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Abstract

The problem of reconstructing a watertight surface from a finite set
of oriented points has received much attention over the last decades.
In this paper, we propose a general higher order framework for surface
reconstruction. It is based on the idea that position and normal de-
fined by each oriented point can be used to construct an implicit local
description of the unknown surface. On the one hand, this allows us
to systematically explain and relate several popular methods, for ex-
ample implicit moving least squares, smooth signed distance surface
reconstruction as well as (screened) Poisson surface reconstruction.
On the other hand, it allows to derive and discuss a number of new
approaches for reconstructing either the signed distance or the indi-
cator function of the sought object. All of these approaches are able
to achieve competitive results but one of them turns out to be espe-
cially promising. To improve reconstructions in difficult real world
scenarios where point clouds have been estimated from colour images,
we introduce a hull constraint that encourages the surface to stay
within a given region. Our framework is implemented on the GPU
using a recent cyclic scheme called Fast Jacobi, which combines low
implementational effort with high efficiency.

1 Introduction

The problem of reconstructing a watertight surface from a finite set of ori-
ented points is still a hot topic in computer vision and graphics although
it has received an enormous amount of attention for over 25 years. An ori-
ented point of a surface contains information about the position and the
surface normal. Oriented point clouds can be obtained in numerous ways.
For instance with active methods such as laser, structured light and time-
of-flight scanning. Due to viewpoint dependence, usually many scans have
to be acquired and subsequently aligned to cover the whole surface. Each
surface measurement can conveniently be equipped with the direction to the
source or an even better approximation of surface orientation by considering
neighbouring measurements of one scan. Also many methods exist to esti-
mate normals from point clouds, see e.g. [4]. Oriented point clouds can also
directly arise in passive methods. A prominent example for this is the patch-
based multi-view stereo reconstruction algorithm of Furukawa and Ponce
[10].
Reconstructing an accurate surface is a difficult task. In practice it often
occurs that some parts of the surface cannot be captured. Furthermore, one
has to deal with uneven sampling due to overlapping scans, and the sam-
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ples contain noise caused by inaccuracies of the sensor. Misalignments of
the individual scans further increase the difficulty. The reconstruction prob-
lem is even more cumbersome when using multi-view stereo reconstruction
algorithms on data captured from consumer grade cameras in uncontrolled
environments. Due to this fact and because nowadays point clouds easily
contain many millions of points, it is essential to apply robust and efficient
algorithms. It is a common practice to fit the oriented points using a level set
of an implicit function. Such methods can produce approximating surfaces,
which is preferable if noise and outliers are present. Furthermore, they have
the inherent advantage that one does not have to parameterise the surfaces.
Many different approaches exist and commonly the implicit function is either
an approximation to the indicator function or the signed distance function
of the underlying surface.
In this paper, we develop a general higher order variational framework for
surface reconstruction. It is based on the idea that each oriented point allows
us to construct a function that provides a good local description of an implicit
representation of the unknown surface. This framework allows us to reach
two goals. First, we can systematically understand and classify a number of
existing methods. Second, it enables us to derive novel approaches to surface
reconstruction that are fairly simple and offer state-of-the-art performance.
We show with the recent reconstruction Benchmark of Berger et al. [2] that
one of these approaches yields favourable results when compared to the most
popular and widely used methods, namely (screened) Poisson surface recon-
struction and smooth signed distance surface reconstruction. Furthermore,
we introduce a hull constraint that encourages the surface to stay within a
given region. This improves reconstructions in difficult real world scenarios
where point clouds have been estimated from color images.
Our paper is organised as follows. Chapter 2 covers the most important re-
lated work and Chapter 3 introduces our general framework with higher order
terms. Chapter 4 then classifies existing approaches within this framework
and Chapter 5 describes our novel approaches as well as the hull constraint.
We discuss our GPU implementation in Chapter 6 followed by experimental
results in Chapter 7. Finally, we give a conclusion and outlook in Chapter 8.

2 Related Work

We will focus on methods that fit the input data using a level set of an implicit
function. As mentioned, the implicit function is either an approximation to
the indicator function or the signed distance function of the underlying sur-
face in many cases. Therefore, we use this as a criterion to broadly categorise
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prior work. Approaches that aim at recovering the structure of missing data,
such as [3], are related in a wider sense as well.

