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Abstract

We consider equations with the simplest hysteresis operator at
the right-hand side. Such equations describe the so-called processes
”with memory” in which various substances interact according to the
hysteresis law.

We present some results concerning the optimal regularity of so-
lutions. Our arguments are based on quadratic growth estimates for
solutions near the free boundary.

1 Introduction.

In this paper we study the regularity properties of bounded solutions of the
following parabolic free boundary problem:

H[u] = h[u] in Q = U×]0, T ]. (1)

Eq. (1) is understood in the weak (distributional) sence. Here H = ∆−∂t is
the heat operator, U is a domain in Rn, and h is a hysteresis-type operator
acting from C(Q) to {±1} which is defined as follows.
We fix two numbers α and β (α < β) and consider a multivalued function

f(s) =


−1, for s ∈]−∞, α],

1, for s ∈ [β,+∞[,

−1 or 1, for s ∈]α, β[.

For u ∈ C(Q) we suppose that on the bottom of the cylinder Q the initial
values of u as well as of h[u](x, 0) := f(u(x, 0)) are prescribed.
After that for every point z = (x, t) ∈ Q the corresponding value of h[u](z) is
uniquely defined in the following manner. Let us denote by E a set of points

E := {z ∈ Q : u(z) 6 α} ∪ {z ∈ Q : u(z) > β} ∪ {U × {0}} .

In other words, E is a set where f(u(z)) is well-defined.
If z ∈ E then h[u](z) = f(u(z)). Otherwise, for z = (x, t) ∈ Q such that
α < u(z) < β we set

h[u](x, t) = h[u](x, t̂(x)). (2)

Here
t̂(x) = max

[0,t]
{s : (x, s) ∈ E}

Roughly speaking, condition (2) means that the hysteresis function h[u](x, t)
takes for u(x, t) ∈ (α, β) the same value as ”at the previous moment” (see
Figure 1).
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Figure 1: The hysteresis operator h

Let us emphasize that for fixed x a jump of h[u](x, ·) can happen only on
thresholds {u(x, t) = α} and {u(x, t) = β}. Moreover, ”jump down” (from
h = 1 to h = −1) is possble on {u(x, t) = α} only, whereas ”jump up”
(from h = −1 to h = 1) is possible on {u(x, t) = β} only.
Thus, the cylinder Q consists of two disjoint regions where h[u] assumes the
values +1 and −1, respectively. If u is a solution of (1) then the interface be-
tween these two regions is apriori unknown and, therefore, may be considered
as the free boundary.

We suppose also that

sup
Q
|u| 6 M with M > 1. (3)

Since the right-hand side of (1) is bounded, the general parabolic theory (see,
e.g. [LSU67]) implies for any ε > 0 the estimates

‖∂tu‖q,Qε + ‖D2u‖q,Qε 6 N1(ε, q,M) ∀q <∞, (4)

where Qε = U ε×]ε2, T ], U ε ⊂ U and dist {U ε, ∂U} > ε.
We note that if ∂U as well as the values of u on the parabolic boundary of
Q are smooth then in the whole cylinder Q the corresponding estimates of
Lq-norm for ∂tu and D2u are true.

In particular, (4) implies that u satisfies (1) a.e. in Q and, consequently,
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the (n+ 1)-dimensional Lebesgue measure of the sets {u = α} and {u = β}
equals zero. In addition, functions u and Du are Hölder continuous in Q.

Equation of type (1) arises in various biological and chemical processes in
which diffusive and nondiffusive substances interact according to hystere-
sis law (see, for instance, [Kop06], and references therein). Despite the
large number of applications there are only several publications devoted to
equations involving a spatially distributed hysteretic discontinuity. We are
only aware of the results of [GST13] and [GT12], where the one-(space)-
dimensional case were studied. In the paper [GST13] the authors proved the
local existence of solutions of (1) under the assumption that the correspond-
ing initial data are spatially transverse. This transversality property roughly
speaking means that the solution has a nonvanishing spatial gradient on the
free boundary. It was also shown in [GST13] that transversal solutions de-
pend continuously on initial data. A theorem on the uniqueness of solutions
was established in [GT12] under the similar assumption about transversality
of solutions. Observe also that to our knowledge the regularity properties of
solutions to equation (1) has not previously been studied.

In this paper we are interested in local L∞-estimates for the derivatives D2u
and ∂tu of the function u satisfying (1). We do not suppose that our solutions
have the transversality property.

The paper is organized as follows. In Section 2 we introduce notations used
in this paper, describe the different components of the free boundary and
formulate the main result of the paper: Theorem 2.3. In Section 3 we show
the continuity of the time-derivative ∂tu across the special part of the free
boundary where the spatial gradient Du does not vanish, and estimate |∂tu|
on this part unformly by a constant depending only on given quantities.
Further, in Section 4 we verify that positive and negative parts of the space
directional derivatives Deu for any direction e ∈ Rn are sub-caloric outside
some ”pathological” part of the free boundary. We use this information
in Section 5 for proving the quadratic growth estimates which are crucial
for the final estimates of the higher order derivatives. The uniform L∞-
estimates of ∂tu and D2u depending on given quantities and on the distance
to the ”pathological” part of the free boundary are obtained in Section 6.
Finally, in Section 7 we state and prove some preliminary facts which are
used intensively for proving of almost all results in the previous sections.
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2 Notation and Preliminaries.

Throughout this article we use the following notation:
z = (x, t) are points in Rn+1

x,t , where x ∈ Rn, n > 1, and t ∈ R1;
x = (x1, x

′) = (x1, x2, . . . , xn), if n > 2;
|x| is the Euclidean norm of x;
Br(x

0) denotes the open ball in Rn with center x0 and radius r;
Qr(z

0) = Qr(x
0, t0) = Br(x

0)×]t0 − r2, t0 + r2];
Q−r (z0) = Qr(z

0) ∩ {t < t0}.
When omitted, x0 (or z0 = (x0, t0), respectively) is assumed to be the origin.
∂′Qr(z

0) or ∂′Q−r (z0) denote the parabolic boundary of the corresponding
cylinder, i.e., the topological boundary minus the top of the cylinder.
For a cylinder Q = U×]0, T ] and any ε > 0 we define the corresponding
cylinder Qε as

Qε = U ε×]ε2, T ],

where U ε ⊂ U and dist {U ε,U} > ε.
u+ = max {u, 0}; u− = max {−u, 0};
Di denotes the differential operator with respect to xi;
D = (D1, D

′) = (D1, D2, . . . , Dn) denotes the spatial gradient;
D2u = D(Du) denotes the Hessian of u;

∂tu =
∂u

∂t
.

