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Abstract

Invariances are one of the key concepts to render computer vision
algorithms robust against severe illumination changes. However, there
is no free lunch: With any invariance comes an unavoidable loss of
information. The goal of our paper is to introduce two novel descrip-
tors which minimise this loss: the complete rank transform and the
complete census transform. They are invariant under monotonically
increasing intensity rescalings, while containing a maximally possible
amount of information.

To analyse our descriptors, we embed them as constancy assump-
tions into a variational framework for optic flow computation. As a
suitable regularisation term, we choose the total generalised variation
that favours piecewise affine solutions. Our experiments focus on the
KITTI benchmark where robustness w.r.t. illumination changes is one
of the main issues. The results demonstrate that our descriptors yield
state-of-the-art accuracy.

1 Introduction

Especially in uncontrolled real-world scenarios, robustness is one of the most
important features of computer vision algorithms. Because it is hardly possi-
ble to design a model that can handle all eventualities explicitly, incorporat-
ing invariances is an essential alternative to gain robustness. However, being
invariant means ignoring something, thus every invariance leads to a loss of
information. This article aims at analysing a class of descriptors that exhibit
an extraordinarily strong invariance, the so-called morphological invariance.
Descriptors of this class remain unchanged if the underlying signal under-
goes any transform that is monotonically increasing (Alvarez et al, 1993);
e.g. additive, multiplicative and even exponential rescalings.
Since a monotonically increasing rescaling does not alter the ordering of the
intensity values, the considered descriptor class comprises all approaches that
are based on this grey value order. For instance, a famous example is the
median filter of Tukey (1971). Zabih and Woodfill’s rank transform (Zabih
and Woodfill, 1994) is another prominent representative of such illumination
robust descriptors. It computes the rank of a pixel’s intensity within a lo-
cal neighbourhood. Their transform is invariant against any monotonically
increasing intensity changes. However, it is clear that only storing the rank
of the pixel also means to discard all other local information. In the same
paper (Zabih and Woodfill, 1994), the census transform is proposed, which
compares a pixel with all its neighbours and stores which one is larger. In
this way (besides encoding the rank in a different form), also some spatial
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information is stored. However, also here a lot of information is discarded.
Thus, it would be desirable to develop a robust feature that is morphologi-
cally invariant and discards as little information as possible.

Our Contributions. This article is an extended and revised version of
our conference contribution (Demetz et al, 2013), where we introduced the
complete rank transform as a tool for morphologically invariant matching of
structures. We extend our conference paper in several aspects. First, we
present further analysis and experiments w.r.t. the complete rank trans-
form. Second, we derive an additional transform that formally contains the
same amount of information. However, the novel so-called complete census
transform is a binary signature that suggests a natural and very well-suited
distance metric. By analysing the difference between this metric and the
sum of squared distances that we propose for complete rank signatures, we
can explain in which sense the latter is a good approximation of the former.
Third, we improve our variational framework by extending the regularisation
term to total generalised variation. This second order term favours piecewise
affine solutions which appear frequently in realistic scenarios. We show that
our proposed descriptors can be used as a generally superior alternative to
the census transform: They are as parameter-free as the census transform,
and lead to clearly improved results.
We want to stress that we discuss all these descriptors from the point of view
of designing a data term for optical flow. Sparse interest point matching is
not in our focus and would examine very different aspects and properties of
a descriptor.

Related Work. There are many other transforms in literature that are
related to our idea: independently of Zabih and Woodfill’s rank and census
transforms (Zabih and Woodfill, 1994), Pietikäinen et al. performed broad
research on various kinds of local binary patterns (see the book on Local
Binary Patterns of Pietikäinen et al (2011) and references therein). How-
ever the majority of these local binary patterns discards rather more than
less available information (Chen et al, 2013), hence go in the opposite direc-
tion of our research. Stein (2004) use the census transform as an efficient
descriptor for sparse structure matching in driver assistance systems, and
Fröba and Ernst (2004) use the modified census transform for face recogni-
tion. The BRIEF descriptor of Calonder et al (2012) is a variation of the
census transform which performs the comparisons on arbitrary pixel pairs in
the neighbourhood. The first appearance of ordinal measures of full patches
in the literature goes back to work on block matching based stereo correspon-
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dence of Bhat and Nayar (1998). Related to that, also more recently, sev-
eral sparse interest point descriptors building on intensity order-based ideas
have been proposed: With their chained circular neighbourhoods, Chan et al
(2012) make a first step towards representing neighbourhood ordinal infor-
mation. The LIOP descriptor of Wang et al (2011) describes the intensity
order of a very large neighbourhood and is specifically tailored for sparse
interest point matching. A similar idea of matching order distributions is
proposed by Tang et al (2009). Mittal and Ramesh (2006) combine order
and intensity information to increase the robustness against Gaussian noise.
A classical application domain where local descriptors are matched is op-
tical flow. A large number of publications on this topic also consider the
problem of illumination robustness. Most of these attempts are based on
invariance, such as the gradient constancy assumption introduced by Uras
et al (1988) that is invariant under global additive changes, as well as con-
stancy assumptions on higher order derivatives by Papenberg et al (2006). A
higher level of invariance can be achieved with the normalised cross correla-
tion (Steinbrücker et al, 2009; Werlberger et al, 2010) which is also invariant
under multiplicative changes. The work of Liu et al (2011) also falls in this
class of invariance, where the SIFT descriptor (Lowe, 2004) is used for es-
tablishing correspondence. Other attempts to achieve invariance include the
structure-texture decomposition by Wedel et al (2008) as well as the His-
togram of Oriented Gradients-based method by Rashwan et al (2013). In
presence of color imagery, invariance can also be achieved by exploiting the
dichromatic reflection model (van de Weijer and Gevers, 2004) or by switch-
ing to other color spaces as performed in Mileva et al (2007). A remark-
able exception from the invariance-based approaches to achieve robustness
is the work of Gennert and Negahdaripour (1987) where deviations from the
brightness constancy assumption are estimated explicitly. In Xu et al (2010)
and Kim et al (2013) invariant data terms are incorporated in an adaptive
way by switching locally between different constancy assumptions.
There are several recent publications that incorporate the census transform
in variational optical flow or stereo methods: Müller et al (2011) propose a
census-based data term for optical flow, and Ranftl et al (2012) as well as
Mei et al (2011) present census-based stereo methods. Braux-Zin et al (2013)
combine census and grey value constancy assumption in a data term for optic
flow and additionally integrate sparse feature matches. The theoretical study
of Hafner et al (2013) explains the reasons why census-based data terms for
variational optic flow are successful.
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(e) Complete
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Figure 1: Illustration of the presented intensity order transforms ((b)–(d))
with a 3× 3 neighbourhood patch ((a)), where the reference pixel is marked
in grey.

