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Element Method on polygonal meshes

Steffen Weißer
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Abstract

Polygonal meshes show up in more and more applications and the BEM-
based Finite Element Method turned out to be a forward-looking approach.
The method uses implicitly defined trial functions, which are treated lo-
cally by means of Boundary Element Methods (BEM). Due to this choice
the BEM-based FEM is applicable on a variety of meshes including hang-
ing nodes. The aim of this presentation is to give a rigorous construction
of H1-conforming trial functions yielding arbitrary order of convergence
in a Finite Element Method for elliptic equations. With the help of an
interpolation operator, approximation properties are proven which guar-
anty optimal rates of convergence in the H1- as well as in the L2-norm for
FEM simulations. These theoretical results are illustrated and verified by
several numerical examples on polygonal meshes.

Keywords BEM-based FEM · polygonal finite elements · convergence estimates ·
polygonal mesh · non-standard finite element method

Mathematics Subject Classification (2000) 65N30 · 65N38 · 41A25 · 41A30

1 Introduction

Physical models and computer simulations play a crucial role in the development
and research of almost all areas. Lots of them rely on boundary value problems
in their mathematical formulations. Thus, an efficient and flexible numerical
treatment of such differential equations with boundary conditions is of particular
interest. The Finite Element Method (FEM) is one of the favourite strategies
which makes use of a discretization of the domain into simple elements like tri-
angles, quadrangles (2D) or tetrahedra (3D), for example. However, in nowadays
application which appear in geological science, solid mechanics, biomechanics and
fluid dynamics, there is a need for more flexible methods. The discretization of
complex domains might yield unstable meshes using solely simple elements.
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The present investigation extends the theory [28] of a special Finite Element
Method, called BEM-based FEM, which is applicable on general polygonal meshes
due to the use of local Boundary Element Methods (BEM). The restriction of
convex elements is loosened and a conforming approximation space is introduced
which yields arbitrary order of convergence. With the help of an appropriate
interpolation operator, approximation estimates are proven in the H1- as well as
in the L2-norm. These results are similar to standard Finite Element Methods
but on much more general meshes.
The BEM-based FEM was first introduced in 2009, see [9], and analysed in the
following years, see [10, 14, 16, 24]. Since then it has undergone several develop-
ments. This includes residual error estimates for adaptive mesh refinement [31],
the application for convection–diffusion problems [17] and mixed formulations
with H(div)-conforming discretizations [11] as well as improved generalizations
to three dimensional problems with polyhedral elements [27]. The main results
have been gathered in two doctoral theses [15, 32].
In the case of a diffusion problem, the lowest order trial functions coincide with
harmonic coordinates studied and applied in computer graphics, see [19, 21].
These functions belong to the class of generalized barycentric coordinates which
are constructed over polygonal elements. An analysis can be found in [12] and
there are even the first attempts to define quadratic conforming functions on
polygons [25]. Such functions are also applied in linear elasticity [30], for example.
Beside the Finite Element Method there are also other strategies for the nu-
merical approximation of boundary value problems. In the context of polygonal
meshes and conforming approximations there are recent developments in mimetic
discretization techniques [5] and within the new methodology of Virtual Element
Methods [3, 4, 2].
The paper is organized as follows. In Section 2, the model problem is intro-
duced, and the regularity as well as stability assumptions for polygonal meshes
are discussed. In Section 3, we give the definition of the basis functions for the
construction of the H1-conforming approximation space. Furthermore, interpo-
lation operators are introduced and their properties are proven. In Section 4,
we formulate and discuss the BEM-based Finite Element Method with the intro-
duced approximation space and give convergence estimates. These convergence
rates are confirmed by numerical experiments in Section 5. Finally, we conclude
our results in Section 6.

2 Preliminaries

The approximation space in the BEM-based FEM is defined in accordance with
the underlying differential equation of the considered boundary value problem.
For this presentation, we choose the diffusion problem with mixed boundary
conditions on a bounded polygonal domain Ω ⊂ R2. Its boundary Γ = ΓD ∪ ΓN
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is split into a Dirichlet and a Neumann part, where we assume |ΓD| > 0. For
a given source term f ∈ L2(Ω), a Dirichlet datum gD ∈ H1/2(ΓD) as well as a
Neumann datum gN ∈ L2(ΓN), the problem reads

−div(a∇u) = f in Ω,

u = gD on ΓD,

a∇u · n = gN on ΓN ,

(1)

where a ∈ L∞(Ω) with 0 < amin ≤ a ≤ amax almost everywhere in Ω. This bound-
ary value problem is considered in the week sense with the help of a Galerkin
formulation. Thus, we seek a solution u ∈ H1(Ω), where we denote as usual the
Sobolev spaces of order s ∈ R with Hs(D) for some domain D ⊂ Ω, see [1, 22].
For simplicity, we assume that the diffusion coefficient a is piecewise constant and
its jumps are resolved by the meshes later on. Nevertheless, we will also give a
hint for the more general case. Our goal is to introduce a H1-conforming approx-
imation space which yields arbitrary order of convergence in the finite element
framework. The following discrete approximation of H1(Ω) is constructed but
not limited to the diffusion equation. It also can be applied to other boundary
value problems where H1-conforming approximations are desirable.
One of the major advantageous of the BEM-based FEM is the flexibility with
respect to the discretization of Ω, which is needed in the Finite Element Method.
Consider for h → 0 a family of discretizations Kh. For fixed h, a discretization
is obtained by decomposing Ω into a finite number of elements. The elements
K ∈ Kh of the mesh are bounded open sets of polygonal shape which are non-
overlapping such that Ω =

⋃
{x ∈ K : K ∈ Kh}. Their boundaries ∂K consist of

finitely many nodes and edges. An edge E = zbze is always located between two
nodes, the one at the beginning zb and the one at the end ze. These points are
fixed once per edge and they are the only nodes on E. The set of all edges in the
mesh is denoted by Eh. In each corner of an element K, a node is located, but
there could also be nodes on straight lines of the boundary ∂K. This behaviour
is natural to polygonal meshes and relaxes the regularity assumptions for usual
triangular and quadrangular meshes, where such nodes have to be treated in a
special way as conditional nodes. The set of all nodes in the mesh is abbreviated
to Nh. The length of an edge E and the diameter of an element K are denoted
by hE and hK = sup{|x− y| : x, y ∈ ∂K}, respectively.

Definition 1. The family of meshes Kh is called regular if it fulfills:

1. Each element K ∈ Kh is a star-shaped polygon with respect to a circle of
radius ρK and midpoint zK .

2. The aspect ratio is uniformly bounded from above by σK, i.e.
hK/ρK < σK ∀K ∈ Kh.
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The circle in the definition is chosen in such a way that its radius is maximal. If
the position of the circle is not unique, its midpoint zK is fixed once per element.

Definition 2. The family of meshes Kh is called stable if there is a constant
cK > 0 such that for all elements K ∈ Kh and all its edges E ⊂ ∂K it holds

hK ≤ cKhE.