Indicator Function Approximation. Kazhdan et al. estimate the in-
dicator function by first computing a vector field that approximates the
smoothed surface normal field and then integrating it in the least squares
sense [13]. In [14], Kazhdan and Hoppe add an explicit point-wise constraint
on the function value at the input points. Manson et al. reconstruct the
indicator function using a wavelet basis [18]. As each sample point only in-
fluences a small number of coefficients, the reconstruction is very fast. Lem-
pitsky and Boykov find a compromise between the number of collected input
points and the surface area [16]. They minimise the resulting energy over
binary functions using graph-cuts.

Signed Distance Function Approximation. A popular approach for
estimating the signed distance function from a set of oriented points is the
implicit moving least squares (IMLS) algorithm proposed by Shen et al. in
[21]. Kolluri analyses a variant of this algorithm that uses constant basis
functions [15]. He is able to show that it yields geometrically and topolog-
ically correct reconstructions if certain sampling conditions are fulfilled. In
the presence of sharp features, it can make sense to use robust variants, see
[9, 20]. Calakli and Taubin estimate an approximation of the signed dis-
tance function using a smoothing thin plate spline with additional pointwise
constraints on the normals [5]. To minimise the energy, they employ a hy-
brid finite element / finite difference discretisation on an octree structure.
Walder et al. consider the same energy but aim at expressing the solution
as weighted sum of kernel functions centered at the input points [22]. If a
triangle representation is desired in the end, an isosurface can be extracted
from the implicit function with algorithms such as Marching Cubes [17].
As there exists a variety of different methods, it would be beneficial to have
a joint platform that allows to explicitly display similarities and differences.
From a didactic point of view, this gives an opportunity to explain existing
methods to people new in this field. Furthermore, it offers a systematic
Ansatz for deriving novel methods.

3 A General Higher Order Framework

In this section we describe how point and normal constraints can be used in
a general variational formulation with higher order terms in order to recon-
struct smooth surfaces. The reconstruction is then implicitly given by the
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boundary of the zero level set of the minimiser. To describe our framework,
we first begin with some basic definitions.

Basic Definitions. Let us assume that a set of oriented points
{

(pi,ni) ∈ R
3 × R

3
∣

∣

∣ i = 1, . . . , N
}

(1)

has been sampled from a smooth surface. Here pi and ni denote location
and normal, respectively. Then the surface can locally be approximated by
a sufficiently small linear patch given by

{

x ∈ Bσ(pi)
∣

∣

∣
〈x− pi,ni〉 = 0

}

, (2)

i.e. a subset of the tangent plane to the surface at pi. Here Bσ(pi) denotes
an open ball with a small radius σ > 0 centred around pi. Accordingly, the
signed distance function can also be well approximated locally around pi by

fi(x) = 〈x− pi,ni〉. (3)

This gives rise to a data fidelity term

D(u) =
N
∑

i=1

∫

Bσ(pi)

(

u(x)− fi(x)
)2

dx (4)

that rewards a close fit to the given functions by penalising a locally weighted
squared L2-distance to each of the functions fi(x). In the above equation,
the deviation at each location within Bσ(pi) is penalised with equal weight.
In order to generalise this, we rewrite Equation 4 as

D(u) =
N
∑

i=1

∫

Ω

wσ(‖x− pi‖)
(

u(x)− fi(x)
)2

dx, (5)

where

wσ(s) =

{

1, if |s| ≤ σ

0, otherwise.
(6)

The domain Ω ⊂ R
3 is a region that contains all local approximations and

u : Ω → R. In this notation, it becomes apparent that one can conveniently
use an arbitrary weighting function instead of a hard window. An often
preferable choice is a smooth, decaying function such as a Gaussian:

wσ(s) = exp

(

−
( s

σ

)2
)

. (7)

This allows for good reconstructions even if coarser approximations with
fewer linear patches are used, because the values further away from pi, that
are usually less reliable, are only taken into account with a very small weight.
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Higher Order Energy. So far, we have penalised deviations in function
values only. In a general setting, we would now like to allow penalising the
difference in all derivatives up to order K directly. To this end we first define
a data term for the k-th derivative:

Dk(u) =
N
∑

i=1

∫

Ω

wi,k

dk

∥

∥

∥
D(k)

(

u− fi

)∥

∥

∥

2

dx, (8)

where we omit the dependence on x for better readability. We allow choosing
different weighting functions wi,k for each order of derivative and sample. As
we will see, we can create pointwise, localised or global constraints by differ-
ent choices of the weighting functions. The term dk accounts for a possible
normalisation. It can either be a constant or a function that allows for a
pointwise reweighting. The term D(k) is a differential operator that results
in a vector of all derivatives of order k when applied to a function. Combin-
ing these data terms with a suitable smoothness functional S(u) yields the
energy

E(u) =
K
∑

k=0

αk Dk(u) + α S(u). (9)

The weights α = (α0, . . . , αK)
⊤ specify how strong deviations in each deriva-

tive should be penalised. This broad perspective gives a systematic way of
approaching the surface reconstruction problem.

