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Abstract

Focus fusion is the task of combining a set of images focused at
different depths into a single image that is entirely in-focus. The
crucial point of all focus fusion methods is the decision about the
in-focus areas. To this end, we present a general framework for fo-
cus fusion that introduces a modern regularisation strategy on these
per-pixel decisions. We assume that neighbouring pixels in the fused
image belong to similar depth layers. Following this assumption, we
smooth the depth map with a sophisticated anisotropic diffusion pro-
cess combined with a robust data fidelity term. The experiments with
synthetic and real-world data demonstrate that our new model yields
a better quality than several existing focus fusion methods. Moreover,
our methodology is general and can be applied to improve many fusion
approaches.

1 Introduction

In applications such as macro photography or optical microscopy, the limited
depth of field of standard cameras poses a severe problem: It is not possible
to capture an image that is totally in focus. A common remedy is to acquire
a set of images while varying the position of the focal plane. In this way, the
image stack contains all required information to produce a single image that
is sharp everywhere. The task of combining these images of the focus stack
into an all-in-focus composite is called focus fusion.

1.1 Related Work

We categorise focus fusion techniques into two main groups: The methods in
the first group work on multiscale decompositions of the images. In the first
step, they apply a multiscale transformation of the complete image stack.
Next all images are combined in the transform domain by selecting the co-
efficients that have the highest probability of belonging to in-focus areas.
Finally the composed multiresolution representation is transformed back to
the spatial domain. The result is the all-in-focus image. In this class, the
pioneering work is the Gaussian and Laplacian pyramid-based method by
Ogden et al. [1]. Later Burt and Kolczynski [2] generalised it to alternative
pyramid representations, and Petrovic and Xydeas [3] proposed a multires-
olution gradient map representation. Also wavelet-based methods belong to
this class of algorithms. Here a first approach with application to focus fu-
sion was published by Li et al. [4]. Modifications and extensions have, for
instance, been proposed by Forster et al. [5] or Lewis et al. [6]. In [7], Zhang
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and Blum present a generic framework for multiscale image fusion and com-
pare different approaches. All these multiresolution-based techniques share
the same constitutional drawback: Performing the fusion in the transform
domain may change the intensity values and create artificial colours. This
produces undesirable artefacts in the fused result.
To overcome this drawback, the algorithms of the second group work in the
image domain. Here the basic idea is first to select the regions from all frames
that are in focus, and then to combine them to one composite. Recently,
many methods for focus fusion have been reported in the literature which
employ machine learning techniques to build a sharp image: Wu et al. [8]
propose a method using a hidden Markov model, Wan et al. [9] employ
principal component analysis for the focus fusion task, and Wang et al. [10]
use pulse coupled neural networks to obtain a sharp composite. All of these
models work well in the image domain. However, in general, operating in the
image domain can cause unpleasant visible seams that appear when simply
arranging the identified in-focus areas in a mosaic-like fashion. To tackle
these artefacts, Pop et al. [11] as well as Wang et al. [12] explicitly model a
smoothness constraint of the resulting composite image by means of a partial
differential equation (PDE). Unfortunately this may also cause smoothing of
important image structures such that the resulting images appear blurred
and not sharp everywhere.
Hence, researchers came up with the idea of not applying the smoothness
constraint on the resulting image itself, but on the per-pixel decision of the
in-focus areas: In [13, 14, 15, 16, 17, 18] the authors determine an initial
decision map by means of a specific sharpness criterion. Subsequently they
segment these maps into regions that belong to the same input frames. These
segments are then used to fuse the input images to an all-in-focus composite,
or even to recover an underlying 3-D surface. Agarwala et al. [13] use graph-
cut optimisation to segment different in-focus areas and fuse the input images
in the gradient domain. Šroubek et al. [14] propose a level-set segmentation
on the decision map solving a suitable PDE. Similarly, in the method of Li
and Yang [15] the images are segmented with the normalized cut method;
this method is further extended in the work of Liu et al. [19].
There are many other approaches that offer improvements to focus fusion
techniques and algorithms: Muhammad and Choi [20] derive the optimal
sampling to obtain a reasonable 3-D shape. In [16], Shim and Choi intro-
duce a novel iterative algorithm to reconstruct the 3-D shape. Mahmood et
al. [17] propose a combination of different focus measures for constructing the
optimal decision map through genetic programming. Mahmood and Choi [18]
employ 3-D anisotropic diffusion to enhance the input images, and in turn,
to obtain an accurate decision map. Staying with the idea of operating on
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decision maps, Bae et al. [21] apply bilateral filtering to this decision map
in a related context. However, they do not consider the focus fusion task,
but perform a defocus magnification given a single image. While most of
the related research aims for piecewise constant solutions, we aim to achieve
more realistic piecewise smooth decision maps to the focus fusion problem.

