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Abstract

We discuss different variants of the so-called total variation image inpainting
method collecting existence and regularity results related to the proposed tech-
niques.

We start with a description of the problem under consideration: suppose that Ω and D
are bounded domains in R2 having Lipschitz continuous boundaries. Let the closure D of
D be compactly contained in Ω and suppose that we are given a L2-measurable function
f : Ω−D → [0, 1], where L2 is Lebesgue’s measure in the plane.

In our context f(x) measures the intensity of the grey level at a point x ∈ Ω − D of a
black and white image in which the region D is missing or damaged in the sense that no
data are available.

Our goal is to restore this missing part, which means to find a function u: Ω → [0, 1]
representing the undestroyed picture in a sense to be made precise with the help of the
given data f , thus we are confronted with an image inpainting problem.

There is a variety of image inpainting techniques established by many prominent authors,
without being complete we mention the papers [3-5, 7,8, 12-15, 17, 19, 20] and the
references quoted therein.

Here we concentrate on the variational approach involving variational integrals with den-
sities of the form Ψ (|∇u|) for a function Ψ: [0,∞) → [0,∞) being under our disposal.
Popular choices are

(1) Ψp (|∇u|) = |∇u|p with p ∈ (1,∞)

and the TV-density

(2) Ψ1 (|∇u|) = |∇u| .
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In the case of (1) one works in the Sobolev space W 1
p (compare [1] for a definition), and

by strict convexity one obtains a unique solution, which turns out to be smooth, i.e. of
class C1.

If (2) is considered, then a reasonable formulation is only possible in the space BV of
functions having finite total variation (see, e.g. [18]), we loose uniqueness and in general
solutions are rather irregular.

As a compromise between (1) and (2) we propose to study the following family of densities
with parameter µ ∈ (1,∞). Let Ψ (|∇u|) = Φµ(|∇u|), where

(3) Φµ(t) :=

∫ t

0

∫ s

0

(1 + r)−µ dr ds , t ≥ 0 .

Formula (3) can be replaced by the explicit representation

(4)
Φµ(t) =

t

µ− 1
+

1

µ− 1

1

µ− 2
(t+ 1)−µ+2 − 1

µ− 1

1

µ− 2
, µ ̸= 2 ,

Φ2(t) = t− ln (1 + t) ,

and from (4) we see that Φµ approximates the TV-density in the sense that

lim
µ→∞

(µ− 1)Φµ(t) = t , t ≥ 0 .

Moreover, Φµ is of linear growth and the integrand Fµ(ξ) := Φµ (|ξ|) , ξ ∈ R2, is strictly
convex, which follows from the condition of µ-ellipticity

(5) ν0 (1 + |ξ|)−µ |η|2 ≤ D2Fµ (ξ) (η, η) ≤ ν1 (1 + |ξ|)−1 |η|2 , ξ, η ∈ R2 ,

satisfied by Fµ with suitable positive constants ν0, ν1.

If we formally let µ = 1 in (3), then we obtain

Φ1(t) = t ln(1 + t) + ln(1 + t)− t ,

and our subsequent variational problems have to be formulated in the Orlicz-Sobolev
space W 1

h generated by the function h(t) := t ln(1 + t), t ≥ 0. As it is shown in [9, 11],
this nearly linear growth case is more close to the power growth model (1) with exponent
p > 1 in the sense that nearly linear growth always leads to smooth solutions.

In what follows we like to discuss image inpainting using variational integrals involving the
densities Φµ (|∇u|) with parameter µ > 1. To this purpose we introduce some notation:
let G ⊂ R2 denote a bounded Lipschitz domain. For functions w ∈ BV(G) we let

(6) Kµ[w,G] :=

∫
G

Φµ (|∇w|) :=
∫
G

Φµ (|∇aw|) dx+
1

µ− 1
|∇sw| (G) ,
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where ∇w = ∇awxL2+∇sw is the decomposition of the vector measure ∇w in its regular
and singular part w.r.t. Lebesgue’s measure. The reader should note that in accordance
with e.g. [16] this definition is a natural extension of the energy

∫
G
Φµ(|∇w|) dx from the

space W 1
1 (G) to the class BV(G).

Let us look at

Approach I. Inpainting with simultaneous denoising.

For a parameter λ > 0 we introduce the variational problem

(7) Jµ[u] := Kµ[u,Ω] +
λ

2

∫
Ω−D

(u− f)2 dx → min in BV(Ω)

with Kµ from (6), which means that we jointly minimize the quadratic fidelity term
calculated over the complement of the inpainting region D and a “suitable” energy
measured on the whole region Ω.