4 Relating Existing Methods within the Higher

Order Framework

In this chapter, we will consider the cases K = 0, 1, 2 with α = 0. This allows
to explain and relate several popular surface reconstruction approaches.

4.1 Implicit Moving Least Squares (K = 0)

A choice of K = 0 means that we only consider a single data term that
penalises the deviation in function values. It has the analytic solution

u(x) =

∑N

i=1 wi,0(x) 〈x− pi,ni〉
∑N

i=1 wi,0(x)
, (10)

where one can choose a weighting function wi,0(x) = ai exp(−‖x−pi‖
2/σ2

i
)

with a varying standard deviation σi modified by a normalisation factor ai
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for each input point. This corresponds to the implicit moving least squares

(IMLS) algorithm with constant basis functions, which was propsed by Shen
et al. [21]. The partition of unity (PoU) approach of Ohtake et al. [19]
is very close in spirit and can even be equivalent for the case of constant
basis functions. The weighting functions wi,0 are carefully adapted for each
individual sample. The choice of σi and ai generally depend on the sampling
density, which relates to the size of features one may expect. Since there is
no smoothness term, a suitable choice of σi and ai has to allow for removing
isolated clutter and closing gaps. However, often it is not possible to find
parameters that fulfil this while preserving details. Therefore IMLS-based
reconstructions can exhibit spurious artefacts. Examples for this have also
been shown in [5, 14] when comparing to the approach of Ohtake et al. [19].

4.2 (Screened) Poisson Surface Reconstruction
(K = 1)

Let us start by only considering the first order data term, i.e. choosing
α = (0, 1)⊤. Please recall that fi(x) = 〈x − pi,ni〉 and thus ∇fi(x) = ni.
This results in the energy

E(u) =
N
∑

i=1

∫

Ω

wi,1

d1
‖∇u− ni‖2 dx, (11)

where wi,1 describes a local weighting, for example via a Gaussian function.
We have chosen a pointwise normalisation factor d1(x) that accounts for
uneven sample placements:

d1(x) =
N
∑

i=1

wi,1(x). (12)

The above energy can be rewritten as

E(u) =

∫

Ω

‖∇u− v ‖2 dx+R, (13)

where the last expression R is a constant that contains residual terms that
do not influence the minimiser, and v is a convex combination of the given
normals:

v =
N
∑

i=1

wi,1

d1
ni. (14)

Interestingly, one can interpret this as solving two subsequent minimisation
problems. First, a vector field is computed based on the input normals by
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solving a moving least squares problem similar as in the previous section but
this time for the normal vectors. Then one finds the unknown function u in
a second step by solving the above energy.

Poisson Surface Reconstruction. Obviously the energy in Equation 13
leads to a Poisson equation. For a suitable choice of v it resembles Poisson
surface reconstruction [13]. The weighting required for this is motivated by an
interesting observation: The gradient of the smoothed indicator function and
the smoothed surface normal field are equal. Thus, v can be understood as
an approximation of the smoothed surface normal field that can be obtained
by performing a numerical integration

v =
N
∑

i=1

|Pi|wi,1 ni, (15)

where the patch sizes |Pi| are estimated with a density estimator. High
densities relate to small patches and vice versa. While this seems to be a
subtle change from Equation 14 to Equation 15, the effect is rather large:
With this weighting, the length of the vectors v actually decreases towards
zero when going away from the input points, as required for an indicator
function. With the previous choice one estimates a distance field instead.
In both cases, the solution can only be computed up to a global constant.
This generally does not have to pose a problem, but sometimes it is not pos-
sible to find a satisfactory one. Let us consider a somewhat artificial but very
simple example to illustrate this. If the same surface orientation is measured
everywhere, this will result in a constant vector field when using Equation
14. Thus, the reconstructed surface will be planar for any global offset. If
the locations of the normals do not happen to be on a line, the reconstruc-
tion will thus appear to drift away from the input points. In practice, such
problems have also been observed for Poisson surface reconstruction, where
the input points were not fitted tightly enough and the reconstructions were
too smooth.