When we consider convergence or error estimates with respect to the mesh size
h = max{hK : K ∈ Kh}, it is important that the constants in the definitions
above hold uniformly for the whole family of meshes. For convenience we only
write mesh in the following and mean a whole family for h → 0. Furthermore,
we denote by c a generic constant which solely depends on the mesh constants
and which is especially independent of h. Without loss of generality, we assume
h < 1 that can always be satisfied by scaling of the domain. Later on, we need the
space of polynomials of degree smaller or equal k ∈ N over some domain D ⊂ Ω.
This space is abbreviated to Pk(D). For a vector space V with subspace V0, we
set for v ∈ V the affine space

v + V0 = {v + v0 ∈ V : v0 ∈ V0}.

3 Discretization and interpolation

Our goal is to introduce finite dimensional spaces V q
h over polygonal discretiza-

tions of the domain Ω which approximate the Sobolev space H1(Ω). The index
q ∈ N denotes the order of the approximation space. In [28], the cases q = 1, 2
are already studied. In this section, we give a more general strategy which ex-
tends the theory to arbitrary order. The approximation space V q

h = span Ψq
h is

constructed as span of some basis Ψq
h. This basis is specified in the following and

consists of nodal, edge and element basis functions. These functions are indicated
by ψz, ψE and ψK , respectively. All of them have certain degrees and thus they
are marked and numbered by indices like ψE,i and ψK,i,j for some i, j. However,
for shorter notation, we will skip sometimes parts of the indices if the meaning
is clear from the context and we just write ψ, ψi and ψi,j, for example.
The basis functions are defined implicitly element-by-element with the help of lo-
cal boundary value problems. The diffusion equation in mind, we utilize Laplace
and Poisson equations over each element with Dirichlet boundary data to con-
struct the basis functions. Due to the local Dirichlet boundary conditions, the
traces of the basis functions will be continuous over element boundaries. This is
an essential ingredient to obtain H1-conforming approximations.

3.1 Node and edge basis functions

The functions ψz and ψE, which are assigned to nodes and edges, are defined to
fulfill the Laplace equation on each element. Their Dirichlet trace on the element
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boundaries is chosen to be continuous and piecewise polynomial. Thus, we define
for each node z ∈ Nh the basis function ψz as usual, see [28, 31], namely as unique
solution of

−∆ψz = 0 in K for all K ∈ Kh,

ψz(x) =

{
1 for x = z

0 for x ∈ Nh \ {z}
,

ψz is linear on each edge of the mesh.

So, the function ψz is locally defined as solution of a boundary value problem
over each element. If the element K ∈ Kh is convex, the boundary value problem
can be understood in the classical sense and it is ψz ∈ C2(K) ∩ C0(K), see [13].
However, we explicitly allow star-shaped elements within the discretization Kh
of the domain Ω. In this case, the boundary value problem is understood in
the weak sense and we obtain ψz ∈ H1(K). Since the Dirichlet trace on the
element boundaries is continuous, the local regularity of ψz yields ψz ∈ H1(Ω).
This will be also true for the edge and element basis functions. In the following,
the local problems for the definition of basis functions are always understood in
the classical or weak sense depending on the shape of the elements. In contrast
to [28], we only make use of the fact that the nodal, edge and element basis
functions fulfill ψ ∈ H1(K) for K ∈ Kh and we do not use a maximum-principle
for harmonic functions which would require convex elements.
To introduce the edge basis functions ψE, polynomial data is prescribed on the
element boundaries. Therefore, we first review a hierarchical polynomial basis
over the interval [0, 1]. We set

p0(t) = t and p1(t) = 1− t

for t ∈ [0, 1] and assign these functions to the points t0 = 0 and t1 = 1, re-
spectively. Then, we define pi ∈ P i([0, 1]), i ≥ 2 with exact degree i recursively
as

pi =
p̃i

p̃i(ti)
,

where p̃i ∈ P i([0, 1]) \ {0} is a polynomial with p̃i(tj) = 0 for j = 0, . . . , i− 1 and

ti = max{arg max
t∈[0,1]

|p̃i(t)|}.

The polynomial pi is well defined since p̃i is unique up to a multiplicative constant.
In Figure 1, the first polynomials are visualized. It is easily seen that these
polynomials are linearly independent and that for q ≥ 1

Pq([0, 1]) = span {pi : i = 0, . . . , q}.
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Figure 1: Visualization of pi for i = 0, . . . , 4

For the definition of edge basis functions ψE, we make use of a linear parametriza-
tion of the corresponding edge. Let E ∈ Eh with E = zbze and

E : [0, 1] 3 t 7→ FE(t) = zb + t(ze − zb).

In contrast to nodal basis functions, we have more than one basis function per
edge. We define ψE,i for i = 2, . . . , q as unique solution of

−∆ψE,i = 0 in K for all K ∈ Kh,

ψE,i =

{
pi ◦ F−1

E on E,

0 on Eh \ {E},

and we assign these functions to the points zE,i = FE(ti). In Figure 2, an approx-
imation of such a function is visualized over one rectangular element. As in the
case of nodal basis functions, we observe that the Dirichlet trace is continuous
along element boundaries. Thus, we have ψE,i ∈ H1(K) for K ∈ Kh which yields
ψE,i ∈ H1(Ω). With the conventions

ψE,0 = ψzb and ψE,1 = ψze ,

we find that
Pq(E) = span {ψE,i

∣∣
E

: i = 0, . . . , q}
and

ψE,i(zE,j) = δij for j = 0, . . . , i,

where δij is the Kronecker symbol. According to the last property, the functions
ψz and ψE,i are linearly independent. So, we collect them in the basis

Ψq
h,∂ = {ψz, ψE,i : z ∈ Nh, E ∈ Eh, i = 2, . . . , q},

and we have
V q
h,∂ = span Ψq

h,∂ ⊂ H1
∆(Kh) ⊂ H1(Ω).
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Figure 2: Visualization of ψz, ψE,3 and ψK,1,0 over rectangular element with
additional node on straight line, nodes are marked with black dots

Here, for q = 1, only nodal basis functions are used in Ψq
h,∂ and for k ∈ N,

Hk
∆(Kh) =

{
v ∈ Hk(Ω) : (∇v,∇w)L2(K) = 0 ∀w ∈ H1

0 (K), ∀K ∈ Kh
}

(2)

is the space of piecewise weakly harmonic functions.

