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Abstract

We discuss different variants of the so-called total variation image inpainting
method collecting existence and regularity results related to the proposed tech-
niques.

We start with a description of the problem under consideration: suppose that {2 and D
are bounded domains in R? having Lipschitz continuous boundaries. Let the closure D of
D be compactly contained in 2 and suppose that we are given a £2-measurable function
f: Q=D —[0,1], where £? is Lebesgue’s measure in the plane.

In our context f(x) measures the intensity of the grey level at a point z € Q — D of a
black and white image in which the region D is missing or damaged in the sense that no
data are available.

Our goal is to restore this missing part, which means to find a function u: Q — [0, 1]
representing the undestroyed picture in a sense to be made precise with the help of the
given data f, thus we are confronted with an image inpainting problem.

There is a variety of image inpainting techniques established by many prominent authors,
without being complete we mention the papers [3-5, 7,8, 12-15, 17, 19, 20] and the
references quoted therein.

Here we concentrate on the variational approach involving variational integrals with den-
sities of the form VU (|Vu|) for a function ¥: [0,00) — [0, 00) being under our disposal.
Popular choices are

1) W, ([Vul) = [VaP  with p € (1,00)
and the TV-density
(2) Uy ([Vu]) = [Vl .
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In the case of (1) one works in the Sobolev space W, (compare [1] for a definition), and
by strict convexity one obtains a unique solution, which turns out to be smooth, i.e. of
class C1.

If (2) is considered, then a reasonable formulation is only possible in the space BV of
functions having finite total variation (see, e.g. [18]), we loose uniqueness and in general
solutions are rather irregular.

As a compromise between (1) and (2) we propose to study the following family of densities
with parameter p € (1,00). Let ¥ (|Vu|) = ®,(|Vul|), where

(3) B, (¢) ;:/Ot/:(ur)—“ drds. >0

Formula (3) can be replaced by the explicit representation

t 1 1 1 1
O, (1) — + e L L

Oo(t) = t—In(1+1) .

and from (4) we see that @, approximates the TV-density in the sense that

lim (p—1)®,(t)=t, t>0.

p—+00

Moreover, ®,, is of linear growth and the integrand F,(§) := ®, (|¢]), ¢ € R?, is strictly
convex, which follows from the condition of p-ellipticity

(5) vo (L+E)" [0l < D*F (&) (o) S v A+ ) I, & neR?,

satisfied by F), with suitable positive constants vy, ;.

If we formally let =1 in (3), then we obtain
Qi(t) =tln(l+1¢)+In(l+1t)—t,

and our subsequent variational problems have to be formulated in the Orlicz-Sobolev
space W}l generated by the function h(t) := tIn(1 +t),¢ > 0. As it is shown in [9, 11],
this nearly linear growth case is more close to the power growth model (1) with exponent
p > 1 in the sense that nearly linear growth always leads to smooth solutions.

In what follows we like to discuss image inpainting using variational integrals involving the

densities @, (|Vu|) with parameter o > 1. To this purpose we introduce some notation:
let G C R? denote a bounded Lipschitz domain. For functions w € BV(G) we let

©  KfeG= [ 0,(90) = [0, () drt— 900 ().
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where Vw = Ve L2+ V5w is the decomposition of the vector measure Vw in its regular
and singular part w.r.t. Lebesgue’s measure. The reader should note that in accordance
with e.g. [16] this definition is a natural extension of the energy [, ®,(]Vw|) dz from the
space W} (G) to the class BV(G).

Let us look at
Approach 1. Inpainting with simultaneous denoising.

For a parameter A\ > 0 we introduce the variational problem

(7) Julu] = K, u, Q] + % /Q_D(u — f)?dz — min in BV(Q)

with K, from (6), which means that we jointly minimize the quadratic fidelity term
calculated over the complement of the inpainting region D and a “suitable” energy
measured on the whole region €.

In [9, 10], we showed

Theorem 1. i) Problem (7) admits at least one solution u € BV(Q) and each solution
satisfies 0 < u(z) <1 a.e. on .

i) If u and @ are J,-minimizing in BV(Q2), then w = @ a.e. on Q — D, V*u = VU on
Q and |Viu| (Q2) = |V*a| (Q).