Organisation. Our paper is organised as follows: In Section 2, we discuss
the rank and census transforms, as well as their complete counterparts. Af-
ter that, Section 3 discusses appropriate measures of patch dissimilarity for
each of the transforms. In Section 4, we embed our novel descriptors into
a variational framework and demonstrate their benefits in the experimen-
tal Section 5. We conclude the paper with a summary and an outlook in
Section 6.

2 Morphologically Invariant Descriptors

Let us now give an overview over the class of morphologically invariant trans-
formations (cf. Figure 1), i.e. transforms that are invariant under any global
monotonically increasing rescaling of the input signal.
Formally, each transform maps a local image patch to a m-dimensional sig-
nature vector s : Rk → Rm. In this paper, we define the image patch as
the k closest neighbouring pixels w.r.t. the spatial Euclidean distance. For
didactic reasons, we represent the patch intensity values by a k-dimensional
vector f , where the values are ordered by increasing spatial distance from
the centre. Consequently, the intensity of the central pixel is assigned to the
first entry f1.

2.1 Rank

The rank transform (RT) was proposed by Zabih and Woodfill (1994) and
encodes for each pixel the position of its grey value in the ranking of all grey
values in the neighbourhood. In other words, it is the number of neighbours
with a smaller grey value than the central one. Formally, the rank transform
maps each pixel to its scalar rank signature sRT ∈ {0, . . . , k− 1}, and can be
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computed as

sRT(f) :=
k∑
i=2

1(fi<f1) , (1)

where 1(x) denotes the indicator function

1(x) :=

{
1 if x is true,

0 otherwise.
(2)

2.2 Census

In the same paper, Zabih and Woodfill (1994) also introduced another de-
scriptor, the so-called census transform (CT). It has attracted a lot of atten-
tion in recent years and can be seen as an extension of the rank transform:
Besides encoding the rank, it adds a spatial component by expressing the
relationship between the central pixel and each of its neighbours explicitly.
Specifically, one bit of information is stored for each pixel of the neighbour-
hood: If the neighbour is smaller than the reference pixel the bit is 1, and
0 otherwise. In the final binary signature, all bits are concatenated. While
the order of this concatenation is in general arbitrary, it has to be consistent
such that each bit can be uniquely associated with one neighbour. In math-
ematical terms, each image patch of size k is mapped to a binary signature
sCT ∈ {0, 1}k−1 of length k−1. We choose the following formal representation
to compute a census signature:

sCT(f) := (1(f2<f1), . . . ,1(fk<f1))
> . (3)

Hence, every neighbouring pixel is compared to the central one. Furthermore,
the sum of the digits of a census signature coincides with the rank sRT of
that pixel.