Screened Poisson Surface Reconstruction. To account for this, Kazh-
dan and Hoppe add point constraints and show that this results in more
accurate reconstructions [14]. With an appropriate α0, they minimise the
energy

E(u) = α0

n
∑

i=1

u(pi)
2 +

∫

Ω

‖∇u− v ‖2 dx, (16)
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over a suitable space of functions. The first term (screening term) of order
zero can be obtained in our framework by choosing the Dirac distribution
for each wi,0. This effectively creates point constraints instead of constraints
that are localised to some neighbourhood.

Relation to Global Optimisation for Shape Fitting. Another inter-
esting observation is that the global optimisation for shape fitting approach
of Lempitsky and Boykov [16] can be closely related to Poisson surface re-
construction. To see this, we rewrite Equation 13: We expand the scalar
product, use the divergence theorem to perform partial integration, and in-
troduce parameters α and β in the following way:

E(u) = α

∫

Ω

‖∇u‖β+1 + 2u · div v dx+ β G(u). (17)

The expression G(u) is composed of three terms, where the first two are con-
stant and do not have an effect in the minimisation. The last one influences
the natural boundary condition. Explicitly G(u) is given by

G(u) = R +

∫

Ω

‖v‖2dx+

∫

∂Ω

〈uv,n〉ds. (18)

Note that we recover Equation 13 for α = β = 1. Setting β = 0 yields the
energy minimised by Lempitsky and Boykov over binary functions.
Although very differently motivated, the vector field v is in both cases com-
puted as a weighted sum of the normals using Gaussian weighting functions.
In both methods, the standard deviation is adapted based on sample spacing
as it is also common for moving least squares based approaches.
Lempitsky and Boykov minimise over a space of binary functions using graph
cuts. In the context of surface reconstruction, the minimisation over binary
functions has the drawback that it creates aliasing problems which have to
be taken care of when extracting the isosurface.

4.3 Smooth Signed Distance Surface Reconstruction
(K = 2)

Let us choose K = 2 in (9) and recall that fi(x) = 〈x−pi,ni〉, ∇fi(x) = ni

and Hfi(x) = 0 with H denoting the Hessian. Let us choose

dk =
N
∑

i=1

∫

Ω

wi,k(x) dx, (19)
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so that each data term is automatically scaled by the area of all N weight
functions. We select the Dirac distribution for all wi,0 and wi,1 creating
pointwise constraints for input locations and normals. Furthermore, we set
each wi,2 :=

1
N
which effectively creates a global constraint. This corresponds

to the energy by Calakli and Taubin:

E(u) =
α0

N

N
∑

i=1

‖u(pi)‖2

+
α1

N

N
∑

i=1

‖∇u(pi)− ni‖2

+
α2

|Ω|

∫

Ω

‖Hu(x)‖2F dx,

(20)

which is minimised over a suitable function space [5]. Here ‖ · ‖F is the
Frobenius norm. The last term can be understood as a smoothness term
that arised by merely selecting appropriate weighting functions and thus it
is in harmony with the constraints of the other terms.

5 Novel Formulations Derived from the Gen-

eral Framework

In this section we describe three novel variational formulations for the inte-
gration of point and normal constraints derived from our general framework.
We will refer to them as Hessian-IMLS, TV-IMLS and HOM-IMLS. Further-
more, we also explain how we incorporate a hull constraint.

5.1 Hessian-IMLS

We have discussed that for pure IMLS-based approaches it is often not pos-
sible to find a σ to recover details while removing measurement errors and
isolated clutter. Furthermore, we have argued that a Hessian smoothness
term is in harmony with the point and normal constraints and it naturally
arises for a suitable choice of weighting functions when discussing the case of
K = 2. In general, this regulariser is popular for geometrical problems [22],
also due to its good filling in behaviour in unsampled regions. It corresponds
to the thin plate energy of order 2, cf. [8]. Thus we propose to minimise an
energy combining both terms:

E(u) =
N
∑

i=1

∫

Ω

wi

(

u− fi
)2

dx+ α

∫

Ω

‖Hu‖2F dx. (21)
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with
wi = wσ(‖x− pi‖), (22)

using a small constant σ > 0. We advocate that our model comprised of only
two terms is the simplest choice possible within the higher order framework
that incorporates the benefits of IMLS and an appropriate regularisation. In
the SSD approach, the Dirac distribution as weighting function effectively
removes the normal constraint from the first term in (20) in contrast to our
second order model (21). We only require one data term that has the benefit
of allowing to smooth out smaller measurement errors by considering local
information with a small σ > 0. Additionally this term is easier to discretise
as will be seen in Chapter 6. We do not require a hybrid finite element /
finite difference discretisation as in [5], and our data term only contributes
to the diagonal entries of the discrete system matrix. Furthermore, the use
of weighting functions offers a natural way of treating varying patch sizes.
They can arise e.g.when computing oriented points with the patch based
multiview-stereo approach of Furukawa and Ponce [10].

