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TOWERS OF GL(r)-TYPE OF MODULAR CURVES

ERNST-ULRICH GEKELER

Abstract. We construct Galois covers Xr,k(N) over P1/Fq(T )
with Galois groups close to GL(r,Fq[T ]/(N)) (r ≥ 3) and rational-
ity and ramification properties similar to those of classical modular
curves X(N) over P1/Q. As application we find plenty of good tow-

ers (with limsup number of rational points
genus > 0) of curves over the field

Fqr with qr elements.

0. Introduction

(0.1) We let F = Fq be the finite field with q elements, of characteristic
p, A = F[T ] (resp. K = F(T )) the ring of polynomials (resp. field of
rational functions) in an indeterminate T , and C∞ the completed al-
gebraic closure of K∞ = F((1/T )). The theory of Drinfeld A-modules
of rank r = 2 provides modular curves X(N)/C∞ (0 6= N ∈ A),
which are ramified coverings of the projective j-line X(1) = P1/C∞
with arithmetic-geometric properties similar to those of classical ellip-
tic modular curves (see, e.g. [13]). Here j is the j-invariant which clas-
sifies rank-two Drinfeld A-modules, and X(N) is connected, smooth,
projective and galois over P1 with group

(0.1.1) G(N) = {γ ∈ GL(2, A/(N)) | det(γ) ∈ F∗}/Z,

where Z is the group of F-valued scalar matrices. In case N is non-
constant, the covering X(N)−→X(1) = P1 is

• tamely ramified at elliptic points (those above j = 0) with cyclic
ramification group of order q + 1;
• modestly ramified (second ramification groups are trivial) at

cusps (points above j =∞)

and unramified elsewhere.

Such curves, along with their relatives X0(N), X1(N), . . . (quotients
of X(N) by subgroups of G(N); the family of these are labelled as
Drinfeld modular curves) play a prominent role in the arithmetic of K,
e.g., abelian and non-abelian class field theory [7], [6], Drinfeld modular
forms [22], [11], [13], uniformization of elliptic curves [17].

(0.2) A more specific application is to the construction of good towers
of algebraic curves over finite fields, that is series (Xn/F)n∈N of curves
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2 ERNST-ULRICH GEKELER

whose ratio
|{F−rational points of Xn}|

genus of Xn

has a positive limes superior. Using the known invariants and ratio-
nality properties of Hecke type Drinfeld modular curves X0(N), it has
been shown in [18] that each tower (X0(Nn))n∈N with degNn−→∞ and
(Nn, T ) = 1 after reduction modulo T becomes good in the above sense
over the quadratic extension F(2) of F = FT = A/(T ), and even optimal,
which means that the lim sup of the above ratio realizes the theoretical
Drinfeld-Vladut upper bound q − 1. Similar properties were known
earlier for some classical or Shimura modular curves [26], [34] or for
Drinfeld modular curves X0(N) with prime conductor N [35]. (In fact,
the relevant data already occur in [10].) The above results make use
of the fact that “supersingular” points of classical or Drinfeld modular
curves of Hecke type are rational over the quadratic extension F(2) of
their (relative) prime field [5], [18], which produces enough F(2)-rational
points.

Unluckily the supersingular argument doesn’t turn over neither to the
prime field F itself nor to its extensions F(r) of degree r > 2 (only the
case of odd r is of interest; otherwise the above construction already
yields optimal towers), due to the lack of modular curves adapted to
the situation.

(0.3) Now it is known [15] that supersingular Drinfeld A-modules of
arbitrary rank r ≥ 2 may be defined over the r-th extension F(r) of
the prime field F and so define F(r)-rational points on suitable moduli
schemes. Therefore it seems natural to construct convenient curves
(with controlled genus) through the given supersingular points on the
moduli scheme M r(N) of Drinfeld modules of rank r ≥ 3. I learned of
this brilliant simple idea through a talk by Alp Bassa in February 2013
[2]; apparently it motivated the authors of [3] to their construction of
a tower of curves (Xs,t

n )n∈N (where (s, t) = 1 and r = s + t), which
satisfies
(0.3.1)

lim sup
n→∞

|{F(r)−rational points on Xs,t
n }|

genus (Xs,t
n )

≥ 2(qs − 1)(qt − 1)

qs + qt − 2
=: Cq(s, t).

(Actually the paper [3] works purely algebraically with function fields
instead of curves, and so its terminology differs strongly from ours.)
The constant Cq(s, t) collapses to the Drinfeld-Vladut bound q − 1 for
s = t = 1, is fairly close to the Drinfeld-Vladut bound qr/2 − 1 for
r = 3, (s, t) = (1, 2) or (2, 1) and small values of q, and becomes worse
for larger r or q. It is the best currently known lower estimate of the
left hand side of (0.3.1) valid for arbitrary finite fields whose order is
an r-th power.
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One of the merits of Bassa-Beelen-Garcia-Stichtenoth’s result is its ex-
plicit nature: The function fields of the curves Xs,t

n are described re-
cursively through relatively simple equations, which allows to estimate
step by step the relevant quantities (ramification and genus, number of
rational points). On the other hand, the conceptual meaning of their
construction is not easy to understand. Also, it fails to “explain” the
constant Cq(s, t), and it doesn’t allow deformations or the study of sin-
gle curves.

(0.4) For this reason, but also for intrinsic interest motivated from the
arithmetic of the field K, it is desirable to dispose of towers of modular-
like curves Xr(N) (r ≥ 2) similar to those of (0.1), but with Galois
group of GL(r)-type instead of GL(2)-type as in (0.1.1).

In the present work we construct such towers. Viz, we study certain
curves Xr,k(N) on the moduli schemes M r(N) of Drinfeld A-modules
of rank r supplied with a structure of level N ∈ A, which turn out to
have the wanted properties. Here r ≥ 3, 1 ≤ k < r is coprime with r,
and Xr,k(N) parametrizes the so-called (r, k)-sparse Drinfeld modules
all of whose coefficients vanish except for the k-th. (The construction
also works for r = 2, but then collapses to the now well-known theory
of Drinfeld modular curves as referred to in (0.1).)

Analytically these curves are quotients by the congruence subgroup
Γ(N) of Γ = GL(r, A) of the one-dimensional subspace Ωr,k of the Drin-
feld symmetric space Ωr. We show (precise definitions given later):

Theorem A: Let (r, k) be integers with 1 ≤ k < r and (r, k) = 1,
N ∈ A, and let Xr,k(N) be the modular curve that parametrizes k-
sparse Drinfeld A-modules of rank r with a structure of level N .

(i) Xr,k(N) is a connected, smooth, projective curve over C∞ and
is in fact defined over the finite abelian extension K+(N) of K.

(ii) Xr,k(N) is a ramified Galois cover of Xr,k(1) = P1, the projec-
tive line with coordinate j, with group

G(N) = {γ ∈ GL(r, A/(N) | det(γ) ∈ F∗}/Z

(Z = group of F-valued scalar matrices).
(iii) Suppose that N is non-constant. Then Xr,k(N) is ramified

– above j = 0 (i.e., at “elliptic points”) with cyclic ramifi-
cation groups of order (qr − 1)/(q − 1); in particular, the
ramification above j = 0 is tame;

– above j = ∞ (i.e, at “cusps”), with ramification groups
conjugate to

G∞(N) =

{(
α β
0 δ

)}
/Z;
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here α (resp. δ) runs through a fixed cyclic subgroup of
order (qr−k − 1) of GL(r − k,F) (resp. of order (qk − 1)
of GL(k,F)), 0 is the zero k × (r − k)-matrix and β an
arbitrary (r − k)× k-matrix over A/(N);

– unramified elsewhere.
(iv) The ramification at cusps is modest, that is, with trivial second

ramification groups.

These properties suffice to determine the genus gr,k(N) of Xr,k(N) by
means of the Riemann-Hurwitz formula.

Now let P (N) ↪→ G(N) be the parabolic subgroup represented by ma-

trices

(
α β
0 δ

)
with an (r− k)× k block structure as in G∞(N), but

without restriction on the matrices α and δ, and define Xr,k
0 (N) as the

quotient of Xr,k(N) by P (N). It is these curves which give rise to good
towers; their properties are largely derived from those of Xr,k(N).

Theorem B: The curve Xr,k
0 (N) is defined over K and has good re-

duction at places p of A with p 6 |N .

Again, knowing gr,k(N), the genus gr,k0 (N) of Xr,k
0 (N) may be calcu-

lated by applying the Riemann-Hurwitz formula to the coverXr,k(N)−→Xr,k
0 (N).

But this is extremely laborious, as it requires to determine the sizes
|P (N)∩ξG∞(N)| for all ξ from a system of representatives ofG(N)/G∞(N),
and involves many case distinctions depending on the prime factoriza-
tion of N . The interested reader may receive an impression in the
relatively simple case of r = 2, which is carried out in [10].

Here we give precise formulas (see Theorem 11.13) for gr,r−1
0 (N)), where

N = T n, and describe the asymptotic behavior of gr,k0 (T n) for general

k (Proposition 12.2). As Xr,k
0 (T n) has good reduction at the place

p = (T − 1), with many supersingular points, there result good towers

of curves over F(r) = F(r)
p with the same lower bound as in (0.3.1). More

precisely, we get:

Theorem C: Let (Nn)n∈N be any series in A with degNn−→∞ and Nn

coprime with p = (T − 1), and suppose that 1 ≤ k < r ≥ 3, (r, k) = 1.

Let X0(Nn) be the reduction of Xr,k
0 (Nn) at the place p. Then X0(Nn)

is defined over Fp = F, and for the number of F(r)-rational points the
estimate

(0.4.1) lim sup
n→∞

|{F(r)−rational points on X0(Nn)}|
gr,k0 (Nn)

≥ Cq(r − k, k)

holds.
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Presumably (working out the precise connection would require addi-

tional efforts) our tower (Xr,k
0 (Nn))n∈N reduced (modp) with Nn = T n

is the same as Bassa-Beelen-Garcia-Stichtenoth’s, so we present the
geometry behind the algebraic construction of [3]. (By the way: this
is why we chose here p = (T − 1) instead of p = (T ) as in (0.2); of
course the choice of such a place of degree one is irrelevant.) But, in
contrast with that paper, our approach is not limited to parameters
N = T n; in fact (0.4.1) holds for all towers or merely series of curves

Xr,k
0 (Nn) as specified in Theorem C, and it leads to exact formulas for

the genera, not only estimates. The constant Cq(r − k, k) results in a
natural way from the Riemann-Hurwitz formula and group theoretical
data, but independently of the choice of our tower or series of curves.

The preparations and different proof steps for Theorem A form the
contents of the first eight sections of the paper. Crucial points are the
construction (4.12) of the fundamental domain F = F r,k for the group
Γ = GL(r, A) on the subspace Ωr,k of the Drinfeld symmetric space Ωr

and the elaboration of its connectedness properties (Theorems 6.9 and
8.2) and its behavior at the boundary (Theorem 8.4). Theorems B and
C are then relatively easy consequences.

We now briefly describe the organization of the paper.

In Section 1 we give the necessary background on Drinfeld modules
that allows us to introduce and fix notation for the sequel. The con-
tents is entirely known and essentially due to Drinfeld [7].

In Section 2 we present identities for certain quantities related to fi-
nite or discrete infinite lattices in C∞. All of this except for Proposition
2.9 is known.

In Section 3 we discuss successive minimum bases for A-lattices in
C∞, which allows to define the fundamental domain Gr ⊂ Ωr for Γ.
This is a well-known topic in classical lattices, and has been introduced
to the function field context by Taguchi [33].

The concept of (r, k)-sparse Drinfeld A-modules is introduced and dis-
cussed in Section 4. They define the Γ-stable analytic subspace Ωr,k

of dimension one of the Drinfeld symmetric space Ωr. Proposition 4.9
allows to define the fundamental domain F = F r,k on Ωr,k, which is
smooth by Theorem 4.15. The modular forms g and ∆ and the invari-
ant function j on Ωr,k are introduced, as well as the spread function
ω 7−→ s(ω), some analogue of the (logarithm of the ) “imaginary part”
function on the complex upper half-plane.

In Section 5 we define the uniformizer at infinity ω 7−→ t(ω) and
calculate the growth of t, ∆ and j in terms of s(ω). This is needed to



6 ERNST-ULRICH GEKELER

understand the geometry of F at infinity.

The connectedness properties of the analytic spaces F and Ωr,k are
established in Section 6. We use in a crucial way the surjective map
j : F−→A1(C∞) = C∞ and a result of Kantor [27] about maximal
subgroups of GL(r,F).

The affine modular curves Y r,k(N) and their compactifications Xr,k(N)
may be defined in two different ways:

• analytically as Γ(N) \ Ωr,k, where Γ(N) is the congruence sub-
group of level N of Γ;
• algebraically as the vanishing locus of the r− 2 modular forms
g1, . . . , ĝk, . . . gr−1 on the moduli scheme M r(N) of rank-r Drin-
feld A-modules.

This is done, along with the necessary discussion, in Section 7.

In Section 8 we show that the fundamental domain F determines a
unique cusp, labelled “∞”, of Xr,k(N), with fixed group G∞(N) and
ramification filtration as described in Theorem A (Theorems 8.2 and
8.4). Again the argument is analytic: the growth of the uniformizer
t(ω) plays an essential role.