2.3 Complete Rank

Although the two signatures by Zabih and Woodfill (1994) exhibit the same
morphological invariance, the census transform obviously encodes by con-
struction more information than the pure rank.
However, there is still some more information that can be used without losing
the desired invariance. To this end, let us now introduce an extension of
Zabih and Woodfill’s basic transform: the complete rank transform (CRT).
We will see that the resulting signature carries much more information than
its predecessors.
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Given the census signature of an image patch, we know which pixels in the
patch are smaller than the central one. However, the relationships among
all neighbours cannot be determined by the pure census information. For
instance, if two neighbouring pixels are both smaller than the central one, it
is still unclear which of the two neighbours is smallest.
To also encode this information, we propose the complete rank transform.
We compute the rank of each pixel of the patch and store this information
in a k-dimensional signature sCRT ∈ {0, . . . , k−1}k:

sCRT(f) := (s1
RT, . . . , s

k
RT)> , (4)

where

sjRT :=
k∑
i=1
i 6=j

1(fi<fj) . (5)

With this CRT signature, the whole intensity order is represented. From
the viewpoint of morphological invariance, this is the maximal amount of
information that can be extracted without leaving this class of invariance.
The computation rule for CRT signatures as shown in Equation 4 is demon-
strative and intuitively understandable, but also inefficient (quadratic com-
plexity in k). However, essentially what has to be done is to sort the intensi-
ties. Thus, we propose to use an efficient sorting algorithm such as Quicksort
for this task (O(k log k)); see e.g. Press et al (2007).

2.4 Complete Census

After motivating the complete rank transform via the missing relationship
information between all pixels in the patch, another transform comes natu-
rally into mind, namely an analogue extension of the census transform: the
complete census transform (CCT).
Instead of storing all k ranks, it stores for each pixel of the patch whether
it is smaller or larger than any other pixel in the patch. Thus, we obtain a
signature sCCT ∈ {0, 1}k·(k−1) which contains all census signatures with each
of the pixels as reference:

sCCT(f) := (s1
CT, . . . , s

k
CT)> , (6)

with
sjCT := (1(f1<fj), . . . ,1(fj−1<fj),1(fj+1<fj), . . . ,1(fk<fj)) . (7)

Evidently, the original census signature from Equation 3 coincides with s1
CT
>

.
The information contained in complete rank and complete census is equiva-
lent. This can be seen from the bijection between them: It makes no differ-
ence if we compute the CCT signature directly from the intensity values or
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from the CRT signature of a patch. In the opposite direction, the complete
rank digits are just the sums of corresponding CCT bits:

(sCRT(sCCT))j =
k−1∑
i=1

(sjCT)i . (8)

Both complete rank and complete census signatures, do also represent tied
ranks, i.e. if pixels in the patch have the same intensity. Thus, the num-
ber of possible signatures for a patch with k pixels is the k-th ordered Bell
number (Sloane and Plouffe, 1995) OBN(k) (also called k-th Fubini number),
which is defined by

OBN(k) =
k∑
i=0

i∑
j=0

(−1)i−j
(
i

j

)
jk . (9)

It expresses the maximally possible number of weak orderings of a set of k
elements.

2.5 Discussion

In each pixel, our complete rank signature contains the full local image inten-
sity order. Obviously this is much more information than the rank or census
signatures carry. In particular, it is impossible to encode more local image
information without leaving the class of morphologically invariant descrip-
tors. The reason for this is that the only property that cannot be changed by
a monotonic function is monotonicity, i.e. whether one pixel is larger than
the other or not. However, the reason to prefer our proposed complete rank
signature is its much more compact representation and lower dimensionality,
compared to the complete census signature.

Nevertheless, this alternative census-inspired perspective offers an unexpected
insight: As pointed out in (Hafner et al, 2013), each binary digit of a cen-
sus signature can be regarded as the sign of the corresponding directional
derivative (in a finite difference sense). Thus, from this point of view, one
can conclude that the complete rank transform inherently contains rich lo-
cal differential information. In this regard, dealing with derivatives of such
signatures as in (Puxbaum and Ambrosch, 2010) actually corresponds to sec-
ond order image derivative information. This fact is not obvious from just
considering the rank representation and should be kept in mind.

For the sake of clarity, we summarise the discussed transforms and compare
their essential properties in Table 1.
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Table 1: Comparison of the proposed intensity order transforms. The number
of pixels in the considered neighbourhood is given by k.

transform
range D of
one digit

signature
length m

spatial
infor-

mation

size of
descriptor

space

rank (RT) {0, . . . , k − 1} 1 − k

census (CT) {0, 1} k − 1 X 2k−1

complete rank (CRT) {0, . . . , k − 1} k X OBN(k)

complete census (CCT) {0, 1} k(k − 1) X OBN(k)

3 Signature Distance Metrics

Besides the question which signature to chose, an equally important decision
to take is the metric in which to compare the chosen signatures.
For the classical rank and census transform the answer is clear: For ranks, the
absolute value of their differences is an appropriate metric because smaller
rank difference means more similar patches. Let, similar to Section 2, f and
g denote two patches to compare. Then, the corresponding metric for rank
reads

d(sRT(f), sRT(g)) = |sRT(f)− sRT(g)| . (10)

In case of census signatures, their Hamming distance is a natural choice since
it reflects the number of pixel comparisons that are in agreement:

d(sCT(f), sCT(g)) =
k−1∑
i=1

1((sCT(f))i=(sCT(g))i) . (11)

In the context of ternary census signatures, Vogel et al (2013) propose the
Centralised Sum of Absolute Distances (CSAD) as a convex approximation.
However, this approximation looses many invariances, in fact even the invari-
ance under multiplicative rescalings is lost. Thus, for us this is no option.

