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Abstract

In this article, we investigate a modification of the total variation image
inpainting method and improve the partial regularity results previously
established in [8] to C1,α interior differentiability of solutions of this new
variational problem using De Giorgi type arguments.

1 Introduction

Suppose we are given a bounded Lipschitz domain Ω ⊂ R2, e.g. a rectangle, a
subset D of Ω which is assumed to be measurable with (L2 denoting Lebesgue’s
measure on R2)

0 < L2(D) < L2(Ω) (1.1)

and an observed black and white image described through a measurable function
f : Ω−D → [0, 1], where f(x) is the intensity of the grey level at x ∈ Ω−D.

Roughly speaking, the region D which is also called “inpainting domain“ (see
[10]), represents a certain part of this image for which image data are missing
or inaccessible. Our goal is to restore this missing part from the part which is
known. In the image processing community, this kind of image interpolation is
called “inpainting“ respectively “image inpainting“ (compare [10, 19, 20]).

At this point, we like to add some general comments concerning inpainting: we
are concerned with the attempt to recover the original image in terms of a func-
tion u : Ω→ [0, 1] which measures the intensity of the grey level at x ∈ Ω on the
whole domain Ω based on the partial observation f : Ω−D → R which is usually
corrupted by noise stemming from transmission or measuring errors. Due to [19],
there are essentially four different methods to handle the inpainting problem,
depending on being variational or non-variational and local or non-local. Local
inpainting methods take the information that is needed to fill in the inpainting
domain D only from neighboring points of the boundary of D (compare [19]).
In the case that the inpainting domain is quite small, these methods seem to be
more desirable (compare [6, 12, 14, 13, 15, 19]).
Using non-local inpainting methods means that all the information of the known

1



part of the image is taken into account and the information is weighted by its dis-
tance to the point that is to be filled in (compare [19]). Although these methods
are suitable to fill in structures and textures, there are also several disadvantages
as for instance the high computational costs arising in their numerical solution
(compare [2, 19]).

We here concentrate on a TV-like variational approach being of non-local type
which leads to the minimization of a functional of the type

I[u] :=

∫
Ω

ψ(|∇u|)dx+
λ

2

∫
Ω−D

(u− f)2dx. (1.2)

Here, λ is a positive regularization parameter and ψ is supposed to be a convex
and increasing function with non-negative values.
The second term on the right-hand side of (1.2) measures the quality of data
fitting, i.e. the deviation of the original image u from the given data on Ω −D
while the first term produces a kind of mollification and allows to incorporate
some kind of a priori information of the generated image on the entire domain Ω
into the minimization process.

In this setting, a common choice of ψ is ψ(|∇u|) := |∇u|. This leads to the
total variation inpainting model (compare [3, 19]). To discuss this variational
problem, one has to work with functions Ω→ R of bounded variation, i.e. in the
space BV (Ω). In this situation, ∇u denotes the distributional gradient which is
respresented by a vector valued Radon measure on Ω with finite total variation∫
Ω

|∇u| (for details, we refer to [16]).

In the papers [8],[9] and also in the related work [7] the basic idea was to replace
the TV-density ψ(|∇u|) = |∇u| through a family of densities being still of linear
growth but with better ellipticity properties leading to appropriate regularity re-
sults for the corresponding minimizers.

As in the papers [8] and [9], we introduce the energy

I[w] :=

∫
Ω

F (∇w)dx+
λ

2

∫
Ω−D

(w − f)2dx. (1.3)

for functions w from the Sobolev spaceW 1,1(Ω) (for details concerning this space,
we refer to [1]) where F : R2 → [0,∞) is a µ-elliptic density of linear growth
satisfying F ∈ C2, F (0) = 0 and DF (0) = 0. More precisely, we impose the
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following conditions on F :
there exist positive constants ν1, ν2, ν3 and a real number µ > 1 such that for any
Y, Z ∈ R2 we have

|DF (Z)| ≤ ν1 (1.4)

and

ν2
1

(1 + |Z|)µ
|Y |2 ≤ D2F (Z)(Y, Y ) ≤ ν3

1

1 + |Z|
|Y |2. (1.5)

Based on these hypotheses, we can state some useful properties of F which
have been established on p. 97/98 in [11] for instance.