3.2 Element basis functions

Next, we address the definition of element basis functions. To motivate the pro-
cedure, we remember that the nodal and edge basis functions fulfill the Laplace
equation inside the elements and are polynomial on the edges. The nodal func-
tions are linear on edges, and thus we conclude that these functions also fulfill the
one dimensional Laplace equation along edges. If we compute the 1D-Laplacian
of the edge functions ψE along the edge E, we observe that ∆1ψE,i ∈ P i−2(E),
i ≥ 2, and thus the edge basis functions fulfill the Poisson equation with polyno-
mial right hand side on each edge. Additionally, it is easy to check that

Pq−2(E) = span {∆1ψE,i : i = 2, . . . , q}

for q ≥ 2. From this point of view, we exchanged the Laplace equation for the
Poisson equation on the edges as we have made the step from nodal to edge basis
functions. The same is done for the element basis functions. Here, we exchange
the Laplace for the Poisson equation in the elements and we prescribe right hand
sides such that they form a basis of Pq−2(K). Thus, we define ψK,i,j for K ∈ Kh,
i = 0, . . . , q − 2 and j = 0, . . . , i as unique solution of

−∆ψK,i,j = pK,i,j in K,

ψK,i,j = 0 else,
(3)

where
Pq−2(K) = span {pK,i,j : i = 0, . . . , q − 2 and j = 0, . . . , i}. (4)

Consequently, we have 1
2
q(q−1) element basis functions per element. The support

of such a function is limited to one element, i.e. suppψK,i,j = K, and the function
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itself belongs to H1
0 (K). Due to the local regularity, we obtain ψK,i,j ∈ H1(Ω).

See Figure 2 for a visualization of such an element basis function.

Remark 1. In the numerical experiments we will choose the polynomial basis as
shifted monomials, namely as

pK,i,j(x) =
(
x(1) − z(1)

K

)i−j (
x(2) − z(2)

K

)j
, x =

(
x(1), x(2)

)> ∈ K,
where zK =

(
z

(1)
K , z

(2)
K

)>
is given in Definition 1. For i, j = 0, the element bubble

function from [28] is recovered, since pK,0,0 = 1.

We define the set of functions

Ψq
h,◦ = {ψK,i,j : K ∈ Kh, i = 0, . . . , q − 2 and j = 0, . . . , i}

and the space
V q
h,◦ = span Ψq

h,◦ ⊂ H1(Ω).

For q = 1, this means Ψq
h,◦ = ∅. Furthermore, we point out that each ψK,i,j ∈ Ψq

h,◦
fulfills

(∇ψK,i,j,∇w)L2(K) = (pK,i,j, w)L2(K) ∀w ∈ H1
0 (K) (5)

according to its definition.

Lemma 1. The functions in Ψq
h,◦ are linearly independent.

Proof. Since the support of an element basis function is restricted to one element,
the functions belonging to different elements are independent. Therefore, it is
sufficient to consider just functions over one element in this proof. Let αi,j ∈ R
for i = 0, . . . , q − 2 and j = 0, . . . , i and let

∑
i,j αi,jψi,j = 0. Consequently, it is∑

i,j αi,j∇ψi,j = 0. Due to this and since the element basis functions ψi,j = ψK,i,j
fulfill (5), we obtain(∑

i,j

αi,jpi,j, w
)
L2(K)

=
(∑

i,j

αi,j∇ψi,j,∇w
)
L2(K)

= 0 ∀w ∈ H1
0 (K).

The function space C∞0 (K) is dense in H1
0 (K) and thus the fundamental lemma

of the calculus of variations yields
∑

i,j αi,jpi,j = 0. Because of the choice of pi,j as

basis of Pq−2(K), it follows that αi,j = 0 for i = 0, . . . , q− 2 and j = 0, . . . , i.

The final basis for the approximation space of H1(Ω) is now defined as

Ψq
h = Ψq

h,∂ ∪Ψq
h,◦.

All functions in Ψq
h,∂ locally fulfill the Laplace equation on each element and so,

they are piecewise harmonic in a weak sense. Therefore, the functions in Ψq
h,◦

serve complementary to those in Ψq
h,∂ such that functions in H1(Ω), which are
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not locally harmonic, can be approximated in an accurate way. Furthermore, we
observe that

(∇ψ,∇ϕ)L2(K) = 0 for ψ ∈ Ψq
h,∂, ϕ ∈ Ψq

h,◦, (6)

since ψ ∈ H1
∆(Kh) and ϕ ∈ H1

0 (K), cf. (2). Sometimes, we will consider the basis
functions restricted to one element. For this reason, we define for K ∈ Kh

Ψq
h

∣∣
K

=
{
ψ
∣∣
K

: ψ ∈ Ψq
h

}
and Ψq

h,∂

∣∣
K

as well as Ψq
h,◦
∣∣
K

accordingly. The final approximation space is con-
forming, i.e.

V q
h = span Ψq

h ⊂ H1(Ω).

3.3 Interpolation and properties

Next, some interpolation operators are introduced. The first one is a pointwise
interpolation operator

Iqh,∂ : H2(Ω)→ V q
h,∂ ⊂ H1

∆(Kh).

For v ∈ H2(Ω), it is

Iqh,∂v =
∑
z∈Nh

vzψz +
∑
E∈Eh

q∑
i=2

vE,iψE,i,

where the coefficients are given as

vz = v(z) for z ∈ Nh

and

vE,i = v(zE,i)−
i−1∑
j=0

vE,jψE,j(zE,j) for E ∈ Eh, i = 2, . . . , q.

The pointwise evaluation of the function v ∈ H2(Ω) is well defined according
to the Sobolev embedding theorem, see [1], which states that v ∈ C0(Ω). The
interpolation operator is constructed in such a way that(

Iqh,∂v
)
(z) = v(z) for z ∈ Nh,(

Iqh,∂v
)
(zE,i) = v(zE,i) for E ∈ Eh, i = 2, . . . , q.

(7)

Furthermore, we introduce the interpolation operator

Iqh = Iqh,∂ + Iqh,◦ : H2(Ω)→ V q
h ⊂ H1(Ω),

where

Iqh,◦v =
∑
K∈Kh

q−2∑
i=0

i∑
j=0

vK,i,jψK,i,j ∈ V q
h,◦.
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Since element basis functions, which belong to different elements, have non-
overlapping support, the coefficients of the linear combination can be specified
element-by-element. Let K ∈ Kh, the coefficients vi,j = vK,i,j are defined such
that Iqh,◦v is the orthogonal projection of v − Iqh,∂v into span Ψq

h,◦
∣∣
K

with respect
to the weighted scalar product

(u, v)hH1(K) = (u, v)L2(K) + h2
K(∇u,∇v)L2(K). (8)

Thus, Iqh,◦v is uniquely defined by(
Iqh,◦v, ϕ

)
hH1(K)

=
(
v − Iqh,∂v, ϕ

)
hH1(K)

∀ϕ ∈ span Ψq
h,◦
∣∣
K
. (9)

Due to the properties of the orthogonal projection, it is

‖Iqh,◦v‖hH1(K) ≤ ‖v − Iqh,∂v‖hH1(K), (10)

where the weighted norm is given as ‖ · ‖2
hH1(K) = (·, ·)hH1(K). If hK = 1 the

weighted scalar product and the weighted norm coincide with the usual ones
in H1(K), which are denoted by (·, ·)H1(K) and ‖ · ‖H1(K), respectively.
In the following, we investigate the properties of the interpolation operators in
more details. For this reason, let Kh be a regular and stable mesh. We denote the
interpolation operator restricted to some element K ∈ Kh by the same symbol
as the global one since the meaning is clear from the context.