Dν stands for the operator of differentiation along a direction ν ∈ Rn, i.e.,

|ν| = 1 and Dνu =
n∑
i=1

νiDiu.

We adopt the convention that the indices i, j, l always vary from 1 to n.
We also adopt the convention regarding summation with respect to repeated
indices.

‖ · ‖p,D denotes the norm in Lp(D), 1 < p 6∞;

W 2,1
p (D) and W 1,0

p (D) are anisotropic Sobolev spaces with the norms

‖u‖W 2,1
p (D) = ‖∂tu‖p,D + ‖D2u‖p,D + ‖u‖p,D,
‖u‖W 1,0

p (D) = ‖Du‖p,D + ‖u‖p,D,

respectively.

For a cylinder Q = U×]T1, T2] ⊂ Rn
x × R1

t we denote by V2(Q) the Banach
space consisting of all elements of W 1,0

2 (Q) with a finite norm

‖u‖V2(Q) = sup
T1<t6T2

‖u‖2,U + ‖Du‖2,Q.
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ffl
D
. . . stands for the average integral over the set D, i.e.,

 

D

· · · = 1

meas {D}

ˆ

D

. . . .

We say that ξ = ξ(x, t) is a cut-off function for a cylinder Qr(ẑ) if

ξ(x, t) = ξ1(x)ξ2(t),

where ξi > 0, i = 1, 2,

ξ1 ∈ C∞0 (Br(x̂)) , ξ1 ≡ 1 in Br/2(x̂),

while ξ2 ∈ C∞([t̂− r2/4, t̂]), ξ2(t̂− r2) = 0 and ξ2(t) ≡ 1 for t > t̂− r2/4.

We define the parabolic distance distp from a point z = (x, t) to a set D ⊂
Rn+1 by

distp (z,D) := sup
{
r > 0 : Q−r (z) ∩ D = ∅

}
.

We use letters M , N , C and c (with or without sub-indices) to denote various
constants. To indicate that, say, C depends on some parameters, we list them
in the parentheses: C(. . . ). We do not indicate the dependence of constants
on n. In addition, we will write sup instead of ess sup and inf instead of
ess inf.

We denote

Ω±(u) := {z ∈ Q, where h[u](z) = ±1} ,
Γ(u) := ∂Ω+ ∩ ∂Ω− is the free boundary.

The latter means that Γ(u) is the set where the function h[u](z) has a jump.

We also introduce special notation for the different parts of Γ(u)

Γα(u) := Γ(u) ∩ {u = α} ,
Γβ(u) := Γ(u) ∩ {u = β} .

By definition,
{u 6 α} ⊂ Ω− and {u > β} ⊂ Ω+.

It is also easy to see that the sets {u = α} and {u = β} are separated from
each other.
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Figure 2: Structure of the free boundary for n = 1

Remark 2.1. In any cylinder Qε the distance from the level set {u = α} to
the level set {u = β} is estimated from below by a positive constant depending
on M , ε and β − α only.

Observe that the level sets {u = α} and {u = β} are not alsways the parts
of the free boundary Γ(u). Indeed, if the level set {u = α} is locally not
a t-graph, then a part of {u = α} may occur inside Ω−. In this case Γ(u)
may contain several components of Γα connected by cylindrical surfaces with
generatrixes parallel to t-axis (see Figure 2). Similar statement is true for
the level set {u = β}. We will denote by Γv the set of all points z lying
in such vertical parts of Γ(u). It should be noted that Γv is, in general,
not the level set {u = α} as well as not the level set {u = β}. This Γv is
just the ”pathological” part of the free boundary that we have mentioned in
Introduction.

We will also distinguish the following parts of Γ:

Γ0
α(u) = Γα(u) ∩ {|Du| = 0} , Γ∗α(u) = Γα(u) \ Γ0

α(u).

The sets Γ0
β and Γ∗β are defined analogously. In addition, we set

Γ0(u) := Γ0
α(u) ∪ Γ0

β(u), Γ∗(u) := Γ∗α(u) ∪ Γ∗β(u).

Remark 2.2. It is obvious that u ∈ C∞ in the interior of the sets Ω±.
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Now we formulate the main result of the paper.

Theorem 2.3. Let u satisfy (1), and let z ∈ Q \ Γ(u). Then

|∂tu(z)|+ |D2u(z)| 6 C(ρ0, ε,M, β − α).

Here ρ0 := distp {z,Γv} and ε := distp {z, ∂′Q}.

Proof. The proof of this statement follows from Lemmas 6.1 and 6.2.

3 Estimates of ∂tu on Γ∗(u)

Lemma 3.1. Let u be a solution of Eq. (1), and let Q−3ρ(z
∗) be an arbitrary

cylinder contained in Q. Then we have the estimates

inf
Q−ρ (z∗)

∂tu > −N, provided that Q−3ρ(z
∗) ∩ Γβ = ∅, (5)

sup
Q−ρ (z∗)

∂tu 6 N, provided that Q−3ρ(z
∗) ∩ Γα = ∅. (6)

Here N = N(M,ρ).

Proof. Assume for the definiteness that z∗ lyies in a neighborhood of Γβ.
Consider in Q−2ρ(z

∗) the difference quotient of u in the t-direction, i.e.,

u(τ)(x, t) =
u(x, t)− u(x, t− τ)

τ

with some small positive τ . To prove (6) it is sufficient to get the correspond-
ing estimate for u(τ) uniformly with respect to τ .

Further, we observe that equation (1) and integration by parts provide for
all test-finctions η ∈ W 1,1

2 (Q−2ρ(z
∗)) vanishing on ∂B2ρ(x

∗)× [t∗ − 4ρ2, t∗] the
validity of the following integral identity

ˆ

Q−2ρ(z∗)

(∂tuη +DuDη) dxdt = −
ˆ

Q−2ρ(z∗)

h[u]ηdxdt. (7)

Using the same reasonings as in deriving of (7) we get for all test-functions
η̃ ∈ W 1,1

2

(
Q−2ρ (x∗, t∗ + τ)

)
that are equal to zero on ∂′Q−2ρ (x∗, t∗ + τ) the

integral identity
ˆ

Q−2ρ(x∗,t∗+τ)

(∂tuη̃ +DuDη̃) dxdt = −
ˆ

Q−2ρ(x∗,t∗+τ)

h[u]η̃dxdt. (8)
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Putting in (8) η̃(x, t) = η(x, t + τ) we obtain after elementary change of
variables the relationˆ

Q−2ρ(z∗)

[∂tu(x, t− τ) η(x, t) +Du(x, t− τ)Dη(x, t)] dxdt

= −
ˆ

Q−2ρ(z∗)

h[u](x, t− τ)η(x, t)dxdt.