Lemma 1.1
Suppose that F satisfies (1.4) and (1.5) for some number µ > 1. Then F is
strictly convex on R2 and it holds

(i) There are real constants ν4 > 0, ν5 ∈ R such that for all Z ∈ R2 we have

DF (Z) : Z ≥ ν4|Z| − ν5.

(ii) F is of linear growth in the sense that for real numbers ν6, ν7 > 0, ν8, ν9 ∈ R
and for all Z ∈ R2 it holds

ν6|Z| − ν8 ≤ F (Z) ≤ ν7|Z|+ ν9. (1.6)

(iii) The integrand automatically satisfies a balancing condition: there exists a
real constant ν10 > 0 such that

|D2F (Z)||Z|2 ≤ ν10(1 + F (Z))

for all Z ∈ R2.

In this context, the minimal surface integrand given by F (Z) :=
√

1 + |Z|2
serves as the most prominent example for which we have (1.4) and (1.5). It re-
mains to be said that (1.5) holds here for the optimal choice µ = 3.

Furthermore as outlined in [7], another explicit example of a density F satis-
fying the above hypothesis exactly with a given value µ > 1 is generated by the
function

Φµ(t) :=

t∫
0

s∫
0

(1 + r)−µdr ds, t ≥ 0,

3



if we define

Fµ(Z) := Φµ(|Z|), Z ∈ R2.

Note that (µ− 1)Fµ(Z)→ |Z| as µ→∞, which follows from the formula

Φµ(t) =
t

µ− 1
+

1

(µ− 1)(µ− 2)
(t+ 1)−µ+2 − 1

(µ− 1)(µ− 2)
, µ 6= 2 (1.7)

whereas

Φ2(t) = t− ln(1 + t). (1.8)

With respect to the explicit formulas (1.7) and (1.8), the density Fµ(∇u) serves
as a good candidate for an approximation of |∇u| by more regular integrands of
linear growth.

In this note we like to improve the regularity results concerning interior differ-
entiability of minimizers of the functional I with µ-elliptic density F . Up to this
point, the following theorem has been proven in [8]:

Theorem 1.2
Let (1.1) hold and define the energy I according to (1.3) with F satisfying (1.4)
and (1.5) for some µ ∈ (1, 2). Then we have:

(i) the problem I → min admits an unique solution u in the space W 1,1(Ω);

(ii) the solution satisfies 0 ≤ u ≤ 1 a.e. on Ω;

(iii) it holds u ∈ W 1,p
loc (Ω) for any finite p, hence u is Hölder continuous in the

interior of Ω for any exponent < 1;

(iv) there is an open subset Ω0 of Ω such that dimH(Ω−Ω0) = 0 and u ∈ C1,β(Ω0)
for any β < 1;

(v) if D is an open set, then D ⊂ Ω0, i.e. u ∈ C1,α(D) for any α ∈ (0, 1). For
arbitrary sets D we have Int(D) ⊂ Ω0, where Int(D) is the set of interior
points of D.

Remark 1.3
Recall that dimH(Ω− Ω0) = 0 by definiton means Hε(Ω− Ω0) = 0 for any ε > 0
(Hε denoting the Hausdorff-measure of dimension ε).
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Now we want to show that actually interior singularities can be excluded, more
precisely we have the following substantial improvement of Theorem 1.2 (iv):

Theorem 1.4
Suppose that (1.1), (1.4) and (1.5) hold together with µ ∈ (1, 2). Then we have
u ∈ C1,α(Ω) for any 0 < α < 1 where u is the solution from Theorem 1.2.

Remark 1.5
We emphasize that it is easy to check that Theorem 1.2 and Theorem 1.4 also
hold in the case D = ∅ (“pure denoising of f “).