Incorporating a Hull Constraint. It is often possible to estimate a hull
that should contain the object to be reconstructed. In real world scenarios
where oriented points are recovered from images, a prominent example of
such a hull is the visual hull. Thus, we propose to augment our energy with
an additional term that allows to encourage the surface to stay within a
specified hull. This is especially helpful to steer the surface reconstruction
when larger parts of the object are not sufficiently covered with oriented
points. Let H denote the set of all points within a specified hull. Then we
know that for any point x outside H, its distance value u(x) should be larger
or equal to the euclidean distance from the hull d(H,x). However, inside the
hull all values should be allowed without further penalisation. Thus, we
propose to add the following term to our model (21):

Hull(u) = β

∫

Ω\H

max{0, d(H,x)− u(x)}2dx. (23)

This hull constraint can be regarded as an optional additional level of control.
Its importance can be specified by choosing a suitable β > 0 and it can be
switched off by setting β = 0 if a hull should not be used.

5.2 TV-IMLS and HOM-IMLS

Instead of approximating the signed distance function, several other ap-
proaches approximate the indicator function of the unknown surface. This
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Figure 1: Reconstruction with our TV-IMLS (left) and Hessian-IMLS
(right) approaches from two dimensional oriented points sampled from an
anchor shape. The 2D implicit functions are visualised as height fields.

poses an interesing alternative. To achieve this, we reconsider the basic idea
of understanding oriented points as local approximations within some small
neighbourhood. As previously discussed, the oriented points allow us to con-
struct a local approximation of the signed distance function

fi(x) = 〈x− pi,ni〉. (24)

However, this also allows to locally approximate the indicator function around
pi by Θ(fi(x)), where Θ is a continuous approximation of the Heaviside func-
tion. Thus, we propose the data fidelity term

DΘ(u) =
N
∑

i=1

∫

Bσ(pi)

(

u(x)−Θ
(

fi(x)
)

)2

dx, (25)

that rewards a close fit to the given local approximations. Also here, one
can replace the hard window Bσ(pi) by a Gaussian weighting function for
example. A simple way to obtain a continuous approximation Θ is given by
convolving the Heaviside function with a suitable kernel. If one uses a box
function as convolution kernel, the resulting Θ can as well be interpreted as
a scaled and truncated signed distance function as it is used in [7].
The indicator function is fundamentally different from the signed distance
function as displayed in a simplified 2D example in Figure 1. This has to
be considered in the choice of the smoothness term. As the gradient of
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the indicator function is zero almost everywhere, we propose to minimise a
suitable energy with a first order smoothness term:

EΘ(u) = DΘ(u) + α

∫

Ω

Ψ(‖∇u(x)‖2) dx, (26)

where the parameter α > 0 controls the degree of smoothness. This alterna-
tive is interesting as it only requires computing first order derivatives.
More specifically, we will consider two choices of Ψ, namely Ψ(s2) = s2 and
Ψ(s2) =

√
s2 + ǫ2 with a small constant ǫ > 0. We refer to these models

as HOM-IMLS and TV-IMLS, respectively. The former choice will lead to a
penalisation of the squared gradient magnitude. The latter choice is moti-
vated by the fact that it yields total variation regularisation (TV) for ǫ = 0,
which is well-suited for the reconstruction of piecewise constant functions
such as an indicator function. Furthermore, it is known that TV penalises
the perimeter of the level sets, which in this case corresponds to surface area.
This is a favourable property, which usually leads to removal of small iso-
lated clutter and reconstructions of low genus. This has been shown in the
setting of range image integration by Zach et al. in [24]. When estimating
an indicator function, it is straightforward to incorporate a hull constraint
since the desired value outside the hull is known to be fixed.

6 GPU Implementation

Our GPU implementation uses the NVIDIA CUDA framework. It can essen-
tially be divided into two stages of computation. First, setting up coefficients
and right hand side for a system of equations and subsequently solving it.
Let us now first discuss required discretisations before describing how both
of these steps can efficiently be computed on parallel graphics hardware.
Either we set the domain Ω as a rectangular axis aligned bounding box
[a1, b1]× [a2, b2]× [a3, b3] ⊂ R3 that contains all oriented points or we manu-
ally specify it. The domain Ω is then discretised by choosing (m1,m2,m3)

⊤

equidistant samples in each direction resulting in M = m1 ·m2 ·m3 unknowns.

