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Abstract

We propose a model for the restoration of images consisting only of completely black
or completely white regions with the use of Caccioppoli sets.

The purpose of this short note is to present a technique which might be useful for the
restoration of images consisting only of purely black or purely white regions. To be precise,
we consider a function u: Ω → R defined on a bounded Lipschitz domain Ω ⊂ R2 taking
just values in {0, 1}, which can be seen as a model for the kind of images we have in mind.

Assume that a certain part D of the image is damaged, which means that the observed
image is represented through a L2-measurable function f : Ω−D → [0, 1]. Here L2 stands
for Lebesgue’s measure in the plane, and D denotes a L2-measurable subset of Ω with
non-empty interior Int(D) and the property

L2(D) < L2(Ω) . (1)

For points x ∈ Ω−D the number f(x) is a measure for the intensity of the grey level in
the observed image at the point x, and our goal is to restore the missing part D → [0, 1]
of the image from the observed intensity f , where the quality of data fitting is measured
through the quantity

∫
Ω−D

(u− f)2 dx.

Of course our problem is located in the general framework of “image inpainting” discussed
under various aspects for example in the papers [ACS], [BHS], [BCMS], [CKS], [CS], [PSS],
[Sh] and in the references quoted therein, but one new feature of our analysis might be
the requirement

u(x) ∈ {0, 1} a.e. on Ω , (2)

which in contrast to our previous investigations (see [BF1], [BF2]) we now impose on the
restored image u: Ω → R.

As a suitable method to reconstruct the image we propose to study a TV-like regulariza-
tion, i.e. we minimize the functional

J [u] :=

∫
Ω

|∇u|+ λ

2

∫
Ω−D

(u− f)2 dx (3)

on a certain subclass of the space BV(Ω) taking care of the constraint (2). In equation
(3), λ > 0 is a free parameter and

∫
Ω
|∇u| is the total variation of the vector-valued

Radon measure ∇u. For a definition of the spave BV(Ω) of functions having finite total
variation we refer to [AFP] or [Gi].
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Clearly our requirement (2) suggests to minimize J among characteristic functions, hence
we replace J from (3) through the functional

F [E] :=

∫
Ω

|∇χE|+
λ

2

∫
Ω−D

(χE − f)2 dx , (4)

E denoting a set of finite perimeter (= Caccioppoli set) in Ω and χE its characteristic
function (see, e.g., [AFP] or [Gi]).

We recall (compare [Gi], Proposition 3.1) that for a Borel set E there exists a Borel set
Ẽ equivalent to E, that is, Ẽ differs from E only by a set of L2-measure zero, moreover
Ẽ has the property

0 < L2(Ẽ ∩Br(x)) < πr2 (5)

for all x ∈ ∂Ẽ and all r > 0.

When considering BV-functions, one actually considers equivalence classes of functions
being different only on a set of measure zero. In the same spirit, when discussing
Caccioppoli sets E, the perimeter and other properties remain unchanged, if we modify E
on a set with L2-measure zero, which means that again we are concerned with equivalence
classes and we may therefore assume that (5) holds for any set we consider.

We have the following result:

Theorem 1. Suppose that D satisfies (1) and consider a L2-measurable function f :
Ω−D → [0, 1].

i) Then there exists a set E of finite perimeter in Ω such that

F [E] ≤ F [G]

for any Caccioppoli set G ⊂ Ω, where F is defined in (4).

ii) The boundary part ∂F ∩ Ω of any F-minimizer F is a C1-curve.

iii) If E is a F-minimizing set and if x ∈ ∂E belongs to the interior of D, then for a
suitable disk Br(x) ⊂ Int(D) the intersection ∂E ∩ Br(x) is contained in a straight
line.

Remark 1. From the analytical point of view the smoothness of ∂E ∩ Ω seems to be a
nice result but it might be unnatural or too restrictive in the framework of image analysis.
We also do not know if Theorem 1 iii) contaims a realistic statement.

Proof of Theorem 1. Let (En) denote a F -minimizing sequence of Caccioppoli sets. Then
we have (un := χEn)

sup
n

[∫
Ω

|∇un|+
∫
Ω

|un| dx

]
< ∞ , (6)
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and by BV-compactness ([Gi], Theorem 1.19) inequality (6) implies the existence of u ∈
L1(Ω) such that

ũn → u in L1(Ω) and a.e. on Ω (7)

for a subsequence (ũn) of (un). From (7) we infer (compare [Gi], Theorem 1.9)∫
Ω

|∇u| ≤ lim inf
n→∞

∫
Ω

|∇ũn| , (8)

thus u ∈ BV(Ω), and from ũn → u a.e. it follows u(x) ∈ {0, 1} as well as∫
Ω−D

(ũn − f)2 dx →
∫
Ω−D

(u− f)2 dx . (9)

If we let
E := {x ∈ Ω : u(x) = 1} ,

then u = χE and (8), (9) imply the F -minimality of the set E. This proves part i) of
Theorem 1.