The rest of the paper is organized as follows:
In Section 2, we are going to prove Theorem 1.4 using De Giorgi type arguments.
As a technical tool we will make use of the approximation lemma 2.1 (proven
in [8]) where the original variational problem is replaced by a sequence of more
regular problems with smooth solutions uδ. By means of this lemma we are
going to prove in Lemma 2.4 that ∇uδ is locally uniformly bounded w.r.t. δ,
thus uδ is locally Lipschitz continuous uniformly in δ implying the local Lipschitz
regularity of u. From this fact we deduce (in the case µ ∈ (1, 2)) that u has
locally Hölder continuous first partial derivatives in Ω using standard results
about elliptic partial differential equations of second order. In the Appendix we
sketch the proof of a technical lemma needed in Section 2.

2 Proof of Theorem 1.4

We start with the following approximation lemma:

Lemma 2.1
Suppose that we have (1.1), (1.4) and (1.5) for some µ > 1. For δ > 0 we let

Iδ[w] :=

∫
Ω

Fδ(∇w)dx+
λ

2

∫
Ω−D

(w − f)2dx,

Fδ(Z) :=
δ

2
|Z|2 + F (Z), Z ∈ R2.

Then it holds:

(i) The problem Iδ → min in W 1,2(Ω) admits an unique solution uδ and we
have 0 ≤ uδ ≤ 1 a.e. in Ω as well as uδ ∈ W 2,2

loc (Ω).
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In particular, for µ ∈ (1, 2) we have

(ii) Iδ[uδ]→ I[u], δ
∫
Ω

|∇uδ|2dx→ 0, uδ → u in L1
loc(Ω) as δ → 0.

(iiii) ∇uδ ∈ Lploc(Ω,R2) uniformly in δ for any finite p, i.e.

sup
δ

∫
Ω′

|∇uδ|pdx = c(p,Ω′) <∞ (2.1)

where Ω′ b Ω. As a consequence we also have ∇uδ ⇁ ∇u in Lploc(Ω,R2)
as δ → 0 for all p <∞.

Proof. The lemma has been established in [8], Section 3.

Remark 2.2
We emphasize that the condition µ < 2 is needed to get the local uniform p-
integrability of ∇uδ for any finite exponent p.

First, we like to introduce some notation. We fix a point x0 ∈ Ω and consider
radii 0 < r < R < R0 with BR0(x0) b Ω.
Moreover, we let

Γδ := 1 + |∇uδ|2, Aδ(k,R) := {x ∈ BR(x0) : Γδ > k}, k > 0,

and consider η ∈ C∞0 (BR(x0)) with 0 ≤ η ≤ 1, η ≡ 1 on Br(x0) and |∇η| ≤ c
R−r .

Finally, for functions v : Ω→ R we denote max{v, 0} by v+.

At first we are going to establish a Caccioppoli-type inequality. Note that this
inequality is not depending on µ > 1.

Lemma 2.3
With the previous notation and under the assumption of Lemma 2.1 (i), in par-
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ticular for any µ > 1, we have the following variant of Caccioppoli’s inequality∫
Aδ(k,R)

Γ
−µ
2
δ |∇Γδ|2η2dx ≤ c

∫
Aδ(k,R)

|D2Fδ(∇uδ)||∇η|2(Γδ − k)2dx

+ c

∫
Aδ(k,R)

η2|∇uδ|2+µdx+

∫
Aδ(k,R)

η|∇η||∇uδ|3dx

≤ c

(R− r)2

∫
Aδ(k,R)

|D2Fδ(∇uδ)|(Γδ − k)2dx

+
c

R− r

∫
Aδ(k,R)

η|∇uδ|2+µdx

(2.2)

for a suitable positive constant c independent of δ, r and R.

Proof. We note that the second inequality follows from the first since w.l.o.g. we
may assume R0 ≤ 1 and k ≥ 2. To prove (2.2) we observe that uδ is solution of
the Euler equation ∫

Ω

DFδ(∇uδ)∇ϕdx = −
∫

Ω−D

λ(uδ − f)ϕdx

for all ϕ ∈ C∞0 (Ω).
Setting ϕ = ∂αψ, α ∈ {1, 2}, with ψ ∈ C∞0 (Ω) we have∫

Ω

DFδ(∇uδ)∂α∇ψdx = −
∫

Ω−D

λ(uδ − f)∂αψdx

for all ψ ∈ C∞0 (Ω).
Since uδ ∈ W 2,2

loc (Ω) (compare Lemma 2.1,(i)) and therebyDFδ(∇uδ) ∈ W 1,2
loc (Ω,R2),

an integration by parts leads to∫
BR(x0)

D2Fδ(∇uδ)(∂α∇uδ,∇ψ)dx =

∫
BR(x0)−D

λ(uδ − f)∂αψdx.

for all ψ ∈ W 1,2
0 (Ω) with compact support in Ω.