(9)

Now, we substract (9) from (7), divide the result by τ and integrate by parts.
After these transformations we arrive at the equality

ˆ

Q−2ρ(z∗)

[
∂tu

(τ)η + Du(τ)Dη
]
dxdt

= −1

τ

ˆ

Q−2ρ(z∗)

(h[u](x, t)− h[u](x, t− τ)) ηdxdt.

(10)

Setting in (10)
η(x, t) =

(
u(τ) − k

)
+
ξ2(x, t), k > 0,

where ξ is a standard cut-off function for a cylinder Q−2ρ(z
∗) (see Notation),

we can rewrite (10) in the form

ˆ

Q−2ρ(z∗)

{
∂tu

(τ)
(
u(τ) − k

)
+
ξ2 +Du(τ)D

[(
u(τ) − k

)
+
ξ2
]}

dxdt

= −1

τ

ˆ

Q−2ρ(z∗)

(h[u](x, t)− h[u](x, t− τ))
(
u(τ) − k

)
+
ξ2dxdt.

(11)

We claim that h[u](x, t)− h[u](x, t− τ) > 0 in Q−2ρ(z
∗). Indeed, we have the

relation
Q−2ρ(z

∗) ∩ Γα = ∅.

Recall that by definition h[u](x, t) may decrease in t only in a neighborhood
of Γα. Therefore, in Q−2ρ(z

∗) the function h[u] is either constant or increasing
one. The latter means that for all k > 0 we have instead of (11) the inequality

ˆ

Q−2ρ(z∗)

{
∂tu

(τ)
(
u(τ) − k

)
+
ξ2 +Du(τ)D

[(
u(τ) − k

)
+
ξ2
]}

dxdt 6 0. (12)
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Observe that we may take in (12) the cut-off fucntion ξ multiplied by the
characteristic function of an interval [t∗ − 4ρ2, t] with an arbitrary t ∈]t∗ −
4ρ2, t∗] instead of ξ. This leads to the inequalities

tˆ

t∗−4ρ2

ˆ

B2ρ(x∗)

{
∂tu

(τ)
(
u(τ) − k

)
+
ξ2 +Du(τ)D

[(
u(τ) − k

)
+
ξ2
]}

dxdt 6 0,

∀t ∈]t∗ − 4ρ2, t∗].

Further arguments are rather standard. We leave the trivially nonnegative
terms in the left-hand side of the above inequalities, while the rest terms are
transferred to the right-hand side and estimated from above with the help of
Young’s inequality. As a consequence, for k > 0 we get

sup
t∗−4ρ2<t6t∗

ˆ

B2ρ(x∗)

(u(τ) − k)2
+ξ

2dx

∣∣∣∣t +

ˆ

Q−2ρ(z∗)

[
D
(
(u(τ) − k)+

)]2
ξ2dxdt

6
ˆ

Q−2ρ(z∗)

(
u(τ) − k

)2

+

[
4|Dξ|2 + 2ξ|∂tξ|

]
dxdt.

(13)

With inequalities (13) at hands we may apply succesively Fact 7.1 with
v = u(τ) and inequalities (4) which immediately imply the desired esti-
mate (6).

It remains only to observe that the case of z∗ lying near Γα is treated almost
similarly. The only differences are that we should choose in (10)

η(x, t) =
(
u(τ) − k

)
− ξ

2(x, t), k 6 0,

and then check the validity of the inequality h[u](x, t)− h[u](x, t− τ) 6 0 in
the cylinder Q−2ρ(z

∗).

Lemma 3.2. Let u be a solution of Eq. (1) and let z∗ ∈ Γ∗ \ Γv.
Then Γ∗ \ Γv is locally a C1-surface and ∂tu is a continuous function in a
neigborhood of z∗. In addition, the mixed second derivatives Di (∂tu) are
L2-functions near z∗.

Proof. Continuity of ∂tu across Γ∗ can be proved by using the same argu-
ments as in (the proof of) Lemma 7.1 [SUW09]. For the readers convenience
we sketch the details.
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Suppose for the definiteness that z∗ ∈ Γ∗α \ Γv. Without restriction it may
be assumed that D1u(z∗) > 0. Then, in a sufficiently small cylinder Qρ(z

∗)
satisfying Qρ(z

∗) ∩ Γv the function u is strictly increasing in x1-direction.
Further, using the von Mises transformation, we introduce the new variables

(x1, x
′, t)→ (y, x′, t),

where y := u(x, t)− α. We also introduce the function v such that

x1 = v(y, x′, t).

Transforming in Qρ(z
∗) Eq. (1) for u into terms of v we obtain the uniformly

parabolic equation

∂tv − aij (∂v) ∂i(∂jv) = g(y)∂1v,

where ∂1v :=
∂v

∂y
=

1

D1u
> 0, ∂mv :=

∂v

∂xm
= Dmv = −Dmu

D1u
,

∂v = (∂1v,D
′v) =

(
1

D1u
,−D

′u

D1u

)
, ∂tv :=

∂v

∂t
= − ∂tu

D1u
, (14)

g(y) =

{
1, if y > 0

−1, if y < 0
,

and the coefficients aij are defined as follows

a11(p) =
1 + |p′|2

p2
1

, amm(p) = 1, a1m(p) = am1(p) = −pm
p1

,

amem(p) = 0 if m 6= m̃

(15)

(here the indices m and m̃ vary from 2 to n, and p ∈ Rn).

Elementary calculation shows that for the difference quotient in the t-direction

v(τ)(y, x′, t) :=
v(y, x′, t)− v(y, x′, t− τ)

τ

we have
∂tv

(τ) − aij (∂v) ∂i(∂jv
(τ))− bk∂kv(τ) = g(y)∂1v

(τ), (16)

where bk :=
∂aij(Zτ )

∂pk
∂i (∂jv(y, x′, t− τ)),

Zτ = ϑ(y, x′, t)∂v(y, x′, t− τ)− [1− ϑ(y, x′, t)] ∂v(y, x′, t)

10



and ϑ(y, x′, t) ∈ [0, 1].

