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On the structure of Hankel algebras
Michael Didas

Let H2 denote the Hardy space on the unit disc D and let A be a closed sub-
algebra of L∞(∂D) strictly containing H∞. The Hankel algebra HA is by
definition the smallest closed subalgebra of B(H2) containing all Toeplitz
and Hankel operators with symbols from A. We establish a short exact
sequence of the form 0 → C → HA → A → 0 generalizing the corre-
sponding sequence for the underlying Toeplitz algebra, where C denotes
the commutator ideal of HA. This extends a result of Power [14] to the
non-selfadjoint setting. By a similar method we obtain a decomposition
theorem for the set of all operators X ∈ B(H2) that are simultaneously
asymptotically Toeplitz and Hankel (in the sense of Barria-Halmos [2] and
Feintuch [11], respectively). As an application of the above short exact
sequence we show that every derivation on HA is a commutator with an
operator S ∈ B(H2) and maps into the commutator ideal.

MSC: 47L80, 47B35, 47B47 Keywords: Hankel algebras, asymptotic
Toeplitz and Hankel operators, Toeplitz projection, derivations

§1 Introduction

Let Tf = PMf |H
2 denote the Toeplitz operator with symbol f ∈ L∞ on

the Hardy space H2 of the unit circle. Given a subset S ⊂ L∞, we write
TS = {Tf : f ∈ S} for the collection of all Toeplitz operators associated with
symbol functions from S. It is well known that the assignment

ξ : L∞ → TL∞ ⊂ B(H2), f 7→ Tf

is an isometric and involutive linear map onto the space of all Toeplitz oper-
ators. The projection involved in the definition of Tf prevents ξ to be mul-
tiplicative, but the difference of Tfg and TfTg can be explicitly expressed in
terms of Hankel operators. Using the unitary operator J : L2 → L2 mapping
zn to zn for n ∈ Z, the Hankel operator with symbol f ∈ L∞ can be considered
as an operator on H2 via the definition

Hf = PJMzf |H
2.

Note that under the action of the map Q = PJMz : L
2 → H2 involved here,

the Fourier sequence (an)n∈Z of a L2-function is mapped to (a−1, a−2, a−3, . . .).
From this we see that Q = QP(H2)⊥ and that Q|(H2)⊥ provides an isometric
isomorphism between (H2)⊥ and H2.

Abbreviating the function Jf by f̃ (i.e. f̃(z) = f(z) for every z ∈ T), the
above-mentioned lack of multiplicativity of the map ξ(f) = Tf is controlled by
the identity

Tfg = TfTg +H
f̃
Hg (f, g ∈ L∞)
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which can be verified by direct computation (cf. Lemma 1.1 in [14]). Similarly,
one deduces the relation

Hfg = T
f̃
Hg +HfTg (f, g ∈ L∞),

which plays a central role in the sequel. Given a symbol class S ⊂ L∞, we
write

HS = {Hf : f ∈ S}.

Now, let A ⊂ L∞ be a subalgebra. The smallest closed subalgebra TA ⊂
B(H2) containing all operators Tf with f ∈ A is called the Toeplitz algebra
induced by A. Let CA denote the commutator ideal of TA. One of the basic
results in the theory of Toeplitz algebras is the existence of a homomorphism
s : TA → A with s(Tf) = f (f ∈ A) such that the sequence

0 −→ CA −→ TA
s

−→ A −→ 0

is exact for various algebras A, among them L∞, the continuous functions
C(T) and the algebra H∞ + C(T) (see Theorem 7.11, 7.23 and 7.29 in [8]).
Here, as usual, H∞ ⊂ L∞ denotes the subspace of functions with vanishing
negative Fourier coefficients (which are precisely the radial boundary values of
bounded analytic functions on the unit disc). In the two cases A = C(T) and
A = H∞+C(T), the commutator ideal CA is known to be the ideal of compact
operators K(H2), while Barria and Halmos (see Theorem 7 in [2]) identified

CL∞ = {X ∈ TL∞ : (T ∗
z )
nXT nz

n
→ 0 (SOT)}.

Using the terminology of [2], we call the operators X ∈ B(H2) belonging to
the class

T
∞ = {X ∈ B(H2) : ((T ∗

z )
nXT nz )n≥1 is an SOT-convergent sequence}

asymptotic Toeplitz operators. To justify this terminology, we should recall
that the classical Toeplitz operators X ∈ B(H2) are characterized by the so-
called Brown-Halmos condition

T ∗
zXTz = X

which also shows that the SOT-limit of a convergent sequence (T ∗
z )
nXT nz is

of the form Tϕ for some unique element ϕ ∈ L∞. This ϕ is then called the
(asymptotic) symbol of X and abbreviated by σ(X). In the sequel, we write
T ∞ for the set of all asymptotic Toeplitz operators and T ∞

0 for those with
symbol zero. Using this notation, we have CL∞ = TL∞ ∩ T ∞

0 .