Observing that ψ = η2∂αuδ(Γδ−k)+ is admissible we get (from now on summation
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w.r.t. α ∈ {1, 2})∫
Aδ(k,R)

D2Fδ(∇uδ)(∂α∇uδ, ∂α∇uδ)(Γδ − k)η2dx

+

∫
Aδ(k,R)

D2Fδ(∇uδ)(∂α∇uδ, ∂αu∇Γδ)η
2dx

+ 2

∫
Aδ(k,R)

D2Fδ(∇uδ)(∂α∇uδ, ∂αu∇η)η(Γδ − k)dx

=

∫
BR(x0)−D

λ(uδ − f)∂α[η2∂αuδ(Γδ − k)+]dx.

(2.3)

For the second integral on the l.h.s. it holds∫
Aδ(k,R)

D2Fδ(∇uδ)(∂α∇uδ, ∂αu∇Γδ)η
2dx

=
1

2

∫
Aδ(k,R)

D2Fδ(∇uδ)(∇Γδ,∇Γδ)η
2dx.

(2.4)

In accordance with (2.4) we also have for the third integral on the l.h.s. of (2.3)∫
Aδ(k,R)

D2Fδ(∇uδ)(∂α∇uδ, ∂αu∇η)η(Γδ − k)dx

=
1

2

∫
Aδ(k,R)

D2Fδ(∇uδ)(∇η,∇Γδ)η(Γδ − k)dx.

(2.5)

Summarizing, (2.3)-(2.5) imply with the Cauchy-Schwarz inequality applied to
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the bilinear form D2Fδ(∇uδ) and with Young’s inequality (ε > 0)∫
Aδ(k,R)

D2Fδ(∇uδ)(∂α∇uδ, ∂α∇uδ)(Γδ − k)η2dx

+

∫
Aδ(k,R)

D2Fδ(∇uδ)(∇Γδ,∇Γδ)η
2dx

≤ ε

∫
Aδ(k,R)

D2Fδ(∇uδ)(∇Γδ,∇Γδ)η
2dx

+
1

ε

∫
Aδ(k,R)

D2Fδ(∇uδ)(∇η,∇η)(Γδ − k)2dx

+

∫
BR(x0)−D

λ(uδ − f)∂α[η2∂αuδ(Γδ − k)+]dx.

(2.6)

In what follows we concentrate on the last integral on the r.h.s. of (2.6). We set

I1 :=

∫
BR(x0)−D

λ(uδ − f)∂α[η2∂αuδ(Γδ − k)+]dx

and get by recalling 0 ≤ uδ, f ≤ 1 a.e.

I1 ≤ c

∫
Aδ(k,R)

|∇η|η|∇uδ|(Γδ − k)dx+ c

∫
Aδ(k,R)

η2|∇2uδ|(Γδ − k)dx

+ c

∫
Aδ(k,R)

η2|∇uδ||∇Γδ|dx.
(2.7)

Another application of Young’s inequality (ε > 0) gives∫
Aδ(k,R)

η2|∇2uδ|(Γδ − k)dx ≤ ε

∫
Aδ(k,R)

η2|∇2uδ|2(Γδ − k)Γ
−µ
2
δ dx

+
1

ε

∫
Aδ(k,R)

η2(Γδ − k)Γ
µ
2
δ dx

(2.8)

as well as ∫
Aδ(k,R)

η2|∇uδ||∇Γδ|dx ≤ ε

∫
Aδ(k,R)

η2|∇Γδ|2Γ
−µ
2
δ dx

+
1

ε

∫
Aδ(k,R)

η2|∇uδ|2Γ
µ
2
δ dx.