Observe that for the second derivatives of v we have the relations

∂1 (∂1v) = − D11u

(D1u)3
, ∂1 (∂mv) =

D11uDmu

|D1u|2
− D1mu

D1u
,

∂m(∂m̃v) =
D11uDmuDm̃u

|D1u|2

(
1

D1u
− 2

)
+
D1muDm̃u

D1u
+
D1m̃uDmu

D1u
− Dmm̃u

D1u
.

(17)

According to estimates (4) and formulas (14)-(15) and (17) we may conclude
that in Eq. (16) the coefficients aij are Hölder continuous functions satisfying
the ellipticity condition, whereas the coefficients bk are elements of Lq with
an arbitrary q < ∞. Therefore, the parabolic theory implies that v(τ) ∈ Cσ

for some σ ∈ (0, 1) and ∂v(τ) is locally an element of L2-space. We note also
that all the estimates of corresponding norms are uniformly bounded in τ .
Hence we immediately conclude that ∂tu is also Hölder continuous with some
exponent σ′ satisfying 0 < σ′ < σ and that the mixed derivatives Di(∂tu)
belong locally to a class of L2-functions. It is also evident that near z∗ the
free boundary Γα is a C1-surface .

It remains only to observe that in the case z∗ ∈ Γ∗β \Γv we should choose the
new variable y in von Mises transformation as y := u(x, t) − β and repeat
the above steps.

Corollary 3.3. Let u satisfy Eq. (1). Then for any cylinder Qε ⊂ Q we
have

sup
Γ∗∩Qε

|∂tu| 6 N∗(M, ε, β − α). (18)

Proof. Consider for the definiteness the case z∗ ∈ {Γ∗α \ Γv} ∩ Qε. Due to
Lemma 3.2 a function ∂tu is continuous in a neighborhood of z∗.
Recall that by definition of Γα the function h[u] has a jump in t-direction
from +1 to −1 there. The latter means that if we cross the free boundary
Γ∗α in positive t-direction then the corresponding phases change from Ω+ to
Ω−. Since u(z∗) = α and u(x∗, t∗ − ε) > α for any ε > 0 we conclude that
∂tu(z∗) 6 0. Hence the inequality

sup
Γ∗α

∂tu 6 0 (19)

is valid.
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Now , taking into account Remark 2.1, one may combine (19) with one-sided
inequality (5). It gives the desired estimate (18).
The other case, i.e., z∗ ∈ Γ∗β\Γv is treated in a similar manner. It is necessary
only to observe that if we cross the free boundary Γ∗β in positive t-direction
then the phases will change from Ω− to Ω+ and, consequently, ∂tu(z∗) > 0
and the inequality

sup
Γ∗β

∂tu > 0 (20)

holds true. In view of Remark 2.1, the combination of (20) with one-sided
estimate (6) finishes the proof.

4 Sub-Caloricity of Deu

Lemma 4.1. Let w ∈ C(D)∩W 1,0
2,loc(D) with D being a domain in Rn+1, and

let the inequality ˆ

D

(−w∂tη +DwDη) dz 6 0 (21)

hold for any nonnegative function η ∈ C∞0 (D) with supp η ⊂ {w > 0}.
Then the function w+ is sub-caloric in D.

Proof. First, we take in (21) nonnegative functions η ∈ C∞0 (D) with

supp η ⊂
{
w >

δ

2
> 0

}
. (22)

Without loss of generality we may consider instead of w in (21) its mollifier
wρ with sufficiently small parameter ρ. After integration by parts we arrive
at ˆ

D

[∂twρη +DwρDη] dz 6 0. (23)

We set in (23) η = ψδ(wρ)ϕ, where ϕ ∈ C∞0 (D) is an arbitrary nonnegative
test function, while

ψδ(s) =


0, if s 6 δ

(s− δ)
δ

, if δ < s < 2δ

1, if s > 2δ

.

Observe that such a choice of η is not restrictive, since due to definition of
ψδ we have for sufficiently small ρ the evident inclusions

supp η ⊂ {wρ > δ} ⊂
{
w >

δ

2

}
.
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After substitution of η inequality (23) takes the form

ˆ

D

[
∂twρψδ(wρ)ϕ+ |Dwρ|2ψ′δ(wρ)ϕ+Dwρψδ(wρ)Dϕ

]
dz 6 0. (24)

Elementary calculation shows that ∂twρψδ(wρ) = d
dt
Fδ(wρ) where the func-

tion Fδ is defined as

Fδ(s) =

sˆ

0

ψδ(τ)dτ =


0, if s 6 δ

(s− δ)2

2δ
, if δ < s < 2δ

s− (3/2)δ, if s > 2δ

.

So, again integrating by parts and taking into account that the second term
in (24) is nonnegative we get the inequality

ˆ

D

[−Fδ(wρ)∂tϕ+Dwρψδ(wρ)Dϕ] dz 6 0. (25)

Tending in (25) ρ → 0 and taking into account the definitions of ψδ and Fδ
we arrive atˆ

{w>2δ}

[−w∂tϕ+DwDϕ] dz 6
ˆ

{δ<w<2δ}

|DwDϕ|dz + Cδ.

Letting δ → 0 in the above inequality provides the inequality
ˆ

{w>0}

[−w∂tϕ+DwDϕ] dz 6 0. (26)

It remains only to recall that ϕ in (26) is an arbitrary nonnegative test-
function. This completes the proof.

Lemma 4.2. Let u be a solution of Eq. (1). Then for any direction e ∈ Rn

functions (Deu)± are sub-caloric in Q \ Γv.

Proof. Due to Lemma 4.1 it sufficies to check that for w = Deu inequality
(21) holds true for any nonnegative function η ∈ C∞0 (Q \ Γv) with supp η ⊂
{Deu > 0}.
It follows from Eq. (1) that functions Deu satisfy in Q the equation

H [Deu] = De (h[u]) (27)
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in the weak (distributional) sence. Hence we obtain

ˆ

Q

Deu (∂tη + ∆η) dz = −
ˆ

Q

h[u]Deηdz = −
ˆ

Ω+

Deηdz +

ˆ

Ω−

Deηdz

= 2

ˆ

Γ∗

η cos (n̂, e)dHn,

where n = n(z) is the unit normal vector to Γ∗ directed into Ω+, e := (e, 0),
and Hn stands for the n-dimensional Hausdorff measure.
It is easy to see that the normal vector n has on Γ∗ the following represen-
tation

n(z) =

(
Du(z)√

|Du(z)|2 + (∂tu(z))2
,

∂tu(z)√
|Du(z)|2 + (∂tu(z))2

)
. (28)

