
Universität des Saarlandes

U
N

IV
E R S IT A

S

S
A

R
A V I E N

S
I S

Fachrichtung 6.1 – Mathematik

Preprint Nr. 344

Measure and Integration: The Basic
Extension and Representation Theorems in
Terms of New Inner and Outer Envelopes

Heinz König

Saarbrücken 2014





Fachrichtung 6.1 – Mathematik Preprint No. 344
Universität des Saarlandes submitted: February 5, 2014

Measure and Integration: The Basic
Extension and Representation Theorems in
Terms of New Inner and Outer Envelopes

Heinz König

Saarland University
Department of Mathematics

P.O. Box 15 11 50
D–66041 Saarbrücken

Germany
hkoenig@math.uni-sb.de



Indagationes Math. 25(2014),305-314. Modified Version of 17 August 2013

MEASURE AND INTEGRATION: THE BASIC EXTENSION
AND REPRESENTATION THEOREMS IN TERMS OF

NEW INNER AND OUTER ENVELOPES

HEINZ KÖNIG

Dedicated to the Memory of Adriaan Cornelis Zaanen
on the occasion of the 100th Anniversary of his Birth

Abstract. The work of the author in measure and integration is based
on new inner and outer envelope formations, which replace the traditional
Carathéodory outer measure and certain simple suprema and infima. The
new formations lead to essential improvements in both the extent and the
adequacy of the basic results. However, they did not find entrance into
the recent textbook literature. The present paper wants to demonstrate
their power with the examples of the basic inner and outer extension and
representation theorems for set functions and functionals.

The present paper returns to the foundations of the theory developed in the
author’s book [1] and in the subsequent 25 articles which recently have been
collected in the volume [2]. We consider the basic inner and outer • extension
theorems for set functions, as before in the versions • = ?στ with ? = finite,
σ = sequential, τ = nonsequential, and the basic inner and outer • represen-
tation theorems for functionals in terms of the Choquet integral, this time as
before for • = στ . The decisive formations are the new inner and outer •
envelopes, which for set functions and • = στ have to take the place of the
Carathéodory outer measure and of the • = ? envelopes in the traditional
treatments. The relevant results in [1] and [2] were drastic improvements, to
an extent that it appears mysterious why the new concepts were not widely
adopted. In the present paper the first two sections are kind of summaries
of the extension theories and of the initial part of the representation theories,
while the third section is a further development of the final representation
theories - all with the intention to illuminate the role of our inner and outer
• envelopes. In contrast to the earlier papers the front versions will be the
inner ones, because there are quite some indications that the inner situation
is the superior one. For the comparison with the traditional treatments and
for concrete situations we can refer to an abundance of places in [1] and [2].

2010 Mathematics Subject Classification. 28-02, 28A12, 28A25, 28C05.
Key words and phrases. Inner and outer premeasures, Inner and outer envelopes of set

functions and functionals, Inner and outer extension and representation theorems, Choquet
integral, Carathéodory class.
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1. The Inner and Outer Extension Theorems

We start to recall the relevant traditional concepts. Our main references will
be the [2] articles (10) and (24). The entire paper assumes a nonvoid set
X, which carries the set systems under consideration. A nonvoid set system
S in X is called a paving. The most frequent ones are the lattices (with
respect to ∩∪) and the rings and algebras. For a paving S we define S? ⊂
Sσ ⊂ Sτ and S? ⊂ Sσ ⊂ Sτ to consist of the intersections and unions of
the finite/countable/arbitrary subpavings of S. One of the most fundamental
concepts is that of the • compact pavings for • = στ , of which the counterpart
• = ? is trivially fulfilled.

In the present context the usual set functions on a paving S are the iso-
tone ϕ : S → [0,∞[ or [0,∞]. For these ones we recall the notions (almost)
downward /upward • continuous for • = ?στ , of which • = ? is trivially
fulfilled, and inner/outer regular M for a subpaving M ⊂ S. For a set func-
tion ϕ : S → [0,∞] on a lattice S we recall the notions modular and su-
per/submodular. In case ∅ ∈ S the function ϕ is called a content iff it is
isotone with ϕ(∅) = 0 and modular; this is the usual notion when S is a ring.