(2.9)
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Choosing k ≥ 2 w.l.o.g. we have |∇uδ| ≥ 1 on Aδ(k,R) and therefore Γδ ≤
c|∇uδ|2 on Aδ(k,R). It follows by incorporating (2.8) and (2.9) in (2.7)

I1 ≤ c

∫
Aδ(k,R)

|∇η|η|∇uδ|3dx+ cε

∫
Aδ(k,R)

η2|∇2uδ|2(Γδ − k)Γ
−µ
2
δ dx

+ cε

∫
Aδ(k,R)

η2|∇Γδ|2Γ
−µ
2
δ dx+

c

ε

∫
Aδ(k,R)

η2|∇uδ|2+µdx.

(2.10)

Connecting (2.10) with (2.6) we get∫
Aδ(k,R)

D2Fδ(∇uδ)(∂α∇uδ, ∂α∇uδ)(Γδ − k)η2dx

+

∫
Aδ(k,R)

D2Fδ(∇uδ)(∇Γδ,∇Γδ)η
2dx

≤ ε

∫
Aδ(k,R)

D2Fδ(∇uδ)(∇Γδ,∇Γδ)η
2dx

+
1

ε

∫
Aδ(k,R)

D2Fδ(∇uδ)(∇η,∇η)(Γδ − k)2dx

+ c

∫
Aδ(k,R)

|∇η|η|∇uδ|3dx+ cε

∫
Aδ(k,R)

η2|∇2uδ|2(Γδ − k)Γ
−µ
2
δ dx

+ cε

∫
Aδ(k,R)

η2|∇Γδ|2Γ
−µ
2
δ dx+

c

ε

∫
Aδ(k,R)

η2|∇uδ|2+µdx.

Choosing ε > 0 sufficiently small and using (1.5) it follows∫
Aδ(k,R)

η2|∇2uδ|2(Γδ − k)Γ
−µ
2
δ dx

+

∫
Aδ(k,R)

η2|∇Γδ|2Γ
−µ
2
δ dx

≤ c

∫
Aδ(k,R)

D2Fδ(∇uδ)(∇η,∇η)(Γδ − k)2dx

+ c

∫
Aδ(k,R)

|∇η|η|∇uδ|3dx+ c

∫
Aδ(k,R)

η2|∇uδ|2+µdx.

(2.11)
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Since we may assume R0 < 1 and since we may neglect the non-negative first
integral on the left hand side of (2.11) it finally holds∫

Aδ(k,R)

η2|∇Γδ|2Γ
−µ
2
δ dx ≤ c

(R− r)2

∫
Aδ(k,R)

|D2Fδ(∇uδ)|(Γδ − k)2dx

+
c

R− r

∫
Aδ(k,R)

η|∇uδ|2+µdx

which proves (2.2).

Considering the case µ ∈ (1, 2) we now deduce that ∇uδ is locally uniformly
bounded w.r.t. δ by adopting ideas as applied for example in [11], p.119-122. A
major tool beside the lemma of Stampacchia (compare Lemma 5.1, p.219 in [21])
used during these arguments is the local uniform p-integrability of ∇uδ for all
finite p (see (2.1)). However, w.r.t. future problems it might be imaginable that
one is only able to show local uniform p-integrability of ∇uδ up to a fixed expo-
nent p. As we are going to show in the following lemma, under the assumptions
of Lemma 2.1 (i) we only need local uniform p-integrability of ∇uδ for a certain
exponent p to conclude that ∇uδ is locally uniformly bounded w.r.t. δ whereby
p is dependent of the elliptic parameter µ > 1.

Now, we can state the main result of this section.

Lemma 2.4
Suppose that the assumptions of Lemma 2.1 (i) hold for some µ > 1 and assume
in addition that we have ∇uδ ∈ L2+2µ+ε

loc (Ω,R2) uniformly in δ for a number ε > 0,
i.e.

sup
δ

∫
Ω′

|∇uδ|2+2µ+εdx = c(µ, ε,Ω′) <∞ (2.12)

where Ω′ b Ω. Then it holds ∇uδ ∈ L∞loc(Ω,R2) uniformly in δ.