It is now quite easy fo find the genera gr,k(N): see Section 9, Propo-
sition 9.3.

Section 10 introduces the curves Xr,k
0 (N) and describes their ratio-

nality properties, which yields Theorem B.

Their genera gr,k0 (N) are calculated in Section 11, Theorem 11.13, in
the special case where k = r− 1 and N = T n. Determining the precise
value of gr,k0 (T n) for general k is a considerable problem, due to the
more complex geometry of the Grassmann manifold P (N)\G(N), and
is left for further work.

The preceding suffices to establish Theorem C, which is done in Sec-
tion 12.

The final Section 13 is devoted to concluding remarks, comments, and
suggestions for further research.

As has already been mentioned, the largest part of our proofs is related
to analytic geometry over the complete valued field C∞, and the rele-
vant language is used without further definition or explication. This is
why the reader should have some familiarity with rigid analytic geom-
etry as presented e.g. in [20] or [8]; for an extended background see the
book [4]. In view of the GAGA theorems valid in our framework (see
[28], [29]), we usually don’t distinguish between algebraic and analytic
data/properties of projective varieties over C∞, and we often use the
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underlying point set as a synonym for an analytic space.

I am grateful to Alp Bassa for pointing out the leading idea of [3], and to
him as well as to Andreas Schweizer and Mihran Papikian for instruc-
tive conversations and communication about related topics. Thanks
are also due to Gunter Malle for his hint to the paper [27].

Notation

The following notation is used throughout the paper. Necessary expla-
nation is given in the text.

N = {1, 2, 3, . . .}, N0 = {0, 1, 2, . . .}, |X| = cardinality of the finite set
X
a|b, (a, b) = 1, gcd(a, b) means a divides b, a and b are coprime, the
greatest common divisor of a, b ∈ N, respectively

Rm×n = set of m× n-matrices with coefficients in R
F = finite field Fq with q elements, of characteristic p, with

algebraic closure F
F(n) = the unique extension of F of degree n in F
A = F[T ] the polynomial ring, with field of fractions K = F(T )

and degree function deg : A−→N0 ∪ {−∞}
K∞ = F((1/T )) completion of K at its infinite place, with absolute

value “| . |”, normalized by |T | = q
C∞ = completed algebraic closure of K∞ with its extension of

“| . |”, with ring of integers O∞ = {z ∈ C∞ | |z| ≤ 1}
and residue class field F. We write z 7−→ z for the reduction
map O∞−→F and z ≡ w(mod ∞) for z = w.

Bx = {z ∈ C∞ | |z| ≤ x}, B−x = {z ∈ C∞ | |z| < x} the “closed”
and “open” ball of radius x ∈ qQ around 0, thus O∞ = B1

with maximal ideal B−1

For a field L containing F:

L{τ} = twisted polynomial ring in the non-commutative variable τ
with commutation rule τa = aqτ (a ∈ L)

L{{τ}} = formal power series ring in τ

Through τ i 7−→ Xqi , L{τ} is naturally identified with EndL,F(Ga) =

{
∑
aiX

qi | ai ∈ L}, the ring of F-linear endomorphisms of the additive
group scheme Ga/L (multiplication = composition).

M r, M r(N) = moduli schemes for Drinfeld A-modules of rank r,

φT =
∑

0≤i≤r
giτ

i =
∑

0≤i≤r
giX

qi the T -operator polynomial of the rank-r

Drinfeld module φ, with kernel Tφ
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For F- or A-lattices Λ in L, the exponential and logarithm functions
are

eΛ =
∑
αiτ

i, logΛ =
∑
βiτ

i ∈ L{{τ}}, with αi = αi(Λ), βi = βi(Λ)
Ωr = {ω = (ω1 : . . . : ωr) ∈ Pr−1(C∞) | ω1, . . . , ωr K∞-linearly independent}
Ωr(L) = set of L-rational points of Ωr

Ωr,k = {ω ∈ Ωr | ω is k-sparse}
Λω =

∑
1≤i≤r

Aωi the lattice defined by ω = (ω1, . . . , ωr)

φω = φΛω the Drinfeld module associated with Λω

For fixed 2 ≤ r ∈ N (in most cases, we even assume r ≥ 3):

Γ = GL(r, A) with principal congruence subgroup Γ(N), N ∈ A
Z ∼= F∗ the group of F-valued scalar matrices in Γ

G(N) = Γ/Γ(N) · Z ↪→ G̃(N) = GL(r, A/N)/Z

(We write A/N for the residue class ring A/(N) and assume N non-
constant where needed. The group Z is simultaneously regarded as
a subgroup of Γ and of GL(r, A/N). Elements of Γ/Z or G̃(N), i.e.,
classes of matrices modulo Z, are written as matrices.)
Γ0,Γs,Γ∞ subgroups of Γ, with unipotent radicals Γus ,Γ

u
∞ (see (5.11))

G∞(N) = image of Γ∞ in G(N)

Let 1 ≤ k < r ∈ N be fixed with (r, k) = 1.

We often specify an r × r-matrix through a block structure

(
α β
0 δ

)
,

where α is an (r − k)× (r − k)-matrix, β an (r − k)× k-matrix, etc.
G = Gr = fundamental domain of Γ on Ωr

χ resp. ψ elements of Ωr−k(F(r−k)) resp. Ωk(F(k)) fixed once for all,
Gχ ⊂ GL(r − k,F) resp. Gψ ⊂ GL(k,F) the associated Cartan sub-
groups
Gr,k = G∩Ωr,k, F = F r,k ⊂ Gr,k the fundamental domain of Γ on Ωr,k

s : F−→Q the spread function, s(ω) = logq |ω1

ωr
|

F≤s,Fs,F≥s,F+,F! subsets of F defined through conditions on ω ∈ F

If the group G acts (from the left) on the set X and Y ⊂ X, G \ X
denotes the orbit space and G \ Y the image of Y in G \X. As usual,
Gx ⊂ G is the stabilizer of x ∈ X.
The primed sum

∑′ or product
∏′ is the sum or product over the

non-zero elements of the corresponding index set.

1. Background on Drinfeld modules [7], [6].

(1.1) An A-field L is a field provided with a ring homomorphism γ :
A−→L. Its A-characteristic is the prime ideal charA(L) = ker(γ) = p
if the latter is different from {0}, otherwise we write charA(L) = ∞.
Thus L is an extension either of the finite L-field Fp = A/p or of
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K = Quot(A).

As usual, we identify EndL,F(Ga), the ring of F-linear endomorphisms of
the additive group scheme Ga over L, with the ring of F-linear polyno-
mials

∑
aiX

qi with coefficients in L, where multiplication is defined by
the insertion of polynomials. Thus EndL,F(Ga) is the non-commutative
polynomial ring L{τ} over L subject to the commutation rule τa = aqτ
for a ∈ L, where τ corresponds to the polynomial Xq.

A Drinfeld-A-module of rank r over L is the structure of A-module on
Ga/L given by an F-algebra homomorphism

φ : A−→L{τ},
a 7−→ φa

where φT = γ(T )τ 0 +g1τ+· · ·+grτ r = γ(T )X+· · ·+grXqr and gr 6= 0.
Hence specifying φ is the same as specifying φT ∈ L{τ} of the shape
above. The gi = gi(φ) are the coefficients of φ. We write ∆ = ∆(φ)
for the leading coefficient gr(φ), which is called the discriminant of
φ. A structure of level N on φ (where 0 6= N ∈ A is coprime with

charA(L)) is an isomorphism of A-modules (A/N)r
∼=−→ Nφ(L) = {x ∈

L | φN(x) = 0}. The definition extends to levels N possibly divisible
by charA(L), see [6] I, Sect. 6.

(1.2) Let Λ ⊂ C∞ be an A-lattice of rank r (an r-lattice for short),
i.e., Λ is a free A-submodule of rank r and discrete, which means it has
finite intersection with each ball Bx in C∞. The exponential function
of Λ is

(1.2.1) eΛ(z) = z
∏
λ∈Λ

′
(1− z/λ),

which may be written as
∑

n≥0 αnz
qn with suitable αn ∈ C∞. (

∏′ indi-
cates the product over the non-zero λ ∈ Λ.) A well-known construction
similar to the Weierstrass uniformization of elliptic curves allows to at-
tach to Λ a Drinfeld A-module φ = φΛ of rank r over C∞, characterized
by the functional equation

(1.2.2) φa(eΛ(z)) = eΛ(az)

for a ∈ A. This establishes a canonical and functorial 1− 1 correspon-
dence Λ ↔ φΛ between r-lattices in C∞ and rank-r Drinfeld modules
over C∞. The homothetic latttice cΛ, where c ∈ C∗∞,corresponds to the
isomorphic Drinfeld module φ′ given by φ′T = T +c1−qg1τ +c1−q2

g2τ
2 +

. . . + c1−qrgrτ
r. Moreover, the A-module Nφ(C∞) of N -torsion points

of φ is canonically isomorphic with N−1Λ/Λ.

(1.3) Let M r/A (resp. M r(N)/A) be the moduli scheme for rank-r
Drinfeld modules (resp. for rank-r Drinfeld modules supplied with a
level-N structure), see [7], [6]. Hence, for algebraically closed A-fields
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L, the set of L-points M r(L) of M r corresponds to the set of isomor-
phism classes of Drinfeld modules of rank r over L. As two such, φ and
φ′, given by

φT = γ(T ) +
∑

1≤i≤r

giτ
i, φ′T = γ(T ) +

∑
1≤i≤r

g′iτ
i,

are isomorphic if and only if there exists c ∈ L∗ such that g′i = c1−qigi
for all i, we get after base extension with L

(1.3.1) M r ×
A
L = SpecL[g1, . . . , gr−1,∆,∆

−1]/L∗,

where the multiplicative group L∗ = Gm(L) acts through c∗gi = c1−gigi
(c ∈ L∗). Here we regard the gi (where gr = ∆) as indeterminate
coefficients of the universal Drinfeld module. For N |N ′ ∈ A, there are
natural forgetful morphisms

M r(N ′)−→M r(N)−→M r(1) = M r.

(1.4) In order to describe M r×C∞, we consider the Drinfeld symmetric
space

(1.4.1) Ωr = Pr−1(C∞)�
⋃

H aK∞−rational hyperplane

H.

Thus ω = (ω1, . . . , ωr) ∈ Cr
∞ defines a point (ω1 : . . . : ωr) in Ωr if

and only if the r entries ωi are K∞-linearly independent, that is, if and
only if Λω =

∑
1≤i≤r Aωi is an r-lattice in C∞. Note that the group

GL(r,K∞) acts through matrix multiplication from the left on Cr
∞ and

Pr−1(C∞) and stabilizes Ωr. Let Ω̃r ⊂ Cr
∞ be the inverse image of Ωr.

The function

gi : Ω̃r −→ C∞
ω 7−→ gi(ω) = i-th coefficient of the Drinfeld

module φω associated with Λω (1 ≤ i ≤ r)

is invariant under Γ := GL(r, A) and of weight qi − 1, i.e.,

(1.4.2) gi(cω) = c1−qigi(ω) (c ∈ C∗∞).

Thus gi is a modular form of weight qi − 1 for Γ, and the discriminant
∆ = gr is a nowhere vanishing modular form of weight qr − 1.

If not specified otherwise, we normalize homogeneous coordinates (ω1 :
. . . : ωr) on Ωr such that ωr = 1; then Λω is well-defined for ω ∈ Ωr,
and we may regard the “forms” gi as functions on Ωr. The weight
condition (1.4.2) together with the Γ-invariance translates to

(1.4.3) gi(γω) = α(γ,ω)q
i−1gi(ω)

with the automorphy factor α(γ,ω) :=
∑

1≤j≤r γr,jωj (γ = (γi,j) ∈ Γ,

ω = (ω1 : . . . : ωr = 1) ∈ Ωr). The considerations of (1.2) and (1.3)
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give

(1.4.4) Γ \ Ωr
∼=−→ M r(C∞)

ω 7−→ (g1(ω) : . . . : gr−1(ω) : ∆(ω)),

where the right hand side is the class of (g1, . . . , gr−1,∆) modulo the
action of C∗∞ described in (1.3.1).

The Drinfeld space Ωr has a natural structure of rigid analytic space
over C∞ (in fact, defined over K∞), described in [7], [6] and [31], and
compatible with the structures above: The gi are holomorphic functions
on Ωr, and (1.4.4) is in fact an isomorphism of the quotient analytic
space Γ \ Ωr with the analytification of the variety M r × C∞.

(1.5) The C∞-points of M r(N) may be analytically described in a sim-
ilar way, with some complications arising from rationality questions.

Given a non-constant N ∈ A, let K+(N) be the “maximal real sub-
field of the N -th cyclotomic field extension K(N) of K” (see [25] or
[23] Sect. 3). This is the maximal abelian extension of conductor N
of K in which the infinite place of K splits completely, and may be
constructed via the N -torsion points of the Carlitz module (the rank-1
Drinfeld module φ defined by φT = T + τ = TX +Xq). We have

(1.5.1) K ↪→ K+(N) ↪→ K(N) with Galois groups

Gal(K(N)|K) = (A/N)∗, Gal(K+(N)|K) = (A/N)∗/F∗,

and precisely those primes p of A that divide N are ramified in K(N)|K
(except for q = 2, degN = 1, in which case K(N) = K).

