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Abstract

We propose a model for the restoration of images consisting only of completely black
or completely white regions with the use of Caccioppoli sets.

The purpose of this short note is to present a technique which might be useful for the
restoration of images consisting only of purely black or purely white regions. To be precise,
we consider a function u: € — R defined on a bounded Lipschitz domain Q C R? taking
just values in {0, 1}, which can be seen as a model for the kind of images we have in mind.

Assume that a certain part D of the image is damaged, which means that the observed
image is represented through a £?-measurable function f: Q — D — [0, 1]. Here £? stands
for Lebesgue’s measure in the plane, and D denotes a £2-measurable subset of Q with
non-empty interior Int(D) and the property

L2(D) < £2(). (1)

For points € 2 — D the number f(x) is a measure for the intensity of the grey level in
the observed image at the point z, and our goal is to restore the missing part D — [0, 1]
of the image from the observed intensity f, where the quality of data fitting is measured
through the quantity [, ,(u— f)*dx.

Of course our problem is located in the general framework of “image inpainting” discussed
under various aspects for example in the papers [ACS|, [BHS], [BCMS], [CKS], [CS], [PSS],
[Sh] and in the references quoted therein, but one new feature of our analysis might be
the requirement

u(z) € {0,1} a.e. on Q, (2)

which in contrast to our previous investigations (see [BF1], [BF2]) we now impose on the
restored image u: ) — R.

As a suitable method to reconstruct the image we propose to study a TV-like regulariza-
tion, i.e. we minimize the functional

T = [1Val+5 [ (=g 3)

on a certain subclass of the space BV(2) taking care of the constraint (2). In equation
(3), A > 0 is a free parameter and [, |Vu| is the total variation of the vector-valued
Radon measure Vu. For a definition of the spave BV(Q) of functions having finite total
variation we refer to [AFP] or [Gi].



Clearly our requirement (2) suggests to minimize J among characteristic functions, hence
we replace J from (3) through the functional

FiE)= [Vl 5 [ (e e, )

E denoting a set of finite perimeter (= Caccioppoli set) in Q and xg its characteristic
function (see, e.g., [AFP] or [Gi]).

We recall (compare [Gi], Proposition 3.1) that for a Borel set E there exists a Borel set
E equivalent to E, that is, E differs from F only by a set of £2-measure zero, moreover
F has the property

0 < LXE N B,(x)) < 7r? (5)

for all z € OF and all r > 0.

When considering BV-functions, one actually considers equivalence classes of functions
being different only on a set of measure zero. In the same spirit, when discussing
Caccioppoli sets E, the perimeter and other properties remain unchanged, if we modify
on a set with £2-measure zero, which means that again we are concerned with equivalence
classes and we may therefore assume that (5) holds for any set we consider.

We have the following result:

Theorem 1. Suppose that D satisfies (1) and consider a L*-measurable function f:
Q—D —10,1].

i) Then there exists a set E of finite perimeter in Q0 such that
FE] < F[G]
for any Caccioppoli set G C 2, where F is defined in (4).
i) The boundary part OF N of any F-minimizer F is a C-curve.

iit) If E is a F-minimizing set and if x € OE belongs to the interior of D, then for a
suitable disk B,(x) C Int(D) the intersection OF N B,.(x) is contained in a straight
line.

Remark 1. From the analytical point of view the smoothness of OF N §) seems to be a
nice result but it might be unnatural or too restrictive in the framework of image analysis.
We also do not know if Theorem 1 iii) contaims a realistic statement.

Proof of Theorem 1. Let (E,) denote a F-minimizing sequence of Caccioppoli sets. Then

we have (u, := xg,)
sup [/ |Vun|—|—/ |un|da7] < 00, (6)
n Q Q
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and by BV-compactness (|Gi], Theorem 1.19) inequality (6) implies the existence of u €
L*(€) such that
U, — u in L'(Q) and a.e. on (7)

for a subsequence (1,,) of (u,). From (7) we infer (compare [Gi], Theorem 1.9)

/|Vu| < liminf/ |Vii,|, (8)
Q n— oo QO

thus v € BV(Q), and from @, — u a.e. it follows u(z) € {0,1} as well as

/QD(ﬂn — fidz — (u— f)*dx. (9)

Q-D

If we let
E:={reQ: ulx)=1},

then uv = yg and (8), (9) imply the F-minimality of the set E. This proves part i) of
Theorem 1.