In Section 2 of this paper we establish an analogous short exact sequence

0 −→ C (HA) −→ HA
s

−→ A −→ 0

in the context of the Hankel algebra

HA = alg
‖·‖
(TA ∪HA) ⊂ B(H2)
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and give a description of the commutator ideal C (HA) as HA ∩ T ∞
0 (see

Theorem 4). Our methods work for so-called inner subalgebras A ⊂ L∞, a
class which has been introduced by Power to study the structure of Hankel
C∗-algebras in [14]. Following Power we call a subalgebra A ⊂ L∞ inner, if

A = LH{ηϕ : η, ϕ ∈ A with η inner and ϕ ∈ H∞}

Recall that a function η ∈ H∞ is said to be inner, if |η| = 1 a.e. on T. What
at a first look seems to be a rather technical condition on A covers most of
the natural examples: By Stone-Weierstraß, C(T) is inner and so is L∞ itself
by Theorem 6.32 in [8]. Moreover, if Σ ⊂ H∞ denotes a semigroup of inner
functions, then the corresponding Douglas algebra A = {ηϕ : η ∈ Σ, ϕ ∈ H∞}
(see Def. 6.35 in [8]) is inner. A result of Marshall and Chang [13] shows that
every closed subalgebra A ⊂ L∞ strictly containing H∞ is a Douglas algebra
and hence inner. The special role of inner functions in the context of Toeplitz
operators relies on the following fact: Given f, g ∈ H2, an inner function η,
and ϕ ∈ L∞, we have 〈T ∗

η TϕTηf, g〉 = 〈ϕηf, ηg〉 = 〈Tϕf, g〉. Hence, in view
of the Brown-Halmos condition, an operator X ∈ H2 is a Toeplitz operator if
and only if

T ∗
ηXTη = X for every inner function η.

Our main tool in the proof of Theorem 4 is the Toeplitz projection introduced
by Arveson in [1] (see Proposition 5.2). This is a completely positive unital
map

Φ : H2 → H2 satisfying Φ2 = Φ and ran(Φ) = TL∞ .

It turns out that Φ induces a direct sum decomposition HA = TA ⊕ C (HA).

Section 3 is devoted to the study of asymptotic Hankel operators X ∈ B(H2)
which can be defined via the condition

(HznXT
n
z )n is an SOT-convergent sequence in B(H2).

This class of operators has been introduced and studied by Feintuch in [10]
and [11]. Let us write H ∞ for the set of all asymptotic Hankel operators
and H ∞

0 for those where the corresponding limit is the zero operator. It
is well known that each element of the full Hankel algebra is simultaneously
asymptotically Toeplitz and Hankel, in other words HL∞ ⊂ T ∞ ∩H ∞. This
motivates a study of the space T ∞ ∩H ∞ and its subspace T ∞ ∩H ∞

0 . The
latter one can be interpreted as the set of all ”asymptotically analytic Toeplitz
operators” (see Section 3 for details) and turns out to be an algebra. Its
structure is analyzed in detail in Theorem 7. As a consequence, we deduce
that T ∞ ∩ H ∞ = TL∞ ⊕ (T ∞

0 ∩ H ∞
0 ), see Corollary 8. Along the way, we

give an alternative description of the commutator ideal of the Hankel algebra
HA (Corollary 9).

In Section 4 we consider derivations of HA where A is an inner subalgebra
of L∞. We show (see Proposition 11) that each such derivation maps into
the commutator ideal and is given by the commutator with an operator S ∈
B(H2).

3



§2 The structure of Hankel algebras

We start with an elementary observation concerning the rearrangement of
products consisting solely of Hankel- and Toeplitz-factors which is implicitly
contained in the paper [2]. For the convenience of the reader, we have included
a proof. Empty products in B(H2) are assumed to have the value 1H .

1 Lemma. (Barria-Halmos) For every finite product X =
∏n

i=1Xi 6= 0
with Xi ∈ TL∞ ∪HL∞ , there are a number m ∈ N and operators Tj ∈ B(H2)
that are finite products of elements in TL∞ , and Hj ∈ B(H2) being finite
products of elements from HL∞ such that Tj ◦Hj 6= 0 (j = 1, . . . , m) and

X =

m∑

j=1

Tj ◦Hj .

Moreover, one can achieve that the number of Hankel factors in each summand
is equal to the number of Hankel factors contained in X .

Proof. We may of course assume that there is at least one Hankel factor
present. In a first step, we suppose that there is exactly one Hankel factor
Xk contained in X . If k = n, there is nothing to show. Otherwise XkXk+1 =
HfTg = Hfg − T

f̃
Hg for some f, g ∈ L∞ and hence

X =
∏

Xi = [X1 · · ·Xk−1HfgXk+2 · · ·Xn]− [X1 · · ·Xk−1Tf̃HgXk+2 · · ·Xn].

Both of these products contain exactly one Hankel factor which is one step
nearer to the right end as in the original term. Note further that one of these
summands may vanish if the symbol of the Hankel operator happens to be
analytic. Repeating this procedure a finite number of times and cancelling out
all zero summands, we obtain a sum

X =

m∑

j=1

(
∏

T∈Mj

T ) ◦Bj with Mj ⊂ TL∞ finite and Bj ∈ HL∞ ,

as desired. In the second step, we prove the assertion of the Lemma by induc-
tion on the number s of Hankel factors contained in X . The first step settles
the case s = 1. Now assume that the assertion holds for some s ≤ n − 1 and
that Xk is the right-most Hankel factor in X . From the first step we obtain a
decomposition

n∏

i=k

Xi =
m∑

j=1

Tj ◦Hj with single Hankel operators Hj ∈ HL∞ .