In order to verify ii) we show that any F -minimizer F is almost minimal in the sense of
[Ta]: consider a Caccioppoli set F̃ such that

F∆F̃ := (F − F̃ ) ∪ (F̃ − F ) b Br(x)

for a disk Br(x) b Ω. The F -minimality of F then yields (recall 0 ≤ f ≤ 1 a.e. on Ω)∫
Br(x)

|∇χF | ≤
∫
Br(x)

|∇χF̃ |+
λ

2

∫
Br(x)∩(Ω−D)

[
(χF̃ − f)2 − (χF − f)2

]
dy

≤
∫
Br(x)

|∇χF̃ |+
λ

2
L2(Br(x))

=

∫
Br(x)

|∇χF |+
λ

2
πr2 ,

and we can quote [Ta], Section 1.9, to see that ∂F ∩ Ω is a C1-curve.

Due to the smoothness of ∂E ∩ Ω for F -minimizing sets E we have (Hs denoting the
Hausdorff measure of dimension s)∫

U

|∇χE| = H1(∂E ∩ U)

for any open set U b Ω, and if we choose U b Int(D), we see that ∂E is a local minimizer
of the curve length within the set U , which implies iii) of Theorem 1. �

Extension 1.
We briefly mention another approach towards the restoration of images consisting only
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of black and white zones: let Φ: Ω × R2 → [0,∞) denote a parametric integrand, i.e. a
continuous function satisfying the homogeneity condition

Φ(x, tp) = tΦ(x, p) , x ∈ Ω , p ∈ R2 , t ≥ 0 , (10)

and being convex in p for each fixed x ∈ Ω. Moreover, we assume the coercivity of Φ in
the sense that

Φ(x, p) ≥ ν1|p| (11)

holds for all x ∈ Ω and p ∈ R2 with a suitable constant ν1 > 0.

An important example (considered in Theorem 1) is Φ(p) := |p|, alternatively we may
look at

Φ(x, p) =

[
2∑

α,β=1

aαβ(x)pαpβ

] 1
2

with continuous coefficients aαβ such that

ν2|p|2 ≤
2∑

α,β=1

aαβ(x)pαpβ ≤ ν3|p|2 , x ∈ Ω , p ∈ R2 ,

where ν2, ν3 > 0.

If Φ satisfies (10) and (11), we then replace F from (4) by

G[E] :=

∫
Ω

Φ(x,∇χE) +
λ

2

∫
Ω−D

(χE − f)2 dx (12)

for Caccioppoli sets E ⊂ Ω. In (12) we use the following notation (compare [GMS1],
[GMS2]): if µ denotes a R2-valued Radon-measure, we let∫

Ω

Φ(x, µ) :=

∫
Ω

Φ
(
x,

dµ

d|µ|

)
d|µ| ,

where dµ/d|µ| is the Radon-Nikodym derivative of the measure µ w.r.t. the measure |µ|.
Note that dµ/d|µ| is a unit vector |µ|-a.e.

Then we have:

there exists a set of finite perimeter E ⊂ Ω such that

G[E] ≤ G[F ]

for any other set F of finite perimeter.

4



The proof can be carried out as done in Theorem 1 for the particular case Φ(p) = |p|.

Extension 2.
Suppose that we want to restore an image using a finite number of distinct grey levels,
which means that now we consider BV-functions u ∈ BV(Ω, A) taking their values in the
set

A := {a1, . . . , an} , 0 ≤ a1 < a2 < · · · < an ≤ 1 ,

with given numbers ai. We then replace G from (12) through

G[u] :=
∫
Ω

Φ(x,∇u) +
λ

2

∫
Ω−D

(u− f)2 dx

and get:

the problem G → min in BV(Ω, A) admits at least one solution.

Extension 3.
It might be of interest to include a “volume constraint” which means to consider the
problem F [E] → min among all Caccioppoli sets E in Ω satisfying

L2(E) = m. (13)

Here F is defined according to (4) and m denotes some fixed number in the interval
(0,L2(Ω)). The requirement (13) can be understood in the sense that we have to restore
the image using a given amount of black color. The existence of a solution is easily
established along the lines of the proof of Theorem 1. For a discussion of the analytical
and topological properties of minimizing sets subject to the constraint (13) we refer the
reader to [Qi]. In particular it follows from Theorem 4.5 of this reference that the boundary
of a minimizing set is a smooth curve.
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