Let further Z ∼= F∗ be the subgroup of F-valued scalar matrices in
GL(r, A/N) and G̃(N) = GL(r, A/N)/Z. Then G̃(N) acts on M r(N),

and in fact G̃(N) \M r(N)
∼=−→M r. While M r(N) is an affine integral

normal scheme flat over A ([7] Sect. 5), its base extension M r(N)×
A
C∞

splits into a finite number of irreducible connected components, due to
the fact that A is not integrally closed in (the function field of ) M r(N).
More precisely, associating with each rank-r Drinfeld A-module (with
a structure of level N) its determinant module [1] yields a faithfully
flat morphism “det”: M r(N)−→M1(N) = SpecB+(N), where B+(N)
is the ring of A-integers in K+(N), which is also the integral closure of
A in M r(N). Therefore

(1.5.2) M r(N)×
A
C∞ =

∐
σ

M r(N) ×
B+(N),σ

C∞

splits into [K+(N) : K] many components naturally parametrized by
the K-embeddings σ of K+(N) into C∞. In classical terms, the variety
M r(N) is “defined over K+(N)”. Let G(N) be the subgroup {γ ∈
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GL(r, A/N) | det(γ) ∈ F∗}/Z of G̃(N). The determinant map induces
an isomorphism

G̃(N)/G(N)
∼=−→ (A/N)∗/F∗ = Gal(K+(N)|K),

and G(N) stabilizes the components in (1.5.2). Now fix one such em-
bedding σ = id, and regard

Y r(N) := M r(N) ×
B+(N)

C∞

via σ as a C∞-variety. We find for the associated analytic spaces:

(1.5.3) Γ(N) \ Ωr ∼=−→ Y r(N)(C∞)

with the congruence subgroup Γ(N) = {γ ∈ Γ | γ ≡ 1 (modN)} of
Γ = GL(r, A). Here to each ω ∈ Ωr we attach the Drinfeld module
φω with lattice Λω and its canonical level-N structure, which up to
isomorphism depends only on ω modulo Γ(N). Note that (1.4.4) and
(1.5.3) are compatible, i.e., we have the commutative diagram

(1.5.4)
Γ(N) \ Ωr

∼=−→ Y r(N)
↓ ↓

Γ \ Ωr
∼=−→ Y r = Y r(1)

with horizontal maps stemming from (1.5.3) and (1.4.4) and the forget-
ful vertical maps (we briefly write Y r for Y r(C∞), etc.). Moreover, as
Γ acts effectively via its quotient Γ/Z by the scalar subgroup Z ∼= F∗,
the covering group in the left hand side is Γ/Γ(N) · Z, which agrees
through the natural map with the group G(N) acting on the right hand
side.

(1.6) Similar compatibilities exist for dividing out arbitrary congru-
ence subgroups Γ′ of Γ, i.e., groups that satisfy Γ(N) ⊂ Γ′ ⊂ Γ for
some N . We finally note the following observation. Given any sub-
group H of G̃(N), the quotient scheme MH := H \M r(N) is a moduli
scheme for Drinfeld modules with a certain level structure depending
on H. The integral closure BH of A in MH (or the algebraic closure
LH of K in the function field of MH) will be galois over A with group
Gal(BH |A) = Gal(LH |K) = (A/N)∗/F∗ · det(H). In particular we will
have BH = A, LH = K if det(H) = (A/N)∗/F∗, which holds for H’s
coming from Borel subgroups or parabolic subgroups of GL(r, A/N).

The interested reader will find more details about the analytic descrip-
tion of the moduli schemes M r(N) in [7], [6] and [13].

2. Some identities of lattice invariants [14], [19]

In the whole section, L is some field containing F = Fq. Recall
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that L{τ} denotes the non-commutative polynomial ring subject to

τa = aqτ for a ∈ L, identified via τ i ↔ Xqi with the ring of F-linear
polynomials with respect to the insertion of polynomials as multiplica-
tion.

Similarly, L{{τ}} is the ring of formal power series in τ . Given a
finite-dimensional F-subspace Λ of L (an F-lattice for short), we put

(2.1) eΛ(X) = X
∏
λ∈Λ

′(1−X/λ) =
∑

0≤i≤dim Λ

αiX
qi =

∑
αiτ

i.

It has a formal inverse in L{{τ}}

(2.2) logΛ(X) =
∑
i≥0

βiX
qi =

∑
βiτ

i,

whose coefficients βi may be recursively determined through

logΛ ◦eΛ = eΛ ◦ logΛ = 1,

i.e.,

α0 = β0 = 1 and
∑
i+j=k

βiα
qi

j =
∑
i+j=k

αiβ
qi

j = 0 for k > 0.

Furthermore, we have the important identity

(2.3) βi = −Eqi−1(Λ)

with the Eisenstein series

Ek(Λ) =
∑
λ∈Λ

′λ−k.

(As usual,
∑′ denotes the sum over the non-zero elements of Λ, and

E0(Λ) = −1.) Similar formulas hold if L = C∞ and Λ is a possibly
infinite-dimensional but discrete F-subspace (finite intersection with
each ball in C∞). In this case, eΛ is an infinite product with an ex-
pansion (2.1) as a power series in τ which defines an entire function on
C∞, and (2.3) holds with the corresponding infinite Eisenstein series.

Next, suppose that Λ ∈ C∞ is the A-lattice corresponding to the Drin-
feld A-module φ of rank r, where

φT = T + g1τ + · · ·+ gr−1τ
r−1 + grτ

r, gr 6= 0, g0 = T.

Then

(2.4) TEqk−1 =
∑
i+j=k

Eqi−1g
qi

j

holds for k ≥ 0 (see, e.g., [14] 2.10).

2.5 Corollary. Let 1 ≤ k ≤ r be given. Then the following are
equivalent

(a) Eqi−1(Λ) = 0 for 1 ≤ i < k;
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(b) gi = 0 for 1 ≤ i < k.

In this case, gk = (T q
k − T )Eqk−1(Λ). �

In the rest of this section we consider F-lattices in its algebraic closure
F. For n ∈ N let F(n) denote the unique field extension of F of degree
n in F. We further put
(2.6)
Ωr(F) = Pr−1(F)�

⋃
H anF−rational hyperplane

H

= {ω = (ω1 : . . . : ωr) ∈ Pr−1(F) | the ωi are F-linearly independent}

and Ωr(F(n)) for the subset of points described by homogeneous coordi-
nates in F(n). (This is compatible with (1.4.1) and our general notation
when considering F as a subfield of C∞.) Then, as is easily seen:

(2.7) Ωr(F(n)) = ∅ if n < r, and Ωr(F(r)) consists of one orbit under the
action of GL(r,F) on Ωr(F).

As Ωr(F) classifies F-lattices Λ of dimension r in F supplied with an
ordered basis, and up to F -homotheties, we may regard the coefficients
αi(Λ), βi(Λ) of eΛ, and the Eisenstein series Ek(Λ), as “modular forms”
on Ωr(F), and even as F-valued functions on Ωr(F) after normalizing
ωr = 1 for ω = (ω1 : . . . : ωr) ∈ Ωr(F) as in (1.4). We cite from [19]
1.13:

(2.8) Eqi−1(ω) = 0 for ω ∈ Ωr(F(n)) and n− r < i < n.

Even more precisely:

2.9 Proposition. Suppose r ≤ n. Then Ωr(F(n)) is the precise com-
mon vanishing locus of the Eqi−1 (n− r < i < n) in Ωr(F).

Proof. First note that the exponential functions eΛ of lattices Λ ho-
mothetic with F(n) are those of shape 1 − ατn, where 0 6= α ∈ F.
Therefore, in view of (2.8), (2.3) and the computation rules in F{τ},
we must show the following:

Let Λ ⊂ F be an F-lattice of dimension r that satiesfies βi(Λ) = 0 for
n − r < i < n. Then its exponential function eΛ is a right divisor of
some 1− ατn in F{τ}.

That is, given the vanishing of the βi, we must show the existence
of u ∈ F{τ} such that u ◦ eΛ = 1 − ατn, which is equivalent with
u = (1− ατn) logΛ in F{{τ}}. Now the right hand side is

(1−ατn)(1+β1τ+· · ·+βn−rτn−r+βnτn+· · · ) ≡ 1+β1τ+· · ·+βn−rτn−r ( mod τn).

That is, if such an u exists, it satisfies u ≡ logΛ (mod τn). Therefore
we define u as the unique polynomial in F{τ} of degree degτ u < n such
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that u ≡ logΛ (mod τn). The above shows degτ u ≤ n− r and u ◦ eΛ ≡
1 (mod τn). As degτ (u ◦ eΛ) = degτ (u) + degτ (eΛ) ≤ (n − r) + r = n,
we must have equality and u ◦ eΛ = 1− ατn for some α 6= 0. �

2.10 Corollary. For ω ∈ Ωr(F) and the attached lattice Λ = Λω =∑
1≤i≤r Fωi, the following are equivalent:

(a) Eqi−1(ω) = 0 for all 0 < i < r;

(b) eΛ(X) = X + αXqr for some 0 6= α ∈ F;
(c) ω ∈ Ωr(F(r)). �

(2.11) Next, choose an ordered F-basis {ω1, . . . , ωr} of F(r). The ma-
trix representation of multiplication on F(r) yields an embedding of
(F(r))∗ into GL(r,F), the image of which we call a Cartan subgroup
Car = Car(r) of GL(r,F). Actually, Car agrees with the stabilizer
GL(r,F)ω of ω = (ω1 : . . . : ωr) ∈ Ωr(F(r)). As GL(r,F) acts transi-
tively on the set of bases as above, it also acts transitively on Ωr(F(r))
(as has already been stated in (2.7)).

3. Successive minimum bases.

An ordered A-basis {ω1, . . . , ωr} of the A-lattice Λ in C∞ is a succes-
sive minimum basis (SMB) if for each 1 ≤ i ≤ r the vector ωi has
minimal length |ωi| among all ω ∈ Λ not in the span

∑
1≤j<iAωj of

{ω1, . . . , ωi−1}.

3.1 Proposition.

(i) Each A-lattice Λ possesses a SMB.
(ii) The sequence |ω1| ≤ |ω2| ≤ · · · ≤ |ωr| of lengths of a SMB of

Λ (the successive minima of Λ) is an invariant of Λ, i.e., is
independent of the choice of the SMB {ω1, . . . , ωr}.

(iii) Given a SMB {ω1, . . . , ωr} and ω =
∑
aiωi with ai ∈ K∞, we

have
|ω| = max

1≤i≤r
|aiωi|.

Proof. Easy and omitted. �

3.2 Corollary. Let G = Gr be the subset {ω = (ω1 : . . . : ωr) ∈
Ωr | {ωr, . . . , ω1} is a SMB of

∑
Aωi}. Then each ω ∈ Ωr is Γ-

equivalent with at least one and at most finitely many elements of G.

Proof. The fact that ΓG = Ωr is immediate from (3.1) (i). Given ω ∈ G,
the condition γω ∈ G together with (3.1) (iii) implies that the coeffi-
cients of γ are bounded, and so γ runs through a finite subset of Γ. �

3.3 Remarks. (i) In view of (3.2) we call elements ω ∈ G reduced
and G a fundamental domain for the action of Γ on Ωr. As unique-
ness of the representative fails, this is much weaker than the classical
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notion of fundamental domain, but is the best we can achieve in our
non-archimedean framework.

(ii) The condition defining G is equivalent with the validity of inequal-
ities for absolute values of linear combinations of the coordinates ωi of
ω. Therefore G is an admissible open analytic subspace of Ωr, which
among others implies that the local rings of ω in G and in Ωr agree.

(iii)The reverse order for SMB in the definition of G is chosen in order
to be compatible with the classical setting of modular forms and intu-
ition derived therefrom.

In what follows, we let Λ be anA-lattice provided with a SMB {ω1, . . . , ωr}
and with attached Drinfeld module φ = φΛ, φT = T +

∑
1≤i≤r giτ

i. The
elements

(3.3.1) µi = eΛ(
ωi
T

)

are T -division points (i.e., φT (µi) = 0) and in fact form an F-basis of
the A/T -module (i.e., F-vector space) Tφ of T -division points of φ.

3.4 Lemma. For 1 ≤ i < r we have |µi| ≤ |µi+1|, with equality if and
only if |ωi| = |ωi+1|.

Proof.

|µi| = |eΛ(
ωi
T

)| = |ωi
T
|
∏
λ∈Λ

|Tλ|≤|ωi|

′ |1− ωi
Tλ
|

and similarly

|µi+1| = |
ωi+1

T
|
∏
λ∈Λ

|Tλ|≤|ωi|

′ |1− ωi+1

Tλ
|

∏
λ∈Λ

|ωi|<|λ|≤|ωi+1|

|1− ωi+1

Tλ
|.