Indeed, since u > α in Ω+ and Γα ⊂ {u = α}, the vector Du(z) at z ∈
Γ∗α is directed into Ω+. In addition, we recall (see (19)) that ∂tu 6 0 on
Γ∗α. Therefore, the projection of n from formula (28) on the t-axis is also
nonpositive. Because of Ω+ is locally a subgraph of Γα in t-direction, we
conclude that on Γ∗α the whole vector n defined by (28) is directed into Ω+.
Similarly, we have {u < β} in Ω− and Γβ ⊂ {u = β}. Therefore, the spatial
gradient Du(z) at z ∈ Γ∗β is directed into Ω+. Moreover, on Γ∗β we have
∂tu > 0 (see (20)) and Ω+ is a t-epigraph of Γ∗β. So, the vector n from
formula (28) is again directed into Ω+.
Now, taking into account the inclusion supp η ⊂ {Deu > 0} and representa-
tion (28) we conclude that

η cos
(
n̂(z), e

)
> 0 ∀z ∈ Γ∗

and complete the proof.

Remark 4.3. We emphasize that (Deu)± are, in general, not sub-caloric
near Γv.

5 Quadratic Growth Estimates

Lemma 5.1. Let u satisfy (1), let z0 ∈ Γ0, and let

distp
{
z0,Γv

}
> ρ0 > 0, distp

{
z0, ∂′Q

}
> ρ0.

14



There exists a positive constant C0 completely defined by the values of ρ0 and
M such that

osc
Q−r (z0)

u 6 C0r
2 for all r 6 ρ0. (29)

Proof. We verify inequality (29) for z0 ∈ Γ0
α. The other case, i.e., z0 ∈ Γ0

β

can be proved by using similar arguments.
We argue by contradiction. Suppose (29) fails. Then there exist a sequence
rk > 0 as well as sequences uk of solutions to (1) satisfying (3), and points
zk ∈ Γ0

α(uk) such that for all k ∈ N we have

distp
(
zk,Γv(uk)

)
> ρ0, distp

(
zk, ∂′Q

)
> ρ0

and
sup

Q−rk (zk)

|uk − α| > kr2
k. (30)

Thanks to assumption (3) the left-hand side of (30) is bounded by 2M and,
consequently, rk → 0 as k → ∞. It is evident that we can choose rk as the
maximal value of r for which

sup
Q−r (zk)

|uk − α| > kr2.

In other words, we have the relations
Mr(z

k, uk) := sup
Q−r (zk)

|uk − α| < kr2 for all r ∈ (rk, ρ0],

Mrk(z
k, uk) = kr2

k.
(31)

Next, we define a scaling ũk as

ũk(x, t) =
uk(x

k + rkx, t
k + r2

kt)− α
Mrk(z

k, uk)

for (x, t) ∈ Q−ρ0/rk . Then ũk satisfies the following properties

sup
Q−1

|ũk| = 1, (32)

ũk(0, 0) = 0, |Dũk(0, 0)| = 0, (33)

‖H[ũk]‖∞,Q−
1/rk

6
r2
k

Mrk(z
k, uk)

=
1

k
→ 0 as k →∞. (34)
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In addition, due to (31) we have for R ∈ (1, ρ0/rk] the inequality

sup
Q−R

|ũk| =
MrkR(zk, uk)

Mrk(z
k, uk)

<
k (rkR)2

kr2
k

= R2. (35)

Now, by (32)-(35) we will have a subsequence of ũk weakly converging in
W 2,1
q,loc

(
Rn+1
x,t ∩ {t 6 0}

)
, q <∞, to a caloric function u0 satisfying

sup
Q−R

|u0| 6 R2 ∀R > 1,

u0(0, 0) = |Du0(0, 0)| = 0,

sup
Q−1

|u0| = 1. (36)

According to the Liouville theorem (see, for example, Lemma 2.1 [ASU00]),
there exist constants aij such that

u0(x, t) = aijxixj + 2

(
n∑
i=1

aii

)
t in Rn+1

x,t ∩ {t 6 0} . (37)

On the other hand, due to inequalities (4), Lemma 4.2 and Fact 7.3 we may
conclude that for any direction e ∈ Rn and for all k ∈ N such that rk 6 ρ0

Φ(rk, (Deuk)+ , (Deuk)− , ξρ0,zk , z
k) 6 c(ρ0), (38)

where c(ρ0) is defined completely by the values of ρ0 and M . More precisely,
by c(ρ0) we may take a majorant of the right-hand side of inequality (52)
calculated for θ1 = (Deuk)+ and θ2 = (Deuk)−. After simple rescaling (38)
takes the form

Φ(1, (Deũk)+ , (Deũk)− , ζ
k, 0, 0) 6 c(ρ0)

(
r2
k

Mrk(z
k, uk)

)4

=
c(ρ0)

k4
, (39)

where for brevity we denote the corresponding cut-off function ξρ0/rk,(0,0) by
ζk. Observe that ζk ≡ 1 in Bρ0/(2rk). In addition, Bρ0/(2rk) ⊃ B1 if k is big
enough, while for ε > 0 (small and fixed) we have

G(x,−t) > N(n, ε) > 0 for − 1 < t < −ε, x ∈ B1.

Hence,

N(n, ε)

−εˆ

−1

ˆ

B1

| (Deũk)± |
2dxdt 6

0ˆ

−1

ˆ

Rn

|De

(
(ũk)±ζ

k
)
|2G(x,−t)dxdt. (40)
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Next, using (40) and invoking the Poincare inequality we may reduce (39) to

−εˆ

−1

ˆ

B1

| (Deũk)+ −m
k
+(t)|2dxdt

−εˆ

−1

ˆ

B1

| (Deũk)− −m
k
−(t)|2dxdt

6 N−2(n, ε)
c(ρ0)

k4
,

where mk
±(t) denotes the corresponding average of (Deũk)± on t-sections over

B1.
Letting k tend to infinity (and then ε tend to zero), we obtain

ˆ

Q−1

| (Deu0)+ −m
+|2dxdt

ˆ

Q−1

| (Deu0)− −m
−|2dxdt = 0, (41)

where m± is the corresponding average of (Deu0)± over B1. Observe that,
due to representation (37), m± do not depend on t.
Obviously, (41) implies that Deu0 does not change its sign in Q−1 . Recall
that e is an arbitrary direction in Rn and u0 is a polinomial of the form (37).
It means, in particulary, that u0 ≡ 0 in Q−1 . The latter contradicts (36) and
complete the proof of (29).