1.2 Contributions

In our work, we follow the idea of processing an initial decision map. How-
ever, instead of a segmentation-based approach, we introduce a modern regu-
larisation technique which aims to smooth the initial decision map. Moreover,
since each image is sharp at a particular depth value, we interpret the decision
maps as depth maps. Consequently, we aim for piecewise smooth solutions as
opposed to piecewise constant ones that are obtained by segmentation-based
methods. In this way, we are even able to adequately handle pixels that are
never captured totally in-focus since they lie between two focal planes. The
explicit modelling of smooth transitions in depth provides not only more ac-
curate depth maps, but also counteracts unpleasant seams in the final image.
In our approach, we formulate a similarity to a precomputed depth map
or even to a composite of multiple depth maps by a robust data term and
combine it with a modern adaptive regularisation technique: Our joint image-
and depth-driven diffusion is guided by the structures of the evolving all-in-
focus image, while the amount of smoothing is determined by the depth map
gradients.
In the present paper, we extend our conference publication [22] in several
aspects:

(i) In [22], we applied the gradient magnitude as indicator of sharp im-
age regions. However, our method is very general and not limited to
this specific choice: It creates a high quality depth map using one or
multiple depth maps that can been precomputed with various sharpness
measures. Our experiments demonstrate this by means of six measures.

(ii) In the conference paper, we computed the solution of our model via
gradient descent, i.e. as the steady state (t→∞) of a parabolic PDE.
Here we present an alternative elliptic formulation and solve the re-
sulting system of equations with a modern well-parallelisable algorithm
implemented on GPU. In this way, we reduce the runtime of our ap-
proach significantly.

(iii) Last but not least, we conduct a thorough evaluation of our method
on synthetic and various real-world focus stacks. We show the perfor-
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mance of the proposed nonlinear anisotropic diffusion in comparison to
the linear isotropic one. We demonstrate the flexibility and general ap-
plicability of our technique, and compare the results with several focus
fusion methods from the literature.

1.3 Organisation

Our paper is organised as follows: In Section 2, we introduce our diffusion-
based approach and explain its algorithmic realisation in full detail. Sec-
tion 3 illustrates the performance of our method on synthetic as well as on
real-world experiments. This includes a comparison to several focus fusion
approaches. Finally, we conclude the paper with a summary and an outlook
in Section 4.

2 Our Focus Fusion Framework

Let f(x, z) be a 3D volume where x :=(x, y)> denotes the location within a
rectangular image domain Ω⊂R2 and z∈R the depth. We interpret the K
input images f(x, zk) with k= 1, . . . , K as equidistant slices of this volume.
Our goal is to find a depth map d(x) that selects for each location x the
frame that is in focus. To this end, our focus fusion framework consists of
three main parts: In the first step, we select a single or multiple in-focus
measures to identify sharp image regions. This allows to construct the initial
depth map or depth maps, respectively. In the core part of our method, we
model a similarity to these depth maps and combine it with an anisotropic
smoothing technique. Finally, the computed depth map allows to fuse the
images to an all-in-focus composite in a straightforward way.

2.1 Initial Depth Map

To determine which image regions are in focus, various sharpness measures
have been proposed; see e.g. [23, 24, 25, 26, 27, 28, 29, 30, 31]. All these ap-
proaches share the idea that the extrema of a sharpness measure correspond
to the image that is in focus. We store this information in the initial depth
map dinit: It specifies for each pixel the depth value where it is at most in
focus.