If |Tλ| < |ωi| then |1− ωi
Tλ
| = | ωi

Tλ
| ≤ |ωi+1

Tλ
| = |1− ωi+1

Tλ
|. If |Tλ| = |ωi|

then |1− ωi
Tλ
| ≤ 1 and in fact |1− ωi

Tλ
| = 1, as follows from λ ∈

∑
j<iAωj

and the SMB property (3.1) (iii).

Furthermore, |1− ωi+1

Tλ
| ≥ 1 for |ωi| < |Tλ| ≤ |ωi+1|. Therefore all the

factors of |µi+1| are larger or equal to the corresponding factors of |µi|,
which shows |µi| ≤ |µi+1|, with equality if and only if |ωi| = |ωi+1|. �

Next, we write φT as an F-linear polynomial

φT (X) = TX +
∑

1≤i≤r

giX
qi = ∆ ·

∏
z∈φT

(X − z), where ∆ = gr 6= 0.

3.5 Proposition. Suppose that gi = 0 for some i < r. Then |µi| =
|µi+1|.

Proof. By the preceding lemma, {µ1, . . . , µr} is a SMB of the F-vector
space φT . Thus, by means of the sequence |µ1| ≤ · · · ≤ |µr|, we can
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count the number of elements of Tφ of a given length. Now consider
the Newton polygon NP of φT (X) as described e.g. in [30] II Sect. 6.
According to the shape of φT (X), it is composed of pieces of horizontal
width q − 1, q(q − 1), . . . , qr−1(q − 1), and by the central property of
Newton polygons (loc. cit. Theorem 6.2), we have: Two neighboring
pieces of sizes qi−1(q − 1), qi(q − 1) belong to the same segment of NP
(i.e., they don’t form a break point of NP) if and only if |µi| = |µi+1|.
But the former property holds if gi = 0. �

3.6 Corollary. If Λ and φ are such that gi = 0 for some 1 ≤ i < r
and {ω1, . . . , ωr} is a SMB of Λ, then |ωi| = |ωi+1|.

Proof. This follows from (3.4) and (3.5). �

4. Sparse Drinfeld modules.

4.1 Definition. The Drinfeld A-module φ of rank r is k-sparse (or
briefly (r, k)-sparse) if all the coefficients gj of φT vanish except for
j = k or r, that is, if

φT = T + gkτ
k + grτ

r =: T + gτ k + ∆τ r.

If φ = φΛ with some r-lattice Λ = Λω, we also call Λ and ω k-sparse
or (r, k)-sparse.

Remark. The k-sparsity condition may be rephrased as the following
condition on Eisenstein series, as is easy to verify from (2.4):

(4.1.1) Some ω ∈ Ωr (or its attached data Λω, φω) is k-sparse if and
only if for all i, 1 ≤ i < r, the following holds:

Eqi−1(ω) =
0 if i 6≡ 0 (mod k)

ci,k(Eqk−1(ω))(qi−1)/(qk−1), if i ≡ (mod k)

with some constant ci,k ∈ K of absolute value 1 (which may easily
worked out if necessary).

As k-sparsity is defined through the vanishing of the r − 2 modular
g1, . . . , ĝk, . . . , gr−1 (as usual, (∗̂) means omitting (∗)), the set

(4.2) Ωr,k := {ω ∈ Ωr | ω is k-sparse}
is a closed analytic subspace of Ωr. The next sections will be devoted
to studying its properties. First note:

(4.3) Ωr,k is stable under the action of Γ on Ωr, and the restrictions g
of gk and ∆ of gr to Ωr,k are holomorphic functions on Ωr,k, where ∆
nowhere vanishes.

We used the following result from elementary number theory, the proof
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of which we leave as an exercise.

4.4 Lemma. Let q be a prime power. For natural numbers k, r we
have: (qk−1)|(qr−1)⇔ k|r and gcd(qk−1, qr−1) = qd−1, where d =
gcd(k, r). �

We now make the assumption, valid for the rest of the paper.

4.5 Assumption. The rank r is larger or equal to 3, and k satisfies
1 ≤ k < r and (k, r) = 1.

As (r, k)-sparsity is an empty condition and everything that follows
is tautological or well-known for r = 1, 2, the requirement on r is no
restriction. Also the condition on k is merely a normalization of our
situation: If otherwise d = gcd(k, r) > 1, we could replace F = Fq
by F′ = F(d) and A by A′ = F(d)[T ]; then an (r, k)-sparse Drinfeld A-
module was in fact an (r′, k′)-sparse Drinfeld A′-module, where k′ =
k/d, r′ = r/d, etc.

Under this assumption, we have:

4.6 Proposition. The function j := g(qr−1)/(q−1)

∆(qk−1)/(q−1)
is invariant under Γ

and identifies the quotient analytic space Γ \ Ωr,k with A1(C∞) = C∞.

Proof. Both the numerator and the denominator have weight (qk −
1)(qr − 1)/(q − 1), hence j is invariant under Γ. From (4.5) and (4.4)
we see that the exponents (qr − 1)/(q − 1) and (qk − 1)/(q − 1) are
coprime, which implies that two (r, k)-sparse Drinfeld modules φω, φω

′

are isomorphic if and only if j(ω) = j′(ω′). This shows bijectivity; it
is obvious that j is analytic. �

(4.7) Let now ω = (ω1 : . . . : ωr) ∈ Gr,k := Gr ∩ Ωr,k be reduced, with
lattice Λω =

∑
1≤i≤r Aωi and Drinfeld module φ = φω, and µi = eΛ(ωi

T
)

as in (3.3.1). From (3.6) we see that

(4.7.1) |ω1| = . . . = |ωr−k| ≥ |wr−k+1| = . . . = |ωr|,

i.e., there is at most one proper inequality. We define the spread of ω
by

(4.7.2) s(ω) := logq |
ω1

ωr
|.

As we shall see, it is an analogue of the function log ◦ im (“im” =
imaginary part) on the standard fundamental domain for SL(2,Z).

(4.8) It seems natural to use Gr,k as a fundamental domain for Γ on
Ωr,k, but we can do better. We first define two maps R : Gr,k−→Ωk(F)
and S : Gr,k−→Ωr−k(F) as follows (note that Ω1 = P0 consists of one
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point):

(4.8.1)
R : Gr,k −→ Ωk(F),

ω 7−→ reduction of (ωr−k+1 : . . . : ωr) modulo ∞

which is well-defined in view of (4.7.1), as the residue class field of the
ring of integers O∞ of C∞ is naturally identified with F. The definition
of S is more involved. From (4.7.1) and (3.4) we see that |µ1| = . . . =
|µr−k|, so we may consider the reduction µ of (µ1 : . . . : µr−k) in
Pr−k−1(F). In the next proposition we show that µ actually lies in
Ωr−k(F), and S will be the mapping

(4.8.2)
S : Gr,k −→ Ωr−k(F),

ω 7−→ µ
.

4.9 Proposition.

(i) S takes its values in Ωr−k(F).

Suppose that s(ω) > 0. Then

(ii) R(ω) ∈ Ωk(F(k)) and
(iii) S(ω) ∈ Ωr−k(F(r−k)).

Proof. We first notice that changing homogeneous coordinates (ω1 :
. . . : ωr)  (cω1 : . . . : cωr) with c ∈ C∗∞ gives (µ1 : . . . : µr)  
(cµ1 : . . . : cµr), and doesn’t affect the assertions. We may therefore
conveniently normalize the coordinates.

(ii) Suppose ωr = 1 (our usual assumption), ω = (ω1 : . . . : 1). From
(2.5) we have that Eqi−1(ω) = 0 for 1 ≤ i < k. But, due to (3.1) (iii),

Eqi−1(ω) =
∑

a1,...,ar∈A

′(a1ω1+· · ·+arωr)1−qi ≡
∑

ar−k+1,...,ar∈F

′ (ar−k+1ωr−k+1+· · ·+arωr)1−qi ,

where “≡” denotes congruence modulo∞. (The omitted terms are less
than 1 in absolute value.) Therefore R(ω) lies in fact in Ωk(F(k)) by
Corollary 2.10.

For the proof of (i) and (iii) we assume ω normalized such that µ1 = 1,
so

(∗) 1 = |µ1| = . . . = |µr−k| ≥ |µr−k+1| = . . . = |µr|.

Let φ = φω with T -division polynomial φT (X), and write
(4.9.1)

f(X) = ∆−1φT (X) =
T

∆
X +

q

∆
Xqk +Xqr =

∏
(X − µ) ∈ O∞[X],

where µ runs through Tφ, the F-span of {µ1, . . . , µr}.

If equality holds in (∗), then |T/∆| = 1, the reduction f of f in F[X]
is separable, with the F-linear combinations of the µi (= reduction of
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µi) as its zeroes. Therefore the µi (1 ≤ i ≤ r) are F-linearly inde-
pendent, which shows (i) in this case. If we have strict inequality in

(∗) then f(X) = (g/∆)Xqk + Xqr = h(X)q
k

with the F-linear poly-

nomial h(X) = (g/∆)q
−k
X + Xqr−k ∈ F[X]. The µi (1 ≤ i ≤ r − k)

form a basis of the F-vector space Ker(h) =
∑

1≤i≤r−k Fµi, thus (i),

and µ = (µ1 : . . . : µr−k) even belongs to Ωr−k(F(r−k)) by Corollary
2.10. �

(4.10) Let γ ∈ Γ = GL(r, A) be such that γ(Gr,k) ∩ Gr,k 6= ∅ and
ω ∈ γ(Gr,k) ∩ Gr,k.

Suppose that s(ω) > 0 . As the application of γ to ω corresponds

to a base change in Λω =
∑

1≤i≤r Aωi, which maps the short vectors
ωi (r − k < i ≤ r) to F-linear combinations of these (and similar
restrictions for the images of the long vectors ωi (1 ≤ i ≤ r − k)), we
find that γ has the shape

(4.10.1)

(
α β
0 δ

)
where α ∈ GL(r,F), δ ∈ GL(k,F), 0 is the k× (r−k) zero matrix, and
the (r − k)× k-matrix β has entries b ∈ A such that deg b ≤ s(ω).

If otherwise s(ω) = 0 then γ belongs to GL(r,F).

On the other hand, if these conditions on γ are satisfied, then γ maps
ω ∈ Gr,k to another element ω′ ∈ Gr,k.

(4.11) Decompose Gr,k into subspaces G0 and G+, where

G0 = {ω ∈ Gr,k | s(ω) = 0}, G+ = {ω ∈ Gr,k | s(ω) > 0}.
From (4.9), the restriction

(4.11.1) (S ×R)+ : G+−→Ωr−k(F(r−k))× Ωk(F(k))

of S×R to G+ is well-defined and compatible with the natural actions
(see (4.10.1)) of the subgroup H := GL(r − k,F) × GL(k,F) of Γ. As
H acts transitively on the target, (S ×R)+ is onto. Furthermore, it is
constant on connected components of the analytic space G+, since its
image is finite. Therefore the fibers of (S ×R)+ are open subspaces of
G+.

Now choose and fix points

χ = (χ1 : . . . : χr−k) ∈ Ωr−k(F(r−k)) and ψ = (ψr−k+1 : . . . : ψr) ∈ Ωk(F(k)),

and set
(4.12)
F r,k := {ω ∈ Gr,k | s(ω) = 0 or (S ×R)+(ω) = (χ,ψ)}

= {ω ∈ Ωr,k | ω reduced and, in case s(ω) > 0, S(ω) = χ, R(ω) = ψ}.
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Then F r,k is a non-empty open subspace of Gr,k, and each element ω of
Ωr,k is Γ-equivalent with at least one and at most finitely many elements
of F r,k, that is, F r,k is a fundamental domain for the action of Γ on Ωr,k.
In view of the transitivity of the group H on Ωr−k(F(r−k)) × Ωk(F(k)),
the choices of χ and ψ are unimportant. (To some extent their choice
corresponds to the choice of a fourth root of unity in C in the classical
context.) It will turn out later (Theorem 8.2) that F r,k (and not Gr,k)
is the “correct” fundamental domain in that it determines a unique
“cusp”.

(4.13) Note that Γ = GL(r, A) acts effectively on Ωr and Ωr,k through
its quotient group Γ = PGL(r, A) = Γ/Z. The j-invariant of (4.6)
induces a map

F r,k−→Γ\F r,k = Γ\Ωr,k ∼=−→ C∞,

which is locally finite and étale away of fixed points of Γ.

4.14 Proposition. For ω ∈ F r,k the following conditions are equiva-
lent:

(a) ω is a fixed point of a non-trivial element of Γ;
(b) j(ω) = 0;
(c) ω ∈ Ωr(F(r)).

If these are satisfied, then s(ω) = 0 and the fixed group Γω is the Cartan
subgroup Gω ⊂ GL(r,F) ⊂ Γ as defined in (2.11). Points ω ∈ F r,k or,
more generally, of Ωr,k with j(ω) = 0 are called elliptic.