In order to verify ii) we show that any F-minimizer F is almost minimal in the sense of
[Ta]: consider a Caccioppoli set I such that

FAF :=(F - F)U(F - F) € B,(z)

for a disk B,(z) € 2. The F-minimality of F' then yields (recall 0 < f <1 a.e. on Q)

A
[l s [ v+ [ [0 = 172 = (e = 177]
By (z) By () By (2)N(Q—D)

A
< [ 9kl + 5B @)
By ()

A
L 2
Bu(2) 2

and we can quote [Ta], Section 1.9, to see that OF NQ is a C'-curve.

Due to the smoothness of OF N Q) for F-minimizing sets £ we have (H® denoting the
Hausdorff measure of dimension s

)
IVxe|=H'(OENU)
U
for any open set U € €2, and if we choose U € Int(D), we see that JF is a local minimizer
of the curve length within the set U, which implies éii) of Theorem 1. ([l

Extension 1.
We briefly mention another approach towards the restoration of images consisting only
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of black and white zones: let ®: Q x R? — [0, 00) denote a parametric integrand, i.e. a
continuous function satisfying the homogeneity condition

O(z,tp) = 1®(x,p), €, peR®, >0, (10)

and being convex in p for each fixed € Q. Moreover, we assume the coercivity of ® in
the sense that

®(z,p) = np| (11)
holds for all z € Q and p € R? with a suitable constant v; > 0.

An important example (considered in Theorem 1) is ®(p) := |p|, alternatively we may
look at

®(z,p) =

> aaﬁ(x)pam]

a,B=1

with continuous coefficients a3 such that

2

valpl> < > aap(@)paps < wslpl’, 1 €Q, peR?,
a,B=1

where 15, v3 > 0.

If ¢ satisfies (10) and (11), we then replace F from (4) by

Gl := / B(x. Vxe) + ) / - PP (12)

for Caccioppoli sets E C Q. In (12) we use the following notation (compare [GMS1],
[GMS2]): if 1 denotes a R*:-valued Radon-measure, we let

[ o= [ o(x ) anl,

where du/d|u| is the Radon-Nikodym derivative of the measure p w.r.t. the measure |u|.
Note that du/d|p| is a unit vector |ul-a.e.

Then we have:

there exists a set of finite perimeter E C §2 such that
GE] < G[F]

for any other set F' of finite perimeter.



The proof can be carried out as done in Theorem 1 for the particular case ®(p) = |p|.

Extension 2.
Suppose that we want to restore an image using a finite number of distinct grey levels,
which means that now we consider BV-functions u € BV(Q, A) taking their values in the
set

A={ay,...,a,}, 0<a;<ay<---<a,<1,

with given numbers a;. We then replace G from (12) through

Glu] := /QCID(;E,VU) —|—%/Q_D(u—f)2 dz

and get:
the problem G — min in BV(S, A) admits at least one solution.

Extension 3.
It might be of interest to include a “volume constraint” which means to consider the
problem F[FE] — min among all Caccioppoli sets F in () satisfying

L*(E)=m. (13)

Here F is defined according to (4) and m denotes some fixed number in the interval
(0, £2(£2)). The requirement (13) can be understood in the sense that we have to restore
the image using a given amount of black color. The existence of a solution is easily
established along the lines of the proof of Theorem 1. For a discussion of the analytical
and topological properties of minimizing sets subject to the constraint (13) we refer the
reader to [Qi]. In particular it follows from Theorem 4.5 of this reference that the boundary
of a minimizing set is a smooth curve.
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