2.1.1 In-Focus Measures

Our general framework is not limited to any specific choice. To illustrate
this, we consider six different in-focus measures that are summarised in Ta-
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Table 1: Overview of applied in-focus measures to compute the initial depth
map dinit.

measure formula

gradient magnitude m1 = |∇fσ|

norm of the Laplacian m2 = |∆fσ|

Frobenius norm of the Hessian m3 = ‖Hfσ‖F
trace of the structure tensor m4 = tr (Jρ(∇fσ))

determinant of the structure
tensor

m5 = det (Jρ(∇fσ))

variance m6 = 1
|N (x)|

∫
N (x)

(fσ(x̃)− µ(x))2 dx̃

ble 1. To handle noise, we presmooth the images with a Gaussian of standard
deviation σ. Consequently, we compute the following sharpness criteria on
smoothed versions fσ(x, zk) of the input images:

• Gradient Magnitude
The first sharpness criterion is the gradient magnitude

m1(x, zk) = |∇fσ(x, zk)| , (1)

where ∇ := (∂x, ∂y)
> represents the 2D spatial gradient operator, and

|.| denotes the Euclidean norm.

• Norm of the Laplacian
One measure of the second order variation is the absolute value of the
Laplacian ∆fσ = ∂xxfσ + ∂yyfσ:

m2(x, zk) = |∆fσ(x, zk)| . (2)

• Frobenius Norm of the Hessian
As an additional sharpness criterion, we also investigate the Frobenius
norm ‖.‖F of the spatial 2×2 Hessian:

m3(x, zk) = ‖Hfσ‖F =
√

(∂xxfσ)2 + 2 (∂xyfσ)2 + (∂yyfσ)2 . (3)

• Trace of the Structure Tensor
Following [32, 33] we use the structure tensor [34], namely its trace, to
identify sharp image regions. Let us consider the structure tensor

Jρ(∇fσ) = Gρ ∗
(
∇fσ(x, zk) ∇f>

σ (x, zk)
)
, (4)
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where ∗ denotes the convolution operator and Gρ a Gaussian of stan-
dard deviation ρ. Then the sharpness criterion is given by

m4(x, zk) = tr (Jρ(∇fσ)) . (5)

We can interpret the trace tr of the structure tensor as a sum of its
eigenvalues. Thus, this measure provides useful information about im-
age features such as edges or corners.

• Determinant of the Structure Tensor
Similarly to the previous measure, we consider the determinant of the
structure tensor as a sharpness measure:

m5(x, zk) = det (Jρ(∇fσ)) . (6)

This sharpness criterion can be seen as the product of the eigenvalues of
the structure tensor. Thus, here both eigenvalues should have non-zero
values. In turn, two large eigenvalues of the structure tensor represent
corners. Therefore, this in-focus measure can be interpreted as a corner
detector.

• Variance
Another frequently applied sharpness criterion is the local variance in
some neighbourhood N (x):

m6(x, zk) =
1

|N (x)|

∫
N (x)

(fσ(x̃)− µ(x))2 dx̃ , (7)

where µ(x) is the mean value inN (x), i.e. µ(x) = 1
|N (x)|

∫
N (x)

fσ(x̃)dx̃.

These six sharpness measures are implemented in a straightforward way using
central finite difference approximations. For each pixel, we determine the
frame where the in-focus measure takes its maximal value. This yields the
initial depth maps dinit that allow to reconstruct an all-in-focus image.

2.1.2 Confidence function

Two types of locations cause severe problems while construction this initial
depth map: homogeneous regions that hardly have any texture, and regions
that are never in focus. Here the sharpness criteria attain small values in all
frames. Thus, the decision of the depth value is highly influenced by noise.
To tackle this problem, we use a confidence function c(x) : Ω → R that
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specifies the quality of the computed depth map. As in [22, 35], we define a
binary confidence function by

c(x) =

{
1 if m(x, dinit(x)) > θ ,

0 else .
(8)

With this formulation, we treat values of a generic measure m that are larger
than the threshold parameter θ ≥ 0 as reliable. In contrast, smaller values
are discarded since we assume they are too much influenced by noise.