Proof. First note that each γ ∈ Γ that fixes ω induces an automorphism
of φω, which yields an embedding of Γω into Aut(φω) (in fact, an
identity). As φωT = T + g(ω)τ k + ∆(ω)τ r, we have

Aut(φω) =

{
F∗ ⇔ g(ω) 6= 0 ⇔ j(ω) 6= 0
F(r)∗ ⇔ g(ω) = 0 ⇔ j(ω) = 0,

which yields (a) ⇒ (b). For (b) ⇒ (c) we note that j(ω) = 0 implies

Eqn−1(ω) = 0 for 1 ≤ i < r, by (2.5). If s(ω) > 0 then

Eqi−1(ω) ≡
∑

′

ar−k+1,...,ar∈F

(ar−k+1ωr−k+1 + · · ·+ arωr)
1−qi (mod∞)

as in the proof of (4.9), which is 6≡ 0 (mod∞) for i = k. Hence this

case cannot occur, and we have s(ω) = 0 . Then similarly

Eqi−1(ω) ≡ Eqi−1(ω) =
∑

′

a1,...,ar∈F

(a1ω1 + . . .+ arωr)
1−qi (1 ≤ i < r)

for the reduction ω = (ω1 : . . . : ωr) ∈ Ωr(F) of ω. By (2.10) ω ∈
Ωr(F(r)), i.e., γω = ω for γ ∈ GL(r,F)ω ⊂ Γ. Now regarding ω ∈
Ωr(F(r)) ↪→ Ωr as an approximative solution of the equation γω = ω,
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the uniqueness part of Hensel’s lemma implies ω = ω. The implication
(c) ⇒ (a) is trivial, since ω ∈ Ωr(F(r)) has the stabilizer GL(r,F)ω )
Z. �

4.15 Proposition. The analytic space Ωr,k is smooth.

Proof. (i) Smoothness in points ω with j(ω) 6= 0 follows from (4.13)
and (4.14). We are therefore reduced to showing smoothness in ω with
j(ω) = 0, without restriction, ω ∈ Ωr(F(r)), ω = (ω1 : . . . : ωr),
ωi ∈ F(r).

(ii) Let Dj be the differential operator ∂
∂ωj

(1 ≤ j ≤ r). We must show

that the (r− 2)× r-matrix (Djgi)(ω), where 1 ≤ i ≤ r− 1, i 6= k, and
1 ≤ j ≤ r has the maximal possible rank r − 2 in ω ∈ Ωr(F(r)).

(iii) Put for simplicity ei(ω) for the Eisenstein series Eqi−1(ω). Apply-
ing Dj to the equation (see (2.4))

Tes =
∑
t+u=s

etg
qt

u

and using Dj(g
qt

u ) = 0 for t > 0 and et(ω) = 0 = gt(ω) for 1 ≤ t < r,
we find

(Djgi)(ω) = (T q
i − T )(Djei)(ω).

We are thus entitled to replace the gi by the Eisenstein series ei in the
matrix in (ii).

(iv) Now for our ω,

(Djei)(ω) =
∑

′

a1,...,ar∈A

aj
(a1ω1 + . . .+ arωr)q

i

≡
∑

′

a1,...,ar∈F

aj
(a1ω1 + . . .+ arωr)q

i = M(λj)
qi .

Here λj : F(r)−→F is the F-linear map (a1ω1 + . . .+ arωr) 7−→ aj and

M(λ) :=
∑
x∈F(r)

′ λ(x)

x

for any λ ∈ HomF(F(r),F).

(v) Consider

M : HomF(F(r),F) −→ F(r) .
λ 7−→ M(λ)

It is additive and satisfiesM(λ◦c) = cM(λ) for c ∈ F(r), and is therefore
F(r)-linear for the F(r)-structure c · λ := λ ◦ c on HomF(F(r),F).
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(vi) Let λ be the trace map on F(r) : λ(x) = x+ xq + . . .+ xq
r−1

. Then

M(λ) =
∑

′

x∈F(r)

1 +
∑

′xq−1 + . . .+
∑

′xq
r−1−1.

As the maps x 7−→ xq
i−1 for 1 ≤ i < r are non-trivial characters,

their sums vanish, and we get M(λ) =
∑ ′1 = −1 6= 0. We conclude

that M is bijective and the Mj := M(λj) (1 ≤ j ≤ r) are F-linearly
independent.

(vii) Consider the r×r-matrix (M qi−1

j )1≤i,j≤r. It is a Moore matrix (see
[23] 1.3, Lemma 1.3.3), and is non-singular in view of the independence
of the Mj. Hence the (r− 2)× r-matrix obtained by omitting the first
and the (k + 1)-th rows has full rank r − 2.

(viii) In view of (iv) and (vii) we have the wanted rank property for the
reduction modulo ∞ of the matrix ((Djej)(ω)). As a consequence of
the Nakayama lemma, the property holds for (Dj(ei)(ω)) itself. �

5. Growth of modular forms along F r,k.

In this section, F = F r,k as before. Coordinates of points ω = (ω1 :
· · · : ωr) are normalized such that ωr = 1. We introduce a uniformizer
t “at infinity” of F and express the absolute values of g(ω), ∆(ω),
j(ω), t(ω) in terms of the spread s(ω) of ω ∈ F . This is used in later
sections to establish connectedness properties of F .

5.1 Definition. For non-negative s ∈ Q we define subsets (in fact,
admissible open subspaces) of F through conditions on s(ω) as follows:
(5.1.1)
F≤s = {ω ∈ F | s(ω) ≤ s}, F≥s = {ω ∈ F | s(ω) ≥ s}, Fs = F≤s∩F≥s

We further let F+ =
⋃
s>0F≥s = F ∩ G+.

(5.1.2) Given ω = (ω1 : . . . : 1) ∈ Ωr, write ω = (ω(1),ω(2)) with

ω(1) = (ω1, . . . , ωr−k), ω
(2) = (ωr−k+1, . . . , 1),

and let Λ
(2)
ω be the sublattice

∑
r−k<i≤r Aωi of Λω with exponential

function e
(2)
ω .

(5.1.3) Define t : Ωr−→C∞ by t(ω) = (e
(2)
ω (ω1 + ω2 + . . .+ ωr−k))

−1.

The following properties are easily verified:

(5.1.4) t(ω) is well-defined (as ω1 + . . .+ωr−k 6∈ Λ
(2)
ω and thus e

(2)
ω (ω1 +

. . .+ ωr−k) 6= 0);

(5.1.5) t is holomorphic on Ωr;
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(5.1.6) let γ ∈ Γ have an (r − k) × k block structure γ =

(
1 β
0 δ

)
,

i.e., 1 ist the (r−k)× (r−k) unit matrix, 0 the k× (r−k) zero matrix,
and β, δ are A-matrices of the right format. Then

t(γω) = α(γ,ω)t(ω)

with the automorphy factor α(γ,ω) of (1.4.3). In particular,

(5.1.7) t(γω) = t(ω)

if δ is the k × k unit matrix.

We briefly recall the standard argument for (5.1.6). We have γω =
γ(ω(1),ω(2)) = α−1(ω(1)+βω(2), δω(2)) = (α−1ω(1)+α−1βω(2), α−1δω(2))
(the factor α−1 = α(γ,ω)−1 serves to normalize the last coordinate,
βω(2) and δω(2) are matrix products). As δω(2) generates the same lat-

tice Λ
(2)
ω as ω(2), e

(2)
ω is Λ

(2)
ω -periodic, and the formula eαΛ(αz) = αeΛ(z)

holds for lattices Λ and in particular for Λ
(2)
ω , we get

t(γω) = (α−1e(2)
ω (ω1 + . . .+ ωr−k))

−1 = αt(ω)

as wanted.

(5.2) Suppose now that ω = (ω(1),ω(2)) ∈ F . The entries of ω(2)

have absolute value 1, those of ω(1) absolute value qs(ω). Write ω =
ω1 + · · ·+ ωr−k. Then |ω| = |ω1| = qs(ω) and

|t(ω)−1| = |e(2)
ω (ω)| = |ω|

∏
′

ar−k+1,...,ar∈A

|1− ω

ar−k+1ωr−k+1 + . . .+ arωr
|.

The factor (1 − ω
ar−k+1ωr−k+1+...+arωr

) has absolute value 1 if |ω| ≤
|ar−k+1ωr−k+1 + · · ·+ arωr| = max

k−r<i≤r
|ai| and |ω|

max |ai| otherwise.

Hence, from counting the number of k-tuples (ar−k+1, . . . , ar) ∈ Ak

with a given value of max
k−r<i≤r

|ai| < |ω| = qs(ω), we find after an (omit-

ted) elementary calculation the following result.

5.3 Proposition. Let d ∈ N0 be such that d ≤ s(ω) < d+ 1. Then

− logq |t(ω)| = (s(ω)− d)qk(d+1) + qk
qkd − 1

qk − 1
.

In particular, |t(ω)| depends only on s(ω), and it decays superexponen-
tially with growing s(ω). �

Remark. Note that the preceding formula depends only on the facts
(a) ω = (ω1 : . . . : ωr−1 : 1) is reduced, (b) |ω1| = . . . = |ωr−k| = qs and
(c) |ωr−k+1| = . . . = |ωr| = 1, where d ≤ s < d+ 1. Therefore the same
formula holds for such ω ∈ Gr even if they fail to belong to F = F r,k.
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(5.4) As usual, we let φ(ω) be the Drinfeld module attached to ω ∈ F .
Recall that with g = g(ω), ∆ = ∆(ω)

∆−1φT (X) = T/∆X + g/∆Xqk +Xqr =
∏
µ∈Tφ

(X − µ),

so
∆ = T

∏
′

µ∈Tφ

µ−1

and

(5.4.1) |∆| = q · |µr|1−q
k |µ1|q

k−qr ,

as there are qk − 1 “short” roots µ of length |µr| and qr − qk “long”
roots µ of length |µ1|. Here {µ1, . . . , µr} is the distinguished basis
(3.3.1) of Tφ. Hence to find |∆(ω)| for ω ∈ F , we need to find |µ1(ω)|
and |µr(ω)|. Furthermore, as g/∆ up to sign equals the (qr − qk)-th
elementary symmetric polynomial in the µ, we have in case s(ω) > 0

|g/∆| =
∏

µ a long root

|µ| = |µ1|q
r−qk ,

as the product of qr − qk roots µ is strictly smaller than that value if
at least one short root appears as a factor. Therefore, for s(ω) > 0:

(5.4.2) |g| = ∆|µ1|q
r−qk = q|µr|1−q

k

.

5.5 Lemma. In the given situation (ω = (ω(1),ω(2)) ∈ F , d ≤ s(ω) <
d+ 1 with d ∈ N0) the following hold:

logq |µ1(ω)| = (s(ω)− d)qkd + qk
qk(d−1) − 1

qk − 1

|µr(ω)| = q−1

Proof. With Λ = Λω =
∑

1≤i‘r Aωi we have

|µr| = |eΛ(
ωr
T

)| = |ωr
T
| = q−1 and

|µ1| = |eΛ(
ω1

T
)| = |ω1

T
|
∏

′

λ∈Λ
|Tλ|≤|ω1|

|1− ω1

Tλ
| = |ω1

T
|
∏

′

λ∈Λ
|Tλ|<|ω1|

|1− ω1

Tλ
|

The λ figuring in the right hand product are the λ =
∑

r−k<i≤r aiωi
with ai ∈ A and q ·max |ai| < |ω1| = qs(ω), and then

|1− ω1

Tλ
| = | ω1

Tλ
| = qs(ω)−1/max |ai|.

With a similar calculation as in (5.3) we find the result. �

5.6 Proposition. With the same assumptions as before, we have for
ω ∈ F :

(i) logq |∆(ω)| = qk + (qk − qr)[s(ω)− d)qkd + qk q
k(d−1)−1
qk−1

];

(ii) if s(ω) > 0 then g(ω)| = qq
k
, i.e., logq |g(ω)| = qk.
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Proof. This follows from the formulas in (5.4) and (5.5). �

Remark. The argument of (5.4) shows that |g(ω)| is bounded on the

whole of F by qq
k
; this can also be seen from the relation (2.5) between

g = gk and the Eisenstein series Eqk−1.

Now the j-invariant j(ω) = j(φω) is defined as

j(ω) = gr
′
/∆k′ with r′ = (qr − 1)/(q − 1), k′ = (qk − 1)/(q − 1).

Hence (5.6) and comparison with (5.3) yields the basic relation between
the functions j and t.

5.7 Corollary. For ω ∈ F+ (i.e., s(ω) > 0), d ≤ s(ω) < d + 1 with
d ∈ N0, we have

(i) logq |j(ω)| = qr−k−1
q−1

qk(d+1) + m(s(ω) − d)qk(d+1), where m =

(qr−k − 1)(qk − 1)/(q − 1);
(ii) − logq |t(ω)|m = log |j(ω)|−(qr−qk)/(q−1). �

5.8 Corollary. Both |t(ω)| and |j(ω)| as functions on F+ depend only
on s(ω). As a function of s(ω), |t(ω)| (resp. |j(ω)|) is strictly mono-
tonically decreasing (resp. increasing). The product t(ω)mj(ω) with m

as above has constant absolute value q(qr−qk)/(q−1) on F+. �

(5.9) By definition F = F0

·
∪ F+, and it follows from (5.3) and (5.6)

that the functions t and ∆ have properties similar to those of (5.8) on
all of F . Viz,

(5.9.1) |t(ω)| = 1, logq |∆(ω)| = qr for ω ∈ F0.