Lemma 2. The restrictions of the interpolation operators Iqh,∂ and Iqh onto an
element K ∈ Kh fulfill

Iqh,∂ p = p for p ∈ Pq(K) with ∆p = 0 in K,

and
Iqh p = p for p ∈ Pq(K).

Proof. Let p ∈ Pq(K) with ∆p = 0. According to (7), the functions p and
Iqh,∂ p coincide in q + 1 points on each edge of the element K and they are both
polynomials of degree q along these edges. Thus, p and Iqh,∂ p are identical on
the boundary of the element K. Furthermore, both functions fulfill the Laplace
equation inside K. Thus, the unique solvability of the Dirichlet problem for the
Laplace equation yields Iqh,∂ p = p, the first statement of the lemma.
Next, let p ∈ Pq(K) and therefore it is −∆p ∈ Pq−2(K). Since the polynomials
pi,j form a basis of Pq−2(K), see (4), we can write

−∆p =

q−2∑
i=0

i∑
j=0

βi,jpi,j

10



for some uniquely chosen coefficients βi,j ∈ R. Furthermore, we define

p̃ = Iqh,∂ p+

q−2∑
i=0

i∑
j=0

βi,jψi,j. (11)

We observe that p as well as p̃ fulfill the boundary value problem

−∆u =

q−2∑
i=0

i∑
j=0

βi,jpi,j in K,

u = p on ∂K,

at least in the weak sense, due to construction. Because of the unique solvability
of this problem, we conclude that p = p̃. In consequence of (11), we obtain

p− Iqh,∂ p =

q−2∑
i=0

i∑
j=0

βi,jψi,j ∈ span Ψq
h,◦
∣∣
K
.

Since Iqh,◦ p is defined as orthogonal projection of p − Iqh,∂ p into span Ψq
h,◦
∣∣
K

, it
is Iqh,◦ p = p− Iqh,∂ p and the second statement of the lemma follows.

A consequence of this lemma is that

Pq(K) ⊂ span Ψq
h

∣∣
K
,

i.e. the space of polynomials of degree q is locally embedded in the approximation
space over each element. Obviously, the element basis functions are essential to
capture the non-harmonic polynomials.

Lemma 3. The restrictions of the interpolation operators Iqh,∂ and Iqh onto an
element K ∈ Kh of a regular and stable mesh Kh with hK = 1 are linear and
continuous. Furthermore, there are constants c each, which solely depend on the
regularity and stability parameters of the mesh, such that

‖Iqh,∂v‖H1(K) ≤ c ‖v‖H2(K) and ‖Iqhv‖H1(K) ≤ c ‖v‖H2(K)

for all v ∈ H2(K).

Proof. The linearity of the operators is obvious, so we only have to prove the
given estimates which also ensure the continuity.
First, we construct an auxiliary triangulation Th(K) of K by connecting the nodes
on the boundary of K with the point zK from Definition 1, see Figure 3. This
triangular mesh is regular in the classical sense, i.e. neighbouring triangles share
either a common node or edge and the aspect ratio of each triangle is uniformly
bounded by some constant σT . The boundedness of the aspect ratio can be seen
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Figure 3: Auxiliary triangulation Th(K) of star-shaped element K, and alti-
tude ha of the triangle T perpendicular to E

as follows. Let T ∈ Th(K) be a triangle with diameter hT and let ρT be the
radius of the incircle. It is known that the area of T is given as AT = 1

2
UTρT ,

where UT is the perimeter of T . The perimeter can be bounded from above by
UT ≤ 3hT . On the other hand, we have the formula AT = 1

2
hEha, where ha is the

altitude of the triangle perpendicular to E, see Figure 3. Since the element K is
star-shaped with respect to a circle of radius ρK , the line through the side E ∈ Eh
of the triangle does not intersect this circle. Thus, it is ha ≥ ρK and we have the
estimate AT ≥ 1

2
hEρK . Together with the Definitions 1 and 2, we obtain

hT
ρT

=
UThT
2AT

≤ 3h2
T

hEρK
≤ 3h2

T

(hK/cK)(hK/σK)
≤ 3cKσK = σT .

On this auxiliary triangulation, we can use classical interpolation operators, see
e.g. [8]. Let

IT : H2(K)→ Pqpw(Th(K))

be such a classical operator with

‖v − IT v‖H1(K) ≤ CT hT |v|H2(K) for v ∈ H2(K), (12)

where hT = max{hT : T ∈ Th(K)} and

Pqpw(Th(K)) =
{
p ∈ C0(K) : p

∣∣
T
∈ Pq(T ) ∀T ∈ Th(K)

}
.

The constant CT solely depends on σT and thus on the regularity and stability
parameters of the polygonal mesh Kh.
Next, we prove the continuity of Iqh,∂, i.e. the estimate

‖Iqh,∂v‖H1(K) ≤ c ‖v‖H2(K) for v ∈ H2(K).

Let v ∈ H2(K) be fixed. The interpolation Iqh,∂v fulfills the boundary value
problem

−∆u = 0 in K,

u = gv on ∂K,
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where gv = Iqh,∂v
∣∣
∂K

is a piecewise polynomial of degree q on ∂K. We write
u = u0 + ug with ug = IT v and obtain the Galerkin formulation

Find u0 ∈ H1
0 (K) : (∇u0,∇w)L2(K) = −(∇ug,∇w)L2(K) for w ∈ H1

0 (K)

which has a unique solution. Testing with w = u0 and applying the Cauchy–
Schwarz inequality yield

|u0|2H1(K) ≤ |(∇ug,∇u0)L2(K)| ≤ |ug|H1(K)|u0|H1(K),

and consequently

|u0|H1(K) ≤ ‖ug‖H1(K) = ‖IT v‖H1(K).

The lower triangular inequality applied to (12) gives

‖IT v‖H1(K) − ‖v‖H1(K) ≤ ‖v − IT v‖H1(K) ≤ CT hT |v|H2(K)

and, since hT ≤ hK = 1, we obtain by rearranging

‖IT v‖H1(K) ≤ c ‖v‖H2(K).

Because of the piecewise smoothness of the boundary of K and since it can be
embedded into a square of side length hK , the Poincaré–Friedrichs inequality can
be written as

‖w‖L2(K) ≤ hK |w|H1(K) for w ∈ H1
0 (K),

see e.g. [6]. By the use of the given estimates and hK = 1, we obtain

‖Iqh,∂v‖H1(K) ≤ ‖u0‖H1(K) + ‖ug‖H1(K)

=
(
‖u0‖2

L2(K) + |u0|2H1(K)

)1/2

+ ‖IT v‖H1(K)

≤
√

2 |u0|H1(K) + ‖IT v‖H1(K)

≤
(√

2 + 1
)
‖IT v‖H1(K)

≤ c ‖v‖H2(K).