2.2 Depth Map Smoothing

The discussed confidence function helps to specify the quality of the initial
estimation and in this way, to detect unreliable depth values. However,
one still has to specify which depth values should be used at pixels that
are identified as unreliable. Moreover, the confidence function is only an
indicator of the quality: The depth map may still be erroneous or noisy.
To handle these issues, we propose a diffusion-based approach that allows to
compute a dense and smooth depth map, given a combination of the initial
maps dinit

n and their confidence functions cn. We pursue the following idea:
We assume a spatial continuity between parts selected from different frames,
i.e. neighbouring pixels most probably should be chosen from a similar depth
level. As a first step to explain our model, we consider the following energy
functional:

E(d) =

∫
Ω

( N∑
n=1

cn ·Ψ
(
(d− dinit

n )2
)

+ α |∇d|2
)

dx , (9)

where the regularisation parameter α allows to steer the impact of the smooth-
ness term |∇d|2. The data term

∑N
n=1 cn · Ψ

(
(d− dinit

n )2
)
, where N is the

number of focus measures, represents the sum of the similarity assumptions
of the solution d and the initial maps dinit

n . It allows to use one or multi-
ple focus measure combining them in accordance to user preferences. This
is particularly beneficial when the selected focus measures supplement each
other, i.e. they perform best on different image regions. The summands of
the data term are weighted with the corresponding confidence functions cn.
In addition, to reduce the influence of outliers in the initial depth maps, we
apply the sub-quadratic penaliser

Ψ(s2) =
√
s2 + ε2 , (10)

with the small positive constant ε.
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2.2.1 Minimisation

Following the calculus of variations [36], the minimiser of the energy func-
tional (9) must necessarily satisfy the Euler-Lagrange equation. It reads

N∑
n=1

cn ·Ψ′((d− dinit
n )2

)
· (d− dinit

n ) − α ∆d = 0 , (11)

with homogeneous Neumann boundary condition

n>∇d = 0 , (12)

where n is the outer normal vector to the image boundary ∂Ω.

2.2.2 Anisotropic Modification

The smoothness term |∇d|2 leads to the linear isotropic diffusion term ∆d
in (11). It provides a smoothing that is not space-variant and that is equal
in all directions. However, it may be beneficial to adapt the diffusion to the
image structures. Thus, inspired by Weickert [37] and Zimmer et al. [38],
we replace the discussed diffusion term by a nonlinear anisotropic variant,
specifically by a joint image- and depth-driven diffusion: First, we determine
the smoothing directions by the structures of the evolving all-in-focus image
f(x, d(x)). This image is supposed to provide a richer directional information
than the individual blurred input images. Second, we adjust the amount of
smoothing by the gradients of the computed depth map d(x).
Let us consider the eigenvectors v1,v2 of the structure tensor [34]

Jρs(∇fσs) = Gρs ∗
(
∇fσs(x, d(x)) ∇f>

σs(x, d(x))
)
, (13)

where ∗ denotes the convolution operator and Gρs a Gaussian of standard
deviation ρs. In our experiments we set the parameters to σs = 1.0 and ρs =
1.3. In the following, we assume v1 to correspond to the largest eigenvalue,
and consequently to point across edges of f(x, d(x)). Accordingly, v2 points
along edges. These eigenvectors build the basis of the diffusion tensor

D = (v1 v2)

(
g
(
(v>

1 ∇d)2
)

0
0 1

)(
v>

1

v>
2

)
, (14)

where g is the Charbonnier diffusivity [39]

g(s2) =
1√

1 + s2/λ2
(15)
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with some contrast parameter λ > 0. The diffusion tensor (14) creates a
reduced smoothing across image structures (along v1) and a strong homo-
geneous smoothing along them (along v2). By replacing ∆d in (11) by its
anisotropic counterpart div(D∇d) we obtain our final model

N∑
n=1

cn ·Ψ′((d− dinit
n )2

)
· (d− dinit

n ) − α div(D∇d) = 0 (16)

with the boundary condition

n>D∇d = 0 . (17)

2.2.3 Implementation

We discretise Equation 16 on a rectangular pixel grid with uniform grid sizes.
Accordingly, we apply a finite difference scheme for the space discretisation of
the divergence expression. In particular, we compute for a pixel (i, j)> eight
neighbouring weights wp,q with the anisotropic stencil proposed by Weickert
et al. [40] (with αstencil = 0.4 and γstencil = 1.0). This results in

N∑
n=1

cn,i,j ·Ψ′
n,i,j · (di,j − dinit

n,i,j) − α
∑

(p,q)∈N (i,j)

wp,q (dp,q − di,j) = 0 , (18)

where N (i, j) is the set of direct neighbours, and Ψ′
n,i,j denotes the discrete

version of the expression Ψ′((d− dinit
n )2

)
.