The straightforward generalisation of the absolute rank difference to its
complete counterpart would be the Euclidean norm of the difference vector
(p = 2) or the sum of absolute component differences (p = 1):

d(sCRT(f), sCRT(g)) =

( k∑
j=1

|(sCRT(f))j − (sCRT(g))j|p
)1/p

. (12)

However, one is actually interested in the number of pixel comparisons in
the patch not being in agreement. In this regard, the desired dissimilarity
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measure can be obtained by applying the Hamming distance to the complete
census signatures:

d(sCCT(f), sCCT(g)) =

k(k−1)∑
i=1

1((sCCT(f))i=(sCCT(g))i ) . (13)

Interestingly, the two latter metrics exhibit a close relationship that becomes
clear by plugging Equation 8 into the former one:

d(sCRT(f), sCRT(g)) =

( k∑
j=1

∣∣∣∣k−1∑
i=1

(sjCT(f))i −
k−1∑
i=1

(sjCT(g))i

∣∣∣∣p)1/p

. (14)

Comparing Equation 13 and 14, one can see that instead of counting each
individual disagreeing pixel comparison, the disagreements are accumulated
for each of the k CRT components. This accumulation performs a best case
estimate, i.e. as many census digits as possible are assumed to coincide. In
other words, the best possible case for each CRT component is assumed.
In the case of the sum of absolute differences (p = 1), the metric exactly
represents the lowest possible bound on the Hamming CCT distance. For
the Euclidean distance (p = 2), the individual rank differences are amplified
by the square function. Thus, more disagreeing pixel comparisons than the
least possible are presumed.
To conclude, CCT in combination with the Hamming distance might be the
most intuitive measure. However, CCT introduces a large computational
overhead compared to CRT; signature length k(k − 1) versus k. Neverthe-
less, we have seen that the CRT metrics approximate this CCT metric in a
meaningful way. It is up to our experiments to show the difference of both
signature-metric combinations in terms of accuracy.

4 Variational Optical Flow Model

In this section, we demonstrate the suitability our morphologically invariant
features for optic flow computation. To this end, we embed the features
into a variational framework that is based on the seminal work of Horn and
Schunck (1981). It allows a transparent and flexible modelling while being
able to provide accurate state-of-the-art results as demonstrated in various
optic flow benchmarks.

4.1 Energy Formulation

Generally, we assume that the input images have been mapped by one of
the introduced transforms to a vector-valued function s : Ω× [0,∞)→ Dm.
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Here, Ω ⊂ R2 denotes the 2D rectangular image domain. For colour images,
typically the signature length is tripled since we concatenate the signatures
of each channel.
Our generic variational approach models the constancy assumption that sig-
natures of corresponding pixels in the first frame and in the second frame
coincide. Accordingly, we propose to compute the sought optic flow field
(u, v)>: Ω→ R2 as the minimiser of the following energy functional:

E =

∫
Ω

(
M + α ·R1 + β ·R2

)
dx dy , (15)

where the data term

M = Ψ
(

1
m
|s(x + w)− s(x)|2

)
(16)

implements the discussed signature constancy assumption. It penalises dif-
ferences between the signature at position x := (x, y, t)> in the first frame
and its corresponding one at x + w := (x + u, y + v, t + 1)> in the second
frame. We apply the penalisation function (Cohen, 1993; Schnörr, 1994)

Ψ(z2) = 2λ
√
z2 + λ2 − 2λ2 (17)

with the small positive parameter λ to handle outliers and occlusions.
The regularisation terms

R1 = Ψ
(
|∇u− a|2 + |∇v − b|2

)
(18)

and
R2 = Ψ

(
|Ja|2 + |J b|2

)
(19)

model a prior knowledge about the spatial smoothness of the flow field. Here,
∇ := (∂x, ∂y)

> denotes the spatial gradient operator and Ja and J b the
Jacobian matrices of the vectors a and b, respectively. Further, all terms are
balanced by the regularisation parameters α>0 and β>0.
Let us discuss the applied regularisation terms in more detail. Setting a and
b to 0 everywhere yields a first order smoothness penalty, that approximates
the penalisation of the total variation (TV) of the flow field (Brox et al,
2004). However, jointly optimising for a and b in combination with the optic
flow approximates a second order smoothness assumption. Here, R1 plays
the role of a coupling term: It enforces the flow derivatives ∇u and ∇v
to equal a and b. Thus, the first order smoothness term R2 on a and b
features a second order smoothness assumption on u and v. The resulting
regularisation can be seen as a continuous and differentiable version of the
second order total generalised variation (TGV 2) smoothness term of Bredies
et al (2010). In a linear contest, such an approximation has been considered
by Hewer et al (2013). In contrast to the first order smoothness term that
leads to piecewise constant flow fields, it favours piecewise affine solutions.
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4.2 Multiresolution Technique

Due to the data term (16), the energy in (15) is non-convex w.r.t. the optic
flow variables u and v. As a remedy we consider, similar to Brox et al (2004),
a fixed point iteration that is embedded it into a multiresolution pyramid-
based approach. This leads to a linearised and convex version of the data
term that allows to handle large displacements. On each pyramid level `,
we solely compute small flow increments du` and dv`. The corresponding
linearised version of data term (16) reads

M ` = Ψ
(

1
m
|sx · du` + sy · dv` + st|2

)
, (20)

where the derivatives of the vector-valued signature s, i.e.

sx := ∂x s(x + w`) , (21)

sy := ∂y s(x + w`) , (22)

st := s(x + w`)− s(x) (23)

are calculated componentwise.
The computed flow increments du` and dv` are then successively used to
update the overall flow:

u`+1 = u` + du` and v`+1 = v` + dv` . (24)

Please note that the coupling term R1 couples the derivative of the complete
flow to the auxiliary variables in each level, i.e.