Hence X =
∑m

j=1(X1 · · ·Xk−1Tj) ◦ Hj, where the terms in brackets contain
s − 1 Hankel factors. After rearranging them using the induction hypothesis
we obtain a sum of the desired form. In particular, each summand is a product
containing exactly s Hankel operators as its right-most factors. �

In the next lemma we collect some basic facts about asymptotic Toeplitz op-
erators from [2]. We give a short reformulation of the proofs here.
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2 Lemma. (Barria-Halmos) The set T ∞ has the following properties:

(a) Every product of the form XH with X ∈ B(H2) and H ∈ HL∞ is
contained in T ∞

0 .

(b) For ϕ1, . . . , ϕn ∈ L∞, we have Tϕ1 · · ·Tϕn
∈ T ∞ with symbol ϕ1 · · ·ϕn.

(c) A finite product of the form X = X1 · · ·Xn with Xi ∈ TL∞ ∪ HL∞ for
i = 1, . . . , n belongs to T ∞. If at least one of the factors is a Hankel
operator, then σ(X) = 0.

(d) The full Hankel algebra HL∞ is contained in T ∞.

Proof. For the proof of part (a), remember the fact that a Hankel operator
can be characterized by the identity HTz = T ∗

zH . Hence we have

‖T nz XHT
n
z f‖ ≤ ‖X‖‖T nz Hf‖ (f ∈ H2)

and the right-hand side converges to 0, since T nz → 0 (SOT). Part (b) follows
by considering the finite telesoping sum

Tϕ1 · · ·Tϕn
− Tϕ1···ϕn

= Tϕ1 · · ·Tϕn−2(Tϕn−1Tϕn
− Tϕn−1ϕn

)

+ Tϕ1 · · ·Tϕn−3(Tϕn−2Tϕn−1ϕn
− Tϕn−2ϕn−1ϕn

)

+ · · ·

Note that all the terms in brackets are semi-commutators, and hence in view
of the identity Tfg − TfTg = H

f̃
Hg (f, g ∈ L∞) contain a Hankel factor on

the right. Now applying part (a), this yields the assertion of part (b) which
is also a special case of (c), namely that all factors Xi are Toeplitz operators
(i = 1, . . . , n). Suppose now that a product X under consideration in part
(c) contains at leat one Hankel factor. Then representation X =

∑m
j=1 TjHj

obtained in the preceding lemma has non-trivial Hankel parts Hj. Applying
part (a) we obtain σ(X) = 0, as desired. Finally, note that HL∞ is the closed
linear hull of all products X occurring in part (c). �

The main tool for our study of the Hankel algebra HA will be a completely
positive, unital projection Φ : B(H2) → B(H2) onto the space TL∞ of all
Toeplitz operators. Following Arveson [1] (see Proposition 5.2), such a map Φ
can be defined via the formula

〈Φ(X)f, g〉 = LIM
(
〈T nz XT

n
z f, g〉

)
n

(X ∈ B(H2), f, g ∈ H2),

where LIM : ℓ∞ → C denotes a Banach limit. Obviously, Φ has the additional
property that

A∗Φ(X)B = Φ(A∗XB) (A,B ∈ (Tz)
′, X ∈ B(H2)).

Combined with the inner-function criterion for Toeplitz operators mentioned
above we have

Φ(X) = Φ(TηXTη) (η inner, X ∈ B(H2)).
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3 Lemma. The map Φ from above has the following properties:

(a) The identity Φ(X) = Tσ(X) holds for every X ∈ T ∞.

(b) ker(Φ) ⊃ {X ∈ T ∞ : σ(X) = 0} ⊃ {XH : X ∈ B(H2), H ∈ HL∞}

(c) For every Y ∈ ker(Φ) and every f ∈ L∞, we have Y Tf ∈ ker(Φ).

(d) Given ϕ1, . . . , ϕn ∈ L∞, we have Φ(Tϕ1 · · ·Tϕn
) = Tϕ1···ϕn

.

Proof. Parts (a) and (b) are obvious, (a) from the definition of Φ and T ∞

and (b) in view of Lemma 2 (a). For the validity of part (c), fix an operator
Y ∈ ker(Φ), an inner function η and ϕ ∈ H∞. Then we have

Φ(Y Tηϕ) = Φ(TηY TηϕTη) = Φ(TηY Tϕ) = TηΦ(Y )Tϕ = 0.

The assertion then follows from the fact that L∞ is inner. Part (d) is a conse-
quence of part (a) and Lemma 2 (b). �

Now we can state our decomposition theorem for Hankel algebras. It extends
both Theorem 1.3 (i) of Power [14] and Theorem 7 of Barria-Halmos [2]. Note
that every element of HL∞ is an asymptotic Toeplitz operator (see Lemma
2), so that the asymptotic symbol σ(X) makes sense for every X ∈ HL∞ . As
before, C (HA) denotes the commutator ideal of HA.