In [9, 10], we showed

Theorem 1. i) Problem (7) admits at least one solution u ∈ BV(Ω) and each solution
satisfies 0 ≤ u(x) ≤ 1 a.e. on Ω.

ii) If u and ũ are Jµ-minimizing in BV(Ω), then u = ũ a.e. on Ω−D, ∇au = ∇aũ on
Ω and |∇su| (Ω) = |∇sũ| (Ω).

iii) It holds infW 1
1 (Ω) Jµ = infBV (Ω) Jµ .

iv) Let M denote the set of all L1-cluster points of Jµ-minimizing sequences from
W 1

1 (Ω). Then M coincides with the set of all BV(Ω)-solutions of (7).

v) For any u ∈ M there is an open set Du ⊂ D such that L2(D − Du) = 0 and
u ∈ C1,α(Du).

vi) Let 1 < µ < 2. Then (7) admits exactly one minimizer u being in addition of class
W 1

1 (Ω) ∩ C1,α(Ω).

In general we can not expect an uniqueness result as stated in vi) above, however we have:

Theorem 2. i) With the notation from Theorem 1 suppose that there exists u ∈ M
such that u ∈ W 1

1 (Ω). Then it follows that M = {u}.

ii) For u, v ∈ M we have the estimate

∥u− v∥L2(Ω) = ∥u− v∥L2(D) ≤
1

2
√
π
|∇s(u− v)| (D) .
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An interesting feature of problem (7) is the unique solvability of the associated dual
problem

(8) Rµ[τ ] → max in L∞(Ω,R2) ,

where
Rµ[τ ] := inf

v∈W 1
1 (Ω)

lµ(v, τ) , τ ∈ L∞(Ω,R2) ,

with Lagrangian

lµ(v, τ) :=

∫
Ω

[
τ : ∇v − Φ∗

µ (|τ |)
]
dx+

λ

2

∫
Ω−D

(v − f)2 dx ,

where
(v, τ) ∈ W 1

1 (Ω)× L∞(Ω,R2)

and where Φ∗
µ denotes the conjugate function of Φµ.

In [10] we showed

Theorem 3. i) Problem (8) admits a unique solution σ. It holds σ ∈ W 1
2,loc(D,R2)

as well as σ = DFµ(∇au) a.e. on D. Here Fµ(ξ) = Φµ(|ξ|) and u is any solution of
(7).

ii) We have the inf-sup relation

inf
W 1

1 (Ω)
Jµ = sup

L∞(Ω,R2)

Rµ .

A slight modification of Approach I arises if we incorporate a weight function ρ: Ω−D →
[0,∞) in the fidelity term, i.e. if we replace (7) by

(7*) Kµ[u,Ω] +
λ

2

∫
Ω−D

ρ(u− f)2 dx → min in BV (Ω) .

Depending on the choice of ρ we can hope for results in the spirit of Theorem 1 - Theorem
3. For example, it might be reasonable to concentrate ρ(x) near points x close to ∂D
with small values for ρ(x), if we are near to ∂Ω.

Approach II. We suggest to proceed in two steps, i.e.

1st step: denoising on Ω−D,

2nd step: inpainting with natural boundary data.

In step 1 we look at the problem

(9) Kµ

[
w,Ω−D

]
+

λ

2

∫
Ω−D

(f − w)2 dx → min in BV(Ω−D)

and recall (compare [11])
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Theorem 4. Problem (9) admits a unique solution u0 ∈ BV(Ω−D) satisfying in addition
0 ≤ u0 ≤ 1.

In step 2 we then use the solution u0 as boundary datum in the sense that we introduce
the space

BV(Ω)u0 :=
{
w ∈ BV(Ω) : w = u0 on Ω−D

}
.

Next we choose a number ν ∈ (1,∞) not necessarily equal to µ and consider the problem

(10) Kν [w,Ω] → min in BV (Ω)u0 .

We have

Theorem 5. Problem (10) has at least one solution in the space BV(Ω)u0. Any solution
u satisfies 0 ≤ u ≤ 1. If the case ν < 3 is considered, then we have |∇u| ∈ L∞

loc(D), i.e.
u is locally Lipschitz on the inpainting region D.

Note that the last statement of Theorem 5 follows from Theorem 2.1 in [2], since
obviously u is a local minimizer of the energy Kν [·, D].

Approach III. Inpainting via a limit procedure.

We like to reconstruct our image by letting u: Ω → [0, 1] with

u =

{
f on Ω−D
v on D

for a reasonable function v: D → [0, 1].

If f has a trace on ∂D, then v might be obtained by solving a suitable boundary
value or minimization problem on D. However, for an observed image (with noise) we
just may assume f ∈ L∞(Ω−D) and therefore we suggest to proceed in the following way.

For ε > 0 sufficiently small let

Dε :=
{
x ∈ Ω : dist

(
x,D

)
< ε

}
and consider the variational problem similar to (7) (replace Ω by Dε in (7) and choose
λ = λε)

(11) Kµ [w,Dε] + λε

∫
Dε−D

(f − w)2 dx → min in BV(Dε) ,

where λε := L2 (Dε −D)−1.
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From Theorem 1 we deduce the existence of a solution uε ∈ BV (Dε) to problem (11)
which in addition satisfies

0 ≤ uε ≤ 1 on Dε , sup
ε

|∇uε|(Dε) < ∞ ,

thus we find v ∈ BV(D) such that 0 ≤ v ≤ 1 and uε → v in L1(D).