As the first step for proving Lemma 2.4 we present a technical lemma which is
of pure algebraic nature, its proof is given in the Appendix.

Lemma 2.5
Consider real numbers p, ν, µ > 1 with

µ+ 3 < p as well as µ+ ν < p. (2.13)
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Then, there exist real numbers s1, s2, s3, s4 > 1 such that

(i) 2
s1

s1 − 1
< p, (ii)

2

s1

> 1,

(iii) µ
s2

s2 − 1
< p, (iv) 3

s3

s3 − 1
< p,

(v) ν
s4

s4 − 1
< p, (vi)

1

s3

+
1

s2

> 1,

(vii)
1

s4

+
1

s2

> 1.

After these preparations we now come to the Proof of Lemma 2.4:

With the previous notation and using Sobolev’s inequality we have∫
Aδ(k,r)

(Γδ − k)2dx ≤
∫

BR(x0)

(η(Γδ − k)+)2dx ≤ c

( ∫
BR(x0)

|∇[η(Γδ − k)+]|dx
)2

.

Moreover it holds

c

( ∫
BR(x0)

|∇[η(Γδ − k)+]|dx
)2

= c

( ∫
Aδ(k,R)

|∇[η(Γδ − k)]|dx
)2

≤ c

( ∫
Aδ(k,R)

|∇η|(Γδ − k)dx

)2

+ c

( ∫
Aδ(k,R)

η|∇Γδ|dx
)2

=: c

[
I2

1 + I2
2

]
.

As a consequence we can state∫
Aδ(k,r)

(Γδ − k)2dx ≤ c

[
I2

1 + I2
2

]
. (2.14)

In Lemma 2.5 we now let µ > 1 and define ν := 2 + µ as well as p := 2 + 2µ+ ε
whereby ε > 0 is a fixed number. Hence we get

µ+ 3 < 2µ+ 2 < p

Therefore, (2.13) in Lemma 2.5 is satisfied and we get existence of real numbers
si > 1, i = 1, . . . , 4, for this choice of the parameters.
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By (2.12) we have Γδ − k ∈ L
p
2 (BR(x0)) uniformly in δ and in accordance with

Lemma 2.5 (i), we may conclude Γδ−k ∈ L
s1
s1−1 (BR(x0)) uniformly in δ by (2.12).

We get by using Hölder’s inequality

I2
1 =

( ∫
Aδ(k,R)

|∇η|(Γδ − k)dx

)2

≤ c

(R− r)2
(L2(Aδ(k,R)))

2
s1

( ∫
Aδ(k,R)

(Γδ − k)
s1
s1−1dx

) 2(s1−1)
s1

≤ c

(R− r)2
(L2(Aδ(k,R)))

2
s1 .

(2.15)

Next we discuss I2. We have Γ
µ
4
δ ∈ L2(BR(x0)) uniformly in δ since p > µ and an

application of Hölder’s inequality and (2.2) leads to

I2
2 ≤

∫
Aδ(k,R)

η2|∇Γδ|2Γ
−µ
2
δ dx

∫
Aδ(k,R)

Γ
µ
2
δ dx

≤ c

(R− r)2

∫
Aδ(k,R)

|D2Fδ(∇uδ)|(Γδ − k)2dx

∫
Aδ(k,R)

Γ
µ
2
δ dx

+
c

R− r

∫
Aδ(k,R)

η|∇uδ|2+µdx

∫
Aδ(k,R)

Γ
µ
2
δ dx

≤
[

c

(R− r)2

∫
Aδ(k,R)

Γ
3
2
δ dx+

c

R− r

∫
Aδ(k,R)

Γ
1+µ

2
δ dx

] ∫
Aδ(k,R)

Γ
µ
2
δ dx

(2.16)

where the last inequality follows by incorporating (1.5).
By (2.12) we have Γ

µ
2
δ ∈ L

p
µ (BR(x0)) uniformly in δ and according to Lemma 2.5

(iii), it follows Γ
µ
2
δ ∈ L

s2
s2−1 (BR(x0)) uniformly in δ by (2.12). Hölder’s inequality

gives ∫
Aδ(k,R)

Γ
µ
2
δ dx ≤

( ∫
Aδ(k,R)

Γ
µs2

2(s2−1)

δ dx

) s2−1
s2

L2(Aδ(k,R))
1
s2

≤ cL2(Aδ(k,R))
1
s2 .