We conclude the list of traditional concepts with the Carathéodory class for
a set function ϑ : P(X)→ [0,∞] with ϑ(∅) = 0, defined to be

C(ϑ) := {A ⊂ X : ϑ(M) = ϑ(M ∩ A) + ϑ(M ∩ A′) for all M ⊂ X} ⊂ P(X);

its members are called measurable ϑ. The basic properties of C(ϑ) are collected
in [2](24) sect.2. Beyond ϑ(∅) = 0 the class C(ϑ) can be defined after [1] pp.40-
42, but the explicit definition will not be needed in the sequel.

Next we recall from [2](24) 3.1 the basic concepts for set functions in [1]
and [2]. Let S be a lattice with ∅ ∈ S, and • = ?στ . We define an isotone
ϕ : S → [0,∞[ with ϕ(∅) = 0 to be an inner • premeasure iff it can be
extended to a content α : A→ [0,∞] on a ring A ⊃ S• such that

α|S• is downward • continuous (note that α|S• <∞) and
α is inner regular S•.

These contents α are called the inner • extensions of ϕ. Note that an inner
• premeasure is downward • continuous and modular. Likewise we define an
isotone ϕ : S → [0,∞] with ϕ(∅) = 0 to be an outer • premeasure iff it can
be extended to a content α : A→ [0,∞] on a ring A ⊃ S• such that

α|S• is upward • continuous and
α is outer regular S•.

These contents α are called the outer • extensions of ϕ. Note that an outer
• premeasure is upward • continuous and modular. The deviation relative
to the value ∞ is of course in order to avoid the difficulties known from the
traditional treatment for • = σ.

These definitions produce the natural tasks to characterize the inner and
outer • premeasures and to describe their collections of inner/outer • exten-
sions. The fundamental idea to solve these tasks is to introduce the inner and



MEASURE AND INTEGRATION: THE NEW ENVELOPES 3

outer • envelopes: For an isotone set function ϕ : S → [0,∞] on a paving
S with ∅ ∈ S and ϕ(∅) = 0 we define for • = ?στ these envelopes ϕ• and
ϕ• : P(X)→ [0,∞] to be

ϕ•(A) = sup{ inf
M∈M

ϕ(M) : M ⊂ S nonvoid • with M ↓⊂ A},

ϕ•(A) = inf{ sup
M∈M

ϕ(M) : M ⊂ S nonvoid • with M ↑⊃ A},

in the usual notations and with inf ∅ := ∞. Thus ϕ? 5 ϕσ 5 ϕτ and ϕ? =
ϕσ = ϕτ . Their simplified forms for • = ?σ and basic properties are collected
in [2](10) sect.2 and (24) sect.1.

The extension theorems in [2](10) sect.3 and (24) sects.3 and 4 then read as
follows. Let S be a lattice with ∅ ∈ S and • = ?στ .

1.1 Inner Extension Theorem. For an isotone set function ϕ : S →
[0,∞[ with ϕ(∅) = 0 the following are equivalent.

1) ϕ is an inner • premeasure.
2) ϕ(B) = ϕ(A) + ϕ•(B\A) for all A ⊂ B in S.
3) ϕ•|C(ϕ•) is an extension of ϕ.
4) ϕ•|C(ϕ•) is an inner • extension of ϕ.

In this case all inner • extensions of ϕ are restrictions of ϕ•|C(ϕ•). Moreover
ϕ•|C(ϕ•) is a content on an algebra for • = ? and a measure on a σ algebra
for • = στ .

1.2 Addendum. We have the equivalence

ϕ(B) = ϕ(A) + ϕ•(B\A) for all A ⊂ B in S
⇐⇒ ϕ is downward • continuous and supermodular, and

ϕ(B) 5 ϕ(A) + ϕ•(B\A) for all A ⊂ B in S.

The outer counterpart is somewhat more involved. For an isotone set func-
tion ϕ : S→ [0,∞] with ϕ(∅) = 0 we shall need for • = τ the condition

(↑) ϕτ (A) = sup{ϕτ (A ∩ S) : S ∈ S with ϕ(S) <∞}
for all A ⊂ X with ϕτ (A) <∞,

which is of inner regular kind. It is superfluous for • = ?σ in view of [2](24)
3.4.

1.3 Outer Extension Theorem. For an isotone set function ϕ : S →
[0,∞] with ϕ(∅) = 0 the following are equivalent.

1) ϕ is an outer • premeasure.
2) ϕ(B) = ϕ(A) + ϕ•(B\A) for all A ⊂ B in S, plus (↑) in case • = τ .
3) ϕ•|C(ϕ•) is an extension of ϕ.
4) ϕ•|C(ϕ•) is an outer • extension of ϕ.