Now v seems to be a reasonable candidate in the previous definition of u. We note that
clearly v = a in D in case that f = a on Dε0 −D for some ε0 > 0 and a number a ∈ [0, 1],
since then uε ≡ a on Dε for all ε ≤ ε0. In general it holds

Theorem 6. Any function v ∈ BV(D) obtained by the above limit procedure is a lo-
cal Kµ[·, D]-minimizer in BV(D) and thereby locally Lipschitz, if the case µ ∈ (1, 3) is
considered.

Proof of Theorem 6. The second claim is a consequence of Theorem 2.1 in [2].

In order to establish the first statement consider v ∈ BV(D) such that un → v in L1(D)
for a sequence un := uεn of solutions to problem (11) with parameter εn → 0.

Given w ∈ BV(D) such that C := spt(v − w) is a compact subset of D we have to show
that

(12) Kµ[v,D] ≤ Kµ[w,D]

is true. Let us choose a smooth region G such that C ⊂ G b D and with the additional
property

(13) |∇un| (∂G) = 0 , |∇v| (∂G) = 0

for any n ∈ N. In order to construct such a region G we may choose a sufficiently regular
function η: R2 → R such that for t ∈ [0, δ] the sets Gt := {x ∈ R2 : η(x) < t} are
smooth domains (with boundaries ∂Gt = {x ∈ R2 : η(x) = t}) such that C ⊂ Gt b D.
Let M := {(x, t) ∈ R2 × [0, δ] : η(x) = t} with sections Mx and Mt, respectively. From
Fubini’s theorem it follows for any Radon measure ρ on R2∫ δ

0

ρ (∂Gt) dL1(t) =

∫ δ

0

ρ (Mt) dL1(t)

=

∫
R2

L1 (Mx) dρ(x)

=

∫
R2

L1 ({η(x)}) dρ(x) = 0 ,

hence ρ (∂Gt) = 0 for L1-almost all t ∈ [0, δ]. Applying this result to the measures
ρ = |∇un|, |∇v|, n ∈ N, we see that (13) holds for G := Gt and almost all t ∈ [0, δ].
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The reader should note that according to [18], 2.13 Remark, G has been selected in such
a way that the traces of each un and also of v from inside and from outside coincide on ∂G.

Next we let

wn :=

{
w on G
un on Dεn −G

}
∈ BV(Dεn)

and obtain from the minimizing property of un

(14)

∫
Dεn

Φµ (|∇un|) ≤
∫
Dεn

Φµ (|∇wn|) .

On the open set Dεn −G it holds ∇wn = ∇un (as measures), thus (14) implies

(15)

∫
G

Φµ (|∇un|) ≤
∫
G

Φµ (|∇wn|) .

To proceed we recall the L1(D)-convergence un → v which implies L1(∂Gt)-convergence
of the traces (at least for a subsequence) for L1-almost all t ∈ [0, δ].

We assume that this condition is satisfied for our choice G = Gt. We claim the validity of

(16) lim
n→∞

∫
∂G

|∇wn| = 0 .

In order to justify (16) we let

w̃ :=

{
w on G
0 on D −G

}
, ũn :=

{
0 on G

un on D −G

}
∈ BV(D)

and quote [6], Corollary 3.89, p. 183: according to this reference we have the formula

∇wn = ∇w̃ +∇ũn + (w|∂G − un|∂G)ν∂GH1x∂G

for the total variation measure ∇wn on the domain D, where w|∂G (= v|∂G) and un|∂G
denote the traces of the corresponding functions (recall the choice of t). From (13) and
the above representation we get as n → ∞ (recalling also |∇w|(∂G) = |∇v|(∂G))∫

∂G

|∇wn| ≤
∫
∂G

∣∣w|∂G − un|∂G
∣∣dH1 =

∫
∂G

∣∣v|∂G − un|∂G
∣∣dH1 → 0 .

This implies (16) and thereby

(17) lim
n→∞

∫
∂G

Φµ(|∇wn|) = 0 .

We have quoting (13)

(18)

∫
G

Φµ(|∇un|) =
∫
G

Φµ(|∇un|)
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and by lower-semicontinuity it holds

(19)

∫
G

Φµ(|∇v|) ≤ lim inf
n→∞

∫
G

Φµ(|∇un|) .

If we write ∫
G

Φµ(|∇wn|) =
∫
G

Φµ(|∇w|) +
∫
∂G

Φ(|∇wn|) ,

then we deduce from (15) and (17)-(19) the inequality Kµ[v,G] ≤ Kµ[w,G] which gives
(12) by the choice of G. �

Remark 1. We strongly suggest to compare our proposals I - III for concrete images and
for different choices of the parameter µ, e.g. for µ close to 1 and for µ being very large.

Remark 2. As a matter of fact our results extend to any µ-elliptic linear growth integrand
F = F (∇u), where the notion of µ-ellipticity is defined according to (5).
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