Minimising Hessian-IMLS. Let us denote by u and fi ∈ R
M the discrete

versions of u(x) and fi(x). We have rearranged the unknowns in a vector
using column major ordering. Let Wi be a diagonal matrix that contains
all weights wi(x) and V := {x, y, z}. Then we can discretise Equation 21 as
follows:

E(u) =
N
∑

i=1

‖W
1

2

i (u− fi)‖2 + α

M
∑

j=1

∑

γ∈V 2

(Dγu)
2
j
, (27)
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where Dγ realises the corresponding second order derivative at each location
where it can be estimated using a given stencil. The necessary and sufficient
condition for a minimiser can be obtained in this case by setting the gradient
to zero:





N
∑

i=1

Wi + α
∑

γ∈V 2

D⊤
γDγ



 u =
N
∑

i=1

Wifi. (28)

In the presence of a hull constraint, we need to consider the gradient of 23
additionally. The j-th component of it can be written as

2 β H(dj) H(dj − uj) (uj − dj), (29)

whereH denotes the Heaviside function and d the discrete version of d(H,x).
Although the Heaviside function itself is discontinuous, the above expression
is continuous.

Minimising TV-IMLS and HOM-IMLS. Similar as in the previous
paragraph, we discretise (26) as follows:

E(u) =
N
∑

i=1

‖W
1

2

i (u−Θ(fi))‖2 + α

M
∑

j=1

Ψ

(

∑

γ∈V

(Dγu)
2
j

)

. (30)

Here Θ(fi(x)) ∈ R
M is the discrete version of Θ(fi(x)), and Dγ realises

forward differences in direction of γ for each location where forward differ-
ences can be evaluated. By computing the gradient, we obtain the necessary
condition a minimiser u must fulfil:

(

N
∑

i=1

Wi + α
∑

γ∈V

D⊤
γ Φ(u)Dγ

)

u =
N
∑

i=1

Wi Θ(fi), (31)

where Φ(u) is a diagonal matrix with

(Φ(u))jj = Ψ′

(

∑

γ∈V

(Dγu)
2
j

)

. (32)

Since the energy is strictly convex, the minimiser is unique and the necessary
condition is also sufficient. More compactly, we express the nonlinear system
as

(P + αA(u)) u = q, (33)
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with the abbreviations

P =
N
∑

i=1

Wi, A(u) =
∑

γ∈V

D⊤
γ Φ(u)Dγ, q =

N
∑

i=1

WiΘ(fi). (34)

The nonlinear system of equations can be solved by the fixed point iteration

(

P + α A(uk)
)

uk+1 = q (k ≥ 0), (35)

i.e. by solving a sequence of linear systems. Compared to the smooth signed
distance surface reconstruction [5], we only require one data term instead of
two. Moreover, we do not require a hybrid finite element / finite difference
discretisation. This is because we effectively enforce similarity to a small
oriented patch instead of a pointwise function value and normal constraint.
Therefore, the data term only contributes to the diagonal of the system
matrix and not to any off-diagonal entries as in [5].
In the case of HOM-IMLS, the squared gradient magnitude is penalised and
the resulting system of equations is linear.

Implementation Details. For setting up the system matrix and the right
hand side, we carry out the summations required to compute P and q in
parallel using atomic operations. Due to the fact that we use a small constant
σ this operation is extremely fast. For solving the linear system of equations
that either arise directly or within the fixed point iteration for solving a
nonlinear system, we use the cascadic Fast Jacobi (FJ) solver of Grewenig et
al. [11]. The FJ solver is essentially a modified Jacobi over-relaxation (JOR)
method, where the relaxation parameter is not fixed but varied in a cyclic
way. Due to this, FJ is much more efficient than JOR but still as simple to
implement. In particular, it is perfectly suited for parallelisation as it merely
requires knowing values from the last iteration to compute the new iterations
result. We use 3D CUDA arrays bound to textures or surfaces, which is well-
suited in this scenario. It allows for fast read and write operations required
in each iteration and makes use of efficient 3D caching. In the linear case,
4 ·M3 variables have to be stored. This corresponds to a memory usage of
2 GiB when using a volumetric grid of 5123 voxels and 32-bit floating point
accuracy. For the nonlinear case, the nonlinearities Φ(uk) are stored as well.
The reconstruction with 4003 voxels shown in Figure 2 took 7.4 seconds on
a GeForce GTX690. This illustrates the good performance of FJ on modern
GPUs.
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7 Experiments

For the examples taken from the Stanford scanning repository [1], raw data in
range grid format is available. We estimate normals using the neighbouring
pixels within each range scan. We have used cubic voxels and Gaussian
weighting functions with a constant σ equal to the voxel size for each input
point in all experiments.