In this case all outer • extensions of ϕ are restrictions of ϕ•|C(ϕ•). Moreover
ϕ•|C(ϕ•) is a content on an algebra for • = ? and a measure on a σ algebra
for • = στ .

1.4 Addendum. We have the equivalence

ϕ(B) = ϕ(A) + ϕ•(B\A) for all A ⊂ B in S
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⇐⇒ ϕ is upward • continuous and submodular, and
ϕ(B) = ϕ(A) + ϕ•(B\A) for all A ⊂ B in S.

Moreover we want to recall the example [2](4) 5.4 based on [1] 4.11 with 5.6,
which shows that condition (↑) cannot be dispensed with.

1.5 Example. There exists an isotone ϕ : S → [0,∞] on a lattice S with
∅ ∈ S and ϕ(∅) = 0 with the properties

ϕσ(A) = ϕτ (A) for all A ⊂ X upward enclosable S,
ϕ(B) = ϕ(A) + ϕσ(B\A) = ϕ(A) + ϕτ (B\A) for all A ⊂ B in S,

so that ϕ is an outer σ premeasure and upward τ continuous, but ϕ does NOT
fulfil (↑) and hence is not an outer τ premeasure.

We conclude the present review with the fundamental Localization Prin-
ciple [2](24) 4.4. It requires for a pair of pavings P and Q in X the concept
P>Q := {A ⊂ X : A ∩ P ∈ Q for all P ∈ P}, called their transporter.

1.6 Theorem (• = ?στ). For an inner • premeasure ϕ : S → [0,∞[ we
have S>C(ϕ•) ⊂ C(ϕ•). For an outer • premeasure ϕ : S → [0,∞] we have
[ϕ <∞]>C(ϕ•) ⊂ C(ϕ•).

2. Preliminaries for the Representation Theorems

In the sequel the basic domains will be the nonvoid subsets E ⊂ [0,∞[X of
functions f : X → [0,∞[ and E ⊂ [0,∞]X of functions f : X → [0,∞].
The most frequent E are positive-homogeneous with 0 ∈ E and lattices (with
respect to the pointwise operations ∧∨). E is called Stonean iff f ∈ E ⇒
f ∧ t, (f − t)+ ∈ E for all 0 < t < ∞; note that f = f ∧ t + (f − t)+.
We emphasize that E need not be stable under addition and under difference
formation.

For a positive-homogeneous lattice E ⊂ [0,∞]X with 0 ∈ E we define

Inn(E) := {[f = t] : f ∈ E and 0 < t <∞} ⊂ P(X),

Out(E) := {[f > t] : f ∈ E and 0 < t <∞} ⊂ P(X),

as in [2](19) sect.1 and 3 for E ⊂ [0,∞[X ; both are lattices with ∅. Likewise
for a lattice S with ∅ ∈ S we define

Inn(S) := {f ∈ [0,∞]X : [f = t] ∈ S for all 0 < t <∞},
Out(S) := {f ∈ [0,∞]X : [f > t] ∈ S for all 0 < t <∞},

as in [2](20) sect.5; both are positive-homogeneous Stonean lattices with 0 in
[0,∞]X . We also mention the earlier notations in [1] and [2](4) Intr. and
[2](10) sect.7.1

Inn(E) = um(E) = =(E) and Out(E) = lm(E) = >(E),

Inn(S) = UM(S) and Out(S) = LM(S).

One verifies for these E and S the equivalences

(Inn) E ⊂ Inn(S) ⇔ Inn(E) ⊂ S,

(Out) E ⊂ Out(S) ⇔ Out(E) ⊂ S.
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The most basic concept is the Choquet integral, in [1] sect.11 called the
horizontal integral. Let S be a lattice in X with ∅ ∈ S and ϕ : S → [0,∞]
be isotone with ϕ(∅) = 0. The Choquet integral

∫
−fdϕ ∈ [0,∞] is then defined

to be

=

→∞∫
0←

ϕ ([f = t]) dt for f ∈ Inn(S) and =

→∞∫
0←

ϕ ([f > t]) dt for f ∈ Out(S),

both times as an improper Riemann integral of a decreasing function = 0. One
verifies that for f ∈ Inn(S)∩Out(S) the two second members are equal. The
basic properties of the Choquet integral are collected in [2](10) subsect.5.3. In
particular it coincides with the usual integral

∫
fdϕ for a measure ϕ on a σ

algebra S and a ϕ measurable function f : X → [0,∞].