R`
1 = Ψ

(
|∇(u` + du`)− a|2 + |∇(v` + dv`)− b|2

)
. (25)

The regularisation term R2 stays unaffected by this multiresolution strategy.
In summary, the following incremental energy is to be minimised w.r.t. du`

and dv` (in the case of first order smoothness), and additionally w.r.t. a and
b (second order smoothness):

E` =

∫
Ω

(
M ` + α ·R`

1 + β ·R2

)
dx dy . (26)

4.3 Minimisation

Following the calculus of variations (Gelfand and Fomin, 2000), the minimiser
of the energy (26) has to fulfil the Euler-Lagrange equations. For the sake of
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readability, let us first introduce the following abbreviations:

Ψ′M := 1
m
·Ψ′

(
1
m
|sx · du` + sy · dv` + st|2

)
, (27)

Ψ′R1
:= Ψ′

(
|∇(u` + du`)− a|2 + |∇(v` + dv`)− b|2

)
, (28)

Ψ′R2
:= Ψ′

(
|Ja|2 + |J b|2

)
. (29)

With these abbreviations, the Euler-Lagrange equations for the optic flow
increments du` and dv` can be formulated as

Ψ′M · s>x (sx · du` + sy · dv` + st)

− α · div
(
Ψ′R1
·
(
∇(u` + du`)− a

))
= 0 ,

(30)

Ψ′M · s>y (sx · du` + sy · dv` + st)

− α · div
(
Ψ′R1
·
(
∇(v` + dv`)− b

))
= 0 ,

(31)

with the natural boundary conditions

(∇(u` + du`)− a)>n = 0 , (32)

(∇(v` + dv`)− b)>n = 0 , (33)

where n is the outer normal vector to the boundary of Ω.
Applying a second order smoothness assumption, one additionally has to
solve for the coupling variables a and b:

α ·Ψ′R1
· (∇(u` + du`)− a)− β ·∇>

(
Ψ′R2
· (Ja)>

)
= 0 , (34)

α ·Ψ′R1
· (∇(v` + dv`)− b)− β ·∇>

(
Ψ′R2
· (J b)>

)
= 0 , (35)

with (Ja)n = 0 and (J b)n = 0 as boundary conditions.

4.4 Numerical Algorithm and Implementation

We assume the images to be sampled on a regular grid with horizontal and
vertical grid size h1 and h2. All occurring spatial derivatives of the signa-
tures s in (30) and (31) are computed by means of the 4th-order stencil
(1,−8, 0, 8,−1)/(24hd), d = 1, 2, while the temporal derivative st is deter-
mined by a simple forward difference.
Moreover, in contrast to standard pyramid-based approaches, we do not
downsample the input images themselves, but their transformed versions.
Otherwise, the desired morphological invariance would be lost when averag-
ing or interpolating raw intensity values in the downsampling strategy. To
compute the downsampled transformed images, we presmooth them with a
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Gaussian whose standard deviation is proportional to the current grid size
η` · hd, where η = 0.95 is the downsampling factor.
On each pyramid level, we have to solve a sparse nonlinear system of equa-
tions, where the nonlinearities are caused by the Ψ′ terms (27), (28), and (29).
To solve these systems, we apply the lagged nonlinearity method (Vogel and
Oman, 1996) which basically consists of two nested loops: In the inner loops,
we keep the nonlinearity terms fixed and thus, only have to solve a sparse
linear system of equations. The nonlinearity terms are then subsequently
updated in the outer loop. As a fast and easy implementable linear system
solver, we use the Fast Jacobi method of Grewenig et al (2013). It is per-
fectly suited for an implementation on parallel hardware architectures such
as modern GPUs. Basically, it is based on a standard Jacobi solver. However,
varying cyclic under- and over-relaxations ω where even half of them may
violate the stability limit allow an enormous speed-up. More precisely, one
iteration step at the pyramid level ` with pixel index i and iteration index k
is for the flow increments du` and dv` given by

du`,k+1
i = (1− ω) · du`,ki + ω ·

(
−Ψ′Mi · s>xi(syi · dv

`,k
i + sti)

+
2∑
d=1

∑
j∈Nd(i)

α ·
Ψ′R1i

+ Ψ′R1j

2hd
·
(u`,kj − u`,ki + du`,kj

hd
+ a`,kdi − a

`,k
dj

))
/(

Ψ′Mi · s>xisxi +
2∑
d=1

∑
j∈Nd(i)

