

C
(
t∗k
)−3/2

+ αε2 + Cβε
(
t∗k
)−1/2

≥ c(
t∗k
)−1

+ αε2
(
t∗k
)1/2

+ βε
,

and hence

εsk ≥
c

d−1
1 + ατ

1/2
fin + β

=: d2

where we used that t∗k ≥ s1 ≥ d1/ε and t∗k ≤ τfin/ε
2.

Estimate for k > 1 in the general case: We have established the estimate εs1 ≥ d1 as well as the
implication

εsk ≤ min{εs1, . . . , εsk−1} =⇒ εsk ≥ d2,

and the desired estimate for sk follows with d∗ := 1
2 min{d1, d2} by induction.

From Lemma 3.8 we immediately obtain t∗k ≥ 2kd∗/ε and we deduce for each macroscopic time
τfin that at most τfin/(2εd∗) phase transitions can happen for τ ≤ τfin, shifting the interface over a
macroscopic distance smaller than τfin/(2d∗).

We conclude this section with some comments concerning the microscopic fluctuations caused by
the phase transition of uk at t∗k. The properties of the discrete heat kernel imply that the amplitude
as well the inverse length of the effective spatial support scale with

ε√
ε2 +

(
τ − ε2t∗k

) ,
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which decays quite rapidly within a macroscopic time of order ε2 but much slower afterwards. In
particular, when uk+1 undergoes the next phase transition at time t∗k+1, the fluctuations evoked by

uk have reached an amplitude of order ε1/2 and spread over a macroscopic length of order ε−1/2.
Similarly, the amplitude of the velocity fluctuations at time t∗k+1 is of order ε3/2.

These scaling arguments, especially the fractional powers of ε, reveal that macroscopic single-
interface data are not invariant under the dynamics. In other words, the lattice data at times t / t∗k
– this means just before the phase transitions – do not satisfy Assumption 3.6, and we conclude that
interface propagation in discrete forward-backward diffusion equations is not only a two-scale but a
genuine multi-scale problem.

3.3 Macroscopic continuity and compactness results

In order to pass to the macroscopic limit ε→ 0, we regard the discrete data pj(t), qj(t), and rj(t) as
piecewise constant functions with respect to the macroscopic coordinates (τ, ξ). More precisely, we
set

Pε
(
τ, ξ + ζ

)
:= pξ/ε

(
τ/ε2

)
for all τ ≥ 0, ξ ∈ εZ, ζ ∈ [−ε/2,+ε/2)

and define Qε and Rε by analogous formulas. We further introduce the macroscopic interface position

ξ∗ε (τ) := ε

∞∑
k=1

kχ[t∗k,t
∗
k+1)

(
τ/ε2

)
for all τ ≥ 0,

as a piecewise constant function in time that jumps at the macroscopic phase transitions times defined
by

τ∗k, ε := ε2t∗k for all k ∈ Z.

In what follows we fix a macroscopic final time 0 < τfin <∞ and wish to pass to the limit ε→ 0 on
the macroscopic time-space domain

Ω := I × R, I := [0, τfin].

To this end, we recall that Lemma 3.8 provides constants d∗ > 0 and 0 < ε∗ ≤ 1 such that

Kε ≤
τfin

2d∗ε
, inf

k=1,...,Kε

τ∗k+1, ε − τ∗k, ε ≥ 2d∗ε (3.8)

holds for all 0 < ε ≤ ε∗, where

Kε := max
{
k ∈ Z : τ∗k, ε < τfin

}
is the number phase transitions taking place in the microscopic time interval [0, τfin/ε

2]. Notice that
d∗, ε∗, and all constants derived below depend on τfin and on the initial data via α and β.

Our first result in this section concerns the compactness of the discrete interface curves ξ∗ε .

Lemma 3.9 (compactness of interface curves). The family (ξ∗)0<ε≤ε∗ is compact in L∞(I) and each
limit curve is Lipschitz continuous.

Proof. We define a piecewise linear function ξ̄∗ε on [0, τfin] by the condition

ξ̄∗ε
(
τ∗k, ε

)
= ξ∗ε

(
τ∗k, ε

)
for all k = 1, . . . ,Kε and ξ̄∗ε (τfin) = ξ∗ε (τ∗Kε, ε

). We readily check that∣∣ξ̄∗ε (τ)− ξ∗ε (τ)
∣∣ ≤ ε, 0 ≤ d

dτ ξ̄
∗
ε (τ) ≤ ε

2d∗ε

for almost all τ ∈ [0, τfin], and conclude that the family
(
ξ̄∗ε
)

0<ε≤ε∗ is bounded in C0,1(I). All claims
hence follow from standard results in real analysis.
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Our main goal this section is to derive compactness result for Rε and Qε that imply (i) the
existence of pointwise convergent subsequences, and (ii) the continuity of any limit function. In a
preparatory step we next derive an auxiliary result for piecewise constant functions Fε on Ω revealing
that for L∞-compactness it is sufficient to establish uniform Hölder estimates with respect to τ ∈ I
and discrete ξ ∈ εZ. Here piecewise constant means, as above, continuous with respect to τ but
spatially constant in each interval ξ ∈ [εj − ε/2, εj + ε/2), j ∈ Z. Our auxiliary result and its proof
are straight forward and can very likely be found somewhere in the literature on numerical analysis
(though we are not aware of any reference).