Finally, we use the continuity of Iqh,∂ as well as the property (10) of Iqh,◦ with
hK = 1 and we get

‖Iqhv‖H1(K) ≤ ‖Iqh,∂v‖H1(K) + ‖Iqh,◦v‖H1(K)

≤ ‖Iqh,∂v‖H1(K) + ‖v − Iqh,∂v‖H1(K)

≤ ‖v‖H1(K) + 2‖Iqh,∂v‖H1(K)

≤ c ‖v‖H2(K)

that concludes the proof.
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Remark 2. The stability of the mesh Kh was only needed to prove the uniform
boundedness of the aspect ratios in the auxiliary triangulations of the star-shaped
elements. If we go without the stability but ensure convexity of the elements we
can prove a maximum angle condition for the auxiliary triangulations, see [28].
In this case, the classical interpolation operator from [18] can be used to prove
the continuity of Iqh. Consequently, the lemma stays valid for convex elements
even if the edge length hE decreases faster than the element diameter hK and
violates the uniform estimate hK ≤ cKhE.

Definition 3. A mesh or a family of meshes is called admissible if it is either
regular and stable or it is only regular but with solely convex elements. The mesh
parameters are (σK, cK) and σK, respectively.

The condition hK = 1 in Lemma 3 is not fulfilled in general. Thus, we introduce
a scaling for the elements K ∈ Kh such that

K̂ 3 x̂ 7→ x = FK(x̂) = hK x̂ ∈ K. (13)

Consequently, it is hK̂ = 1 and we set v̂ = v ◦FK . Simple calculations show that

for v ∈ Hk(K), k ∈ N0 it is v̂ ∈ Hk(K̂) and

|v̂|Hk(K̂) = hk−1
K |v|Hk(K). (14)

Additionally, it is

(u, v)L2(K) = h2
K(û, v̂)L2(K̂) and (∇u,∇v)L2(K) = (∇̂û, ∇̂v̂)L2(K̂)

for u, v ∈ H1(K), where ∇̂ denotes the gradient with respect to x̂. According to
the definition of the weighted scalar product, see (8), we obtain

(u, v)hH1(K) = h2
K(û, v̂)hH1(K̂). (15)

Lemma 4. The restrictions of the interpolation operators Iqh,∂ and Iqh onto an
element K ∈ Kh fulfill for v ∈ H2(K)

Îqh,∂v = Îqh,∂ v̂ and Îqhv = Îqh v̂,

where Îqh = Îqh,◦+ Îqh,∂ and Îqh,∂ as well as Îqh,◦ are the interpolation operators with

respect to the scaled element K̂.

Proof. Due to the pointwise definition of Iqh,∂ and the construction of the nodal

and edge basis functions, it is obvious that Îqh,∂v = Îqh,∂ v̂. Therefore, we only

have to show Îqh,◦v = Îqh,◦ v̂ with Îqh,◦ : H2(K̂) → span {ψK̂,i,j}. Furthermore, it
is sufficient to prove

Îqh,◦v ∈ span {ψK̂,i,j}

14



and
(Îqh,◦v, ϕ)H1(K̂) = (Îqh,◦v̂, ϕ)H1(K̂) ∀ϕ ∈ span {ψK̂,i,j},

since for ϕ = Îqh,◦v − Îqh,◦v̂, we obtain

‖Îqh,◦v − Îqh,◦v̂‖H1(K̂) = 0 and thus Îqh,◦v = Îqh,◦v̂.

Here, we have skipped the ranges of i, j for shorter notation. In the definition of
the element basis functions ψK,i,j, see (3), we have made no specific choice of the
polynomials pK,i,j. In the following, let the polynomials for the functions ψK̂,i,j
over K̂ be chosen in dependence of ψK,i,j as

pK̂,i,j = h2
K p̂K,i,j.

In consequence, we obtain for the scaled element function ψ̂K,i,j = ψK,i,j ◦ FK
that

−∆̂ψ̂K,i,j = h2
K p̂K,i,j = pK̂,i,j = −∆̂ψK̂,i,j in K̂

and ψ̂K,i,j = ψK̂,i,j on ∂K, where ∆̂ denotes the Laplace operator with respect
to x̂. Due to the unique solvability of the Dirichlet problem for the Laplace
equation, we get ψK̂,i,j = ψ̂K,i,j and thus

Îqh,◦v =

q−2∑
i=0

i∑
j=0

vK,i,jψ̂K,i,j ∈ span {ψK̂,i,j}.

Next, let ϕK̂ ∈ span {ψK̂,i,j} and set ϕK = ϕK̂ ◦ F
−1
K ∈ span {ψK,i,j}. By the

definition of Iqh,◦, it is(
Iqh,◦v, ϕK

)
hH1(K)

=
(
v − Iqh,∂v, ϕK

)
hH1(K)

.

Applying (15) to both sides of the equation yields

(Îqh,◦v, ϕK̂)H1(K̂) = ( ̂v − Iqh,∂v, ϕK̂)H1(K̂)

= (v̂ − Îqh,∂ v̂, ϕK̂)H1(K̂)

= (Îqh,◦v̂, ϕK̂)H1(K̂),

where the last equality comes from the definition of Îqh,◦ and the fact that the
scalar products (·, ·)hH1(K̂) and (·, ·)H1(K̂) coincide on the scaled element. Since
ϕK̂ is chosen arbitrarily, this equality concludes the proof.
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Theorem 1. For an admissible mesh Kh of a bounded polygonal domain Ω ⊂ R2,
the interpolation operators Iqh,∂ and Iqh fulfill

‖v − Iqh,∂v‖H`(Ω) ≤ c hq+1−` |v|Hq+1(Ω) for v ∈ Hq+1
∆ (Kh),

and
‖v − Iqhv‖H`(Ω) ≤ c hq+1−` |v|Hq+1(Ω) for v ∈ Hq+1(Ω),

respectively, where h = max{hK : K ∈ Kh}, ` = 0, 1 and the constant c solely
depends on the mesh parameters.

Proof. First, we consider the second estimate and the case ` = 1. Let us start to
examine the error over one element K ∈ Kh. We scale this element in such a way
that its diameter becomes one, see (13). With the help of (14) and Lemma 4, we
obtain

‖v − Iqhv‖
2
H1(K) = ‖v − Iqhv‖

2
L2(K) + |v − Iqhv|

2
H1(K)

≤ ch2
K‖v̂ − Îqv̂‖2

L2(K̂)
+ c |v̂ − Îqv̂|2

H1(K̂)

≤ c ‖v̂ − Îqv̂‖2
H1(K̂)

since hK ≤ 1. Let p̂ ∈ Pq(K̂) be the polynomial of the Bramble–Hilbert Lemma
for star-shaped domains, which closely approximates v̂, see [7]. It fulfills

|v̂ − p̂|Hk(K̂) ≤ C hq+1−k
K̂

|v̂|Hq+1(K̂) for k = 0, 1, . . . , q + 1 (16)

with a constant C that only depends on σK and q. Due to the scaling hK̂ = 1
and by the application of Lemmata 2 and 3, we obtain

‖v̂ − Îqv̂‖H1(K̂) ≤ ‖v̂ − p̂‖H1(K̂) + ‖Îq(v̂ − p̂)‖H1(K̂)

≤ (1 + c) ‖v̂ − p̂‖H2(K̂) (17)

≤ (1 + c)C |v̂|Hq+1(K̂),

where we have used (16) in the last step. Comparing the previous estimates and
transforming back to the element K yields

‖v − Iqhv‖
2
H1(K) ≤ ch2q

K |v|
2
Hq+1(K).