Figure 2: Reconstructions with our HOM-IMLS approach (26) at 4003 voxels.
(top) Choosing a smoothness weight close to zero (α = 0.1) approximates
a moving least squares solution, which results in isolated clutter. (bottom)
By choosing a suitable smoothness weight (α = 10), the isolated clutter is
removed while small details are kept.
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Dragon. In Figure 2, we have reconstructed the dragon model from the
Stanford scanning repository [1] using our HOM-IMLS approach. One can
see that choosing a too small smoothness weight (α = 0.1) results in isolated
clutter. This is reasonable because a smoothness weight of zero simply yields
an implicit moving least squares solution which has been shown to produce
reconstructions with spurious artefacts in many cases [14, 5]. By selecting
a suitable smoothness weight (α = 10), it is possible to remove the clutter
while preserving the details even with the quadratic first order model. This
illustrates the benefit of combining the strengths of the IMLS approach with
the advantages of regularisation.

Drill. In Figure 3, we use use the drill dataset taken from the Stanford scan-
ning repository [1] to compare wavelet surface reconstruction [18], (screened)
Poisson surface reconstruction (PSR) [14], and smooth signed distance sur-
face reconstruction (SSD) [5] to our novel approaches. We have always used
the implementations provided by the respective authors and a tree depth of
9. Let us now consider the reconstructions in this order.
The wavelet approach (b) is very fast (0.4 seconds) and can also deal with
noise and outliers to a certain extent. However, in this case it is not able to
produce a faithful reconstruction. PSR (c) delivers a reasonable reconstruc-
tion, but the drill bit itself is rather unsmooth. Adding a screening weight
(α0 = 1) in this case leads to overfitting noise (d). In the SSD reconstruc-
tion (g), the drill bit is also noisy although we have already chosen a large
smoothness weight (α2 = 25) and one can clearly see that the top part is
oversmoothed. By choosing a smaller weight for the smoothness term, it is
possible to obtain a good reconstruction of the top part at the cost of more
noise on the drill bit itself. All of our novel reconstructions (e), (f) and (h)
are able to convey the shape of the drill bit. Moreover, in the magnifications
one can even slightly recognise the windings carved in towards the bottom of
the drill bit. The running times of our HOM-IMLS, TV-IMLS, and Hessian-
IMLS approaches are 2.9, 3.2, and 3.6 seconds, respectively. PSR requires
12.8 in the standard and 14.3 in the screened version, whereas SSD finishes
in 4.8 seconds.

Torus. In Figure 4, we examine the different models and implementations
for a simple shape defined by only few oriented points. PSR computes the
solution on an octree that adapts to the input points. Doing so it is possible
to obtain a reasonable but coarse reconstruction: see Figure 4 (a). When
switching off the adaptivity of the octree using a maximal tree depth of
8, artifacts occur around the input points, cf. Figure 4 (b). Similar but
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Figure 3: In reading order: (a) Oriented points (b) Wavelet surface
reconstruction (c) Poisson surface reconstruction (d) Screened Poisson sur-
face reconstruction (e) Our HOM-IMLS approach (26) (f) Our TV-IMLS
approach (26) (g) SSD (h) Our Hessian-IMLS approach (21)

less prominent artifacts occur in our HOM-IMLS approach (c). The SSD
approach does not allow to switch off the adaptivity of the octree in the given
implementation. Therefore, it can only compute a coarse reconstruction (d).
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Figure 4: In reading order:(a) Screened PSR with adaptive octree
(b) Screened PSR on fine regular grid (c)Our HOM-IMLS approach (d) SSD
(e) Our TV-IMLS approach (26) (f) Our Hessian-IMLS approach (21)

In our reconstruction with TV-IMLS (e), one can see how the surface area is
minimised. However, here this property is not beneficial. Our Hessian-IMLS
approach (f) achieves a reconstruction without artefacts and is in our eyes
the most promising approach. Thus, we will focus on this approach in the
remainder of the experiments. The coarse reconstructions with SSD (0.3 s)
and PSR (0.4 s) are quite fast. However, two minutes are required when
switching off the adaptivity of the octree in PSR. Our methods HOM-IMLS,
TV-IMLS, and Hessian-IMLS finish in 0.9, 1.1, and 1.4 seconds, respectively.