The application of Equation 18 to each pixel constitutes a nonlinear system
of equations. We solve it for the unknowns di,j with a so-called lagged non-
linearity method, which basically consists of two nested loops: In an outer
loop, we update the nonlinearity terms Ψ′

n,i,j and wp,q. In the inner loop,
we keep these expressions fixed and thus, only have to solve a sparse linear
system of equations. For this purpose, we apply the Fast Jacobi algorithm of
Grewenig et al. [41]. Basically, it resembles a standard Jacobi solver. How-
ever, varying over-relaxations where half of them may exceed the stability
limit allow an enormous speed-up. This method is easily parallelisable and
hence well-suited for a fast GPU implementation. More precisely, one step
of this Fast Jacobi solver with iteration index k and varying over-relaxation
parameter ωk reads

dk+1
i,j = (1−ωk) ·dki,j+ωk ·

∑N
n=1 cn,i,j ·Ψ′

n,i,j · dinit
n,i,j + α

∑
N (i,j) wp,qd

k
p,q∑N

n=1 cn,i,j ·Ψ′
n,i,j + α

∑
N (i,j) wp,q

. (19)
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This elliptic approach with the Fast Jacobi solver allows a significant speed-
up. Furthermore, the runtime of the core part of our algorithm, the anisotropic
depth map smoothing, is independent of the number of images in the focus
stack.

2.2.4 Colour Images

For didactic reasons, we have restricted ourselves to grey-valued images so
far. However, the extension of our model to colour images is straightforward.
Instead of using the structure tensor (13) for a single colour channel, we
apply the combined structure tensor [42, 43]

Gρs ∗
3∑
`=1

∇f `σs(x, d) ∇f `σs
>(x, d) (20)

to determine the eigenvectors v1 and v2. Here, f `σs (x, d) represents the colour
channel ` of the RGB image fσs . Overall, we still solely have to determine one
joint depth map for all channels. Hence, the increase in runtime is negligible.

2.3 Fusion

With the computed accurate depth map we can directly fuse the colour values
from the source images to the final composite. We apply linear interpolation
to determine the colour values at non-integer depth values:

fi,j,di,j = (1− δ) · fi,j,bdc + δ · fi,j,bdc+1 (21)

where bdc denotes the largest integer smaller or equal to di,j, and δ := di,j −
bdc. This procedure allows to mimic colour values of pixels that are in focus
between two frames. Obviously, this cannot be achieved with segmentation-
based methods.

3 Experiments

The evaluation of our method consists of the following five parts: First,
we test the discussed in-focus measures and demonstrate the improvements
provided by the proposed depth map smoothing technique. Second, we show
that an anisotropic modification further enhances the quality of the fused
image. Next we demonstrate that our method can combine the information
from multiple in-focus measures, and thus, yields even more accurate results.
In our fourth experiment, we compare the performance of our approach to
three focus fusion methods from the literature. Finally, we evaluate the
runtime of our algorithm.
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Figure 1: Synthetic data set. From left to right: (a) Frame 1 with the
shortest focal distance. (b) Frame 13 with the largest focal distance. (c)
Ground truth depth map: Brighter grey tones describe larger depth values.
(d) Ground truth image (all-in-focus).

3.1 Comparison of In-Focus Measures

To evaluate the different sharpness criteria in terms of an error measure,
we generated a synthetic data set with Blender 1 (cf. Figure 1). It consists
of 13 images of size 512 × 512: The images are created with the increasing
focal plane. In addition, we generated the ground truth depth map (c) and
the ground truth all-in-focus image (d). Thus, it is possible to measure the
difference between the resulting fused image and its ground truth.

Results with Initial Depth Maps First, we compare the quality of the
initial depth maps resulting from the discussed in-focus measures (Table 1).
These depth maps and the fused images are shown in Figure 2. In addition,
Table 2 lists the quantitative results corresponding to the in-focus measures:
The mean squared errors (MSEs) between the fused image and its ground
truth, as well as the parameters optimised w.r.t. these MSEs. We observe
that the gradient performs worst, while the trace and the determinant of the
structure tensor produce the most accurate depth maps.

Results with Final Depth Maps Figure 3 depicts the final depth maps
and the fused images after smoothing the depth maps with homogeneous
diffusion (Equation 11). It is obvious that all depth maps improved sub-
stantially: The final depth maps are much more reliable. This observation
is underlined by the error measures in Table 3 (MSE Isotropic): The MSEs
of the fused images are for all depth maps significantly reduced. This clearly
illustrates the usefulness of depth map regularisation in focus fusion applica-
tions.