4 Theorem. Let A ⊂ L∞ be an inner subalgebra.

(a) There is a direct sum decomposition HA = TA ⊕ C (HA) and

C (HA) = ker(Φ) ∩ HA = {X ∈ HA : T nz XT
n
z

n
−→ 0 (SOT)}.

(b) The map s : HA → A given by s(X) = f , if X = Tf + C ∈ HA

corresponding to the above decomposition, is multiplicative and induces
an isometric algebra isomorphism

HA/C (HA)
ŝ

−→ A.

(c) The closed two-sided ideal (HA) ⊂ HA generated by HA is contained in

C (HA). If A = Ã, then C (HA) = (HA).

Proof. If X =
∏n

i=1Xi is one of the products occurring in the representation

HA = LH {Πn
i=1Xi : n ∈ N, Xi ∈ TA ∪HA(1 ≤ i ≤ n)} ,

then, by Lemma 2 and Lemma 3 we have

Φ(X) =

{
0 if at least one factor Xi ∈ HA

Tf1···fn if Xi = Tfi for all i = 1, . . . , n.
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Consequently, Φ maps HA into itself, and the restriction Φ0 = Φ|HA ∈ B(HA)
is a projection (Φ2

0 = Φ0) with ran(Φ0) = TA. As a projection, Φ0 gives rise to
a direct sum decomposition

HA = ran(Φ0) + ran(1− Φ0) = TA + ker(Φ0).

Now consider the composition s = ξ−1
0 ◦ Φ0 : HA → A, where ξ0 is the

linear isometric isomorphism ξ0 : A → TA, f 7→ Tf . Then s is a contractive
linear map with s(Tf + C) = f for every Tf + C ∈ TA + ker(Φ0) = HA and
ker(s) = ker(Φ0). To see that s is multiplicative, it suffices, by continuity
and linearity, to check that s is multiplicative on products of the form Πn

i=1Xi

with Xi ∈ TA ∪ HA (1 ≤ i ≤ n). But if Xm ∈ HA for some m ∈ {1, . . . , n},
then we have Φ(Πn

i=1Xi) = 0 = Πn
i=1Φ(Xi) by Lemma 3. Otherwise, we have

Xi = Tfi ∈ TA for all i, and hence

s(X) = ξ−1
0 (Φ0(Tf1 · · ·Tfn)) = ξ−1

0 (Tf1···fn) = f1 · · · fn = s(X1) · · · s(Xn)

in view of Lemma 3 (d). By the above, s is a contractive algebra homomor-
phism, and so is the induced map ŝ : HA/ ker(Φ0) → A. Since ξ0 : A → TA is
an isometry and the Toeplitz projection is contractive, we have the estimate

‖[Tf ]‖ ≤ ‖f‖ = ‖Tf‖ ≤ ‖Φ(Tf + C)‖ ≤ ‖Tf + C‖ (C ∈ ker(Φ0))

which proves that ‖f‖ = ‖[Tf ]‖ for every f ∈ A, and hence ŝ is an isometry.
To finish the proof of parts (a) and (b), we verify that the following inclusions
hold:

ker(Φ0) ⊂ {X ∈ HA : σ(X) = 0} ⊂ C (HA) ⊂ ker(Φ0).

Concerning the first one, note that ker(Φ0) = ran(1−Φ0) and hence it suffices
to show that

σ(X − Φ0(X)) = 0

for every product X = Πn
i=1Xi with Xi ∈ TA ∪ HA (i = 1, . . . , n). If all

factors are Toeplitz operators Xi = Tfi, then Φ0(X) = Tf1···fn by Lemma 3 (d),
hence the assertion follows from Lemma 2 (b). Otherwise there is at least one
Hankel factor Xm, forcing both σ(X) and Φ0(X) to be zero (see Lemma 2 (c)
and Lemma 3 (b)).

For the second inclusion, we have to show that

X ∈ HA with σ(X) = 0 ⇒ X ∈ C (HA).

To begin with, fix an arbitrary operator X ∈ HA with σ(X) = 0. Then there
is an approximating sequence Xn

n
→ X of the form

Xn =

kn∑

i=1

X
(n)
i

where each X
(n)
i is a finite product of elements of TA∪HA. From the fact that

the symbol map σ : HL∞ → L∞ is a contractive homomorphism (see Corollary
5 in [2]), we deduce that

kn∑

i=1

(
X

(n)
i − T

σ(X
(n)
i

)

)
= Xn − Tσ(Xn)

n
−→ X − Tσ(X) = X.
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Hence it remains to check that every summand occurring on the left-hand side
belongs to C (HA). Towards this, fix indices n and i and write Y = X

(n)
i =

X1 · · ·Xm with Xj ∈ TA ∪ HA. If all factors Xj are Toeplitz operators (with
corresponding symbol fj), then we have

Y − Tσ(Y ) = Tf1 · · ·Tfm − Tf1···fm

by Lemma 2 (b). A look at the proof of the cited lemma even shows that

Y − Tσ(Y ) ∈ S ,

where S denotes the closed ideal in TA = alg(TA) generated by all semi-
commutators TfTg−Tfg with f, g ∈ A. But if η1, η2 are inner and ϕ1, ϕ2 ∈ H∞,
we have