In contrast, g and j (having zeroes on F0) are only bounded above by

(5.9.2) logq |g(ω)| ≤ qk, logq |j(ω)| ≤ (qr − qk)/(q − 1), ω ∈ F0;

these bounds are attained, and are also the limits of logq |g(ω)| resp.
logq |j(ω)| for s(ω)−→0.

5.10 Lemma. The following are equivalent for ω ∈ F0: (a) logq |g(ω)| =
qk; (b) logq |j(ω)| = (qr − qk)/(q − 1); (c) |Eqk−1(ω)| = 1; (d) the re-

duction ω of ω in Ωr(F) does not belong to Ωr(F(r)).

Proof. (a)⇔ (b) is immediate, (a)⇔ (c) follows from (2.5) and (a)⇔
(d) from (2.10) and the congruence

Eqk−1(ω) ≡
∑

′

a1,...,ar∈F

(a1ω1 + · · ·+ arωr)
1−qk (mod∞)

for ω ∈ F0. �
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We define the subspace

(5.10.1)
F! = {ω ∈ F | logq |g(ω)| ≥ qk}

= F+ ∪ {ω ∈ F0 | the conditions of (5.10) hold}

Then j(F!) = {z ∈ C∞ | logq |z| ≥ ρ} with the constant

ρ = (qr − qk)/(q − 1);

that is, the reciprocal 1/j maps F! onto the pointed ball Bq−ρ \ {0},
where Bx = {z ∈ C∞ | |z| ≤ x}. From the commutative diagram

(5.10.2)

F // Γ \ F
∼= // Γ \ Ωr,k

1/j

∼= // P1(C∞)� {0}

F!

?�

OO

// Γ \ F!

∼= //
?�

OO

Bq−ρ� {0}
?�

OO

we see that the restriction 1/j : F!−→Bq−ρ�{0} is locally finite and
étale, since Γ has no fixed points on F!. Similarly, 1/j maps each F≥s
(s > 0) onto some pointed ball of radius depending on s and F+ to the
“interior” B−q−ρ�{0} = {z ∈ C∞ | 0 < |z| < q−ρ} of Bq−ρ�{0}.

(5.11) Recall that we have fixed χ ∈ Ωr−k(F(r−k)) and ψ ∈ Ωk(F(k))
in order to define F = F (r,k) as a subspace of Gr,k, see (4.12). Let
Gχ ⊂ GL(r − k,F) and Gψ ⊂ GL(k,F) be the corresponding fixed
groups (Cartan subgroups). It follows from (4.10) that

(5.11.1) Γ∞ := {γ ∈ Γ | γ(F+) ∩ F+ 6= ∅}

consists of the matrices with (r − k) × k block structure

(
α β
0 δ

)
,

where α ∈ Gχ, δ ∈ Gχ, and β is an arbitrary (r − k)× k matrix with
entries in A. Similarly,
(5.11.2)

Γs = {γ ∈ Γ | γ(Fs) ∩ Fs 6= ∅} = {γ ∈ Γ | γ(Fs) = Fs}

=

{(
α β
0 δ

)
| α ∈ Gχ, δ ∈ Gψ,

all entries b of β
satisfy deg b ≤ s

}
for 0 < s ∈ Q and Γ0 = GL(r,F). These groups are semidirect products

Γ∞ = (Gχ ×Gψ)n Γu∞, Γs = (Gχ ×Gψ)n Γus (s > 0)

with their respective unipotent radicals (= p-Sylow subgroups) Γu∗ ,
∗ ∈ Q>0 ∪ {∞}.

It follows from (5.10.2) and (5.11.2) that 1/j provides Galois coverings

(5.11.3) 1/j : Fs−→Γs \ Fs
∼=−→ {z ∈ C∞ | logq |z| = −ρ(s)} (s > 0)
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with group Γs/Z, where the logarithmic diameter −ρ(s) is given by
(5.7) (i). For s = 0 we have the covering, ramified above z = 0

(5.11.4) j : F0−→Γ0 \ F0

∼=−→ {z ∈ C∞ | logq |z| ≤ ρ} = Bqρ

with Galois group Γ0/Z = PGL(r,F). The inverse image of the cir-
cumference {z ∈ C∞ | logq |z| = ρ} is F0 ∩ F!.

6. Connectedness properties.

Notation is as before: r ≥ 3 and k are natural numbers with k < r
and (r, k) = 1, and 0 6= N is some element of A, without restriction
non-constant. We let d ∈ N be the degree of N . In this section we
show that Γ(N) \Ωr,k is connected as analytic space. Before, we study
similar connectedness properties of F = F r,k and its subspaces.

(6.1) Given N , let
(6.1.1)

Γ∞(N) = Γ∞ ∩ Γ(N) = {
(

1 β
0 1

)
∈ Γ | β ∈ (NA)(r−k)×k}

⊂ Γu∞ = {
(

1 β
0 1

)
| β ∈ A(r−k)×k}.

We write D for the diagonal subgroup of Γ∞/Z, i.e., D = (Gχ×Gψ)/Z,
which by (4.4) is cyclic of order m = (qr−k − 1)(qk − 1)/(q − 1).

(6.2) The map 1/j provides an isomorphism

(6.2.1) Γ∞ \ F+

∼=−→ B−

with the interior B− of the pointed ball B = Bq−ρ�{0}, see (5.10.2).
In particular, Γ∞ \ F+ is connected. The map Γu∞ \ F+−→Γ∞ \ F+ is
an étale Galois cover with group D. By (5.7) (ii) the function tm · j on
Γ∞ \ F+ has constant absolute value; as t is Γu∞-invariant, this implies
that

(6.2.2) t : Γu∞ \ F+

∼=−→ (B′)−

is a uniformizer onto the interior (B′)− of B′ = {z ∈ C∞ | 0 < |z| ≤
qρ
′}, where ρ′ = qk/(qk−1) comes out by (5.3). So Γu∞\F is connected,

too.

(6.3) Let a group G act strictly continuously on an analytic space X
such that the quotient Y = G \ X exists and is connected, and let
X =

⋃
i∈I Xi be the decomposition into connected components, with

some index set I. Then G permutes the Xi transitively, and we have

Gi \Xi

∼=−→ G \X = Y with the stabilizer group Gi of Xi. Hence the
quotient map restricted to each Xi is surjective onto Y .
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(6.4) The natural map from Γud−1 to Γu∞/Γ∞(N) is an isomorphism if
d > 1; for d = 1 we use (Γ0 ∩ Γ1)u in place of Γud−1. For the rest
of this section we abbreviate Θ := Γud−1 if d > 1; Θ = (Γ0 ∩ Γ1)u =

{
(

1 β
0 1

)
| β ∈ F(r−k)×k} if d = 1. It acts on the analytic spaces

ΘF+ =
⋃
γ∈Θ γF+ and Γ∞(N) \ΘF+, and the natural map

(6.4.2) Γ∞(N) \ΘF+−→Θ \ (Γ∞(N) \ΘF+) = Γu∞ \ F+

is the associated quotient map. By (6.2.2) and (6.3), each connected
component U of Γ∞(N) \ΘF+ maps surjectively onto Γu∞ \ F+.

But how do these components look like?

(6.5) Let λ : Ωr−→I(Kr
∞)(Q) be the building map, described in [6] III,

Sections 2 - 4, onto the rational points of the Bruhat-Tits building
I(Kr

∞) of the group PGL(r,K∞). From the description loc. cit. it
is clear that λ(F) is a straight line

(6.5.1)
[F0]
• − −−−−

[F1]
• − −−−−

[F2]
• − −− · · ·

i.e., a graph which is an infinite half-line with vertices [Fi] indexed
by the Fi (i ∈ N0). (More precisely: λ(F) is the set of points with
rational barycentric coordinates in the realization of such a graph. In
the sequel we abuse language and suppress that distinction.) In fact,
the map s : F−→Q≥0 factors over λ, and we may use s as a coordinate
on λ(F). Note that λ(F+) = λ(F)�{[F0]}.

Let γ ∈ Γi�Γi−1 (i ∈ N). As λ is Γ-equivariant and γ fixes Fi,Fi+1, . . .
but not Fi−1, λ(γF) = γ(λ(F)) differs from λ(F) in a path of length
i, that is, looks like

(6.5.2)
γ[F0]
•

γ[F1]
• · · · γ[Fi−1]

•

BB
BB

BB
BB

•
[F0]

•
[F1] · · · •

[Fi−1]
•

[Fi]
•

[Fi+1] · · ·

As a result, the image λ(ΘF) is the graph Θλ(F) of shape
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(6.5.3)
· · ·

CC
CC

CC
CC

•

BB
BB

BB
BB

· · · •

BB
BB

BB
BB

•
[F0]

•
[F1] · · · · · · • •

[Fd−1]
•

[Fd]
,

•

||||||||
· · · •

||||||||

· · ·

{{{{{{{{

an infinite tree composed of one infinite half-line [Fd−1], [Fd], [Fd+1], . . .
and a finite number of paths of length d − 1 emanating from [Fd−1]
“to the left”. In particular, each infinite half-line in Θλ(F) agrees with
λ(F) for all but finitely many vertices.

(6.5.4) We note that the equivalence relation given by the action of
Γ∞(N) is trivial on Θλ(F), since for 1 6= γ ∈ Γ∞(N) and a vertex v of
Θλ(F), either γv = v or γv 6∈ Θλ(F).

(6.5.5) By (6.4.2) and (6.5.3), for each connected component U of
Γ∞(N)\ΘF+ the set λ(U) (which is well-defined by the remark (6.5.4))
contains a maximal half-line (minus its endpoint) of Θλ(F). Apply-
ing some γ ∈ Θ if necessary, we may achieve that this half-line equals
λ(F+) = λ(F)�{[F0]}.

6.6 Proposition. For d ≤ n ∈ N, the analytic space Γ∞(N) \ Fn is
connected.

Proof. (i)By (6.2.2) and the formula (5.3) for |t|, Γu∞ \ Fn = Γun \ Fn
is via t isomorphic with a circumference {z ∈ C∞ | |z| = c} with a
constant c, and is therefore connected. Hence Γun acts transitively on

π0(Fn)
∼=−→ π0(Fn), where π0(· · · ) is the set of connected components

and Fn the canonical reduction of Fn.

(ii) For n ≥ 2, the operation of Γun on Fn is through its quotient Γun−1

(and for n = 1 through Γu1/(Γ
u
1∩Γ0); we omit that case in what follows).

That is, only the leading terms of β in γ =

(
1 β
0 1

)
account for the

action of γ on Fn, and thus on π0(Fn).

(iii) For N ∈ N such that deg N = d ≤ n, the group Γ∞(N)∩Γun maps
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surjectively onto Γun/Γ
u
n−1. Therefore π0(Γ∞(N) \ Fn) = π0(Γun \ Fn)

consists of one element. �

6.7 Corollary. The analytic space Γ(N)\ΘF+ is connected. Similarly,
Γ(N) \ F≥s is connected for s ≥ d.

Proof. We have Γ(N) \ ΘF+ = Γ∞(N) \ ΘF+. For n ≥ d, each con-
nected component meets Γ∞(N) \ΘFn = Γ∞(N) \ Fn, as follows from
(6.5.5). But Γ∞(N) \ Fn is connected by the last proposition. Fur-
ther, for s ≥ d, Γ(N) \ ΘF≥s = Γ∞(N)\F≥s, and the same argument
applies. �

6.8 Proposition. Let N, d,Θ be as before. There exists an admissible
open subspace W of Γ(N)\Ωr,k that satisfies

(a) W contains Γ(N)\ΘF ;
(b) W is connected.

Proof. (i) We have {γ ∈ Γ | γΓ0F≤1/2 ∩ Γ0F≤1/2} = Γ0. Therefore the
j-function describes the quotient modulo Γ0 of Γ0F≤1/2:

Γ0F≤1/2−→Γ0\Γ0F≤1/2

∼=−→
j
B .

Here the right hand side B is a ball Bx of radius x strictly larger than
qρ, and is connected. By (6.3) each connected component U of Γ0F≤1/2

meets F0 = Γ0F0, the inverse image of Bqρ . We choose U as some com-
ponent which intersects nontrivially with F+. Then W := Γ(N)\(ΘF∪
U) trivially satisfies (a); thus we have to show (b), which in view of
(6.7) will follow from the connectedness of Γ(N)\(F0 ∪ U) = F0 ∪ U .

(ii)Consider the canonical reduction X := F0 of F0. It is the affine sub-
scheme of Ωr(F) defined by the vanishing of the r−2 forms α1, . . . , α̂k, . . . , αr−1

(as usual, we use the set of geometric points to describe the scheme
Ωr/F). More precisely, ω = (ω1 : . . . : ωr) ∈ Ωr(F) defines the
F-lattice Λ = Λω =

∑
Fωi, the αi are the coefficients of eΛ(z) =

z +
∑

1≤i≤r αi(ω)zq
i
, and the reduction mapping from F0 to X is

(6.8.1)
ω = (ω1 : . . . : ωr) 7−→ ω = (ω1 : . . . : ωr) = ((Tµ1) : . . . : (Tµr)).