Lemma 3.10 (compactness criterion for piecewise constant functions). Let (Fε)0<ε≤ε∗ be a family of
bounded and piecewise constant functions on Ω, and suppose that there exist constants γ1, γ2 ∈ (0, 1]
and C > 0 such that ∣∣Fε(τ2, ξ2)− Fε(τ1, ξ1)

∣∣ ≤ C(∣∣τ2 − τ1

∣∣γ1 +
∣∣ξ2 − ξ1

∣∣γ2
)

holds for all 0 < ε ≤ ε∗, every τ1, τ2 ∈ I, and all ξ1, ξ2 ∈ εZ. Then this family is compact in L∞(Ω)
and any limit function is locally Hölder continuous with exponent min{γ1, γ2}.

Proof. For each ε we define a piecewise linear function F̄ε by

F̄ε
(
τ, ξ̄

)
= Fε

(
τ, ξ̄

)
for all τ ∈ I, ξ̄ ∈ εZ,

and our assumptions yield the Hölder continuity of F̄ε with respect to time, that means∣∣F̄ε(τ2, ξ)− F̄ε(τ1, ξ)
∣∣ ≤ C |τ2 − τ1|γ1

for all ξ ∈ R and τ1, τ2 ∈ I. Moreover, since F̄ε is piecewise linear with respect to ξ and due to

∣∣Fε(τ, ξ̄)∣∣ ≤ C,
∣∣∣∣∣Fε
(
τ, ξ̄ ± ε

)
− Fε

(
τ, ξ̄

)
ε

∣∣∣∣∣ ≤ Cεγ2−1

we verify – discussing the cases sgn ζ1 = sgn ζ2 and sgn ζ1 6= sgn ζ2 separately – the estimate∣∣F̄ε(τ, ξ̄ + ζ2

)
− F̄ε

(
τ, ξ̄ + ζ1

)∣∣ ≤ Cεγ2−1 |ζ2 − ζ1| ≤ C |ζ2 − ζ1|γ2 (3.9)

for all τ ∈ I, ξ̄ ∈ εZ, and all ζ1, ζ2 ∈ [−ε,+ε]. In particular, setting ζ1 = 0 and taking the supremum
over ξ̄ and ζ2 we obtain the convergence estimate

‖Fε − F̄ε‖L∞(Ω) ≤ Cεγ2 .

We next show that F̄ε is Hölder continuous with respect to ξ. To this end, let τ ∈ I and ξ1, ξ2 ∈ R
be given and denote by ξ̄i the natural projection of ξi to εZ, that means

∣∣ξ̄i − ξi∣∣ ≤ ε/2. For
|ξ1 − ξ2| ≤ ε/2 we have ξ1, ξ2 ∈ [ξ̄1−ε, ξ̄1+ε] and are hence done by (3.9). In the case of |ξ2 − ξ1| > ε/2
we combine our assumptions of Fε with (3.9) and the triangle inequality to obtain∣∣F̄ε(τ, ξ2)− F̄ε(τ, ξ1)

∣∣ ≤ C ∣∣ξ̄2 − ξ̄1

∣∣γ2 + Cεγ2−1
( ∣∣ξ1 − ξ̄1

∣∣γ2 +
∣∣ξ2 − ξ̄2

∣∣γ2
)

≤ C
∣∣ξ̄2 − ξ̄1

∣∣γ2 + Cεγ2

and the desired estimate follows with∣∣ξ̄1 − ξ̄2

∣∣ ≤ |ξ2 − ξ1|+ 2 · ε/2 ≤ 3 |ξ2 − ξ1| .

The claim of the Lemma is now a consequence of the convergence estimate, the spatial and temporal
Hölder estimates for F̄ε, and the Arzelá-Ascoli theorem applied to F̄ε.

Since the functions Qε are obtained by solving the discrete heat equation with macroscopic initial
data, they converge as ε → 0 to a smooth solution of the macroscopic heat equation ∂τQ = ∂2

ξQ.
This is not surprising and can be proven in many different ways. For our purposes, it is sufficient
to observe that strong compactness is provided by combining Lemma 3.10 with the following Hölder
estimates.
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Lemma 3.11 (Hölder estimates for Qε). There exists a constant C independent of ε such that∣∣Qε(τ2, ξ2)−Qε(τ1, ξ1)
∣∣ ≤ C( |τ2 − τ1|1/2 + |ξ2 − ξ1|

)
holds with ξ1, ξ2 ∈ εZ and 0 ≤ τ1, τ2 ≤ τfin for all 0 < ε ≤ ε∗.

Proof. From Corollary 3.7 and |g0(t)| ≤ Ct−1/2 we derive

|qj(t2)− qj(t1)| ≤
∫ t2

t1

|q̇j(t)| dt ≤ αε2(t2 − t1) + Cβε
(√
t2 −

√
t1
)
,

as well as

∣∣qj2(t1)− qj1(t1)
∣∣ ≤ j2−1∑

j=j1

∣∣∇+qj(t1)
∣∣ ≤ αε(j2 − j1)

for all j1, j2 ∈ Z with j1 < j2 and all 0 ≤ t1 ≤ t2 <∞. Setting ji = ξi/ε and ti = τi/ε
2 we therefore

get ∣∣Qε(τ2, ξ2)−Qε(τ1, ξ1)
∣∣ ≤ α(ξ2 − ξ1) + α(τ2 − τ1) + β(

√
τ2 −

√
τ1),

and the claim follows since 0 ≤ τ1 ≤ τ2 ≤ τfin implies |τ2 − τ1|+
(√
τ2 −

√
τ1

)
≤ C
√
τ2 − τ1.