Finally, we have to sum up this inequality over all elements of the mesh and apply
the square root to it. This gives

‖v − Iqhv‖H1(Ω) ≤ c

(∑
K∈Kh

h2q
K |v|

2
Hq+1(K)

)1/2

≤ c hq |v|Hq+1(K),
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and finishes the proof for ` = 1. The case ` = 0 follows by

‖v − Iqhv‖L2(K) = hK‖v̂ − Îqhv̂‖L2(K̂) ≤ hK‖v̂ − Îqhv̂‖H1(K̂)

and the same arguments as above.
The error estimate for Iqh,∂ follows in the same way. The case q = 1 is already
proven since I1

h,∂ = I1
h, thus let q ≥ 2. The only point, where we have to take

special care, is in (16). We have to ensure that p̂ is harmonic. In the formulation
of the Bramble–Hilbert Lemma in [7], p̂ is chosen as Taylor polynomial of v̂
averaged over the circle given in Definition 1. Furthermore, the comutativity is
proven for the operator of the weak derivative and the operator for the averaged
Taylor polynomial for q ≥ 2. Thus, since v̂ ∈ H2(K̂) and ∆̂v̂ = 0 in the weak
sense, we obtain that the averaged Taylor polynomial p̂ is harmonic.

4 BEM-based Finite Element Method

In the previous section we have discussed the discretization of the Sobolev space
H1(Ω) and investigated approximation properties. Thus, we come back to the
model problem (1) and formulate the BEM-based Finite Element Method with
the use of the introduced arbitrary order basis functions.

4.1 Galerkin formulation and convergence estimates

For inhomogeneous Dirichlet data gD, we extend it into the interior of the domain.
The extension is denoted by gD again, and we assume that it can be chosen such
that gD ∈ V q

h . Let

V q
h,D = V q

h ∩H
1
D(Ω) with H1

D(Ω) = {v ∈ H1(Ω) : v|ΓD
= 0}.

The discrete Galerkin formulation for the model problem (1) reads:

Find uh ∈ gD + V q
h,D : b(uh, vh) = (f, vh)L2(Ω) + (gN , vh)L2(ΓN ) ∀vh ∈ V q

h,D, (18)

where
b(ψ, ϕ) = (a∇ψ,∇ϕ)L2(Ω)

is the well known bilinear form for the diffusion problem. Due to the bound-
edness of the diffusion coefficient, the bilinear form b(·, ·) is bounded and coer-
cive on H1

D(Ω). Because of the conforming approximation space V q
D ⊂ H1

D(Ω),
the Galerkin formulation above admits a unique solution according to the Lax–
Milgram Lemma. Céa’s Lemma yields

‖u− uh‖H1(Ω) ≤ c min
vh∈gD+V q

h,D

‖u− vh‖H1(Ω).
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This quasi best approximation gives rise to error estimates for the finite element
formulation. The minimum on the right hand side can be estimated from above by
setting vh = Iqhu. By the use of the interpolation properties given in Theorem 1,
we obtain the next result.

Theorem 2. Let Kh be an admissible mesh of the bounded polygonal domain
Ω ⊂ R2. Then, the solution uh ∈ V q

h of the Galerkin formulation from above
fulfills

‖u− uh‖H1(Ω) ≤ c hq |u|Hq+1(Ω) for u ∈ Hq+1(Ω),

where h = max{hK : K ∈ Kh} and the constant c solely depends on the mesh
parameters.

If we assume more regularity for the model problem, the Aubin–Nitsche trick
together with Theorem 2 can be used to prove an error estimate in the L2-norm,
see, e.g., [7].

Theorem 3. Let Kh be an admissible mesh of the bounded polygonal domain
Ω ⊂ R2 and let there be, for any g ∈ L2(Ω), a unique solution of

Find w ∈ H1
D(Ω) : b(v, w) = (g, v)L2(Ω) ∀v ∈ H1

D(Ω),

with w ∈ H2(Ω) such that

|w|H2(Ω) ≤ C ‖g‖L2(Ω).

Then, the solution uh ∈ V q
h of the Galerkin formulation from above fulfills

‖u− uh‖L2(Ω) ≤ c hq+1 |u|Hq+1(Ω) for u ∈ Hq+1(Ω),

where the constant c solely depends on the mesh parameters.

If the boundary value problem (1) has homogeneous right hand side, i.e. f = 0,
and thus the solution fulfills u ∈ H1

∆(Kh), we can seek the approximation uh
directly in the subspace V q

h,∂ = span Ψq
h,∂ ⊂ V q

h . Consequently, we obtain a
reduced Galerkin formulation. The same arguments as above yield optimal rates
of convergence, when the interpolation operator Iqh,∂ is used instead of Iqh.

Theorem 4. Under the same assumptions as in Theorems 2 and 3, the solution
uh ∈ V q

h,∂ of the reduced Galerkin formulation fulfills

‖u− uh‖H`(Ω) ≤ c hq+1−` |u|Hq+1(Ω) for u ∈ Hq+1
∆ (Kh),

where ` = 0, 1 and the constant c solely depends on the mesh parameters.

In the implementation, however, the bilinear form b(·, ·) cannot be evaluated an-
alytically since the basis function are only given implicitly as solutions of local
boundary value problems. Thus, we make use of local boundary integral formu-
lations which are approximated by the help of Boundary Element Methods.
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4.2 Boundary Element Method

The ansatz functions locally fulfill Dirichlet problems for the Laplace and Poisson
equation. Without loss of generality, we just focus on the Laplace equation. In the
case of element basis functions, which fulfill the Poisson equation, see (3), we re-
formulate their definition. For this purpose, we decompose ψK = ψ0

K+ψpK ∈ Ψq
h,◦,

where ψpK ∈ Pq(K) is a particular solution of −∆ψpK = pK . The polynomial ψpK
can be constructed for any right hand side pK ∈ Pq−2(K) according to [20]. Thus,
for fixed ψpK , we end up with a Laplace problem for ψ0

K . So, let us consider

−∆ψ = 0 in K,

ψ = g on ∂K,
(19)

for an arbitrary element K ∈ Kh and some piecewise polynomial function g
on ∂K. In the following, the usual trace operator γK0 : H1(K) → H1/2(∂K)
is needed which is defined in [1], for example. Let v ∈ H1(K) with ∆v in the
dual of H1(K). Due to Green’s first identity [22], there exists a unique function
γK1 v ∈ H−1/2(∂K) such that∫

K

∇v(y) · ∇w(y) dy =

∫
∂K

γK1 v(y)γK0 w(y) dsy −
∫
K

w(y)∆v(y) dy (20)

for w ∈ H1(K). We call γK1 v the conormal derivative of v. If v is sufficiently
smooth, like v ∈ H2(K), we have