(2.17)

By (2.12) we deduce Γ
3
2
δ ∈ L

p
3 (BR(x0)) uniformly in δ. Taking Lemma 2.5 (iv)

into account we obtain Γ
3
2
δ ∈ L

s3
s3−1 (BR(x0)) uniformly in δ by using (2.12) again.
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Hölder’s inequality implies∫
Aδ(k,R)

Γ
3
2
δ dx ≤

[ ∫
Aδ(k,R)

Γ
3
2

s3
s3−1

δ dx

] s3−1
s3

L2(Aδ(k,R))
1
s3 ≤ cL2(Aδ(k,R))

1
s3 . (2.18)

In addition, by incorporating (2.12) we get Γ
1+µ

2
δ ∈ L

p
2+µ (Ω) uniformly in δ. Due

to Lemma 2.5 (v), it follows Γ
1+µ

2
δ ∈ L

s4
s4−1 (Ω) uniformly in δ by taking (2.12)

into account. An application of Hölder’s inequality results in∫
Aδ(k,R)

Γ
1+µ

2
δ dx ≤

[ ∫
Aδ(k,R)

Γ
(1+µ

2
)
s4
s4−1

δ dx

] s4−1
s4

L2(Aδ(k,R))
1
s4

≤ cL2(Aδ(k,R))
1
s4 .

(2.19)

Recalling R0 < 1, (2.16) - (2.19) lead to

I2
2 ≤

c

(R− r)2

(
L2(Aδ(k,R))

1
s2

+ 1
s3 + L2(Aδ(k,R))

1
s2

+ 1
s4

)
. (2.20)

Applying Lemma 2.5 (vi) and (vii) to (2.20) we get existence of a real number
β̃ > 1 with

I2
2 ≤

c

(R− r)2
L2(Aδ(k,R))β̃ (2.21)

Thus (2.15), (2.21) and Lemma 2.5 (ii) imply existence of a real number β > 1
such that we may deduce from (2.14) (with R0 sufficiently small)∫

Aδ(k,r)

(Γδ − k)2dx ≤ c

(R− r)2
L2(Aδ(k,R))β. (2.22)

At this point we define the following quantities for k ≥ 2 and r < R:

τ(k, r) :=

∫
Aδ(k,r)

(Γδ − k)2dx, a(k, r) := L2(Aδ(k, r)).

Now, suppose that there are given two real numbers h, k with h > k > 2, hence
Γδ−k
h−k ≥ 1 on Aδ(h,R). We get

a(h,R) =

∫
Aδ(h,R)

1dx ≤
∫

Aδ(h,R)

(Γδ − k)2(h− k)−2dx,

14



thus

a(h,R) ≤ 1

(h− k)2
τ(k,R) (2.23)

From (2.22) and (2.23) it follows

τ(h, r) ≤ c

(R− r)γ(h− k)α
(τ(k,R))β

where

γ := 2, α := 2β > 0, β > 1. (2.24)

At this point, we apply Stampacchia’s lemma (see Lemma 5.1, p.219 in [21] or
Lemma B.1, p. 63 in [18]) to deduce that ∇uδ is locally uniformly bounded in Ω
w.r.t. δ. Observe that there exists a positive quantity d such that

τ(d+ k0, R0 − σR0) = 0

for all σ ∈ (0, 1) with

dα =
2

(α+β)β
β−1 C

σγRγ
0

[τ(k0, R0)]β−1.

Choosing k0 = 2 and σ = 1
2
we arrive at

τ(d+ 2, R0/2) = 0. (2.25)

Moreover, d is uniformly bounded w.r.t. δ since we may use (2.12) with p > 4,
i.e.

dα ≤ c(R0).