Tη1ϕ1Tη2ϕ2 − Tη1η2ϕ1ϕ2 = Tη1(Tϕ1Tη2 − Tη2Tϕ1)Tϕ2 ∈ C (HA),

so S ⊂ C (HA) since A is inner. Now we turn to the second case, namely that
one factor Xl of Y = Πm

i=1Xi belongs to HA. Suppose for a moment that the
symbol of Xl = Hf has the special form f = ηϕ with η, ϕ ∈ A, η inner and
ϕ ∈ H∞. Then the decomposition

Hηϕ = Hηϕ − TηHηϕTη = Tη(TηHηϕ −HηϕTη) ∈ C (HA).

shows that Xl ∈ C (HA). For a general symbol f ∈ A this follows from the
hypothesis on A to be inner. So we finally obtain that Y ∈ C (HA), while
σ(Y ) = 0 by Lemma 2 (c). Hence, in any case, Y − Tσ(Y ) ∈ C (HA), as
desired.

To finish the proof of (a) and (b) note that the last inclusion in the above chain,
namely C (HA) ⊂ ker(Φ0), holds trivially since by the above HA/ ker(Φ0) is
commutative.

Towards part (c) observe that the inclusion C (HA) ⊃ (HA) has just been
shown. For the reverse one, we have to verify that all commutators of the
form

TfHg −HgTf , HfHg −HgHf and TfTg − TgTf (f, g ∈ A)

belong to (HA). Only the last one requires an argument. Lemma 1.1 in Power
guarantees that, for all f, g ∈ A, we have

TfTg − TgTf = (TfTg − Tfg) + (Tgf − TgTf) = −H
f̃
Hg +Hg̃Hf ∈ (HA),

since, by hypothesis, Ã = A. �

It should be remarked that if the subalgebra A ⊂ L∞ is self-adjoint and satisfies
A = Ã, then HA is a C∗-algebra (note that H∗

f = H˜
f
for f ∈ L∞). Hence

HA coincides with C∗(TA ∪HA) in this case. If, in addition, A is inner, then
we have HA = TA + C∗(HA) by Theorem 1.3 (i) from [14]. Combined with
the above we obtain the identity C (HA) = (HA) = C∗(HA) in this special
situation.
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§3 Hankel algebras and asymptotic Hankel operators

In this section we study operator algebras associated with so called asymptotic
Hankel operators. A first systematic study of this class of operators can be
found in Feintuch [10] and [11]. We briefly recall the definition given there.
For n ∈ N, let H2

n = LH{zi : 0 ≤ i ≤ n} and let Pn ∈ B(H2) be the orthogonal
projection onto H2

n. Define Jn ∈ B(H2) by Jnz
i = zn−i for i = 0, . . . , n and

Jn|(H
2
n)

⊥ = 0. In other words, Jn is the partial isometry with initial and
final space H2

n which reverses just the order of the standard basis elements of
H2
n. An operator X ∈ B(H2) is called an asymptotic Hankel operator, if the

sequence
Hn(X) = JnXT

n+1
z (n ≥ 1)

is SOT-convergent. In case that the corresponding limit exists, it is denoted
by H(X). As shown by Feintuch in [11] the set

H
∞ = {X ∈ B(H2) : X is asymptotically Hankel}

is norm closed. By H ∞
0 we mean the subset of all X ∈ H ∞ with H(X) = 0.

It should be remarked that the map Jn occuring in the above definition is
nothing else than the Hankel operatorHzn+1 . To see this, note that for n, k ≥ 0
we have Hzn+1zk = PJMzzn+1zk = PJzk−n = Pzn−k = Jnz

k.

The following observation (see Section 3 in [11]) shows that the notion of an
asymptotic Hankel operator extends the classical definition in a natural way.

5 Lemma. (Feintuch) (a) Every Toeplitz operator Tf is asymptotically
Hankel with H(Tf) = Hf (f ∈ L∞).

(b) Every product TfTg of Toeplitz operators is asymptotically Hankel with
H(TfTg) = HfTg + Tf̃Hg = Hfg. �

Let H∞ ⊂ L∞ be the closed subalgebra of all functions having vanishing
negative Fourier coefficients. Toeplitz operators with symbols from H∞ are
called analytic. Our first result gives a necessary condition for an operator
X ∈ B(H2) to belong to H ∞

0 , namely that the image of X under the Toeplitz
projection Φ is an analytic Toeplitz operator.

6 Proposition. Every X ∈ H ∞
0 satisfies Φ(X) ∈ TH∞ .

Proof. Fix an operator X ∈ H ∞
0 and write Φ(X) = Tϕ. We want to show

that the symbol ϕ is analytic. Towards this end, let X ⊕ 0 denote the trivial
extension ofX to an operator on L2 = H2⊕(H2)⊥. Making use of the isometric
identification (H2)⊥ → H2, h 7→ PJMzh (see the introduction for details), we
have the following norm identity for f ∈ H2. (Recall that P denotes the
projection onto H2.)