For the remainder of the section we fix a positive-homogeneous lattice E ⊂
[0,∞]X with 0 ∈ E. We consider isotone functionals I : E → [0,∞] with
I(0) = 0. The relevant basic notions are listed in [2](10) subsect.5.2. As above
we define for • = ?στ the inner and outer • envelopes I• and I• : [0,∞]X →
[0,∞] to be

I•(f) = sup{ inf
u∈M

I(u) : M ⊂ E nonvoid • with M ↓5 f},

I•(f) = inf{sup
u∈M

I(u) : M ⊂ E nonvoid • with M ↑= f},

in the usual notations and with inf ∅ := 0. Thus I? 5 Iσ 5 Iτ and I? = Iσ =
Iτ . The simplified forms for • = ?σ and the basic properties are collected in
[2](10) sect.5.

2.1 Remark. Let ϕ : Inn(E)/Out(E) → [0,∞] be isotone with ϕ(∅) =
0 and I(f) =

∫
−fdϕ for f ∈ E (which makes sense after (Inn) and (Out)

above). Then I <∞ implies that ϕ <∞. This is a simple consequence of the
definitions.

After this we turn to the representation theorems in their initial versions.
First comes the Greco type theorem [2](4) 2.12, and then the inner and outer
• theorems [2](10) 7.2 and 7.1.

2.2 Theorem. Assume that E ⊂ [0,∞]X is a positive-homogeneous Stonean
lattice with 0 ∈ E and I : E → [0,∞] isotone with I(0) = 0. Then the following
are equivalent.

1) There exists an isotone ϕ : Inn(E)/Out(E)→ [0,∞] with ϕ(∅) = 0 such
that I(f) =

∫
−fdϕ for all f ∈ E.

2) I is Stonean: I(f) = I(f ∧ t) + I((f − t)+) for f ∈ E and 0 < t <∞,
and truncable: I(f) = sup{I ((f − a)+ ∧ (b− a)) : 0 < a < b <∞}
for f ∈ E.

In this case the set functions ϕ in 1) are precisely those with I?(χA) 5 ϕ(A) 5
I?(χA) for all A ∈ Inn(E)/Out(E).
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2.3 Inner Theorem (• = στ). Assume that E ⊂ [0,∞[X is a positive-
homogeneous Stonean lattice with 0 ∈ E and I : E → [0,∞[ isotone with
I(0) = 0. Then the following are equivalent.

1) There exists an isotone ϕ : Inn(E) → [0,∞[ with ϕ(∅) = 0 which is
downward • continuous and fulfils I(f) =

∫
−fdϕ for all f ∈ E.

2) I is Stonean and downward • continuous.

In this case the set function ϕ in 1) is unique and ϕ := I?(χ.)|Inn(E). It fulfils
ϕ• = I•(χ.). Likewise the following are equivalent.

1’) There exists an isotone ϕ : Inn(E) → [0,∞[ with ϕ(∅) = 0 which is
downward • continuous and supermodular and fulfils I(f) =

∫
−fdϕ for

all f ∈ E.
2’) I is Stonean and downward • continous and supermodular.

In this case the unique set function ϕ in 1’) fulfils I•(f) =
∫
−fdϕ• for all

f ∈ [0,∞]X .

We add the next consequence which is remarkable because it depends on
the deep theorem [2](10) 5.3.

2.4 Inner Consequence (• = στ). In the situation of 2.3 under the
assumptions 1’)2’) the functional I• is superadditive.

Proof. In view of [2](10) 2.8.1 ϕ• is supermodular. Thus [2](10) 5.6.iv)⇒ i)
applied to I•(f) =

∫
−fdϕ• for f ∈ [0,∞]X asserts that I• is superadditive. �

2.5 Outer Theorem (• = στ). Assume that E ⊂ [0,∞]X is a positive-
homogeneous Stonean lattice with 0 ∈ E and I : E → [0,∞] isotone with
I(0) = 0. Then the following are equivalent.

1) There exists an isotone ϕ : Out(E) → [0,∞] with ϕ(∅) = 0 which is
upward • continuous and fulfils I(f) =

∫
−fdϕ for all f ∈ E.

2) I is Stonean and upward • continuous.