α ·
Ψ′R1i

+ Ψ′R1j

2h2
d

)
, (36)

dv`,k+1
i = (1− ω) · dv`,ki + ω ·

(
−Ψ′Mi · s>yi(sxi · du

`,k
i + sti)

+
2∑
d=1

∑
j∈Nd(i)

α ·
Ψ′R1i

+ Ψ′R1j

2hd
·
(v`,kj − v`,ki + dv`,kj

hd
+ b`,kdi − b

`,k
dj

))
/(

Ψ′Mi · s>yisyi +
2∑
d=1

∑
j∈Nd(i)

α ·
Ψ′R1i

+ Ψ′R1j

2h2
d

)
, (37)

where N1 and N2 describe the neighbouring pixels in horizontal and ver-
tical direction, respectively. In an analogous way, the iteration step for
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a=(a1, a2)> and b=(b1, b2)> reads for p = 1, 2

ak+1
pi = (1− ω) · akpi + ω ·

(
α ·Ψ′R1i

2hp
· (u`,k

n+
p
− u`,k

n−
p

+ du`,k
n+
p
− du`,k

n−
p

)

+
2∑
d=1

∑
j∈Nd(i)

β ·
Ψ′R2i

+ Ψ′R2j

2h2
d

· akpj
)

(38)

/(
α ·Ψ′R1i

+
2∑
d=1

∑
j∈Nd(i)

β ·
Ψ′R2i

+ Ψ′R2j

2h2
d

)
,

bk+1
pi = (1− ω) · bkpi + ω ·

(
α ·Ψ′R1i

2hp
· (v`,k

n+
p
− v`,k

n−
p

+ dv`,k
n+
p
− dv`,k

n−
p

)

+
2∑
d=1

∑
j∈Nd(i)

β ·
Ψ′R2i

+ Ψ′R2j

2h2
d

· bkpj
)

(39)

/(
α ·Ψ′R1i

+
2∑
d=1

∑
j∈Nd(i)

β ·
Ψ′R2i

+ Ψ′R2j

2h2
d

)
,

where n−1 and n+
1 describe the left and right neighbouring pixels in horizontal

direction. In a similar way, the vertical neighbours are denoted by n−2 and
n+

2 .
Our reference implementation runs on an NVidia Geforce GTX 460 graphics
card and is written in CUDA. On this platform, the typical computation
time of our method on image sequences of size 640 × 480 is 13 seconds per
flow field for the CRT descriptor with first order smoothness.

5 Experiments

The experimental evaluation of our method is structured as follows: First, we
demonstrate that the invariance against any monotonically increasing rescal-
ing is indeed fulfilled by simulating such remappings artificially. Similarly,
we analyse the behaviour under noise with additive white Gaussian noise. In
the second part of our experiments, we focus on the KITTI vision benchmark
suite (Geiger et al, 2012), and assess the performance of our method with
this real-world data set.

Choice of Parameters. Due to its simplicity, only very few parameters
have to be chosen. The main free parameters of our optical flow method is

14



the weight of the coupling term α as well as the smoothness weight β for
the regularisation term on the auxiliary variables a and b. As it turns out,
the coupling weight has the largest influence on the results and was chosen
in the range [10−1, 10−3]. The smoothness weight β, however, only has an
indirect influence on the flow. We have chosen it fixed to β = 3 throughout
our experiments. The last free parameters of our framework are the contrast
parameters of the subquadratic functions. Also here, no adaptation per image
sequence is necessary, and λ = 10−2 for the data and smoothness term as
well as λ = 0.5 for the coupling term work well.
We repeat the incremental flow computations on each level four times. Our
Fast Jacobi-based numerical scheme performs 5 outer and 20 inner interac-
tions per incremental computation, and the upsampling of the flow as well
as the coupling variables is performed with bilinear interpolation. The back-
registration at each level is performed with bicubic interpolation.

5.1 Behaviour under Synthetic Perturbations

Concerning synthetic perturbations, we consider the eight training image
sequences of the Middlebury benchmark (Baker et al, 2011) because no severe
illumination changes are present and reliable ground truth flow fields are
available. To assess the accuracy of an estimated flow field, we evaluate the
average endpoint error (Otte and Nagel, 1994):

EPE(w,wgt) =
1

Ω

∫
Ω

|w(x)−wgt(x)| dx , (40)

where w = (u, v)> is the estimated and wgt = (ugt, vgt)
> is the known ground

truth displacement field.