‖(Mn+1
z (X ⊕ 0)Mn+1

z − T n+1
z XT n+1

z )f‖L2 = ‖P(H2)⊥M
n+1
z XT n+1

z f‖L2

= ‖PJMzM
n+1
z XT n+1

z f‖

= ‖PMznJXT
n+1
z f‖ = . . .

9



Since X maps into H2 and PMn
z Jz

k = PMn
z z

−k = Pzn−k = Jnz
k for k ≥ 0,

we can complete the above chain with

. . . = ‖JnXT
n+1
z f‖

n
−→ 0. (∗)

Now define an operator Ψ(X) ∈ B(L2) in complete analogy to the Toeplitz
projection Φ(X) by means of

〈Ψ(X)f, g〉 = LIM〈Mn
z (X ⊕ 0)Mn

z f, g〉 (f, g ∈ H2).

Note that by the translation invariance of LIM (which should be the same as in
the definition of Φ), the operator Ψ(X) belongs to the commutant ofMz on L

2

and hence is of the form Ψ(X) = Mψ for some ψ ∈ L∞. Moreover, the above
norm convergence (∗) implies that 〈(Ψ(X)−Φ(X))f, g〉 = 0 for f, g ∈ H2 and
hence Tϕ = Φ(X) = PHΨ(X)|H = Tψ. This implies that ϕ = ψ. Now we
verify that ψ is analytic. For k ≥ 0, we have

〈ψ, z−(k+1)〉 = 〈Mψ1, z
−(k+1)〉

= LIM〈Mn+1
z (X ⊕ 0)Mn+1

z 1, z−(k+1)〉

= LIM〈XT n+1
z 1, zn−k〉.

For n ≥ k ≥ 0 the scalar product in the preceding line can be rewritten in the
form

〈XT n+1
z 1, zn−k〉 = 〈XT n+1

z 1, Jnz
k〉 = 〈JnXT

n+1
z 1, zk〉 (n ≥ k ≥ 0)

since Jn is unitary on H2
n and commutes with the projection onto H2

n. By the
hypothesis on X , this is a zero sequence, so ψ = ϕ is indeed analytic. �

In [11], Feintuch asks for an analytic description of H ∞
0 . It would be inter-

esting to know if the above necessary condition could be extended to such a
description.

The preceding proposition allows us to describe the structure of the space
T ∞ ∩ H ∞

0 . Note that, for a Toeplitz operator Tϕ with ϕ ∈ L∞, we have
H(Tϕ) = Hϕ = 0 ⇔ ϕ ∈ H∞. The elements of T ∞ ∩ H ∞

0 are asymptotically
Toeplitz and satisfy H(X) = 0, thus they can be thought of as ”asymptotically
analytic” Toeplitz operators. The following theorem describes their structure.
The proof of part (a) relies on the identity 1− Pn = T n+1

z T n+1
z (n ∈ N).

7 Theorem. The set T ∞ ∩ H ∞
0 of all asymptotically analytic Toeplitz op-

erators is a closed subalgebra of B(H2), and the following assertions hold:

(a) The set T ∞
0 ∩ H ∞

0 is equal to {X ∈ B(H2) : XT nz
n

−→ 0 (SOT)}, and
this is a closed left ideal of B(H2) containing C∗(HL∞).

(b) There is a direct sum decomposition T ∞ ∩H ∞
0 = TH∞ ⊕ (T ∞

0 ∩H ∞
0 ).

(c) The generalized symbol map yields an isometric algebra isomorphism

(T ∞ ∩ H ∞
0 )/(T ∞

0 ∩ H ∞
0 )

σ̂
−→ H∞, [X ] 7→ σ(X).

10



Proof. For every X ∈ T ∞
0 ∩ H ∞

0 and n ∈ N, consider the decomposition

XT n+1
z = (1− Pn)XT

n+1
z + PnXT

n+1
z = T n+1

z (T n+1
z XT n+1

z ) + PnXT
n+1
z .

Now apply the sum on the right to a vector x ∈ H2. Then the first summand
converges to zero, since (T n+1

z )n is norm-bounded and X ∈ T ∞
0 . Concerning

the second summand, observe that ‖PnXT
n+1
z x‖ = ‖JnXT

n+1
z x‖, since Jn is

unitary on ran(Pn) and vanishes on ran(Pn)
⊥. Thus we have XT n+1

z x
n
→ 0, and

the inclusion ”⊂” from part (a) follows. The other direction and the assertion
that this set is a closed left ideal are obvious. To finish the proof of part (a)
note that, for every Hankel operator H ∈ HL∞ , we have HT nz = T nz H

n
−→ 0

(SOT), and that H∗
f = H˜

f
.

The inclusion ”⊃” from part (b) holds trivially. For the other direction, write
a given operator X ∈ T ∞ ∩ H ∞

0 as

X = Φ(X) + (1− Φ)(X) = Tσ(X) + (X − Tσ(X)).

The first summand has the desired form since, according to the preceding
proposition, we have σ(X) ∈ H∞. Moreover, under the given assumptions
on X , this also implies that the second summand belongs to T ∞

0 ∩ H ∞
0 , as

desired.