In this case the set function ϕ in 1) is unique and ϕ := I?(χ.)|Out(E). It
fulfils ϕ• = I•(χ.). Likewise the following are equivalent.

1’) There exists an isotone ϕ : Out(E) → [0,∞] with ϕ(∅) = 0 which
is upward • continuous and submodular and fulfils I(f) =

∫
−fdϕ for all

f ∈ E.
2’) I is Stonean and upward • continuous and submodular.

In this case the unique set function ϕ in 1’) fulfils I•(f) =
∫
−fdϕ• for all

f ∈ [0,∞]X .

2.6 Outer Consequence (• = στ). In the situation of 2.5 under the
assumptions 1’)2’) the functional I• is subadditive.

The proof corresponds to that of 2.4. Thus we see that up to this point the
inner and outer procedures are quite parallel. However, the next section will
show a different picture.



MEASURE AND INTEGRATION: THE NEW ENVELOPES 7

3. The Inner and Outer Representation Theorems

We start with the inner situation. This part of the section assumes a positive-
homogeneous Stonean lattice E ⊂ [0,∞[X with 0 ∈ E and an isotone func-
tional I : E → [0,∞[ with I(0) = 0, that is the situation of the inner theorem
2.3.

3.1 Remark (• = στ). We have the equivalence

I(v) = I(u) + I•(v − u) for all u 5 v in E
⇐⇒ I is Stonean and downward • continuous and supermodular, and

I(v) 5 I(u) + I•(v − u) for all u 5 v in E.

Proof of ⇒. I is Stonean, because for f ∈ E and 0 < t < ∞ we have
f − f ∧ t = (f − t)+ ∈ E and hence

I(f) = I(f ∧ t) + I•(f − f ∧ t) = I(f ∧ t) + I((f − t)+).

I is downward • continuous by [2](10) 5.10.5. And I is even modular, because
for u, v ∈ E we have

I(u ∨ v) + I(u ∧ v) = I(u) + I•(u ∨ v − u) + I(u ∧ v)

= I(u) + I•(v − u ∧ v) + I(u ∧ v) = I(u) + I(v).

Proof of ⇐. We combine 2.4 with I•|E = I from [2](10) 5.10.5 to obtain
I(v) = I(u) + I•(v − u) for all u 5 v in E. �

3.2 Inner Representation Theorem (• = στ). The following are equiv-
alent.

1) There exists an inner • premeasure ϕ : Inn(E) → [0,∞[ with I(f) =∫
−fdϕ for all f ∈ E.

2) I(v) = I(u) + I•(v − u) for all u 5 v in E.

In this case the inner • premeasure ϕ in 1) is unique and ϕ := I?(χ.)|Inn(E).
It fulfils I•(f) =

∫
−fdϕ• for all f ∈ [0,∞]X . Moreover I is additive (for

u, v ∈ E with u+ v ∈ E as in [2](10) sect.5.2) and modular.

Proof. Combine the former version [2](10) 7.6 with the above 3.1. The
final assertions are clear from 2): For u, v ∈ E with u + v ∈ E one has
I(u+ v) = I(u) + I•(v) = I(u) + I(v), while the previous proof ⇒ shows that
I is modular. �

We turn to the outer situation. We need two lemmata.

3.3 Lemma. Let S be a lattice with ∅ ∈ S and R(S) the generated ring.
For each pair of functions u 5 v in Out(S) with u < ∞ then v − u ∈
Out((R(S))σ).

Proof. By assumption [v > t], [u > t] ∈ S for 0 < t <∞, and the assertion
is [v − u > t] ∈ (R(S))σ for 0 < t <∞. We claim for 0 < t <∞ that

[v − u > t] = [v > t+ u] =
⋃

0<s rat<∞

(
[v > t+ s]\([v > t+ s] ∩ [u > s])

)
,

which implies the assertion. Proof of ⊃:

[v > t+ s]\([v > t+ s] ∩ [u > s]) = [v > t+ s] ∩ [s = u] ⊂ [v > t+ u].



8 KÖNIG

Proof of ⊂: Let x ∈ X be in the left side, that is v(x) − t > u(x), and take
some rational 0 < s <∞ with v(x)− t > s > u(x). Then

x ∈ [v > t+ s] ∩ [s = u] = [v > t+ s]\([v > t+ s] ∩ [u > s]),

which is contained in the right side. �

3.4 Lemma (• = στ). Let S be a lattice with ∅ ∈ S, and assume that the
isotone ϕ : S → [0,∞] with ϕ(∅) = 0 fulfils ϕ(B) = ϕ(A) + ϕ•(B\A) for
all A ⊂ B in S. For the sublattice T := [ϕ < ∞] ⊂ S then ϕ•|(R(T))σ is
modular.