Invariance to γ Changes. Our first experiment examines the behaviour
of the proposed method under monotonically increasing intensity changes.
To this end, we consider the eight Middlebury training image sequences and
apply a γ-correction to the second frame:

fγ(x) := 255 · ( 1
255
f(x))γ . (41)

The results of this experiment are depicted in Figure 2. In practice, such
a gamma correction is performed with floating point accuracy. However, to
simulate the image acquisition process in a digital camera more realistically,
the subsequent quantisation step must be taken into account. The problem
with this nonlinear post-processing step is that it can alter the intensity
order. We simulate the quantisation at two different bit depths: Most often,
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Figure 2: Behaviour under γ changes. The plots show the results of our
method under γ variations of the second frames. Left plot: Behaviour without
quantisation. Centre plot: Behaviour with re-quantisation with 8 bit after
the γ rescaling. The invariance is destroyed. Right plot: Behaviour with 12
bit quantisation. For reasonable values for γ, the invariance is not affected.

digital images are quantised with 8 bit. As can be seen in Figure 2, the
theoretically unconditional invariance does not hold for any transform in
this case. However, many cameras that offer RAW sensor data quantise with
12 bit. Also many CMOS sensors and high-quality webcams offer a capture
mode with such an increased dynamic range. Thus, we have also requantised
the adjusted images with 12 bit and analysed those results. From Figure 2,
one can see that these 4 bit more tonal resolution are in practice enough to
restore the invariance almost completely. To ensure a fair comparison, the
regularisation parameter α has been optimised for each graph.

Sensitivity to Noise. In this experiment we perturb the input image se-
quences with zero-mean Gaussian noise of varying standard deviations and
measure the resulting accuracy. The outcome of this experiment is depicted
graphically in Figure 3. Compared to the census transform, the complete
rank as well as the complete census transform loose a bit less accuracy if
the contamination with noise increases. Moreover, while the complete rank
signature performs slightly better than complete census at low noise levels,
this relation is reversed for higher levels where the complete census seems to
be less vulnerable.

5.2 Real-world experiments

Since our method is tailored towards challenging illumination conditions,
we also focus our evaluation on image material where such conditions are
present. In that respect, the KITTI Vision Suite (Geiger et al, 2012) offers
a good testbed for our needs. It provides a huge amount of image sequences
captured from a driving car, along with corresponding ground truth flow
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Figure 3: Behaviour of the average endpoint error under additive Gaussian
noise of varying standard deviation. Depicted is the average endpoint error
over the eight image sequences of the Middlebury training data set.

fields that are acquired with a laser scanning technique. Due to the inherent
small-scale imprecisions of the ground truth data acquisition process of the
KITTI benchmark, the usual error measures such as the average endpoint
error (AEE) (Otte and Nagel, 1994) are not well suited for a quantitative
evaluation. Thus, the common measure for the KITTI benchmark is the bad
pixel (BP) error (Geiger et al, 2012):

BPK(w,wgt) =
1

Ω

∫
Ω

1(|w(x)−wgt(x)|<K) dx . (42)

For instance, the BP3 error, which we will always consider, expresses the
percentage of estimated flow vectors that differ by more than 3 pixels form
the measured ground truth solution, i.e. the percentage of pixels with an
endpoint error above 3 pixels.

Neighbourhood Size. In our experiments, the neighbourhood size has
shown to have a large impact on the results. In Figure 4, we depict the
results of our experiment on this parameter. One can see that the complete
rank and census transform outperform their incomplete predecessors. For
the CRT descriptor, a minimum is attained at k = 13.

Regularisation Term. Next, we compare the TV-model from our con-
ference paper to our improved TGV-model. To this end, we first compute
flow fields for four real-world test sequences of the KITTI benchmark (Geiger
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Figure 4: Behaviour of the average BP3 error when varying the size of the
neighbourhood. Due to its high dimensionality, we did not test larger neigh-
bourhoods for the complete census transform.

Table 2: Behaviour in real-world scenarios. Errors are given in terms of the
BP3 measure, i.e. the percentage of pixels having a Euclidean error larger
than 3.

KITTI image sequence: #11 #15 #44 #74 average
Zimmer et al (2011) 37.3 32.3 23.2 62.9 38.9
Bruhn and Weickert (2005) 33.9 47.7 32.4 71.4 46.7
Census Transform 36.5 28.6 28.5 63.8 39.4
Complete Rank Transform (TV) 29.8 22.8 22.6 61.5 34.2
Complete Rank Transform (TGV) 22.9 13.5 15.2 56.3 27.0

et al, 2012), which exhibit severe illumination changes. We have chosen the
same set of images as selected for the GCPR 2013 - Special Session on Ro-
bust Optical Flow 1. Table 2 summarises the obtained results. As reference,
the numbers for the method of Zimmer et al (2011) and Bruhn and Weickert
(2005) are taken from the website of this special session. The method of
Bruhn and Weickert (2005) is particularly interesting to compare, since our
former regularisation strategy is similar to the ideas in this paper. As one
can see, the complete rank transform consistently outperforms the competing
methods.