Here the µi are the basis vectors of Tφ
ω as in (3.3.1), which satisfy

µi =
ωi
T

(1 + ui) with |ui| < 1,

therefore the last equality in (6.8.1). For a given ω = (ω1 : . . . : ωr) ∈
Ωr with |ωi| = 1 for all i and Drinfeld module φ = φω,

φT (X) = TX +
∑

1≤i≤r

gi(ω)Xqi = ∆(ω)
∏
µ

(X − µ),
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where µ runs through the F-span TΦ of µ1, . . . , µr. Therefore, with
∆ = ∆(ω),∏

µ

(X − Tµ) =
T q

r

∆
X + ∆−1

∑
1≤i≤r

T q
r−qigi(ω)Xqi ,

where |T qr/∆| = 1 = |gr(ω)/∆| and |T qr−qigi(ω)/∆| ≤ 1 for 1 ≤ i ≤
r − 1. Hence the condition gi(ω) = 0 (1 ≤ i < r, i 6= k) reduces to
αi(ω) = 0 for the same i, as stated above.

(iii) G := Γ0 = GL(r,F) acts on Ωr(F) and stabilizes X. As Ωr(F) clas-
sifies classes of F-lattices Λ of dimension r (plus the choice of an ordered
basis), X classifies those which are k-sparse, i.e., satisfy αi(Λ) = 0 for
1 ≤ i < r, i 6= k. With the reduced version of the j-invariant:

jred := αr
′

k /α
k′

r , r
′ = (qr − 1)/(q − 1), k′ = (qk − 1)/(q − 1),

we find

jred : G\X
∼=−→ A1(F) = F.

Let X =
⋃
i∈I Xi be the splitting into connected components I = some

index set), which are transitively permuted by G. As Ωr(F(r)) ⊂ X,
each Xi contains some ω ∈ Ωr(F(r)). Thus the Cartan subgroup Gω of
G is contained in the stabilizer Gi of Xi, for each i.

(iv) Let XZar =
⋃
XZar
i be the Zariski closure of X (resp. Xi) in

Pr−1(F). (The XZar
i need not be disjoint.) Let s := (s1 : . . . : sr)

be an F-point of some XZar
i �Xi. Then the F-lattice Λs =

∑
Fsi has

rank k, and the forms αi (1 ≤ i < k) vanish on s. As such s are all
G-conjugate, we may assume s = (0 : . . . 0 : sr−k+1 : . . . : sr), where
s(2) = (sr−k+1 : . . . : sr) ∈ Ωk(F(k)) (see (2.10)). The stabilizer Gs of

s consists of the matrices

(
α 0
β δ

)
∈ G, where α ∈ GL(r − k,F), δ

belongs to the Cartan group Gs(2) ⊂ GL(k,F), and β ∈ Fk×(r−k).

(v) The stabilizer of the connected component of XZar determined by
XZar
i contains Gs and the Cartan subgroup Gω (if ω ∈ Xi). (In the

terminology of [27], Gω is the group generated by a Singer cycle.) As Gs

apparently doesn’t normalize any subgroup ofG of shape GL(r/r′,F(r′))
with 1 < r′|r , naturally embedded in G, the result of [27] implies that
〈Gω, Gs〉 = G. Therefore XZar is connected.

(vi)The preceding argument shows more precisely: X∪{s} is connected
for each boundary point s ∈ XZar\X. Hence such an s belongs to each
of the XZar

i .

(vii) As U is connected but not contained in F0, it determines upon
reduction at least one boundary s of X = F0. Hence by (vi), the
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reduction of F0 ∪U , and thus F0 ∪U itself, is connected, which had to
be shown. �

The next result, crucial for this paper, is now an easy consequence.

6.9 Theorem. For each 0 6= N ∈ A, the analytic space Γ(N) \ Ωr,k is
connected.

Proof. For N ∈ F, Γ(N) = Γ and Γ\Ωr,k
∼=−→ A1(C∞) = C∞ through

the j-function, and is connected. Thus assume N non-constant. The
group Γ acts transitively on the connected components of Γ(N)\Ωr,k.
Let U be the component that encloses the subspace W as in Proposi-
tion 6.8, with stabilizer group ΓU . Then Γ0 = GL(r,F) ⊂ ΓU and also
Γ∞ ⊂ ΓU . Now Γ0 contains all the permutation matrices; therefore ΓU
contains all the stricly upper and lower triangular matrices (i.e., trian-
gular matrices with 1’s on the diagonal). As these, by the elementary
divisor theorem, generate SL(r, A), we find that

ΓU ⊃ Γ0 · SL(r, A) = GL(r, A) = Γ,

and so ΓU = Γ and U = Γ(N)\Ωr,k. �

7. The modular curves Xr,k and Xr,k(N).

We maintain the notation and assumptions of the last section.

(7.1) As the natural map Γ(N)\Ωr,k−→Γ\Ωr,k
∼=−→ A1(C∞) is finite

and the analytic space Γ(N)\Ωr,k is one-dimensional, smooth and con-
nected, there exists a unique (up to unique isomorphism) smooth con-
nected affine algebraic curve Ỹ r,k(N) over C∞ with Γ(N)\Ωr,k as its set
of C∞-points, and such that the above map comes from a morphism of
algebraic curves. This follows from the GAGA-type theorems of Kiehl
([28], [29]). By abuse of language we write Ỹ r,k(N) = Γ(N)\Ωr,k. Fur-
ther, we let X̃r,k(N) be the “compactification” of Ỹ r,k(N), i.e., the
smooth projective model of Ỹ r,k(N). Points of X̃r,k(N) not in Ỹ r,k(N)
are labelled as “cusps”. Then the meromorphic functions on X̃r,k(N)
(in the algebraic sense) are the meromorphic functions on the analytic
space Γ(N)\Ωr,k that satisfy extra meromorphy conditions around the
cusps (see Lemma 7.4).

We have the commutative diagram similar to (1.5.4):
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(7.1.1) Γ(N) \ Ωr,k = Ỹ r,k(N)

��

� � // X̃r,k(N)

��

Γ \ Ωr,k = Ỹ r,k(1)
j

∼= // A1(C∞) � � // P1(C∞),

where the group G(N) = Γ/Γ(N) · Z (cf. (1.5)) acts on the objects in
the upper row and the vertical maps are the quotient maps. Ramifica-
tion occurs above j = 0, with ramification group Gω/Z, where Gω is a
Cartan subgroup of GL(r,F), and possibly above j =∞, i.e., at cusps.
This follows from (4.14); the situation at cusps will be studied in the
next section.

(7.2) We first describe the function field of X̃r,k(N). Let u = (u1, . . . , un)
be an element of (N−1A)r not in Ar, and consider the function on Ωr:

(7.2.1) eu(ω) := eω(uω),

where eω = eΛω and uω =
∑

1≤i≤r uiωi; as usual we have normalized
ωr = 1. The following properties are easily verified:

(7.2.2) eu depends only on u modulo Ar; therefore we let u run through
(N−1A/A)r;

(7.2.3) ecu(ω) = ceu(ω), c ∈ F∗;

(7.2.4) eu is holomorphic and vanishes nowhere on Ωr;

(7.2.5) φωN(eu(ω)) = 0;

(7.2.6) eu(γω) = α(γ,ω)−1euγ(ω), γ ∈ Γ.

Here γ acts as a matrix from the right on u, and α(γ,ω) is the factor
of automorphy introduced in (1.4.3). In particular, eu behaves like a
modular form of weight −1 for Γ(N), since uγ = u for γ ∈ Γ(N);

(7.2.7) The reciprocal eu(ω)−1 equals the partial Eisenstein series

Eu(ω) =
∑
a∈Kr

a≡u ( mod Ar)

(aω)−1

of weight 1. (The two-lines proof of (7.2.7) is left as an exercise.)

(7.3) The functions eu may be used to construct modular functions on
Ωr for Γ(N); viz,

(7.3.1) f (i)
u (ω) := eq

i−1
u (ω)gi(ω)

is holomorphic on Ωr and invariant under Γ(N) (and is similar to clas-
sical Fricke functions). We define the function fu as the restriction of
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f
(k)
u to Ωr,k.

(7.3.2) fu(ω) = eq
k−1

u (ω)gk(ω) (ω ∈ Ωr,k).

7.4 Lemma. Given 0 6= u ∈ (N−1A/A)r, there exists a constant C > 0
and an exponent M ∈ N such that for all ω ∈ F+ the estimate

|fu(ω)| ≤ C|j(ω)|M

holds.

Proof. (Sketch) We have calculated |g| = |gk| and |j| in (5.6) and (5.7),
and may easily estimate eu(ω) = uω

∏′
a∈Ar(1−

uω
aω

) in a similar fashion,
as we know the absolute values of the factors for given ω ∈ F+. Details
are left to the reader. �

Remark. It would be elementary though laborious to write down an
exact formula à la (5.7) for |eu(ω)| and |fu(ω)|, ω ∈ F+.

The lemma guarantees that fu is meromorphic at cusps of X̃r,k(N)
and thus an element of the field Kr,k(N) of meromorphic functions on
X̃r,k(N).

7.5 Theorem. The function field Kr,k(N) of X̃r,k(N) is generated over
C∞(j) by the functions fu (0 6= u ∈ (N−1A/A)r).

Proof. By Galois theory, it will suffice to show: If γ ∈ Γ fixes all the
fu, then γ ∈ Γ(N) · Z.

Thus suppose fu ◦ γ = fu. Then eq
k−1

u = eq
k−1

uγ , that is,

(∗) euγ = e · eu
with some c ∈ (F(k))∗, since Γ(N)\Ωr,k is connected. This holds in
particular at the elliptic points ω ∈ Ωr,k(F(r)). At such a point, the
Drinfeld A-module φω has shape

φωT = T + ∆τ r

and may be seen as a rank-one Drinfeld A(r)-module for A(r) = F(r)[T ].
After scaling the lattice Λω, we may assume that ∆ = 1, that is, φω

is the Carlitz module. It is well-known [25] that the field extension
generated by the N -torsion points of the Carlitz module contains no
proper constant field extension (here: of F(r)). Therefore c ∈ F(k) ∩
F(r) = F, which implies uγ = cu with some c = c(γ,u) ∈ F∗. It is
easily seen that, given γ, c(γ,u) is independent of u, and thus γ ∈
Γ(N) · Z. �

(7.6) We define the closed subscheme M r,k(N)/A of M r(N)/A as the
vanishing locus of the modular forms g1, . . . ĝk, . . . , gr. It is the moduli
scheme for (r, k)-sparse Drinfeld A-modules supplied with a structure
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of level N , and is easily seen to be flat over A. As the restriction of
the determinant map M r(N)−→M1(N) = SpecB+(N) (see (1.5)) to
M r,k(N) is still faithfully flat, M r,k(N) is a flat B+(N)-scheme. Similar
to (1.5.2)

(7.6.1) M r,k(N)×
A
C∞ =

∐
σ

M r,k(N) ×
B+(N),σ

C∞,

where σ runs through the K-embeddings of K+(N) into C∞. As in
(1.5.3) we fix one such σ = id and define

Y r,k(N) := M r,k(N) ×
B+(N)

C∞.

Then

(7.6.2) Ỹ r,k(N) = Γ(N)\Ωr,k ∼=−→ Y r,k(N)

induced from ω 7−→ φω. Note that we have defined Ỹ r,k(N) as the
unique algebraic curve characterized through its C∞-points, while Y r,k(N)
is the distinguished component of (7.6.1). As by GAGA affine curves
over C∞ are determined through their analytifications, we need no
longer distinguish between Ỹ r,k(N) and Y r,k(N) (resp. between X̃r,k(N)
and the projective model Xr,k(N) of Y r,k(N)). Henceforth we omit the
tildes and regard (7.6.2) as an identification.

Since Y r,k(N) is smooth and connected, the above implies that the in-
tegral closure of A in its function field Kr,k(N) equals B+(N), hence
the variety Y r,k(N) and its projective model Xr,k(N) are “defined over
K+(N)”.

The natural action of G̃(N) = GL(r, A/N)/Z on M r(N) restricts to

M r,k(N) and gives G̃(N)\M r,k(N)
∼=−→M r,k(1). As in (1.5.2) the sub-

group G(N) stabilizes components of (7.6.1), and the identifications

(7.6.3)

Γ(N)\Ωr,k
∼=−→ Y r,k(N)

↓ ↓

Γ\Ωr,k
∼=−→ Y r,k(1)

are compatible with the actions of the group G(N) = Γ/Γ(N) · Z.

(7.7) The K+(N)-structure of Xr,k(N) may be described as follows:
Let Kr,k(N) be the subfield of Kr,k(N) generated over K by j and the
fu (0 6= u ∈ ((N−1A)/A)r; actually j may be omitted from this system
of generators), which by the preceding equals the function field of the
integral scheme M r,k(N). The group G(N) acts on the generators fu
by

(∗) fu ◦ γ = fuγ,
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as follows from the formulas in (7.2) and (7.3). The natural action of
G̃(N) on M r,k(N) and thus on Kr,k(N) is given by the same formula
(∗), but for the larger group G̃(N). The fixed field of G(N) in Kr,k(N)
is K+(N)(j), the function field of Xr,k = Xr,k(1) over K+(N).