A crucial part of our analysis is to establish strong L∞-compactness of the functions Rε. The
main difficulty is that Rε equals the sum of Kε shifted and delayed versions of the discrete heat kernel
producing a temporal discontinuity at any of the phase transition times τ∗1, ε, . . . , τ

∗
Kε, ε

. In order to
control the impact of all these jumps in time we split

Rε(τ, ξ) = R1, ε(τ, ξ) +R2, ε(τ, ξ)

with

R1, ε(τ, ξ) := −2

Kε∑
k=1

Hε

(
τ − τ∗k, ε, ξ − εk

)
and R2, ε := Rε −R1, ε. Here the function Hε : R2 → R,

Hε(τ, ξ) :=


0 for τ ≤ 0,
τ

d∗ε
Gε(d∗ε, ξ) for 0 ≤ τ ≤ d∗ε,

Gε(τ, ξ) for τ ≥ d∗ε

can be regarded as a temporally regularized version of Gε, where the latter represents the discrete heat
kernel in macroscopic coordinates according to Gε

(
ε2t, εj

)
= gj(t). In particular, Hε is continuous

with respect to τ ∈ R and differs from Gε for 0 ≤ τ ≤ d∗ε only.
The function R2, ε contains all the temporal jumps caused by the phase transitions and can

therefore not be compact L∞(Ω). The key observation, however, is that R2, ε is still uniformly
bounded and converges as ε → 0 to 0 in Ls(Ω) for any 1 ≤ s < ∞. The macroscopic limit of
(Rε)0<ε≤ε∗ is therefore completely determined by the family (R1, ε)0<ε≤ε∗ , where each function R1, ε

is continuous with respect to τ and satisfies

Qε
(
τ∗k, ε, εk

)
+R1, ε

(
τ∗k, ε, εk

)
= lim

τ↗τ∗k, ε
Pε(τ, εk) = 1 (3.10)

for all k ≥ 1 with τ∗k, ε ≤ τfin thanks to limt↗t∗k pk(t) = 1.
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Lemma 3.12 (bounds for R2, ε). There exists a constant C independent of ε such that

‖R2, ε‖L∞(Ω) ≤ C, ‖R2, ε‖L1(Ω) ≤ Cε

holds for all 0 < ε ≤ ε∗.

Proof. By construction and Corollary 3.5 we have

suppR2, ε ⊂
(
I1, ε ∪ · · · ∪ IKε, ε

)
× R, Ik, ε := [τ∗k, ε, τ

∗
k, ε + d∗ε],

and the intervals Ik, ε are pairwise disjoint thanks to (3.8). In particular, using

R2, ε

(
τ∗k, ε + σ, jε

)
= 2Hε(σ, εj − εk)− 2Gε(σ, εj − εk) for all j ∈ Z, σ ≤ d∗ε,

we estimate ∣∣R2, ε

(
τ∗k, ε + σ, jε

)∣∣ ≤ 2
(
Gε(0, εj − εk) +Gε(d∗ε, εj − εk)

)
≤ 2,

see Lemma A.2, as well as∫
R

∣∣R2, ε

(
τ∗k, ε + σ, ξ

)∣∣ dξ ≤ 2ε
∑
j∈Z

(
gj−k(0) + gj−k

(
d∗/ε

))
= 4ε

thanks to
∑

j∈Z gj(t) = 1 for all t. The first estimate implies ‖R2, ε‖L∞(Ω) ≤ 2, whereas the second
gives rise to

‖R2, ε‖L1(Ω) ≤
Kε∑
k=1

∫ d∗ε

0

∫
R

∣∣R2, ε

(
τ∗k, ε + σ, ξ

)∣∣ dξ dσ ≤ 2Kεd∗ε
2 ≤ τfinε,

where we used (3.8) again.

It remains to establish L∞-compactness results for R1, ε. To this end we next derive a further
auxiliary result concerning the Hölder continuity of Hε.

Lemma 3.13 (Hölder estimates for Hε). For each 0 < γ < 1 there exists a constant C independent
of ε such that

∣∣Hε(τ2, ξ2)−Hε(τ1, ξ1)
∣∣ ≤ Cε( |τ2 − τ1|γ

max{d∗ε, τ1}γ+1/2
+

|ξ2 − ξ1|1/2

max{d∗ε, τ1}3/4

)

holds with ξ1, ξ2 ∈ εZ and 0 ≤ τ1 ≤ τ2 ≤ τfin for all 0 < ε ≤ ε∗.

Proof. Suppose at first that d∗ε ≤ τ1 ≤ τ2. Thanks to the temporal Hölder estimates for the discrete
heat kernel, see Lemma A.3, we find

∣∣Hε(τ2, ξ2)−Hε(τ1, ξ2)
∣∣ ≤ C

(τ2

ε2
− τ1

ε2

)γ
(τ1

ε2

)γ+1/2
=

Cε

τ
γ+1/2
1

|τ2 − τ1|γ

for some constant C independent of ε and ξ2. Similarly, Lemma A.3 also ensures that

∣∣Hε(τ1, ξ2)−Hε(τ1, ξ1)
∣∣ ≤ C

∣∣∣∣ξ2

ε
− ξ1

ε

∣∣∣∣1/2(τ1

ε2

)3/4
=

Cε

τ
3/4
1

|ξ2 − ξ1|1/2 .
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Now suppose that 0 ≤ τ1 ≤ τ2 ≤ d∗ε. We then estimate

∣∣Hε(τ2, ξ2)−Hε(τ1, ξ2)
∣∣ ≤ gξ2/ε

(
d∗/ε

)
d∗ε

(τ2 − τ1) ≤ C

d
3/2
∗ ε1/2

(τ2 − τ1)

≤ C

d
3/2
∗ ε1/2

(d∗ε)
1−γ |τ2 − τ1|γ ≤

Cε

(d∗ε)
γ+1/2

|τ2 − τ1|γ

as well as

∣∣Hε(τ1, ξ2)−Hε(τ1, ξ1)
∣∣ =

τ1

d∗ε

∣∣gξ2/ε(d∗/ε)− gξ1/ε(d∗/ε)∣∣ ≤ C

∣∣∣∣ξ2

ε
− ξ1

ε

∣∣∣∣1/2(
d∗
ε

)3/4
=
Cε |ξ2 − ξ1|1/2

(d∗ε)
3/4

.