In view of part (b), the map σ̂ considered in part (c) is a linear isomorphism.
Since the Toeplitz projection is contractive, we have the following estimate for
an arbitrary element X ∈ T ∞ ∩ H ∞

0 :

‖σ(X)‖ = ‖Tσ(X)‖ = ‖Φ(X + C)‖ ≤ ‖X + C‖ (C ∈ T
∞
0 ∩ H

∞
0 ).

Consequently, ‖σ(X)‖ ≤ ‖[X ]‖ = ‖[Tσ(X)]‖ ≤ ‖σ(X)‖, proving that σ̂ is an
isometry. To see that T ∞∩H ∞

0 is an algebra and that σ̂ is multiplicative, fix
Xi ∈ T ∞∩H ∞

0 (i = 1, 2). Using a representation of the form Xi = Tσ(Xi)+Ci
with Ci ∈ T ∞ ∩ T ∞

0 , we consider the product

X1X2 = Tσ(X1)Tσ(X2) + Tσ(X1)C2 + C1Tσ(X2) + C1C2.

Since σ(X2) ∈ H∞, we have C1Tσ(X2)T
n
z = C1T

n
z Tσ(X2) (n ∈ N), and hence

all but the first summand belong to T ∞
0 ∩ H ∞

0 in view of part (a). The first
summand can be written as

Tσ(X1)Tσ(X2) = Tσ(X1)σ(X2) −H
σ̃(X1)

Hσ(X2).

This finally shows that X1X2 is an element of TH∞ ⊕ (T ∞
0 ∩ H ∞

0 ) and that
σ(X1X2) = σ(Tσ(X1)Tσ(X2)) = σ(X1)σ(X2), as desired. �

As a consequence, we obtain the following description of T ∞ ∩ H ∞:

8 Corollary. The identity T ∞ ∩ H ∞ = TL∞ ⊕ (T ∞
0 ∩ H ∞

0 ) holds.

Proof. Let X ∈ T ∞ ∩ H ∞. Then, by definition, Hn(X)
n→∞
−→ Hϕ for some

ϕ ∈ L∞. Since Hn(Tϕ)
n→∞
−→ Hϕ, the first summand of the decomposition

X = (X − Tϕ) + Tϕ

11



belongs to T ∞ ∩ H ∞
0 , and thus has the form Tf + C ∈ TH∞ ⊕ (T ∞

0 ∩ H ∞
0 )

by the preceding theorem. So we have a decomposition

X = Tf + Tϕ + C ∈ TL∞ + (T ∞
0 ∩ H

∞
0 ),

proving the inclusion

T
∞ ∩ H

∞ ⊂ TL∞ ⊕ (T ∞
0 ∩ H

∞
0 ).

The sum is direct since the left-hand summand is the range of Φ while the
one on the right-hand side is contained in the kernel of Φ. Since the reverse
inclusion is obvious, the proof is complete. �

Part (a) of Theorem 7 yields an alternative description of the commutator
ideal of Hankel algebras. An analogue in the context of Toeplitz algebras for
multi-variable isometries was recently obtained by Everard (see [9]).

9 Corollary. For an inner subalgebra A ⊂ L∞, the commutator ideal C (HA)
can be expressed as

C (HA) = T
∞
0 ∩ H

∞
0 ∩ HA = {X ∈ HA : XT nz

n
−→ 0 (SOT)}.

Proof. Due to Theorem 7 (a), only the first equality requires an argument.
Moreover, their ”⊃”-part follows from Theorem 4. For the reverse inclusion,
we use the fact that a dense subset of C (HA) is given by operators of the form

X − Φ(X) where X =

n∏

i=1

Xi with Xi ∈ TA ∪HA.

If X contains at least one Hankel factor then Φ(X) = 0 and the representation
X =

∑m

j=1 TjHj of Lemma 1 shows that XTz
n =

∑m

j=1 TjT
n
z Hj

n
−→ 0, as

desired. So it remains to consider the case where X consists solely of Toeplitz
factors. But then X −Φ(X) = X − Tσ(X) can be shown to belong to C (HA)
as in the proof of Theorem 4. �

In view of Theorem 4 and the above corollary we have the inclusions

HL∞ = TL∞ + C (HL∞) ⊂ TL∞ + (T ∞
0 ∩ H

∞
0 ) = T

∞ ∩ H
∞.

This shows that the full Hankel algebra HL∞ is contained in T ∞ ∩ H ∞.

10 Corollary. The identity HL∞ ∩ H ∞
0 = TH∞ ⊕ C∗(HL∞) holds.

Proof. Given X ∈ HL∞ ∩H ∞
0 , Theorem 4 and the subsequent remark yield

a decomposition X = Φ(X) + (1 − Φ)(X) ∈ TL∞ ⊕ C∗(HL∞). In view of
Proposition 6, the inclusion ”⊂” of the asserted identity holds. The reverse
inclusion follows form Theorem 7 (a) and (b). �
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§4 Derivations on Hankel algebras

Theorem 4 can be applied to study the structure of derivations on Hankel
algebras. Unsurprisingly our results are limited by the lack of a concrete
description of the commutator ideal. In [5] similar arguments were used to
describe the H1-group for a certain class of Toeplitz algebras. In our context
we can at least show that the derivations of HA all map into the commutator
ideal. As usual, we write [X, Y ] to denote the commutator XY − Y X of two
operators X, Y ∈ B(H2).