We will need the extension of Lemma 5.1 to the ”upper half-cylinders”
Qr(z

0) ∩ [t0, t0 + r2] as well.

Lemma 5.2. Let all the assumptions of Lemma 5.1 be valid. Then

osc
Qr(z0)

u 6 C1r
2 for all r 6 ρ0, (42)

where ρ0 is the same constant as in Lemma 5.1 and C1 = C1(ρ0,M).

Proof. To obtain estimate (42) for {t > t0} we consider the barrier function

w(x, t) = C ′(ρ0,M)
{
|x− x0|2 + 2n(t− t0)

}
+ (t− t0),

where C ′(ρ0,M) = max
{
C0,Mρ−2

0

}
and C0 = C0(ρ0,M) is the constant

from Lemma 5.1. Using (29) for t = t0 and the comparison principle one can
easily verify that

|u(x, t)| 6 w(x, t) in Bρ0(x
0)×]t0, t0 + r2]. (43)

Combination of (29) and (43) finishes the proof of (42).
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Lemma 5.3. Let all the assumptions of Lemma 5.1 be valid. Then

sup
Qr(z0)

|Du| 6 C2r for all r 6 ρ0, (44)

where ρ0 > 0 is just the same as in Lemma 5.1, while C2 is a positive constant
completely defined by the values of M and ρ0.

Proof. We verify (44) for z0 ∈ Γ0
α. The case z0 ∈ Γ0

β is treated in a similar
manner.
Let us choose an arbitrary r 6 ρ0/2 and consider a point z̃ ∈ Qr(z

0). Further,
we take identity (7) with Q−2ρ(z

∗) replaced by Q−r (z̃)) and plug in this identity
a test-function

η(x, t) = (u(x, t)− α)ζ2(x)

where ζ ∈ C∞0 (Br(x̃)) satisfying 0 6 ζ 6 1 and |Dζ| 6 cr−1. After standard
transformations we get the inequality

ˆ

Br(x̃)

(u− α)2ξ2dx

∣∣∣∣t̃ +

ˆ

Q−r (z̃)

|Du|2ξ2dxdt 6
ˆ

Br(x̃)

(u− α)2ξ2dx

∣∣∣∣t̃−r2

+ c

ˆ

Q−r (z̃)

(u− α)2|Dξ|2dxdt+ c

ˆ

Q−r (z̃)

|u− α|ξ2dxdt,

(45)

where c stands for an absolute constant.
In view of (42) the right-hand side of (31) can be estimated from above by
2cC1(ρ0,M)rn+4 which guaranteesˆ

Q−r (z̃)

|Du|2ξ2dxdt 6 2cC1r
n+4.

It remains only to observe that combination of the latter inequality with
Eq. (27) and Fact 7.2 implies the estimate

|Du(z̃)| 6 c̃ r

which completes the proof.

6 Estimates of ∂tu and D2u beyond Γv

In this section we obtain the estimates of |∂tu(ẑ)| and |D2u(ẑ)| in any ẑ being
a point of smoothness for u. We emphasize that these bounds do not depend
on the parabolic distance from ẑ to Γ0 as well as to Γ∗. Unfortunately, we
cannot remove the dependence of both bounds on the parabolic distance from
ẑ to Γv.
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Lemma 6.1. Let u satisfy (1), let ẑ ∈ Q \ Γ(u), and let

distp {ẑ,Γv} > ρ0 > 0, distp {ẑ, ∂′Q} > ε > 0.

There exists a positive constant C3 depending only on ρ0, ε,M and β−α such
that

|∂tu(ẑ)| 6 C3. (46)

Proof. Define d0 = d0(ẑ) := min {distp {ẑ,Γ0} , ρ0, ε/2}. It is obvious that
for any δ > 0

Q−d0/2(x̂, t̂− δ) ∩
{

Γ0 ∪ Γv ∪ ∂′Q
}

= ∅.

However, Q−d0/2(x̂, t̂− δ) may contain the points of Γ∗ \ Γv.

1. First, we consider the case d0 = distp {ẑ,Γ0}.
Using the same arguments as in the derivation of (10) in the proof
of Lemma 3.1 we get for all test-functions η ∈ W 1,1

2 (Q−d0/2(x̃, t̃ − δ))

vanishing on ∂′Q−d0/2(x̃, t̃− δ) the equality

ˆ

Q−
d0/2

(x̂,t̂−δ)

[
∂tu

(τ)η + Du(τ)Dη
]
dxdt

= −1

τ

ˆ

Q−
d0/2

(x̂,t̂−δ)

(h[u](x, t)− h[u](x, t− τ)) ηdxdt,

(47)

where u(τ) denotes the difference quotient of u in the t-direction.

Plugging in (47)

η(x, t) = (∂tu(x, t)− k)+ ξ
2(x, t), k > 2N∗,

where ξ is a standard cut-off function for a cylinder Q−d0/2(x̂, t̂− δ) (see

Notation), and N∗ is the constant from Corollary 3.3, we arrive at the
relationˆ

Q−
d0/2

(x̂,t̂−δ)

{
∂tu

(τ) (∂tu− k)+ ξ
2 +Du(τ)D

[
(∂tu− k)+ ξ

2
]}
dxdt

= −1

τ

ˆ

Q−
d0/2

(x̂,t̂−δ)

{h[u](x, t)− h[u](x, t− τ)} (∂tu− k)+ ξ
2dxdt.

(48)
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Observe that due to Corollary 3.3 the distance from the set {supp η}
to Γ(u) is positive. Therefore, ∂tu is smooth on {supp η} and, conse-
quently, the right-hand side of (48) vanishes if τ is small enough. In
addition, we make take in (48) the cut-off function ξ multiplied by
the characteristic function of an interval [t̂− δ − d2

0/4, t] with an arbi-
trary t ∈]t̂ − δ − d2

0/4, t̂ − δ]. This leads for sufficiently small τ to the
inequalities

tˆ

t̂−δ−d20/4

ˆ

Bd0/2(x̂)

{
∂tu

(τ) (∂tu− k)+ ξ
2 +Du(τ)D

[
(∂tu− k)+ ξ

2
]}
dxdt 6 0

∀t ∈]t̂− δ − d2
0/4, t̂− δ].