In summary, we have established the desired estimates in the special cases 0 ≤ τ1 ≤ τ2 ≤ d∗ε
or d∗ε ≤ τ1 ≤ τ2. All other cases can be easily be traced back to these cases using the triangle
inequality.

We are now able to prove our main technical result in this section.

Lemma 3.14 (Hölder estimates for R1, ε). For each 0 < γ < 1/2 there exists a constant C indepen-
dent of ε such that ∣∣R1, ε(τ2, ξ2)−R1, ε(τ1, ξ1)

∣∣ ≤ C( |τ2 − τ1|γ + |ξ2 − ξ1|1/2
)

holds with ξ1, ξ2 ∈ εZ and 0 ≤ τ1 ≤ τ2 ≤ τfin for all 0 < ε ≤ ε∗.

Proof. It is sufficient to proof the assertions in time and space separately.
Hölder continuity with respect to ξ: Let 0 ≤ τ ≤ τfin and ξ1, ξ2 ∈ R be given. Then there exists

mε ∈ Z such that

τ∗mε, ε < τ ≤ τ∗mε+1, ε

and (3.8) ensure that εmε ≤ τ/(2d∗) as well as

τ − τ∗k, ε ≥ 2d∗ε(mε − k) for all k = 1, . . . ,mε.

In particular, we have

Hε

(
τ − τ∗k, ε, ξ

)
= 0 for all k > mε, ξ ∈ R,

so Lemma 3.13 yields

∣∣R1, ε(τ, ξ2)−R1, ε(τ, ξ1)
∣∣ ≤ 2

mε∑
k=1

∣∣Hε

(
τ − τ∗k, ε, ξ2

)
−Hε

(
τ − τ∗k, ε, ξ1

)∣∣ ≤ CSε |ξ2 − ξ1|1/2

with

Sε :=

mε∑
k=1

ε(
max

{
d∗ε, τ − τ∗k, ε

})3/4
≤ 1

d∗
+

mε−1∑
k=1

ε

(2d∗ε(mε − k))3/4
≤ 1

d∗
+

1

2d∗

∫ τ

0

dσ

σ3/4
≤ C,

where we used the Riemann sum approximation of the integral as well as the monotonicity of the
integrand.

Hölder continuity with respect to τ : Now let ξ ∈ R and 0 ≤ τ1 < τ2 ≤ τfin be fixed, and choose
mε, nε ∈ Z such that

τ∗mε, ε < τ1 ≤ τ∗mε+1, ε, τ∗nε, ε < τ2 ≤ τ∗nε+1, ε.
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This gives

εmε ≤ τ1/(2d∗), ε(nε −mε) ≤ (τ2 − τ1)/(2d∗)

as well as ∣∣R1, ε(τ2, ξ)−R1, ε(τ1, ξ)
∣∣ ≤ 2Xε + 2Yε,

where

Xε :=

mε∑
k=1

∣∣Hε

(
τ2 − τ∗k, ε, ξ

)
−Hε

(
τ1 − τ∗k, ε, ξ

)∣∣, Yε :=

nε∑
k=mε+1

∣∣Hε

(
τ2 − τ∗k, ε, ξ

)∣∣.
Similar to the above, we deduce that

Xε ≤
mε∑
k=1

Cε |τ2 − τ1|γ

max{d∗ε, τ − τ∗k, ε}γ+1/2
≤ C

(
1

d∗
+

1

2d∗

∫ τ1

0

dσ

σγ+1/2

)
|τ2 − τ1|γ ≤ C |τ2 − τ1|γ ,

whereas Yε can be estimated by

Yε ≤
nε∑

k=mε+1

Gε
(
τ2 − τ∗k, ε, 0

)
≤

nε∑
k=mε+1

Gε
(
τ2 − 2d∗ε(nε − k), 0

)
≤ 1

2d∗ε

∫ τ2

τ1

Gε(τ2 − σ, 0) dσ =
1

2d∗ε

∫ τ2−τ1

0
Gε(σ, 0) dσ

≤ C
∫ τ2−τ1

0

dσ

σ1/2
= C |τ2 − τ1|1/2 ≤ C |τ2 − τ1|γ ,

see Lemma A.2 and (3.8).

We conclude this section by showing that both the L1-norm of R1, ε(τ, ·) and the L2-norm of
∇εR1, ε(τ, ·) are bounded uniformly with respect to τ and ε, where

∇εF (ξ) :=
F (ξ + ε)− F (ξ)

ε

is the discrete spatial gradient of a function F defined on R.

Lemma 3.15 (Lebesgue bounds for R1, ε and its discrete gradient). There exists a constant C such
that

‖R1, ε‖L∞(I; L1(R)) + ‖∇εR1, ε‖L∞(I; L2(R)) ≤ C

holds for all 0 ≤ ε ≤ ε∗.