Public Benchmark Systems. First, we assess the error rates on the Mid-
dlebury training images, cf. Table 3. As also noted by Vogel et al (2013), the

1http://www.dagm.de/symposien/special-sessions/
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Table 3: Quantitative comparison of the rank (RT), census (CT) and com-
plete rank transform (CRT) on the Middlebury training images. Numbers
are average endpoint errors ×10−1.

rw dim gr2 gr3 hydr urb2 urb3 yos avg
RT 1.11 0.92 1.91 7.64 1.91 4.57 10.3 2.11 3.81
CT 1.02 0.90 1.69 6.46 1.47 3.78 8.19 1.69 3.16
CRT 1.00 0.76 1.54 5.85 1.58 3.24 5.29 1.50 2.60

Table 4: Detailed results of our method on the KITTI benchmark.
Error Out-Noc Out-All Avg-Noc Avg-All

2 pixels 8.84 % 15.38 % 2.0 px 3.9 px
3 pixels 6.71 % 12.09 % 2.0 px 3.9 px
4 pixels 5.68 % 10.23 % 2.0 px 3.9 px
5 pixels 5.01 % 8.97 % 2.0 px 3.9 px

image sequences of that benchmark exhibit mainly fronto-parallel motion, so
we use our first order regularisation term here since it leads to better results.
Furthermore, note that the Middlebury sequences are also less demanding
with respect to illumination changes. Hence, the goal of this experiment is
to show that also under normal lighting conditions reasonable flow fields can
be obtained with our CRT-based data term. Furthermore, we prove with this
experiment that our CRT is also in this setting generally preferable over the
rank and census transform. Again, for each signature type, the regularisation
parameter α has been optimised and then kept constant over all images.
The most interesting experiment here is the performance of our method in
realistic scenarios, as provided by the KITTI Vision Benchmark Suite (Geiger
et al, 2012). We have computed flow fields for all 195 test image sequences
with a neighbourhood size of 13. Detailed results are shown in Table 4 where
the bad pixel error measure is depicted for various thresholds and for ground
truth information in all and non-occluded regions.
Additionally, we present in Table 5 a comparison of our method to the other
participants of the benchmark. In our table, we only include published com-
peting methods that consider the pure two-frame optic flow setup without
stereoscopic assumptions. Methods that exploit such additional assumptions
loose general applicability, because they are likely to fail e.g. in the presence
of independently moving objects.
As one can see, our method clearly belongs to the top-ranking ones on this
benchmark. Particularly when considering the ground truth information in
all image regions, our method outperforms all others. One reason for this is
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Table 5: Top KITTI benchmark results. We omitted all methods that use
stereo information and all anonymous submissions.

Method Out-Noc Out-All Avg-Noc Avg-All
TGV2ADCSIFT

(Braux-Zin et al, 2013)
6.20 % 1 15.15 % 3 1.5 px 1 4.5 px 2

CRT-TGV
(ours)

6.71 % 2 12.09 % 1 2.0 px 4 3.9 px 1

Data-Flow
(Vogel et al, 2013)

7.11 % 3 14.57 % 2 1.9 px 3 5.5 px 3

DeepFlow
(Weinzaepfel et al, 2013)

7.22 % 4 17.79 % 4 1.5 px 1 5.8 px 4

TVL1-HOG
(Rashwan et al, 2013)

7.91 % 5 18.90 % 7 2.0 px 4 6.1 px 5

CRTflow
(Demetz et al, 2013)

9.43 % 6 18.72 % 6 2.7 px 7 6.5 px 6

C++
(Sun et al, 2014)

10.04 % 7 20.26 % 8 2.6 px 6 7.1 px 8

C+NL
(Sun et al, 2014)

10.49 % 8 20.64 % 9 2.8 px 8 7.2 px 9

fSGM
(Hermann and Klette, 2013)

10.74 % 9 22.66 % 10 3.2 px 10 12.2 px 10

TGV2CENSUS
(Ranftl et al, 2012)

11.03 % 10 18.37 % 5 2.9 px 9 6.6 px 7

the second order regulariser that is well suited for the typical divergent mo-
tion patterns of the KITTI benchmark. However, regarding the performance
of the method of Ranftl et al (2012), which also incorporates a TGV-based
regulariser, the benefits of our descriptor become apparent.
For the sake of completeness, we also evaluated our method with TV reg-
ularisation on the Middlebury benchmark (Baker et al, 2011). Since the
test sequences of this benchmark exhibit almost no illumination changes or
other scenarios that our highly invariant descriptor is designed for, we can-
not expect top-ranking results on this benchmark. Nevertheless, it turns out
that our prototypical variational model can in fact keep up with its nearest
competitors: Our method ranks between the method of Brox et al (2004)
and the much more advanced method by Zimmer et al (2009). These re-
sults are remarkable in the sense that they prove our invariant data term to
include hardly less information than the combined grey value and gradient
information of (Brox et al, 2004; Zimmer et al, 2009).
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6 Conclusions

In our paper, we have driven the class of morphologically invariant local
descriptors to the extreme: With the complete rank transform (CRT) and
the complete census transform (CCT), we have introduced two descriptors
that carry as much local image information as possible. Our transforms
are well suited for pattern matching applications where highest accuracy is
desired, such as optic flow estimation. We have demonstrated this within
a variational framework, where we achieve state-of-the-art results for the
KITTI benchmark. Since the CCT involves a natural distance metric, the
comparison between two signatures is theoretically well justified. With the
CRT, we present a lightweight and qualitatively good approximation to the
CCT that offers much higher efficiency. We recommend it as the method of
choice whenever robustness under uncontrolled lighting is essential.
In our ongoing work we are assessing the sparse feature matching capabilities
of our signatures. First steps in this direction show promising results.
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