Proof. It is clear that ϕ is modular and upward • continuous; hence [2](10)
2.8 asserts that ϕ• is submodular and upward σ continuous. i) By [1] 3.4
(which for the present situation is due to Hausdorff) the restriction ϕ|T has a
unique extension to a content Φ : R(T)→ [0,∞[. We claim that Φ = ϕ•|R(T),
so that ϕ•|R(T) is seen to be modular. Thus let M ∈ R(T). From [1] 1.21 we
obtain a finite sequence S1 ⊂ T1 ⊂ ... ⊂ Sr ⊂ Tr in T such that

M =
r
∪
l=1

(Tl\Sl) and hence Tr\S1 = M ∪
r
∪
l=2

(Sl\Tl−1).

We obtain

ϕ•(M) 5
r∑
l=1

ϕ•(Tl\Sl) and

ϕ(Tr)− ϕ(S1) = ϕ•(Tr\S1) 5 ϕ•(M) +
r∑
l=2

ϕ•(Sl\Tl−1)

5
r∑
l=1

ϕ•(Tl\Sl) +
r∑
l=2

ϕ•(Sl\Tl−1)

=
r∑
l=1

(
ϕ(Tl)− ϕ(Sl)

)
+

r∑
l=2

(
ϕ(Sl)− ϕ(Tl−1)

)
= ϕ(Tr)− ϕ(S1),

and hence

ϕ•(M) =
r∑
l=1

ϕ•(Tl\Sl) =
r∑
l=1

(
ϕ(Tl)− ϕ(Sl)

)
=

r∑
l=1

Φ(Tl\Sl) = Φ(M),

as claimed. ii) Now let A,B ∈ (R(T))σ, and Al, Bl ∈ R(T) for l ∈ N with
Al ↑ A and Bl ↑ B. Then Al ∪ Bl ↑ A ∪ B and Al ∩ Bl ↑ A ∩ B. Thus
ϕ•(Al∪Bl)+ϕ•(Al∩Bl) = ϕ•(Al)+ϕ•(Bl) implies that ϕ•(A∪B)+ϕ•(A∩B) =
ϕ•(A) + ϕ•(B) since ϕ• is upward σ continuous. �

For the remainder of the section we assume a positive-homogeneous Stonean
lattice E ⊂ [0,∞]X with 0 ∈ E and an isotone functional I : E → [0,∞] with
I(0) = 0, that is the situation of the outer theorem 2.5.

3.5 Remark (• = στ). We have the equivalence

I(v) = I(u) + I•(v − u) for all u 5 v in E with u <∞
⇐⇒ I is Stonean and upward • continuous and submodular, and

I(v) = I(u) + I•(v − u) for all u 5 v in E with u <∞.
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Proof of⇒. The proofs that I is Stonean and upward • continuous are as in
the proof of 3.1. To see that I is modular first consider u, v ∈ E with u <∞.
Then as before

I(u ∨ v) + I(u ∧ v) = I(u) + I•(u ∨ v − u) + I(u ∧ v)

= I(u) + I•(v − u ∧ v) + I(u ∧ v) = I(u) + I(v).

Now consider arbitrary u, v ∈ E. For 0 < t <∞ then

I
(
(u ∧ t) ∨ v

)
+ I
(
(u ∧ t) ∧ v

)
= I(u ∧ t) + I(v),

and hence for t ↑ ∞ the assertion since I is upward • continuous.
Proof of ⇐. This part is as in the proof of 3.1, with 2.6 instead of 2.4. �

The next result is the fundamental new fact in the outer representation
context. The decisive point is that no condition of the type (↑) in the earlier
outer 1.3 is involved.

3.6 Fundamental Lemma (• = στ). In the situation of 2.5 and under the
assumptions 1’)2’) we have the equivalence

ϕ(B) = ϕ(A) + ϕ•(B\A) for all A ⊂ B in Out(E)
⇐⇒ I(v) = I(u) + I•(v − u) for all u 5 v in E with u <∞.