Proof. For τ ≥ εd∗, the properties of the discrete heat kernel, see Lemma A.2, imply∫
R
Hε(τ, ξ) dξ = ε

∑
j∈Z

gj
(
τ/ε2

)
= ε,

∫
R

(
∇εHε(τ, ξ)

)2
dξ = ε−1

∑
j∈Z

(
∇+gj

(
τ/ε2

))2
≤ ε2C

τ3/2
,

and combining this with the definition of Hε for all τ ∈ R we find

‖Hε(τ, ·)‖L1(R) ≤ ε, ‖∇εHε(τ, ·)‖L2(R) ≤ C


0 for τ < 0,

ε1/4 for 0 < τ < d∗ε,

ετ−3/4 for τ > d∗ε.

From the first estimate we infer that

‖R1, ε(τ, ·)‖L1(R) ≤ εKε ≤
τfin

2d∗
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holds for all τ ∈ I. We next fix τ ∈ I and choose an integer mε such that τ∗mε, ε < τ ≤ τ∗mε+1, ε. As
in the first part of the proof of Lemma 3.14, we estimate

‖∇εR1, ε(τ, ·)‖L2(R) ≤
mε∑
k=1

‖∇εHε

(
τ − τ∗k, ε, ·

)
‖L2(R)

≤ Cε1/4 +

mε−1∑
k=1

Cε(
2kd∗ε(mε − k)

)3/4 = C
(
ε1/4 + 1

)
,

and the proof is complete.

3.4 Convergence results and verification of limit dynamics

In view of the compactness results in Lemmas 3.9, 3.11, and 3.14, we may select a subsequence of
ε→ 0, which we do not relabel, such that

ξ∗ε → ξ∗ in L∞(I), Qε → Q in L∞(Ω), R1, ε → R in L∞(Ω). (3.11)

As R2, ε → 0 in Ls(Ω) for any 1 ≤ s <∞ by Lemma 3.12, we find

Pε = Qε +R1, ε +R2, ε → Q+R = P in Lsloc(Ω), (3.12)

that means, P is the limit of Pε in Lsloc(Ω) and the limit of Qε+R1, ε in L∞(Ω). Moreover, convergence
of (Qε)ε implies convergence of the initial data

Pε(0, ·) = Qε(0, ·)→ Q(0, ·) = P (0, ·) in L∞(R). (3.13)

Theorem 3.16 (limit dynamics along subsequences). Any limit (P,Q,R, ξ∗) satisfies:

1. Ξ∗ := {(τ, ξ∗(τ)) : τ ∈ I} is a Lipschitz curve in Ω; the functions Q, R, and P = Q + R
are bounded and locally Hölder continuous in Ω; furthermore, R ∈ L∞(I; L1(R)) and ∂ξR ∈
L∞(I; L2(R)).

2. Q is a solution of the heat equation in Ω with initial data P (0, ·).

3. (P, ξ∗) is a distributional solution of

∂τP = ∂2
ξP in Ω \ Ξ∗, |[P ]| = 0 and 2 d

dτ ξ
∗ = |[∂ξP ]| on Ξ∗ (3.14)

with initial data (P (0, ·), ξ∗(0)) attained in L∞(R)× R. Moreover, we have

P (τ, ξ) ≥ −1 for all (τ, ξ) ∈ Ω,

P (τ, ξ) ≤ 1 if ξ ≥ ξ∗(τ),

which implies P ∈ [−1, 1] on Ξ∗, and the movement of the interface is determined by

d
dτ ξ
∗(τ) ≥ 0 for almost all τ ∈ I,

d
dτ ξ
∗(τ) = 0 if P (τ, ξ∗(τ)) 6= 1.

Remark 3.17. Being a distributional solution of (3.14) means

−
∫ τfin

0

∫
R

(P + µ) ∂τψ dξ dτ =

∫ τfin

0

∫
R
P ∂2

ξψ dξ dτ, ψ ∈ C∞c ((0, τfin)× R), (3.15)

where µ(τ, ξ) = sgn (ξ∗(τ)− ξ). In the following we will use ξ∗ and µ interchangeably to represent
the solution, whichever is more convenient.
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Proof of Theorem 3.16. The continuity properties of ξ∗ and Q are immediate consequences of
Lemma 3.9 and Lemma 3.11; Lemma 3.9 also yields d

dτ ξ
∗ ≥ 0. Hölder continuity of P and the

claims for R follow from P = Q+R and the bounds on R1, ε proved in Lemmas 3.14 and 3.15.
Setting µε(τ, ξ) = sgn (ξ∗ε (τ)− ξ) = sgnUε(τ, ξ), we write the equation for Uε = Pε + µε in

distributional form as

−
∫ τfin

0

∫
R

(Pε + µε) ∂τψ dξ dτ =

∫ τfin

0

∫
R
Pε ∆ε ψ dξ dτ, ψ ∈ C∞c ((0, τfin)× R)

and deduce (3.15) in the limit ε→ 0. Similarly, Q solves the heat equation, and both P and Q attain
their initial data in L∞(R) due to (3.13) and continuity of Q.

By construction, the discrete solutions satisfy Pε ≥ −1 in Ω and Pε ≤ 1 in {(τ, ξ) ∈ Ω : ξ ≥ ξ∗ε (τ)}
for all ε > 0, and in the limit ε → 0 we obtain the corresponding inequalities for P and ξ∗. In
particular, we have P (τ, ξ∗(τ)) ∈ [−1, 1] for all τ ∈ I.