Reconstruction Benchmark. We use the reconstruction benchmark of
Berger et al. [2] for evaluating reconstruction accuracy of our Hessian-IMLS
approach compared to (screened) PSR [14] and SSD [5]. The benchmark
simulates scanner error as nonuniform sampling, noise and misalignment and
covers many virtual scans of five different implicit surfaces. We use the most
recently available author implementations for PSR and SSD, which are Ver-
sions 5.5 and 3.0, respectively. For PSR, we select the settings recommended
by the authors for this benchmark, i.e. we use a screening weight of 4 for
screened PSR and the same implementation with a screening weight of 0 to
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Figure 5: Reconstruction accuracy compared with the benchmark of Berger
et al. [2]. For each of the five datasets, Anchor, Dancing, Daratech, Gargoyle
and Quasimodo (rows from top to bottom), the two plots show the ratios of
the mean distance (left) and mean normal errors (right) of screened PSR
(blue), SSD (green) and our approach Hessian-IMLS (purple), relative to the
original PSR algorithm. Each symbol corresponds to one benchmark test,
where the horizontal axis denotes the amount of oriented points available in
that test.
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compute the unscreened version [14]. For SSD we have found the weights
α = (1, 1, 1)⊤ to produce the best error values when considering both dis-
tance and angular errors. We use a resolution of 3003 voxels, which is ap-
propriate for covering present details in the models and accordingly choose
an octree depth of 9 for the other approaches. For our approach we select a
smoothness weight α = 1.
When comparing the errors in distance values, one can see in Figure 5 that all
methods tend to yield lower errors compared to PSR. In general, the error
values are close together though. However, when considering the angular
error values, our approach manages to also obtain the lowest error in most
cases.

Globe. We have recorded several colour images of an ordinary globe and
used VisualSFM [23] to estimate the camera poses. Subsequently we used the
patch-based multiview stereo (PMVS) [10] algorithm to compute a coloured
oriented point cloud. Figure 6 shows that our method is capable of producing
a reasonable reconstruction from this point cloud despite of uncovered areas
on the globe and noise. The texture has been computed by extending the
idea of [6] to fit into our framework.

Hull Constraint. With the same pipeline as in the globe experiment, we
have computed an oriented point cloud of a fountain: see Figure 7 (a). In this
case, the lack of oriented points in some locations, for example at the very
top, causes unwanted filling in effects as in (b) and (c). Our hull constraint
according to Equation 23 allows for a better control of the surface (d). In
this case, we used a visual hull estimated from silhouettes made with the
approach in [12].

Discussion. An octree as in [5, 14] allows for a better scaling in the un-
knowns and it is also possible to solve our model on an octree instead of a
regular grid. However, in both previously mentioned implementations, the
octree only adapts to the input data and not to the evolving solution, i.e. the
unknown surface. Our fast GPU implementation allows to compute recon-
structions of resolutions as required for the recent reconstruction Benchmark
of Berger et al. [2] in a competitive runtime of a couple of seconds.

8 Conclusion and Outlook

We have proposed a general higher order framework for the implicit recon-
struction of watertight surfaces from a finite set of oriented points and showed
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Figure 6: In reading order: (a) Subset of the input images (b) Coloured
oriented point cloud produced by PMVS (c) Dense geometry reconstructed
with our Hessian-IMLS approach (21) (d) Textured reconstruction
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Figure 7: In reading order: (a) Input point cloud (b) SSD (c) Hessian-
IMLS (d) Hessian-IMLS with hull constraint

the benefits of this systematisation: It makes specific features of popular ex-
isting approaches explicit. Moreover, it helps to identify gaps within the
systematisation allowing to derive hitherto unexplored approaches. While
all these approaches can yield competitive results, one of them showed to be
especially promising. Our Hessian-IMLS formulation combines the benefits
of implicit moving least squares based approaches and thin plate spline reg-
ularisation. In difficult real world scenarios, unwanted filling in effects that
produce surfaces in regions that should be unoccupied can frequently appear
for all approaches. To deal with such effects, we have proposed to incorporate
a hull constraint.
We implemented our framework on the GPU using a novel cyclic scheme
named Fast Jacobi for solving the resulting systems of equations. A possibil-
ity for future work would be a comprehensive study of different regularisers.
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