(γK1 v)(x) = nK(x) · (γK0 ∇v)(x) for x ∈ ∂K,

where nK(x) denotes the outer normal vector of the element K at x. Therefore,
the conormal derivative is also called Neumann trace for the Laplace equation.
Both operators, the Dirichlet trace γK0 and the Neumann trace γK1 , are linear and
continuous. By the use of these traces, the solution of (19) can be written as

ψ(x) =

∫
∂K

U∗(x, y)γK1 ψ(y) dsy −
∫
∂K

γK1,yU
∗(x, y)γK0 ψ(y) dsy for x ∈ K, (21)

where U∗ is the fundamental solution of minus the Laplacian with

U∗(x, y) = − 1

2π
ln |x− y| for x, y ∈ R2,

see, e.g., [22]. Equation (21) is the so called representation formula. The Dirichlet
trace γK0 ψ = g is known by the problem (19) and the Neumann trace γK1 ψ is an
unknown quantity. However, as soon as we have an expression for the Neumann
trace, the representation formula can be used to evaluate the solution of (19)
everywhere inside of K.
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Applying the trace operators to (21) yields, after some calculations, the relation-
ship

γK1 ψ = SKγ
K
0 ψ with SK = V−1

K

(
1
2
I + KK

)
, (22)

see [22, 29]. The operator SK : H1/2(∂K) → H−1/2(∂K) is called Steklov-
Poincaré operator. For x ∈ ∂K, we have the single-layer potential operator

(VKϑ)(x) = γK0

∫
∂K

U∗(x, y)ϑ(y) dsy for ϑ ∈ H−1/2(∂K),

as well as the double-layer potential operator

(KKξ)(x) = lim
ε→0

∫
y∈∂K:|y−x|≥ε

γK1,yU
∗(x, y)ξ(y) dsy for ξ ∈ H1/2(∂K).

Due to the assumption hK < 1, the single-layer potential operator is invertible.
Further computations give the symmetric representation of the Steklov-Poincaré
operator

SK = DK +
(

1
2
I + K′K

)
V−1
K

(
1
2
I + KK

)
which involves the adjoint double layer potential K′K as well as the hypersingular
integral operator

DKξ = −γK1
∫
∂K

γK1,yU
∗(·, y)ξ(y) dsy for ξ ∈ H1/2(∂K).

For more details on these classical boundary integral operators, we refer the
reader to [22, 29].
To obtain an approximation of the Neumann trace, we utilize a Boundary Element
Method. So, we apply the Galerkin scheme over the boundary of the element.
The Dirichlet data of (19) is given as

g ∈ Pqpw(∂K) =
{
p ∈ C0(∂K) : p

∣∣
E
∈ Pq(E) ∀E ∈ E(K)

}
⊂ H1/2(∂K),

where E(K) denotes the set of all edges which lie inside the boundary of K.
Furthermore, it is easy to see that

Φq(∂K) =
{
γK0 ϕ : ϕ ∈ Ψq

h,∂

∣∣
K

}
is a basis of Pqpw(∂K). The Neumann trace γK1 ψ is approximated in the space

Pq−1
pw,d(∂K) =

{
p ∈ L2(∂K) : p

∣∣
E
∈ Pq−1(E) ∀E ∈ E(K)

}
⊂ H−1/2(∂K)

with some basis Φq−1
d (∂K). The discrete variational formulation of (22) to find

an approximation t of γK1 ψ reads

Find t ∈ Pq−1
pw,d(∂K) : (VKt, ϑ)L2(∂K) =

((
1
2
I + KK

)
g, ϑ
)
L2(∂K)

∀ϑ ∈ Φq−1
d (∂K).
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This problem admits a unique solution due to the properties of the boundary
integral operators. Expressing g and t as linear combinations of the basis func-
tions taken from Φq(∂K) and Φq−1

d (∂K), respectively, and denoting the coefficient
vectors by g and t gives the matrix form

VKt =
(

1
2
MK + KK

)
g

of the discrete variational formulation. Here, MK is the mass matrix and the
other matrices correspond to the boundary integral operators applied to ansatz
functions and tested with ansatz functions. For a more detailed description
see [28] or any boundary element literature, e.g. [29]. As soon as this system
of linear equations is solved, the exact Neumann trace γK1 ψ in (21) can be re-
placed by t to get an approximation of ψ inside of K.
Additionally, we define the approximation

S̃Kg = DKg +
(

1
2
I + K′K

)
t

of the symmetric representation of the Steklov-Poincaré operator. By the use
of S̃K , we introduce the symmetric matrix

SK =

((
S̃Kξ, ζ

)
L2(∂K)

)
ξ,ζ∈ΦD

which has the form

SK = DK +
(

1
2
M>

K + K>K
)

V−1
K

(
1
2
MK + KK

)
.

These boundary element matrices are dense and their entries involve singular inte-
grals. However, they are well studied and efficient algorithms exist for their set up
and their storage, see [26]. The main computational effort is the inversion of the
single-layer potential matrix which is realized by the use of an efficient LAPACK
routine in our numerical experiments. For the BEM-based FEM these matrices
are utilized for each element and matrices to different elements are independent.
Thus, they are set up in parallel once in a preprocessing step. Furthermore, the
Boundary Element Method is directly applied on the naturally given polygonal
boundary of the elements without further discretization. Consequently, the re-
sulting boundary element matrices are rather small and the local complexity is
negligible compared to the complexity of the global problem.

4.3 Approximation of the Galerkin formulation

In the realization of the discrete Galerkin formulation (18), we have to address
the evaluation of the bilinear form applied to ansatz functions. Since the diffusion
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coefficient is assumed to be constant on each element such that a(·) = aK ∈ R
on K, for K ∈ Kh, we have

b(ψ, ϕ) = (a∇ψ,∇ϕ)L2(Ω) =
∑
K∈Kh

aK(∇ψ,∇ϕ)L2(K) for ψ, ϕ ∈ Ψq
h.

We remember that the basis Ψq
h = Ψq

h,∂ ∪ Ψq
h,◦ consists of piecewise harmonic

functions and element bubble functions which vanish on the element boundaries.
According to (6), it holds

b(ψ, ϕ) = 0 for ψ ∈ Ψq
h,∂, ϕ ∈ Ψq

h,◦, (23)

and thus the discrete Galerkin formulation (18) decouples. If we split the un-
known function into

uh = uh,∂ + uh,◦ with uh,∂ ∈ V q
h,∂ and uh,◦ ∈ V q

h,◦,

and take gD ∈ V q
h,∂, we obtain with V q

h,∂,D = V q
h,∂ ∩H1

D(Ω)

Find uh,∂ ∈ gD + V q
h,∂,D :

b(uh,∂, vh) = (f, vh)L2(Ω) + (gN , vh)L2(ΓN ) ∀vh ∈ V q
h,∂,D,

(24)

and
Find uh,◦ ∈ V q

h,◦ : b(uh,◦, vh) = (f, vh)L2(Ω) ∀vh ∈ V q
h,◦. (25)

A closer look at (25) shows that uh,◦
∣∣
K
∈ H1

0 (K), K ∈ Kh is the orthogonal pro-

jection of f/aK into span Ψq
h,◦
∣∣
K

with respect to the scaler product (∇·,∇·)L2(K).
Thus, uh,◦ is separated from the global problem and can be computed via local
projections. The problem (24) turns into a global system of linear equations with
a symmetric and positive definite matrix.
It remains to discuss the approximations of the terms

b(ψ, ϕ), (f, ϕ)L2(Ω) and (gN , ϕ)L2(ΓN ) for ψ, ϕ ∈ Ψq
h.