1http://www.blender.org/
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Table 2: Results with initial depth maps dinit: The pre-smoothing parameter
σ is optimised w.r.t. the mean square error (MSE) between the fused image
and its ground truth.

measure parameters MSE

gradient magnitude σ = 0.7 95.35

Laplacian σ = 0.5 23.08

Frobenius norm of the Hessian σ = 0.5 10.55

trace of the structure tensor σ = 0.2, ρ = 1.7 3.59

determinant of the structure
tensor

σ = 0.6, ρ = 1.8 4.74

variance 9× 9 stencil 4.74

3.2 Isotropic vs. Anisotropic Smoothing

In this experiment we compare the linear isotropic and the nonlinear anisotropic
diffusion process. As before we test the performance on the synthetic image
set. Figure 4 shows the results with the different in-focus measures using
an anisotropic diffusion from Equation 16. The quantitative results with
their MSEs are provided in Table 3 (MSE Anisotropic). We see that the
anisotropic diffusion performs always better than the isotropic one, yielding
an improvement up to 24%. The anisotropic depth map smoothing is a more
complex method, however, it allows a very accurate depth map estimation.

3.3 Multiple In-Focus Measures

As described in Section 2, our general approach is not restricted to a single in-
focus measure. Here, we provide an example that shows an improvement by
means of multiple focus measures. We apply a combination of three measures
combined with an anisotropic smoothness term on the synthetic data. For the
in-focus measures we used the Laplacian, the Frobenius norm of the Hessian
and the trace of the structure tensor. The result is shown in Figure 5 (last
column), and the corresponding error measure is given in Table 4. As we can
see the error measure is further decreased resulting in a smaller value than
any of the single sharpness criteria. Moreover, this result may be further
improved by introducing the weights and optimising them.
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Table 3: Results with final depth maps d (isotropic and anisotropic): The
threshold parameter θ and the smoothing parameter α are optimised w.r.t.
the mean square error (MSE) between the fused image and its ground truth.

measure MSE Isotropic MSE Anisotropic

gradient magnitude 8.66
(θ = 30, α = 2)

8.39
(θ = 37, α = 6)

Laplacian 4.61
(θ = 48, α = 1)

3.53
(θ = 60, α = 2)

Frobenius norm of the Hessian 4.19
(θ = 37, α = 1)

3.47
(θ = 41, α = 3)

trace of the structure tensor 3.57
(θ = 0, α = 1)

3.48
(θ = 0, α = 4)

determinant of the structure
tensor

4.45
(θ = 0, α = 0.5)

4.17
(θ = 0, α = 8)

variance 4.00
(θ = 0, α = 1)

3.98
(θ = 0, α = 9)

Table 4: Results with multiple in-focus measures (Laplacian, Hessian, trace
of the structure tensor). The threshold parameters θ can be found in Table 3.
The smoothing parameter α is optimised w.r.t. the mean square error (MSE)
between the fused image and its ground truth.

measure MSE

multiple in-focus measure 3.25
(α = 2)

3.4 Comparison to Other Methods

Let us now compare our method with three publicly available approaches that
represent different groups of techniques: As multiscale transformation-based
method, we select the approach of Forster et al. [5] that performs a complex
wavelet decomposition. A representative of segmentation-based techniques is
the method of Agarwala et al. [13]. In particular to evaluate our depth map
estimation, we additionaly compare our results to the depth-from-defocus
method of Aguet et al. [44]. Based on deconvolution, they explicitly model
the physical image acquisition process and jointly estimate the sharp image
and the depth map.
We obtained the results of the methods of Forster et al. and Aguet et al. using
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Table 5: Comparison to the other methods in terms of the mean square error
(MSE), the correlation and the structural similarity index (SSIM) between
the fused image and its ground truth.