11 Proposition. For a closed subalgebra A ⊂ L∞ strictly containing H∞ and
a (not necessarily continuous) map D : HA → HA, the following assertions
are equivalent:

(a) D is a derivation on HA.

(b) The map D has the form D = [S, ·] for some operator S ∈ B(H2)
satisfying SX −XS ∈ C (HA) for every X ∈ HA. In particular,

(SX −XS)T nz
n

−→ 0 (SOT) for all X ∈ HA.

(c) There is an operator S ∈ B(H2) such that D = [S, ·] and the commu-
tators [S, Tθ], [S, Tη] and [S,Hη] all belong to HA whenever θ ∈ H∞ is
inner and η ∈ A, η inner.

Proof. (a) ⇒ (b). The hypotheses on A guarantee that A is an inner subalge-
bra which contains H∞ +C(T) (see the remarks concerning inner subalgebras
in the introduction and Corollary 6.40 in [8]). Therefore, HA contains the ideal
of all compact operators K(H2). Then a theorem of Chernoff ([4], Corollary
3.4) says that each derivation D : HA → HA has the form D = [S, ·] for some
operator S ∈ B(H2). In particular, D is continuous. Our next aim is to show
that D maps the commutator ideal into itself: If we choose any X, Y ∈ HA,
then we have

D(XY − Y X) = D(X)Y +XD(Y )−D(Y )X − Y D(X)

= (D(X)Y − Y D(X)) + (XD(Y )−D(Y )X) ∈ C (HA).

Using the fact that C (HA) is generated by elements of the form S[X, Y ]T
with X, Y, S, T ∈ HA, the derivation identity, the continuity of D and the fact
that C (HA) is an ideal imply that DC (HA) ⊂ C (HA), as desired. Hence the
induced map

D̂ : HA/C (HA) → HA/C (HA), [X ] 7→ [D(X)]

is a well-defined continuous derivation. By Theorem 4, the quotient is iso-
metrically isomorphic to A ⊂ L∞ and hence a commutative and semi-simple
Banach algebra. Therefore, the Singer-Wermer theroem says that D̂ = 0 or,
equivalently, D(HA) ⊂ C (HA). This observation completes the the proof of
the first implication. The second one, (b) ⇒ (c), is trivial. For (c) ⇒ (a) we
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have to show that the operator D = [S, ·] maps HA into HA. Since HA is the
closed linear hull of all finite products X = X1 · · ·Xn with Xi ∈ TA ∪HA and
since, for each such product X , the commutator SX −XS can be written as
a telesoping sum of the form

(SX1−X1S)X2 · · ·Xn+X1(SX2−X2S)X3 · · ·Xn+. . .+X1 · · ·Xn−1(SXn−XnS),

it suffices to prove that SX − XS ∈ HA for each single factor X ∈ TA ∪ SA.
Towards this, fix η, ϕ ∈ A with η inner and ϕ ∈ H∞. Then we have

STηϕ − TηϕS = (STη − TηS)Tϕ + Tη(STϕ − TϕS).

The first summand belongs to HA by hypothesis. In view of a theorem of
Marshall (see [12]) saying that the closed linear hull of all inner functions
is norm-dense in H∞, we see that the hypothesis also guarantees that the
second summand belongs to HA. So finally STf − TfS ∈ HA for all f ∈ A,
since the assumption on A implies that A is inner. Next, consider X to be a
Hankel operator of the form Hηϕ = PJMzηMϕ|H

2 = HηTϕ. Then, again by
hypothesis,

SHηϕ −HηϕS = (SHη −HηS)Tϕ +Hη(STϕ − TϕS) ∈ HA.

Since A is inner, this observation finishes the proof. �

In view of [5], a quite obvious condition on a derivation of HA to be inner is
to map into K(H2). More precisely, we have the following result.

12 Corollary. Let A be as above and D : HA → HA be a derivation. Then
the following assertions are equivalent:

(a) D leaves the Toeplitz algebra TH∞+C invariant.

(b) D(Tη) ∈ K(H2) for every inner function η ∈ H∞.

(c) D = [S, ·] on HA with S = Tf +K where f ∈ H∞ +C and K ∈ K(H2).

Proof. It is well known that every element of TH∞+C can be written in the
form Tf +K with f ∈ H∞ + C and K ∈ K(H2) (see Theorem 7.29 in [8]). In
view of the preceding corollary and the fact that C (HA)∩TA = (0) by Theorem
4, we have the inclusion D(TH∞+C) ⊂ TH∞+C∩C (HA) ⊂ K(H2) proving that
(a) implies (b). Now assume that (b) holds. By the preceding proposition,
there is an operator S ∈ B(H2) such that D = [S, ·]. By hypothesis, we
have STη − TηS ∈ K(H2) for every inner function η ∈ H∞. Since the closed
linear span of all inner functions is dense in H∞ (see [12]) we deduce that
S belongs to the essential commutant of all analytic Toeplitz operators. A
result of Davidson (see [7]) then says that S has the form S = Tf + K with
f ∈ H∞ + C and K ∈ K(H2). This proves (c) and obviously implies (a). �
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