Proof of ⇒. i) We have by assumption the unique isotone ϕ : Out(E) →
[0,∞] with ϕ(∅) = 0 which is upward • continuous and submodular and fulfils
I(f) =

∫
−fdϕ for all f ∈ E. By [2](10) 2.8.1 ϕ• is submodular, which combined

with the present assumption furnishes ϕ(B) = ϕ(A) + ϕ•(B\A) for all A ⊂ B
in Out(E) =: S. For the sublattice T := [ϕ < ∞] ⊂ S then 3.4 asserts that
ϕ•|(R(T))σ is modular.

ii) Next I•(f) =
∫
−fdϕ• for all f ∈ [0,∞]X from 2.5. We conclude as in

the proofs of 2.4 and 2.6 from [2](10) 5.6.iv)⇒i) applied to ϕ•|(R(T))σ and the
above i) that I•|Out

(
(R(T))σ

)
is additive.

iii) Now to be shown is I(v) = I(u)+I•(v−u) for all u 5 v in E with u <∞.
We can assume that I(v) < ∞ and hence I(u) < ∞. Thus by definition the
[u > t], [v > t] ∈ Out(E) = S for 0 < t < ∞ have ϕ([u > t]), ϕ([v > t]) < ∞
and hence are ∈ T. Hence u, v ∈ Out(T), and we conclude from 3.3 that
v − u ∈ Out

(
(R(T))σ

)
. Thus ii) implies that I•(v) = I•(u) + I•(v − u), and

hence even I(v) = I(u) + I•(v − u) from [2](10) 5.10.5.

Proof of ⇐. i) Each A ∈ Out(E) is of the form A = [f > 0] for some f ∈ E
with f 5 1. In fact,

A = [f > t] for some f ∈ E and 0 < t <∞
= [(f − t)+ > 0] = [g > 0] with g := (f − t)+ ∈ E
= [g ∧ 1 > 0] = [h > 0] with h := g ∧ 1 ∈ E and h 5 1.

ii) Now let A ⊂ B in Out(E), that is A = [f > 0] and B = [g > 0] with
f, g ∈ E and f, g 5 1. Then A = [f > 0] ∩ [g > 0] = [f ∧ g > 0], so that we
can assume f 5 g 5 1. For n ∈ N we have nf ∧ 1 ∈ E, with nf ∧ 1 ↑ χA for
n→∞ and hence I(nf ∧ 1) = I•(nf ∧ 1) ↑ I•(χA) = ϕ•(A) = ϕ(A), since I•
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is upward σ continuous by [2](10) 5.10.8. Likewise ng∧1 ∈ E with ng∧1 ↑ χB
and I(ng ∧ 1) ↑ ϕ(B) for n→∞.

iii) For n = m in N we have by the present assumption

I(ng ∧ 1) = I(mf ∧ 1) + I•(ng ∧ 1−mf ∧ 1),

and hence for n→∞ from ii)

ϕ(B) = I(mf ∧ 1) + I•(χB −mf ∧ 1) = I(mf ∧ 1) + I•(χB − χA),

so that for m→∞ it follows that

ϕ(B) = ϕ(A) + I•(χB\A) = ϕ(A) + ϕ•(B\A). �

We come to the main theorems.

3.7 New Outer Representation Theorem (• = στ). In the situation
of 2.5 the following are equivalent.

1-) There exists an isotone ϕ : Out(E)→ [0,∞] with ϕ(∅) = 0 and ϕ(B) =
ϕ(A) + ϕ•(B\A) for all A ⊂ B in Out(E) which fulfils I(f) =

∫
−fdϕ

for all f ∈ E.
2-) I(v) = I(u) + I•(v − u) for all u 5 v in E with u <∞.

In this case the set function ϕ in 1-) is unique and ϕ := I?(χ.)|Out(E). It
fulfils I•(f) =

∫
−fdϕ• for all f ∈ [0,∞]X .

Proof of 1-)⇒2-). The set function ϕ satisfies 1’), and hence I satisfies 2’).
Then the implications 3.6 ⇒ and 3.5 ⇐ furnish the assertion 2-).