method MSE Correlation SSIM

Forster et al. [5] 152.12 0.95 0.98

Agarwala et al. [13] 135.97 0.98 0.98

Aguet et al. [44] 113.73 0.98 0.98

proposed 3.25 1.00 1.00

plug-ins for the ImageJ public domain program provided by the authors2

with optimised parameters. For the method of Agarwala et al. we used the
provided executable3. Here we obtained all results with “maximum contrast
image objective” and gradient-domain fusion.
We start with our synthetic data set for which the results are shown in
Figure 5. We observe that the most accurate depth map is achieved with
our approach. To objectively evaluate the methods, we use three measures:
the MSE, the correlation, the structural similarity (SSIM) index proposed
by Wang et al. [45]. The SSIM index is computed with the MATLAB code
provided by the authors4 using the default parameters. While for the MSE
smaller values describe a better performance, larger values of the correlation
and the SSIM show that the images are more similar. Table 5 contains the
computed quantitative measures between the fused images and the ground
truth image. As we see the best quantitative results for all three measures
are achieved with our method.
Besides the synthetic data set, we used two commonly available real–world
data sets: Insect5 and Clock6. The Insect data set consists of 13 frames of
size 1344 × 1021 with increasing focal plane distance. The corresponding
results are depicted in Figure 6. Our computed depth map is less noisy and
more reliable than the other depth maps (second row). Zooms into the fused
images (fourth row) help to provide more details. The quality of our approach
evidently outperforms the methods of Forster et al. and Aguet et al. Solely
the method of Agarwala et al. is comparable to our method: Both methods

2http://bigwww.epfl.ch/demo/edf/
3http://grail.cs.washington.edu/projects/photomontage/
4http://www.ece.uwaterloo.ca/z70wang/research/ssim/
5available from http://grail.cs.washington.edu/projects/photomontage/
6available from [35]
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Table 6: Comparison to the method of Mahmood and Choi [18] in terms of
the root mean square error.

data Mahmood and Choi [18] proposed

slope 0.67 0.12

sinusoidal 3.61 0.46

wave 5.32 0.58

preserve fine details well.
The Clock data set consists of 2 frames of size 480 × 480. Figure 7 demon-
strates the results for this data set. Again we see that the proposed method
creates a better depth map than the other techniques (second row). From a
zoom into the fused images (fourth row) we can observe the following: In the
result with the method of Forster et al. there are blurring artefacts between
the two clocks. The result with the method of Agarwala et al. contains an
artefact near to the number “8”, and the result with the method of Aguet
et al. is less sharp than our image. Thus, relying on the visual quality of the
fused image the proposed method is ahead of the other methods.
In addition, we evaluate the performance of our method for a number of other
data sets from the Focal Stack Photography project [35], which are illustrated
in Figure 8. One observes that thanks to the edge-preserving smoothing
the depth maps are accurate. Accordingly, the fusion results are of high
quality as well. Furthermore, we demonstrate the results of our method for
data sets from Mahmood and Choi [18] shown in Figures 9 and 10. For
the synthetic data we compare the quantitative results in terms of the root
mean square error to the method [18] (Table 6). As their result we show
their best performance with the modified Laplacian as a focus measure. We
observe that our method performs favourably for all data sets. Once again,
our proposed model is able to precisely estimate the depth maps as well as
the fused images: The depth maps are piecewise smooth while preserving
important image structures, and the fused images are sharp everywhere.
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Gradient Laplacian Hessian

Trace Determinant Variance

Gradient Laplacian Hessian

Trace Determinant Variance

Figure 2: Comparison of different in-focus measures by means of the initial
depth maps dinit and the fused results. Parameters and error measures can
be found in Table 2.

16



Gradient Laplacian Hessian

Trace Determinant Variance

Gradient Laplacian Hessian

Trace Determinant Variance

Figure 3: Comparison of different in-focus measures by means of the final
depth maps d and the fused results with linear isotropic diffusion. Parameters
and error measures can be found in Table 3.
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Gradient Laplacian Hessian

Trace Determinant Variance

Gradient Laplacian Hessian

Trace Determinant Variance

Figure 4: Comparison of different in-focus measures by means of the final
depth maps d and the fused results with the nonlinear anisotropic diffusion.
Parameters and error measures can be found in Table 3.
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Forster et al. Agarwala et al. Aguet et al. proposed

Figure 5: Visual comparison for synthetic data set. Top: Depth maps.
Bottom: Fused images. Here we applied a multiple in-focus measure: the
Laplacian, the Frobenius norm of the Hessian, the trace of the structure
tensor. The corresponding parameters are listed in Table 4.
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Frame 1 Frame 5 Frame 9 Frame 13