Now, we let in the latter inequalities τ → 0 and then tend δ → 0,
leave the nonnegative terms in the left-hand side, transfer the rest
terms to the right-hand side and estimate these rest terms from above
via Young’s inequality. As a consequence, for k > 2N∗ we get the
inequalities

sup
t̂−d20/4<t<t̂

ˆ

Bd0/2(x̂)

(∂tu− k)+ dx

∣∣∣∣t +

ˆ

Q−
d0/2

(ẑ)∩{∂tu>k}

|D (∂tu) |2ξ2dxdt

6 c

ˆ

Q−
d0/2

(ẑ)

(∂tu− k)+

[
|Dξ|2 + 2ξ|∂tξ|

]
dxdt.

Application of Fact 7.1 with v = ∂tu implies the estimate

∂tu(ẑ) 6 2N∗ +N0

√ 
Q−
d0/2

(ẑ)

|∂tu|2dxdt. (49)

In order to obtain a bound for the integral term on the right-hand side
of (49) we take identity (7) with Q−2ρ(z

∗) replaced by Q−d0(ẑ) and plug
in this identity a test-function

η(x, t) = ∂tu(x, t)ζ2(x),

where ζ is a smooth cut-off function in Bd0(x̂) that equals 1 in Bd0/2(ẑ)
and vanishes outside of B3d0/4(x̂). After standard manipulations we
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end up with
ˆ

Q−
3d0/4

(ẑ)

|∂tu|2ζ2dxdt 6 c

ˆ

Q−
3d0/4

(ẑ)

(
h2[u]ζ2 + |Du|2|Dζ|2

)
dxdt

6 c̃ (d0)n+2 + c̃ (d0)−2

ˆ

Q−
3d0/4

(ẑ)

|Du|2dxdt

6 c̃
{

1 + C2
1

}
(d0)n+2 ,

(50)

where the last inequality follows from Lemma 5.3.

Thus, combination of (49) and (50) provides the estimate

∂tu(ẑ) 6 2N∗ +N0

√
c̃ {1 + C2

1(ρ0, ε.M)}.

Observe that the constant on the right-hand side of the above inequality
does not depend on d0, i.e., on the parabolic distance from ẑ to Γ0.

2. Suppose now that d0 = min {ρ0, ε/2}. In this case we repeat all the
above up to deriving (49). Then we estimate the integral term on the
right-hand side of (49) with the help of inequalities (4) with q = 2.
This gives us the bound

ˆ

Q−
d0/2

(ẑ)

|∂tu|2dxdt 6 N1(ε, 2,M)

which together with (49) implies

∂tu(ẑ) 6 2N∗ +N0N
1/2
1 (min {ρ0, ε})−1−n/2 .

Again, the right-hand side of the latter bound is independent of the
parabolic distance from ẑ to Γ0.

Repeating the above arguments for the function −u instead of u we complete
the proof.

Lemma 6.2. Let u satisfy the same assumptions as in Lemma 6.1. Then
there exists a positive constant C4 depending only on ρ0, ε, M and β−α such
that ∣∣D2u(ẑ)

∣∣ 6 C4. (51)
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Proof. Let ẑ ∈ Q \ Γ(u) be fixed, and let ν = Du(ẑ)/|Du(ẑ)|. Suppose that
e is an arbitrary direction in Rn if |Du(ẑ)| = 0 and e ⊥ ν otherwise. We also
define d0 = d0(ẑ) := min {distp {ẑ,Γ0} , ρ0, ε/2}.
In view of our choice of e we have Deu(ẑ) = 0 and, consequently, we may
apply Fact 7.4 to the sub-caloric functions (Deu)± in Q−d0(ẑ). From here,
taking into account Lemma 5.3, we obtain the estimate

|D(Deu)(ẑ)| 6 C4(ρ0, ε,M, β − α),

where C4 does not depend on d0. Since e is an arbitrary direction in Rn

satisfying e ⊥ ν, the derivative Dν(Dνu(ẑ)) can now be estimated from
Eq. (1). Thus, we proved the desired inequality (51).

7 Appendix

For the readers convenience and for the references, we recall and explain
several facts. Most of these auxiliary results are known, but probably not
well known in the context used in this paper.

Fact 7.1. Let r0 ∈ (0, 1), and let v ∈ V2

(
Q−r0(z

∗)
)

satisfy the inequalities

sup
t∗−r20<t<t∗

ˆ

Br0 (x∗)

(v − k)2
+ ξ

2dx

∣∣∣∣t +

ˆ

Q−r0 (z∗)

[
D
(
(v − k)+

)]2
ξ2dz

6 c

ˆ

Q−r0 (z∗)

(v − k)2
+

[
|Dξ|2 + ξ|∂tξ|

]
dz

for all k > k0 and all cut-off functions ξ = ξ(x, t) defined in Q−r0(z
∗) (see

Notation). Here c stands for a positive constant.
Then there exists a positive constant N0 = N0(c) such that

sup
Q−
r0/2

(z∗)

v 6 k0 +N0

√√√√  

Q−r0 (z∗)

v2(z)dz.

Proof. For the proof of this assertion we refer the reader to (the proof of)
Theorem 6.2, Chapter II [LSU67].
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Fact 7.2. Let D be a domain in Rn+1, and let gi ∈ L∞(D), i = 0, 1, . . . , n.
Then if v ∈ V2(D) is a solution of the equation

H[v] = div~g + g0, ~g =
(
g1, . . . , gn

)
in D, we have, for any cylinder Q−2R(z0) ⊂ D,

sup
Q−R(z0)

|v| 6 N̂0

√ 
Q−2R(z0)

v2dxdt+ N̂1R‖~g‖∞,Q−2R(z0) + N̂2R
2‖g0‖∞,Q−2R(z0)

Proof. The validity of Fact 7.2 follows from results of §6 Chapter II and §8
Chapter III [LSU67] (see also Theorem 6.17 in [Lie96]).

We denote

I(r, v, z∗) =

t∗ˆ

t∗−r2

ˆ

Rn

|Dv(x, t)|2G(x− x∗, t∗ − t)dxdt,

where r ∈]0, ρ0], z∗ = (x∗, t∗) is a point in Rn+1, a function v is defined n the
strip Rn × [t∗ − ρ2

0, t
∗], and the heat kernel G(x, t) is defined by

G(x, t) =
exp (−|x|2/4t)

(4πt)n/2
for t > 0 and G(x, t) = 0 for t 6 0.

To prove the quadratic growth estimate for solutions of (1), we need the
following local version of the famous Caffarelli monotonicity formula (see
[CS05]) for pairs of disjointly supported subsolutions of the heat equation.