As a consequence we obtain

|∇uδ| ≤ c (2.26)

a.e. on BR0/2(x0) for all δ ∈ (0, 1) where c in particular is independent of δ.
Using a covering argument, we get

||∇uδ||L∞(ω,R2) ≤ c(ω)

for all ω b Ω and δ ∈ (0, 1), i.e. uδ is locally uniformly Lipschitz continuous with
Lipschitz constant c(ω) > 0. This completes the proof of Lemma 2.4.

Remark 2.6
If we have µ ∈ (1, 2), then we clearly get ∇uδ ∈ L∞loc(Ω,R2) uniformly in δ by
taking (2.1) into account. Moreover it holds uδ → u in L1

loc(Ω) as δ → 0 (see
Lemma 2.1 (ii)) and since uδ is locally uniformly Lipschitz continuous (w.r.t δ)
we may apply Arzelà-Ascoli’s theorem to see that u ∈ C0,1(Ω).
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Finally, we are going to show that u has locally Hölder continuous first partial
derivatives in Ω completing the proof of Theorem 1.4.
Let ω b Ω be arbitrary again. First, we observe that u is a solution of the Euler
equation ∫

Ω

DF (∇u)∇ϕdx =

∫
Ω

gϕdx

for all ϕ ∈ C∞0 (Ω) where g := λχΩ−D(u− f).
Setting ϕ = ∂αψ, α ∈ {1, 2}, with ψ ∈ C∞0 (Ω) we arrive at∫

Ω

DF (∇u)∂α∇ψdx =

∫
Ω

g∂αψdx

for all ψ ∈ C∞0 (Ω).
Since u is Lipschitz continuous, we may argue with the standard difference quo-
tient technique to get u ∈ W 2,2

loc (Ω). Moreover, we have DF (∇u) ∈ W 1,2
loc (Ω,R2)

by applying the chain rule for Sobolev functions. By means of these results, an
integration by parts leads to

−
∫
ω

D2F (∇u)(∂α∇u,∇ψ)dx =

∫
ω

g∂αψdx.

Setting v := ∂αu, we get∫
ω

D2F (∇u)(∇v,∇ψ)dx = −
∫
ω

g∂αψdx.

The coefficients aαβ(x) := ∂2F
∂pα∂pβ

(∇u) are strictly elliptic and bounded on ω.
This fact follows immediately from (1.5) and from the local Lipschitz continuity
of u. Finally, Theorem 8.22, p.200, of [17] ensures interior Hölder continuity of v
and therefore of ∂αu for all α ∈ {1, 2}, i.e. u has locally Hölder continuous first
partial derivatives in Ω. This completes the proof of Theorem 1.4.

3 Appendix: Proof of Lemma 2.5

At first we choose p̃ < p such that (2.13) still holds for p̃ instead of p.
Due to (2.13) it holds p̃ > 3 and p̃ > ν. Thus (i), (iv) and (v) are obvious by
setting s1 := p̃

p̃−2
> 1, s3 := p̃

p̃−3
> 1 and s4 := p̃

p̃−ν > 1 .
Using (2.13) and µ > 1 we also get (ii).
To prove (vi) and (vii) we observe that we have

1− 1

s3

=
3

p̃
< 1
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as well as

1− 1

s4

=
ν

p̃
< 1.

Setting m1 := 1− 1
s3

and m2 := 1− 1
s4

we have shown that

m := max(m1,m2) < 1 (3.1)

Due to (3.1) we may choose s2 > 1 in such a way that

m <
1

s2

< 1. (3.2)

Using (3.2) we directly get

1

s3

+
1

s2

>
1

s3

+m1 = 1

and

1

s4

+
1

s2

>
1

s4

+m2 = 1

which proves (vi) as well as (vii).
To prove (iii) we are going to show that

1

s2

< 1− µ

p̃
. (3.3)

In order to show that (3.3) holds we observe that we havem1 < 1−µ
p̃
in accordance

with the first inequality in (2.13). Furthermore it also holds m2 < 1− µ
p̃
according

to the second inequality in (2.13).
Thus it follows

m < 1− µ

p̃
. (3.4)

Therefore we may choose s2 > 1 in addition to (3.2) in such a way that

m <
1

s2

< 1− µ

p̃

which proves (iii) and altogether Lemma 2.5.
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