Forster et al. Agarwala et al. Aguet et al. Proposed

Figure 6: Results for the Insect data set. First row: Input frames with
different focal planes. Second row: Depth maps. Third row: Fused
images. Fourth row: Zoom-ins. Here we use the Frobenius norm of the
Hessian as in-focus measure and the parameters σ = 0.5, θ = 60, and α = 5.
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Frame 1 Frame 2

Forster et al. Agarwala et al. Aguet et al. Proposed

Figure 7: Results for the Clock data set. First row: Input frames with
different focal planes. Second row: Depth maps. Third row: Fused
images. Fourth row: Zooms. Here we use the Frobenius norm of the
Hessian as in-focus measure and the parameters σ = 1.0, θ = 6, and α = 100.
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Fused image Final depth map

Figure 8: Results for data sets from Focal Stack Photography project [35].
From top to bottom: Watch data set: 395 frames of size 640 × 427
(θ = 10, α = 5). Fly data set: 20 frames of size 1024 × 682 (θ = 10, α = 5).
Coffee data set: 91 frames of size 1024 × 683 (θ = 10, α = 25). Flower data
set: 20 frames of size 1024 × 683 (θ = 5, α = 30). Here we use the Frobenius
norm of the Hessian as in-focus measure. The pre-smoothing parameter σ is
always fixed to 1.0.
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Frame 25 Frame 35
Ground truth

depth map
Fused image

Final depth
map

Figure 9: Results for synthetic data from Mahmood and Choi [18]. First
row: Slope data set: 60 frames of size 300 × 300 (σ = 2.5, θ = 0, α = 42).
Second row: Sinusoidal data set: 60 frames of size 300 × 300 (σ = 0.5,
θ = 46, α = 2). Third row: Wave data set: 60 frames of size 300 × 300
(σ = 0.4, θ = 31, α = 1). Here we use the Frobenius norm of the Hessian as
in-focus measure.
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Frame 25 Frame 35 Fused image Final depth map

Figure 10: Results for real-world data from Mahmood and Choi [18]. First
row: Cone data set: 97 frames of size 200 × 200 (σ = 1.0, θ = 0, α = 10).
Second row: TFT-LCD color filter data set: 60 frames of size 300 × 300
(σ = 0.5, θ = 0, α = 7). Third row: Letter I data set: 60 frames of size
300 × 300 (σ = 0.2, θ = 15, α = 1). Here we use the Frobenius norm of the
Hessian as in-focus measure.
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Table 7: Comparison of the runtime (in seconds) of the gradient descent
method from [22] and our proposed Fast Jacobi algorithm.

number of images resolution gradient descent Fast Jacobi

2 256× 256 32.9 0.5

2 512× 512 139.6 1.2

2 1024× 1024 644.2 4.1

13 256× 256 33.7 0.5

13 512× 512 145.5 1.3

13 1024× 1024 660.6 4.2

3.5 Runtime

Finally, we evaluate the efficiency of our method. We compare the minimisa-
tion via the gradient descent used in our conference paper to the Fast Jacobi
algorithm described in Section 2. We tested the gradient descent on the In-
tel(R) Xeon(R) W3565 @ 3.20GHz processor. Our implementation of Fast
Jacobi is written in CUDA and runs on an NVidia Geforce GTX 460 graph-
ics card. Table 7 lists the runtime for different data sets, i.e. with varying
number of images and resolution. The advantage is that our algorithm op-
erates on the depth map. Thus, changing the number of images of the focal
stack does not significantly increase the runtime. Furthermore, we obviously
achieve a considerable speed-up using the parallel GPU implementation.

4 Conclusions and Outlook

We have shown that a regularisation of the depth map is generally a powerful
tool for enhancing the quality of focus fusion. To this end, our framework
implements modern techniques such as robustified data fidelity terms and
an anisotropic smoothness term. Moreover, our flexibile approach is able
to combine the information from multiple in-focus measures. In this way,
we are able to improve the focus fusion substantially. We demonstrate this
with several in-focus measures and evaluate our final results w.r.t. other
approaches from the literature. Not only the all-in-focus composites benefit
from the proposed approach, but also the computed depth maps provide
valuable information that may serve as input for further computer vision
tasks. Furthermore, the proposed algorithmic realisation leads to a very
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substantial speed-up that allows an interactive usage and tuning of the fusion
results.
In future work, we intend to test and modify our focus fusion framework for
other image fusion tasks such as exposure fusion or multimodal image fusion.
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