Fact 7.3. Let z∗ = (x∗, t∗) be a point in Rn+1, let ξρ0,x∗ := ξρ0,x∗(x) be
a standard time-independent cut-off function belonging C2(Bρ0(x

∗)), having
support in Bρ0(x

∗), and satisfying ξρ0,x∗ ≡ 1 in Bρ0/2(x∗), and let θ1, θ2 be
nonnegative, sub-caloric and continuous functions in Q−ρ0(z

∗), satisfying

θ1(x∗, t∗) = θ2(x∗, t∗) = 0, θ1(x, t) · θ2(x, t) = 0 in Q−ρ0(z
∗).

Then, for 0 < r < ρ0 the functional

Φ(r, ξρ0,z∗) := Φ(r, θ1, θ2, ξρ0,z∗ , z
∗) =

1

r4
I(r, θ1ξρ0,z∗ , z

∗)I(r, θ2ξρ0,z∗ , z
∗)

satisfies the inequality

Φ(r, ξρ0,z∗) 6
Ñ

ρ2n+8
0

‖θ1‖2
2,Q−ρ0 (z∗)

‖θ2‖2
2,Q−ρ0 (z∗)

(52)

with an absolute positive constant Ñ .
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Proof. Using the same arguments as in the proof of Lemma 2.4 and Remark
after that in [ASU00] (see also Fact 1.6 and Remark 1.7 in [AU13]) one can
get the inequality

Φ(r, ξρ0,z∗) 6 Φ(ρ0/2, ξρ0,z∗) +
N ′

ρ2n+8
0

‖θ1‖2
2,Q−ρ0 (z∗)

‖θ2‖2
2,Q−ρ0 (z∗)

, (53)

where N ′ is an absolute positive constant.
We claim that the first term on the right-hand side of (53) can be estimated
via the second term. Indeed, it is evident that

Φ(ρ0/2, ξρ0,z∗) 6
c

ρ4
0

I(ρ0, θ1ζ0, z
∗)I(ρ0, θ2ζ0, z

∗), (54)

where ζ0 = ζ0(x, t) = ξρ0,z∗(x)ςρ0,z∗(t), while ςρ0,z∗ stands for a nonnegative
function belonging C2 ([t∗ − ρ2

0, t
∗]), having support in [t∗ − 3ρ2

0/4, t
∗] and

satisfiying ςρ0,z∗(t) ≡ 1 in [t∗ − ρ2
0/4, t

∗].
On the other hand, functions θi, i = 1, 2, are sub-caloric in Q−ρ0(z

∗), i.e.,
H[θi] > 0 in the sense of distributions. Since

|Dθi|2 + θiH[θi] =
1

2
H[θ2

i ]

we have

t∗ˆ

t∗−ρ20

ˆ

Rn

|Dθi(x, t)|2ζ2
0 (x, t)G(x− x∗, t∗ − t)dxdt

6
1

2

t∗ˆ

t∗−r20

ˆ

Rn

H[θ2
i (x, t)]ζ

2
0 (x, t)G(x− x∗, t∗ − t)dxdt.

(55)

After successive integration the right-hand side of (55) by parts we get

t∗ˆ

t∗−ρ20

ˆ

Rn

|Dθi|2ζ2
0Gdxdt =

t∗ˆ

t∗−ρ20

ˆ

Bρ0 (x∗)

|Dθi|2ζ2
0Gdxdt

6 −
ˆ

Bρ0 (x∗)

(
θ2
i

2
ζ2

0G

)
dx

∣∣∣∣t∗
t∗−ρ20/4

+

t∗ˆ

t∗−ρ20

ˆ

Bρ0 (x∗)

θ2
i

2
ζ2

0 [∂tG+ ∆G] dxdt
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+

t∗ˆ

t∗−ρ20

ˆ

Bρ0 (x∗)

θ2
i

[
2ζ0Dζ0DG+G|Dζ0|2 +Gζ0∆ζ0

]
dxdt

+

t∗ˆ

t∗−ρ20

ˆ

Bρ0 (x∗)

θ2
iGζ0|∂tζ0|dxdt

=: J1 + J2 + J3 + J4.

It is evident that due to our choice of ζ0 we have J1 6 0.
Further, taking into account the relation

∂tG+ ∆G = ∂tG(x− x∗, t∗ − t) + ∆G(x− x∗, t∗ − t) = 0 for t < t∗,

we conclude that J2 = 0.
Finally, we observe that the integral in J3 is really taken over the set E =
]t∗− ρ2

0, t
∗]×

{
Bρ0(x

∗) \Bρ0/2(x∗)
}

, while the integral in J4 is taken over the
set E ′ = [t∗ − ρ2

0, t
∗ − ρ2

0/4]×Bρ0(x
∗). Therefore, in E we have the following

estimates for functions involved into J3

|G(x− x∗, t∗ − t)| 6 ĉ
e
− ρ20

16(ρ20−t)

(ρ2
0 − t)n/2

6 ĉρ−n0 ;

|DG(x− x∗, t∗ − t)Dζ0(x, t)| 6 ĉ|G(x− x∗, t∗ − t)| |x− x
∗|

ρ0 (ρ2
0 − t)

6 ĉ
e
− ρ20

16(ρ20−t)

(ρ2
0 − t)1+n/2

6 ĉρ−n−2
0 .

Similarly, in E ′ we have

|G(x− x∗, t∗ − t)| 6 ĉρ−n0 ,

and, consequently,

J3 + J4 6 c̃ρ−n−2
0

¨

Q−ρ0 (z∗)

θ2
i dxdt 6 c̃ρ−n−2

0 ‖θi‖2
2,Q−ρ0 (z∗)

.

Thus, collecting all inequalities we get

I(ρ0, θiζ0, z
∗) 6 2

t∗ˆ

t∗−ρ20

ˆ

Bρ0 (x∗)

[
|Dζ0|2θ2

i + |Dθi|2ζ2
0

]
Gdxdt

6 N ′′ρ−n−2
0 ‖θi‖2

2,Q−ρ0 (z∗)
,

(56)
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where N ′′ denotes a positive absolute constant.
Now, combination of (53), (54) and (56) finishes the proof of (52).

Fact 7.4. Let a continuous function v in the cylinder Q−R(z0) satisfies the
following conditions:

v(z0) = 0;

v is differentiable at z0;

v± are subcaloric in Q−R(z0).

Then

|Dv(z0)| 6 Ñ ′
√√√√R−2

 

QR(z0)

v2dxdt.

Proof. The above inequality follows directly from Fact 7.3.
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