It remains to check that P (τ, ξ∗(τ)) < 1 implies d
dτ ξ
∗(τ) = 0. To this end, let (τ̄ , ξ̄) ∈ Ξ∗ and

δ > 0 be given such that P (τ̄ , ξ̄) = 1 − 2δ, and suppose at first that ξ̄ < ξ∗(τfin). For any ε choose
ξ̄ε ∈ εZ such that ξ̄ε ≤ ξ̄ ≤ ξ̄ε + ε and denote by τ̄ε the phase transition time corresponding to ξ̄ε.
See the left panel of Figure 3.4 for an illustration and notice that τ̄ε < τfin because otherwise the
interface position would be maximal via ξ̄ = ξ∗(τfin). Hölder continuity of P now implies

P (τ̄ε, ξ̄ε)− 1 + 2δ ≤ |P (τ̄ε, ξ̄ε)− P (τ̄ , ξ̄)| ≤ C
(
|τ̄ε − τ̄ |γ + εγ

)
for some exponent 0 < γ < 1, while uniform convergence of Qε + R1, ε → P as ε → 0 and (Qε +
R1, ε)(τ̄ε, ξ̄ε) = 1, see (3.10), yield

P (τ̄ε, ξ̄ε) ≥ 1− o(1)ε→0.

We thus find δ ≤ C|τ̄ε − τ̄ |γ for all sufficiently small ε > 0 and may select a subsequence of ε → 0
such that τ̄ε → τ̄0 and τ̄0 < τ̄ . The uniform convergence ξ∗ε → ξ∗ implies

ξ∗(τ̄0) = lim
ε→0

ξ∗ε (τ̄ε) = lim
ε→0

ξ̄ε = ξ∗(τ̄),

and d
dτ ξ
∗ ≥ 0 ensures that ξ∗ is constant in [τ̄0, τ̄ ]. By a similar argument using ξ̂ε = ξ̄ε + ε and

the corresponding phase transition time τ̂ε we finally conclude that τ̄ is a regular point of ξ∗ and
d
dτ ξ
∗(τ̄) = 0. Moreover, in case of τ̄ < τfin and ξ̄ = ξ∗(τfin) we find that ξ∗ is constant on [τ̄ , τfin],

and for τ̄ = τfin we can repeat the above reasoning after enlarging the time interval slightly beyond
τfin.

Figure 3.4: Left. Illustration of the key argument in the proof of Theorem 3.16: By construction, we have
ξ̄ = ξ∗(τ̄) = ξ∗(τ̄0) and d

dτ ξ
∗ ≥ 0, so ξ∗ is constant on [τ̄0, τ̄ ]. Right. Approximation sn of the sign function

used in the proof of Theorem 3.18 for the case ξ∗1 ≥ ξ∗2 ; for ξ∗1 ≤ ξ∗2 one has to redefine sn such that sn(0) = −1.

We complement Theorem 3.16 with a uniqueness result by adapting some techniques for hysteresis
problems from [Hil89, Vis06].

Theorem 3.18 (well-posedness of the limit problem). The solution to the limit problem in Theo-
rem 3.16 is uniquely determined by the initial data P (0, ·)and ξ∗(0).
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Proof. Given two solutions (P1, Q1, R1, ξ
∗
1) and (P2, Q2, R2, ξ

∗
2) with initial data P1(0, ·) = P2(0, ·)

and ξ∗1(0) = ξ∗2(0), we set P = P1−P2 and µ = µ1−µ2, where µi(τ, ξ) = sgn(ξ∗i (τ)− ξ) as in Remark
3.17. In order to show P = µ = 0 we follow the strategy of [Hil89, Theorem 5], that means we first
establish sufficient regularity in time and derive afterwards an L1-contraction inequality by testing
the equation for P with sgnP .

Regularity in time: Standard uniqueness results for the heat equation imply Q1 = Q2, and we

find P = R1−R2 ∈ L∞(I; L1(R)) and ∂ξP ∈ L∞(I; L2(R)) in addition to boundedness and continuity.
Furthermore, µ(τ, ξ) is bounded, and it is nonzero only if ξ lies between ξ∗1(τ) and ξ∗2(τ). We thus
conclude

P ∈ L∞(I; L1(R)) ∩ L∞(I;H1(R)) and µ ∈ L∞(I; L2(R)). (3.16)

In view of (3.16), we may integrate by parts after subtracting the equations for (P1, µ1) and (P2, µ2)
from each other, which gives∫ τfin

0
∂τφ(τ)

∫
R

(
P + µ

)
(τ, ξ) η(ξ) dξ dτ =

∫ τfin

0
φ(τ)

∫
R
∂ξP (τ, ξ) ∂ξη(ξ) dξ dτ

for all φ ∈ C∞c (I), η ∈ C∞c (R), and by density also for all φ ∈ H1
0(I), η ∈ H1(R). Consequently,

d

dτ

∫
R

(
P (τ, ξ) + µ(τ, ξ)

)
η(ξ) dξ = −

∫
R
∂ξP (τ, ξ) ∂ξη(ξ) dξ (3.17)

for all τ ∈ I. A direct computation shows that

d

dτ

∫
R
µ(τ, ξ) η(ξ) dξ = 2η(ξ∗1(τ)) d

dτ ξ
∗
1(τ)− 2η(ξ∗2(τ)) d

dτ ξ
∗
2(τ) (3.18)

for all τ ∈ I where d
dτ ξ
∗
1(τ) and d

dτ ξ
∗
2(τ) are defined, and the right hand side of (3.18) can easily

be bounded by C‖η‖H1(R), where the constant C depends on ‖ξ∗j ‖W1,∞(I), j = 1, 2. Thus, ∂τP (τ, ·)
exists in H1(R) and∣∣〈∂τP (τ, ·), η

〉∣∣ =

∣∣∣∣ d
dτ

∫
R
P (τ, ξ) η(ξ) dξ

∣∣∣∣ ≤ C (‖∂ξP‖L∞(I;L2(R)) + 1
)
‖η‖H1(R).