Proof of 2-)⇒1-). The implication 3.5 ⇒ furnishes 2’) and hence 1’) and
I(v) = I(u) + I•(v − u) for all u 5 v in E with u < ∞, and then 3.6 ⇐
furnishes ϕ(B) = ϕ(A) + ϕ•(B\A) for all A ⊂ B in Out(E). Combined with
the fact that ϕ• is submodular this leads to the assertion 1-). �

However, there is an essential difference between the conditions 1-) in the
present 3.7 and 1) in the inner representation theorem 3.2: the present con-
dition 1-) is NOT for the outer • premeasures ϕ : Out(E) → [0,∞], but for
the isotone set functions ϕ : Out(E) → [0,∞] with ϕ(∅) = 0 and ϕ(B) =
ϕ(A) + ϕ•(B\A) for all A ⊂ B in Out(E). The outer extension theorem 1.3
asserts that the two classes coincide in case • = σ, but example 1.5 shows
that they can be different in case • = τ . In that case our former outer •
representation theorem [2](10) 7.3 introduced a certain counterpart to the
earlier condition (↑) and thus was able to involve the outer • premeasures
ϕ : Out(E) → [0,∞] in both • = στ . This procedure will be our final step
below. But we want to emphasize that the new outer • representation theorem
3.7 is a fundamental equivalence assertion as well.

We define for an isotone functional I : E → [0,∞] on a positive-homogeneous
Stonean lattice E ⊂ [0,∞]X with 0 ∈ E and I(0) = 0 the condition

(⇑) Iτ (f) = sup{Iτ (f ∧ u) : u ∈ E with I(u) <∞}
for all f ∈ [0,∞]X with Iτ (f) <∞,

which as before is of inner regular kind. And as before its counterpart for
• = σ is superfluous. One then obtains the final result which follows.
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3.8 Outer Representation Theorem (• = στ). In the situation of 2.5
the following are equivalent.

1+) There exists an outer • premeasure ϕ : Out(E)→ [0,∞] which fulfils
I(f) =

∫
−fdϕ for all f ∈ E.

2+) I(v) = I(u) + I•(v−u) for all u 5 v in E with u <∞, plus (⇑) in case
• = τ .

In this case the outer • premeasure ϕ in 1+) is unique and ϕ := I?(χ.)|Out(E).
It fulfils I•(f) =

∫
−fdϕ• for all f ∈ [0,∞]X .

This theorem is an immediate combination of the former outer representa-
tion theorem [2](4) 5.3 = (10) 7.3 with the above 3.5.

In conclusion we note a remarkable consequence from the comparison of the
two representation theorems 3.7 and 3.8 via the outer extension theorem 1.3
in case • = τ : If I : E → [0,∞] and ϕ : Out(E) → [0,∞] is a pair as in 3.7,
then condition (⇑) for I is equivalent to condition (↑) for ϕ.

Note (added 17 August 2013). We want to complement the above inner
representation theorem 3.2 in that we recall the former comprehensive inner re-
sult [2](19) theorem 1.3. It has been described in [2](19) sect.4 that this result
is a far simultaneous extension of the former Daniell-Stone and Riesz repre-
sentation theorems. As before we assume a positive-homogeneous Stonean
lattice E ⊂ [0,∞[X with 0 ∈ E and an isotone functional I : E → [0,∞[ with
I(0) = 0. Then let S be a lattice in X with ∅ ∈ S and

(•) S ⊂ (Inn(E))• and Inn(E) ⊂ S>S•.
We introduce the two related conditions

↑ (I,S): for any f ∈ E and ε > 0 there exists S ∈ S such that all u ∈ E
with u 5 f and u|S = f |S fulfil I(f) 5 I(u) + ε,

l (I,S): for any f ∈ E and ε > 0 there exists S ∈ S such that all u, v ∈ E
with u 5 v 5 f and u|S = v|S fulfil I(v) 5 I(u) + ε,

in order to express that the functional I is concentrated on S. The result in
question then reads as follows.

3.9 Theorem (• = στ). The following are equivalent.

1) There exists an inner • premeasure ϑ : S→ [0,∞[ which fulfils
I(f) =

∫
−fdϑ• for all f ∈ E.

2.↑) I(v) = I(u) + I•(v − u) for all u 5 v in E, and ↑ (I,S).
2.l) I(v) = I(u) + I•(v − u) for all u 5 v in E, and l (I,S).

In this case the inner • premeasure ϑ in 1) is unique and ϑ := I∗|S. Moreover
ϑ• = ϕ• for the inner • premeasure ϕ := I∗|Inn(E) of theorem 3.2. Hence
I•(f) =

∫
−fdϑ• for all f ∈ [0,∞]X , and the two extensions Φ = ϕ•|C(ϕ•) and

Θ = ϑ•|C(ϑ•) are equal.
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