ZZZ) It holds 1an11(Q) JM = iIlva(Q) JH .

w) Let M denote the set of all L'-cluster points of J,-minimizing sequences from
WLE(Q). Then M coincides with the set of all BV(Q)-solutions of (7).

v) For any u € M there is an open set D, C D such that L*(D — D,) = 0 and
u e CH(D,).

vi) Let 1 < p < 2. Then (7) admits exactly one minimizer u being in addition of class

WHQ) N Che(Q).

In general we can not expect an uniqueness result as stated in vi) above, however we have:

Theorem 2. i) With the notation from Theorem 1 suppose that there exists u € M
such that uw € WL(Q). Then it follows that M = {u}.

i) Foru, v € M we have the estimate

1 s —
lv = vl 20y = [l = vl 2y < NG [V (u =) (D) .



An interesting feature of problem (7) is the unique solvability of the associated dual
problem

(8) R,[7] = max in L®(Q,R?),
where
Rfrli= Bl o). 7€ LN@.EY,

with Lagrangian

(v, 7) ;:/Q[T:w—cp;(m)} dm+%/ﬁ_D(v_f)2dw,

where
(v,7) € W(Q) x L=(Q,R?)

and where @7 denotes the conjugate function of ®,,.

In [10] we showed

Theorem 3. i) Problem (8) admits a unique solution o. It holds o € Wy,,.(D,R?)
as well as 0 = DF,(V*u) a.e. on D. Here F,(¢) = ®,(|¢]) and u is any solution of

(7).

ii) We have the inf-sup relation

A slight modification of Approach I arises if we incorporate a weight function p: 2 —D —
[0,00) in the fidelity term, i.e. if we replace (7) by
A
(7%) K, [u,Q] + 5/ p(u — f)*dr — min in BV(Q) .
Q-D
Depending on the choice of p we can hope for results in the spirit of Theorem 1 - Theorem

3. For example, it might be reasonable to concentrate p(z) near points x close to 9D
with small values for p(x), if we are near to 0€Q.

Approach II. We suggest to proceed in two steps, i.e.

15 step:  denoising on Q2 — D,

ond step: inpainting with natural boundary data.

In step 1 we look at the problem

(9) KH[M,Q—m—i—é/ (f —w)? dz — min in BV(Q— D)
2 Ja

-D

and recall (compare [11])



Theorem 4. Problem (9) admits a unique solution ug € BV(Q— D) satisfying in addition

In step 2 we then use the solution uy as boundary datum in the sense that we introduce
the space o
BV(Q),, :={w eBV(Q): w=wuy on Q—D} .

Next we choose a number v € (1, 00) not necessarily equal to u and consider the problem
(10) K, w, Q] — min in BV (§),,
We have

Theorem 5. Problem (10) has at least one solution in the space BV(2),,. Any solution
u satisfies 0 < u < 1. If the case v < 3 is considered, then we have |Vu| € L2.(D), i.e.
u 18 locally Lipschitz on the inpainting region D.

Note that the last statement of Theorem 5 follows from Theorem 2.1 in [2], since
obviously u is a local minimizer of the energy K, |-, D].

Approach II1. Inpainting via a limit procedure.

We like to reconstruct our image by letting u: Q — [0, 1] with

u:{f on Q—D

v on D

for a reasonable function v: D — [0, 1].

If f has a trace on 0D, then v might be obtained by solving a suitable boundary
value or minimization problem on D. However, for an observed image (with noise) we
just may assume f € L>®°(2— D) and therefore we suggest to proceed in the following way.

For € > 0 sufficiently small let
D, = {:L‘ e Q) dist (x,ﬁ) < 5}

and consider the variational problem similar to (7) (replace €2 by D. in (7) and choose
A=)

(11) K, [w, D] + /\g/ (f — w)2 dxr — min in BV(D,),

.—D

where . := £*(D. — D)~".



From Theorem 1 we deduce the existence of a solution u. € BV(D.) to problem (11)
which in addition satisfies

0<wu.<1on D., sup|Vul(D.) < o0,

thus we find v € BV(D) such that 0 < v <1 and u. — v in L*(D).