By standard embedding results, see for instance [Eva98, Thm. 3 in Sec. 5.9] and note that I is
bounded, ∂τP ∈ L∞(I;H−1(R)) and P ∈ L∞(I;H1(R)) imply P ∈ C(I;L2(R)), and with (3.16) we
conclude P ∈ C(I;L1(R)).

Contraction inequality : Given τ ∈ [τ1, τ2], where 0 ≤ τ1 < τ2 ≤ τfin such that ξ∗1 ≥ ξ∗2 in [τ1, τ2],
we approximate the sign function by

sn(z) =


max(−1,min(1, 1 + nz)) if |z| ≤ n,
n+ sgn z − |z| if n < |z| ≤ n+ 1,

0 otherwise,

see Figure 3.4 for an illustration. In what follows we suppose n > ‖P‖∞ and consider η =
sn(P (τ, ·)) ∈ H1(R) in (3.17)–(3.18). Due to P (τ, ξ∗1(τ)) ≥ 0 if d

dτ ξ
∗
1(τ) > 0 and sn(0) = 1, we

then find
η(ξ∗1(τ)) d

dτ ξ
∗
1(τ) ≥ d

dτ ξ
∗
1(τ),

while sn ≤ 1 and d
dτ ξ
∗
2(τ) ≥ 0 imply

−η(ξ∗2(τ)) d
dτ ξ
∗
2(τ) ≥ − d

dτ ξ
∗
2(τ).

Hence, we obtain the Hilpert estimate

η(ξ∗1(τ)) d
dτ ξ
∗
1(τ)− η(ξ∗2(τ)) d

dτ ξ
∗
2(τ) ≥ d

dτ ξ
∗
1(τ)− d

dτ ξ
∗
2(τ),
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and as moreover the right hand side of (3.17) is nonpositive, we infer〈
∂τP (τ, ·), sn(P (τ, ·))

〉
+ 2

(
d
dτ ξ
∗
1(τ)− d

dτ ξ
∗
2(τ)

)
≤ 0. (3.19)

Using 〈
∂τP (τ, ·), sn(P (τ, ·))

〉
=

d

dτ

∫
R
Sn(P (τ, ξ)) dξ,

where S′n(z) = sn(z) and Sn(0) = 0, we next integrate (3.19) from τ1 to τ2 and arrive at∫
R
Sn(P (τ2, ξ)) dξ + 2 |ξ∗1(τ2)− ξ∗2(τ2)| ≤

∫
R
Sn(P (τ1, ξ)) dξ + 2 |ξ∗1(τ1)− ξ∗2(τ1)|.

By construction, Sn(P (τ, ·)) converges to |P (τ, ·)| in L1(R) as n→∞, and passing to the limit yields
the desired inequality

‖P (τ2, ·)‖L1(R) + 2 |ξ∗1(τ2)− ξ∗2(τ2)| ≤ ‖P (τ1, ·)‖L1(R) + 2 |ξ∗1(τ1)− ξ∗2(τ1)| (3.20)

in the case of ξ∗1 ≥ ξ∗2 in [τ1, τ2]. Moreover, for ξ∗1 ≤ ξ∗2 in [τ1, τ2] we derive (3.20) by repeating the
above arguments with sn(z) = max(−1,min(1,−1 + nz)) for |z| ≤ n, which satisfies sn(0) = −1.
Combining both cases and continuity of ‖P (τ, ·)‖L1(R) we finally obtain

‖P‖L∞(I;L1(R)) + 2‖ξ∗1 − ξ∗2‖L∞(I) ≤ ‖P (0, ·)‖L1(R) + 2 |ξ∗1(0)− ξ∗2(0)| ,

so uniqueness follows from P (0, ·) = 0 and ξ∗1(0) = ξ∗2(0).

As a consequence of Theorems 3.16 and 3.18 we obtain the following approximation result.

Corollary 3.19 (uniqueness and improved convergence). If Pε(0, ·) → P (0, ·) in L∞(R) as ε → 0,
the limit (P,Q,R, ξ∗) in Theorem 3.16 is unique and the convergence (3.11)–(3.12) holds along the
whole family ε→ 0.

A The discrete heat kernel

Denoting by ̂ the Fourier transform with respect to the discrete spatial variable j, that is

ĝ(t, k) =
∑
j∈Z

gj(t)e
−ıkj , k ∈ [−π, π),

the initial value problem (3.4) for the discrete heat kernel transforms into

∂tĝ(t, k) = ρ(k)ĝ(t, k), ĝ(0, k) = 1, (A.1)

where ρ is the Fourier symbol of the negative discrete Laplacian, i. e.

ρ(k) = 2− e−ık − e+ık = 2(1− cos k).

Solving the parametrized ODE (A.1) and applying the inverse Fourier transform we find

gj(t) =
1

2π

∫ +π

−π
ĝ(t, k)eıkj dk =

1

2π

∫ +π

−π
exp (−ρ(k)t) cos (jk) dk. (A.2)

Lemma A.1 (monotonicity and convexity properties for j = 0).