The last term is rather simple. The Neumann data gN is given and the ansatz
functions ϕ are piecewise polynomial of order q on the Neumann boundary ΓN .
Thus, we split the L2-scalar product over ΓN into its contributions over each edge
in the boundary and use standard Gaussian quadrature.
To handle the L2-scalar product over Ω, we use a quadrature over polygonal
elements. This can be done by refining the elements into triangles or by using
a numerical integration scheme for polygonal domains, see [23]. The evaluations
of the ansatz functions in the quadrature points are realized with the help of the
representation formula (21).
So, we come to the bilinear form. If ψ, ϕ ∈ Ψq

h,∂, Green’s first identity (20) is
used on each element. This yields

b(ψ, ϕ) =
∑
K∈Kh

aK

∫
∂K

γK1 ψ γ
K
0 ϕ,
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where the volume integrals have vanished since the ansatz functions fulfill the
Laplace equation on each element. Thus, we are able to reduce the evaluation of
the bilinear form to integration over element boundaries. According to Subsec-
tion 4.2, we have∫

∂K

γK1 ψ γ
K
0 ϕ =

∫
∂K

γK0 ϕSKγ
K
0 ψ ≈

∫
∂K

γK0 ϕ S̃Kγ
K
0 ψ = (γK0 ϕ)> SK γ

K
0 ψ,

where the underline refers to the coefficient vector of the expansion in the basis Φq.
Since SK is a symmetric matrix, the approximation of the bilinear form is also
symmetric with respect to its arguments. Consequently, the approximated system
matrix in the system of linear equations obtained by (24) is symmetric and the
element matrices SK serve as local stiffness matrices in the setup process.
If both functions ψ, ϕ ∈ Ψq

h,◦ are element basis functions, the property (5) is
utilized. For ψ = ψK,i,j and ϕ = ψK,k,`, we obtain

b(ψK,i,j, ψK,k,`) = aK(∇ψK,i,j,∇ψK,k,`)L2(K) = aK (pK,i,j, ψK,k,`)L2(K) ,

where pK,i,j ∈ Pq−2(K), see (4). The L2-scalar products are treated again with
quadrature as in the previous situation for (f, ϕ)L2(Ω). If the functions ψ, ϕ belong
to different elements, we just get zero, since the supports of them do not intersect.

4.4 Comments on the strategy

In Subsection 4.1, we already observed that in the case of a vanishing source term,
i.e. f = 0, it is sufficient to seek the approximation uh ∈ V q

h in the subspace V q
h,∂.

This observation is confirmed by the decoupling of the Galerkin formulation.
Because of uh = uh,∂ + uh,◦ with uh,∂ ∈ V q

h,∂, and since the part uh,◦ ∈ V q
h,◦ is

uniquely defined by (25), we get uh,◦ = 0 for f = 0 and thus uh = uh,∂.
Furthermore, the property (23) and consequently the decoupling of the system
is very attractive from the computational point of few. The global system of
linear equations reduces to a system which only involves the degrees of freedom
corresponding to node and edge basis functions. The unknowns for the element
basis functions can be computed element-by-element in a preprocessing step.
This is an advantage over the Virtual Element Method in [3]. This method has
the same number of unknowns, but the system matrix does not decouple and
thus, a larger system of linear equations has to be solved. Another advantage
of the BEM-based FEM in this context is that the approximation uh can be
evaluated in every point inside of the domain with the help of the representation
formula (21). The Virtual Element Method, however, needs some postprocessing
for the evaluation in an arbitrary point.
In the case of a continuous varying diffusion coefficient in the model problem (1),
it is possible to approximate the coefficient by a piecewise constant function.
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Figure 4: Initial mesh (left), refined mesh after two steps (middle), refined mesh
after four steps (right)

Thus, the presented approximation of the Galerkin formulation in the BEM-
based Finite Element Method is applicable. However, to obtain arbitrary order
of convergence, this piecewise constant approximation is not sufficient. It is rec-
ommendable to approximate the diffusion coefficient by a smoother function. For
a sufficient regular coefficient a, one can use its interpolation Iq−1

h a, for example.
For a more detailed discussion and for implementation details, see [28]. The ideas
given there can be generalized to q > 2 directly.

5 Numerical experiments

Finally, the theoretical results are verified by some computational experiments.
For convenience, we utilize the same problems as in [28]. The underlying domain
is the unit square, which is discretized by a sequence of polygonal meshes, see
Figure 4.

Example 1. Consider the boundary value problem

−∆u = f in Ω = (0, 1)2,

u = 0 on Γ,

where f is chosen such that u(x) = sin(πx1) sin(πx2) is the unique solution.

The first example demonstrates the BEM-based Finite Element Method with the
full ansatz space V q

h . According to the Theorems 2 and 3, we expect conver-
gence of O(hq) in the H1-norm and O(hq+1) in the L2-norm, respectively. This
behaviour can be seen clearly in Figure 5.

Example 2. Consider the boundary value problem

−∆u = 0 in Ω = (0, 1)2,

u = gD on Γ,

where gD is chosen such that u(x) = exp(2π(x1 − 0.3)) cos(2π(x2 − 0.3)) is the
unique solution.
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Figure 5: Relative error in H1-norm (left) and L2-norm (right) with respect to
the mesh size h for Example 1 with ansatz space V q

h

In the second example, we solve the Laplace problem with given Dirichlet data.
Since the solution is obviously harmonic, the reduced Galerkin formulation is
applied in the computations. Thus, only node and edge basis functions are used
in the Finite Element Method. Although the ansatz space is reduced, we obtain
optimal rates of convergence in the H1- as well as in the L2-norm, see Figure 6.
These results are in accordance with the theoretical rates of Theorem 4.

6 Conclusion

We gave a rigorous construction of an H1-conforming approximation space which
yields arbitrary order of convergence in a Finite Element Method on quite gen-
eral meshes. It is constructed but not limited to the diffusion equation. We
observed that only a subspace is needed for the approximation of piecewise har-
monic functions. This reduces the computational effort and gives new insights
into the BEM-based FEM.
Forthcoming research is intended to generalize and to apply the ideas of the
BEM-based Finite Element Method to more general situations. For convection-
diffusion problems, the construction of trial functions promises some stability
properties. Furthermore, the topic of mixed formulations is under investigation
and the first results are already published in [11].
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