Now v seems to be a reasonable candidate in the previous definition of u. We note that
clearly v = a in D in case that f = a on D, — D for some gy > 0 and a number a € [0, 1],
since then u. = a on D, for all £ < gy. In general it holds

Theorem 6. Any function v € BV(D) obtained by the above limit procedure is a lo-
cal K,,[-, D]-minimizer in BV(D) and thereby locally Lipschitz, if the case p € (1,3) is
considered.

Proof of Theorem 6. The second claim is a consequence of Theorem 2.1 in [2].

In order to establish the first statement consider v € BV(D) such that u, — v in L*(D)
for a sequence u,, := u., of solutions to problem (11) with parameter ¢,, — 0.

Given w € BV(D) such that C := spt(v — w) is a compact subset of D we have to show
that

(12) K,[v,D] < K,|w, D]

is true. Let us choose a smooth region GG such that C' C G € D and with the additional
property

(13) Vi (0G) =0, |Vo|(9G) =0

for any n € N. In order to construct such a region G we may choose a sufficiently regular
function n: R?* — R such that for ¢ € [0,4] the sets Gy := {z € R? : n(z) < t} are
smooth domains (with boundaries 0G; = {x € R? : n(z) = t}) such that C C G; € D.
Let M := {(z,t) € R* x [0,6] : n(z) =t} with sections M, and M, respectively. From
Fubini’s theorem it follows for any Radon measure p on R?

1) o
/0 p(0G) LM () = / o (My) dL! (1

= | L£'(M,)dp(x)

R2

= [ £ @ dpta) =0,

hence p(0G;) = 0 for L'-almost all ¢ € [0,6]. Applying this result to the measures
p = |Vu,|, |Vv|, n € N, we see that (13) holds for G := G, and almost all ¢ € [0, J].
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The reader should note that according to [18], 2.13 Remark, G has been selected in such
a way that the traces of each u,, and also of v from inside and from outside coincide on 0G.

Next we let

Wy, 1=

{w on G

u, on D. —

G } € BV(D.,)

and obtain from the minimizing property of u,

(14) /

On the open set D, — G it holds Vw, = Vu, (as measures), thus (14) implies

¢AWwD§A)¢AWMM-

&n En

(15) L@Vl < [ @,vu)

To proceed we recall the L'(D)-convergence u,, — v which implies L'(9G;)-convergence
of the traces (at least for a subsequence) for £'-almost all ¢ € [0, d].

We assume that this condition is satisfied for our choice G = G;. We claim the validity of

(16) lim / |[Vw,|=0.
oG

n—oo

In order to justify (16) we let

- w on G . 0 on @G
w.—{ 0 on D—G}’ u"'_{un on D—G}EBV(D)

and quote [6], Corollary 3.89, p. 183: according to this reference we have the formula
an = Vw + Vﬂn + (UJ|3G — unw(;)l/a(;?'[l!_aG

for the total variation measure Vw, on the domain D, where wjsc (= v|3G) and uppi
denote the traces of the corresponding functions (recall the choice of ¢). From (13) and
the above representation we get as n — oo (recalling also |Vw|(0G) = |Vv|(0G))

/ |Vw,| < / ’w|aG - un|a(;‘d7'l1 = / ‘U|8G — Un|ag‘d7‘[l —0.
oG oG oG
This implies (16) and thereby

(17) lim [ ®,(Vw,|)=0.

We have quoting (13)

(18) L2190 = [ 2,(0u)

G
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and by lower-semicontinuity it holds

(19)

/@M(WUD §liminf/<bu(|Vun|).

If we write

L@uvu) = [ 0,00+ [ a(vu).

then we deduce from (15) and (17)-(19) the inequality K,[v, G] < K, [w, G] which gives
(12) by the choice of G. O

Remark 1. We strongly suggest to compare our proposals I - I1II for concrete images and
for different choices of the parameter pu, e.g. for u close to 1 and for p being very large.

Remark 2. As a matter of fact our results extend to any p-elliptic linear growth integrand

F=

F(Vu), where the notion of p-ellipticity is defined according to (5).
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