1. t 7→ g0(t) is strictly positive, strictly decreasing, and strictly convex.

2. t 7→
∫ t

0 g0(s) ds is strictly positive, strictly increasing, and strictly concave.

31



3. t 7→ ġ0(t) is strictly negative, strictly increasing, and strictly concave.

Proof. The representation formula (A.2) implies

g0(t) > 0, ġ0(t) < 0, g̈0(t) > 0,
...
g0(t) < 0

for all t ≥ 0, so all assertions follow immediately.

Employing standard methods from asymptotic analysis one finds

t1/2gj(t)
t→∞−−−→ 1

2
√
π
, t3/2ġj(t)

t→∞−−−→ − 1

4
√
π

as well as asymptotic laws for the long-time behavior of any discrete moment. For our considerations
in §3, however, the following rather rough estimates are sufficient.

Lemma A.2 (temporal decay properties). There exist positive constants c and C such that

0 ≤ gj(t) ≤ g0(t) ≤ C(1 + t)−1/2, (A.3)

|∆ gj(t)| = |ġj(t)| ≤ −ġ0(t) ≤ C(1 + t)−3/2 (A.4)

and

g0(t) ≥ c(1 + t)−1/2 (A.5)

hold for all j ∈ Z and all t ≥ 0. Moreover, we have∑
j∈Z

gj(t) = 1,
∑
j∈Z

∣∣∇+gj(t)
∣∣2 ≤ C(1 + t)−3/2 (A.6)

for all t ≥ 0 and some constant C.

Proof. For t ≥ 1 we observe that

1

4
k2 ≤ 4

π2
k2 ≤ ρ(k) ≤ k2 for all k ∈ [−π, π],

and this implies

|gj(t)| ≤ g0(t) ≤ 1

2π

∫ +π

−π
exp

(
− k2t/4

)
dk ≤ 1

π
√
t

∫ +∞

−∞
exp

(
− k2

)
dk =

√
π√
t

as well as

g0(t) ≥ 1

2π

∫ +π

−π
exp

(
− k2t

)
dk =

1

2π
√
t

∫ +π
√
t

−π
√
t

exp
(
− k2

)
dk ≥ 1

2π
√
t

∫ +π

−π
exp

(
− k2

)
dk.

Combining these estimates with 0 < g0(1) ≤ g0(t) ≤ g0(0) = 1 for 0 ≤ t ≤ 1 we readily obtain (A.3)
and (A.4). Moreover, for t ≥ 1 we estimate

|∆ gj(t)| = |ġj(t)| ≤
1

2π

∫ +π

−π
ρ(k) exp

(
− ρ(k)t

)
dk = −ġ0(t) ≤ 1

2π

∫ +π

−π
k2 exp

(
− k2t/4

)
dk ≤ 2

√
π

t3/2

and this provides (A.5) due to 0 < −ġ0(t) ≤ −ġ0(0) = −∆ g0(0) = 2 for all t. The discrete heat
equation (3.4) further ensures conservation of mass via

∑
j∈Z gj(t) =

∑
j∈Z gj(0) = 1. In particular,

using discrete integration by parts as well as Hölder’s inequality for series we find∑
j∈Z

(
∇+gj(t)

)2
= −

∑
j∈Z

gj(t)∆ gj(t) ≤ ‖∆ g(t)‖∞

which implies the estimate in (A.6) thanks to (A.4).
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A further key ingredient to our convergence proof in §3 are the following time-dependent Hölder
estimates for gj(t).

Lemma A.3 (longtime behavior of spatial and temporal Hölder constants). For each γ ∈ [0, 1] there
exists a constant Cγ such that

sup
t2≥t1

∣∣gj(t2)− gj(t1)
∣∣

|t2 − t1|γ
≤ Cγ(1 + t1)−γ−1/2

holds for all j ∈ Z and all t1 > 0. Moreover, there exists a constant C such that

sup
j1,j2∈Z

∣∣gj2(t)− gj1(t)
∣∣

|j2 − j1|1/2
≤ C(1 + t)−3/4

holds for all t > 0.

Proof. Let j ∈ Z and 0 < t1 < t2 be fixed. Thanks to (A.4) we estimate∣∣gj(t2)− gj(t1)
∣∣ ≤ ∫ t2

t1

∣∣ġj(t)∣∣ dt ≤ C ∫ t2

t1

(1 + t)−3/2 dt = C
∣∣(1 + t1)−1/2 − (1 + t2)−1/2

∣∣,
and writing 1 + t2 = s(1 + t1) with s ≥ 1 we get

|gj(t2)− gj(t1)|
|t2 − t1|γ

≤ Cfγ(s)

(1 + t1)γ+1/2
, fγ(s) :=

1

s1/2

s1/2 − 1

(s− 1)γ
.

We readily check that the function fγ is bounded on [1,∞), so the first claim follows by taking the
supremum over s ≥ 1.

Now let t > 0 and j1, j2 ∈ Z with j2 > j1 be arbitrary. By Hölder’s inequality for series we then
find

∣∣gj2(t)− gj1(t)
∣∣2 =

j2−1∑
j=j1

∣∣∇+gj(t)
∣∣2

≤

j2−1∑
j=j1

|∇+gj(t)|2
j2−1∑

j=j1

1


≤

∑
j∈Z
|∇+gj(t)|2

(j2 − j1),
and the second assertion follows from (A.6).
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