We have thus defined the curves that appear in Theorem A, and estab-
lished assertions (i), (ii) and a part of (iii) of that theorem. It remains
to discuss the behavior at cusps of the coverings (7.6.3).

8. Ramification at the cusps.

Continuing with the setting of the last sections, we find that our fun-
damental domain F = F r,k determines a unique cusp, also labelled
“∞”, of Xr,k(N), and we describe the ramification filtration on the
fixed group.

(8.1) The geometry around ∞ ∈ Xr,k
∼=−→ P1(C∞) of the natural map

Xr,k(N)−→Xr,k is described by the commutative diagram

(8.1.1)

Γ∞(N)\F≥s ↪→ Y r,k(N) ↪→ Xr,k(N)

↓ ↓ ↓
Γ∞\F≥s ↪→ Y r,k ↪→ Xr,k

for sufficiently large s ∈ Q. Here the left hand side inclusions are
open embeddings of analytic spaces. From now on, we assume that

s ≥ d = deg N .

(8.1.2) Let G∞(N) (resp. U(N)) be the image of Γ∞ (resp. of Γu∞)
in G(N) = Γ/Γ(N) · Z. Then G∞(N) = D o U(N) with the group
D of (6.1.1), and U(N) consists of the matrices with block structure(

1 u
0 1

)
, u ∈ (A/N)(r−k)×k. (Essentially it is the group labelled Θ

in Section 6.) In what follows we omit reference to N , i.e., G = G(N),
G∞ = G∞(N), U = U(N).

The canonical projection Γ∞(N)\F≥s−→Γ∞\F≥s is an étale Galois
cover with group G∞; it factors

(8.1.3) Γ∞(N)\F≥s−→Γu∞\F≥s−→Γ∞\F≥s,

where the group is U in the first and D in the second step. All three
spaces are connected, as follows from the existence of the uniformizers
1/j for Γ∞\F≥s and t for Γu∞\F≥s, and from (6.7) for Γ∞(N)\F≥s.
Therefore the maps in (8.1.3) are completely ramified above the missing
point corresponding to (1/j) = 0 of the pointed ball Γ∞\F≥s, and there
exists a unique cusp of Xr,k(N) belonging to F . We summarize:
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8.2 Theorem. There exists a unique cusp, labelled ∞ ∈ Xr,k(N), of
Xr,k(N) such that the analytic space Γ∞(N)\F≥s in (8.1.1) is a pointed
neighborhood of ∞. The fixed group of ∞ in the ramified covering
Xr,k(N)−→Xr,k is the group G∞ = G∞(N) defined in (8.1.2).

Proof. The first part has been shown. The second assertion follows
from (5.11.1). �

Remark. We have defined G∞ independently of the stated fixed point
property. The theorem justifies the notation G∞.

(8.3) We recall some well-known definitions and facts about higher
ramification. For more details, see [32], Chapter IV. Suppose that ϕ :
X−→Y is a ramified Galois covering of (smooth, connected, projective)
algebraic curves over the algebraically closed field of characteristic p >
0, with Galois group G. For a closed point x ∈ X with uniformizer
π = πx and i ∈ N0, let Gx be the fixed group and

(8.3.1) Gx,i := {σ ∈ G | σ acts trivially modulo πi+1}.
Then Gx,i is a normal subgroup of Gx independent of the choice of π,
and Gx = Gx,0 ⊃ Gx,1 ⊃ Gx,2 ⊃ · · · is the ramification filtration of Gx.
Furthermore: Gx,0/Gx,1 is a cyclic group of order coprime with p, and
Gx,1 is a p-group. The function

ix : Gx�{1} −→ N
σ 7−→ ix(σ) := sup{i | σ ∈ Gx,i}+ 1

is the ramification function. For x ∈ X we define the ramification
number

ax :=
∑

16=σ∈Gx

ix(σ).

Note that ax = 0⇔ Gx 6= {1} ⇔ x is ramified in ϕ. We call ϕ modestly
ramified at x ∈ X (or x modestly ramified in ϕ) if Gx,2 = {1}. If f is
modestly ramified at x, then

(8.3.2) ix(σ) = 1 for σ ∈ Gx�Gx,1 and ix(σ) = 2 if σ ∈ Gx,1�{1},
thus

ax = |Gx|+ |Gx,1| − 2,

where Gx,1 is the (unique) p-Sylow subgroup of Gx.

8.4 Theorem. The natural map ϕr,k(N) : Xr,k(N)−→Xr,k is modestly
ramified at cusps of Xr,k(N).

Proof. (i) As the Galois group G = G(N) acts transitively on the cusps,
it suffices to consider the ramification filtration at ∞. Since U is the
p-Sylow subgroup of G∞, we must show that the ramification function
i∞ on G∞�{1} has constant value 2 on U�{1}. This means that for
1 6= σ ∈ U the function π∞ ◦ σ − π∞ has precise vanishing order 2 at
∞ for one (and thus for each) uniformizer π∞ of Xr,k(N) at ∞.
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(ii) Let a = (a1, . . . , ar−k) be an arbitrary non-zero vector in Fr−k, and
define the function tN,a on F by

(8.4.1) tN,a(ω) := e(2)
ω (N−1(aω(1)))−1,

where as usual, ω = (ω(1),ω(2)), e
(2)
ω is the exponential function of

Λ
(2)
ω =

∑
r−k<i≤r Aωi, and aω(1) =

∑
1≤i≤r−k aiωi. It is invariant under

Γ∞(N), and Proposition 5.3 (plus the following remark) together with
|aω(1)| = |ω1| = qs(ω) yields

(8.4.2) |tN,a(ω)||N |k = C|t(ω)|

with C = qq
k−1, as long as ω ∈ F≥s. That is, tN,a “behaves like an

|N |k-th root of t”.

(iii) As the group Γu∞ is abelian, we write it additively, i.e., identify it

with the group A(r−k)×k through

(
1 β
0 1

)
7−→ β. Similarly,

U = U(N) = (Γu∞Γ(N) · Z)/Γ(N) · Z
∼=−→ (A/N)(r−k)×k(

1 u
0 1

)
7−→ u =

 u1
...

ur−k


with the row vectors ui of u.

(iv) Let αa be the surjective A/N -linear map

αa : U = (A/N)(r−k)×k −→ (A/N)k

u 7−→
∑

1≤i≤r−k aiui
.

Then tN,a, which is invariant under Γ∞(N) = NA(r−k)×k by (ii), is in
fact invariant under ker(αa) (i.e., under the inverse image Ka of ker(αa)
in A(r−k)×k), for each 0 6= a ∈ Fr−k.

(v) Consider the factorization of the first arrow in (8.1.3):

(8.4.3)

Γ∞(N)\F≥s −→ Ka\F≥s −→ Γu∞\F≥s
‖ ‖

NA(r−k)×k\F≥s A(r−k)×k\F≥s

.

The degree of the right hand mapping is [(A/N)(r−k)×k : ker(αa)] =
|(A/N)k| = |N |k; thus (8.4.2) shows that tN,a is a uniformizer around
infinity of Ka\F≥s.

(vi) Let u be an element ofKa not inNA(r−k)×k, and let σu ∈ ker(αa) ⊂
(A/N)(r−k)×k = U be the corresponding Galois operator. Then

(∗)
(tN,a ◦ σ)(ω)− tN,a(ω) =

(e
(2)
ω (N−1a(ω(1) + uω(2))))−1 − (e

(2)
ω (Na−1ω(1)))−1,
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where uω(2) is the matrix product, ω(2) regarded as a (k × 1)-matrix,
i.e., uω(2) is the (r − k)-vector with entries

u1ω
(2) =

∑
r−k≤i≤r

u1,iωi, . . . ,ur−kω
(2) =

∑
r−k<i≤r

ur−k,iωi.

From the additivity of e
(2)
ω we find

(∗) = [e
(2)
ω (N−1aω(1)) + e

(2)
ω (N−1a(uω(2)))]−1 − (e

(2)
ω (N−1aω(1)))−1

= (y + z)−1 − y−1,

where we have put y(ω) = e
(2)
ω (N−1aω(1)), z(ω) = e

(2)
ω (N−1a(uω(2))).

Now z(ω) has constant absolute value 6= 0 on F≥s, as it depends only
on ω(2), whose entries satisfy |ωr−k+1| = · · · = |ωr| = 1. (Actually
z(ω) is a non-trivial N -division point of the rank-k Drinfeld module
associated with ω(2), and we could easily calculate the precise value of
|z(ω)|.) Therefore we may write the quantity (∗) in a neighborhood of
∞ (i.e., for small values of y−1(ω) = tN,a(ω) or, what is the same, for
large values of s(ω) = logq |ω1|) in the form

(∗) = y−2(−z +
z2

y
− z3

y2
+ . . .) = t2N,a times a unit around infinity.

That is, we are done if Ka agrees with Γ∞(N), i.e., if ker(αa) = {0},
which happens if and only if k = r − 1.

(vii) For the general case, we have another look to (8.4.3). The to-
tal group of this Galois cover is U = U(N) = (A/N)(r−k)×k, with
subgroup ker(αa) = Gal(Γ∞(N)\F≥s | Ka\F≥s) and quotient group

U = U/ker(αa)
∼=−→ (A/N)k as the group of the second covering. Let

σ 7−→ σ denote the canonical map from U to U , i = iu the ramification
function on U , i = iu the ramification function on U . The formula [32]
IV Sect. 1, Proposition 3 now reads

(8.4.4) |ker(αa)|i(σ) =
∑
σ→σ

i(σ)

for each 0 6= σ ∈ U , where the sum is over all σ ∈ U that project to
σ. As i(σ) = 2 by (vi) and i(σ) ≥ 2 for all the |ker(αa)| = |N |(r−k−1)×k

many σ−→σ (since U is a p-group and thus agrees with its first rami-
fication group), (8.4.4) implies i(σ) = 2. This holds for all 0 6= σ ∈ U
for which there exists an a ∈ Fr−k such that σ 6∈ ker(αa). Now if

σ =

 u1
...

ur−k

 with some uj 6= 0 then a = (0, . . . , 0, 1, 0, . . . , 0) with 1

at the j-th place satisfies αa(σ) = uj 6= 0, thus in fact i(σ) = 2 for all
0 6= σ ∈ U , which had to be shown. �
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Remark. Note that the quotient D of G∞ by G∞,1 = U is cyclic of
p-coprime order m = (qr−k − 1)(qk − 1)/(q − 1), in coherence with the
requirements for the ramification filtration.

8.5 Corollary.

(i) The number of cusps of Xr,k(N) is given by

|{cusps of Xr,k(N)}| = |G(N)|
m|N |(r−k)k

,

where |N | = qdeg N = qd and m = (qr−k − 1)(qk − 1)/(q − 1).
(ii) The ramification number a∞ (see (8.3.1)) of the cusp ∞ (and

thus ax for arbitrary cusps x) in the map ϕr,k(N) : Xr,k(N)−→Xr,k

is given by a∞ = (m+ 1)|N |(r−k)k − 2.

Proof. (i) comes from (8.2), as G(N) acts transitively on the set of
cusps with fixed group G∞(N) of∞. (ii) is a rephrasing of (8.3.2) once
we take the theorem into account. �

9. The genus of Xr,k(N).

We are now in a position to calculate the genus gr,k(N) of Xr,k(N) by
applying the Riemann-Hurwitz formula to the natural map ϕr,k(N) :

Xr,k(N)−→Xr,k(1) = Xr,k
∼=−→ P1.

(9.1) The Riemann-Hurwitz formula RHF (see [32] VI Sect. 4 or [24]
IV Sect. 2). In the setting of (8.3), let g(X) and g(Y ) be the genera
of X and Y , respectively, with Euler-Poincaré characteristics e(X) =
2− 2g(X) and e(Y ) = 2− 2e(Y ). Then

(9.1.1) e(X) = |G|e(Y )−
∑
x∈X

ax.

Remark. As the EP characteristic e( . ) behaves smoother than g( . ),
we prefer e( . ) for calculations.

(9.2) The data needed to evaluate (9.1.1) for ϕr,k(N) are:

(9.2.1) e(Xr,k) = 2, i.e., g(Xr,k) = g(P1) = 0;

(9.2.2) G(N) = {γ ∈ GL(r, A/N) | det(γ) ∈ F∗}/Z, thus |G(N)| =
|SL(r, A/N)|, which is easy to evaluate once the prime decomposition
of N is given; for example, if N is prime of degree d then

|G(N)| = (|N | − 1)−1
∏

0≤i<r

(|N |r − |N |i), |N | = qd.

By Proposition 4.14, ϕr,k(N) is unramified off elliptic points and cusps.
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(9.2.3) As G(N) acts transitively on elliptic points of Xr,k(N) with
stabilizers of cardinality (qr−1)/(q−1), there are |G(N)|(q−1)/(qr−1)
many elliptic points x, each with ramification number ax = (qr−1)/(q−
1) − 1 = (qr − q)/(q − 1). The total contribution of elliptic points to
(9.1.1) is

Aell :=
∑

ax
x∈Xr,k(N) elliptic

=
|G(N)|(q − 1)

(qr − 1)
(
qr − q
q − 1

).

(9.2.4) The cuspidal contribution to (9.1.1) is by Corollary 8.5

Acusp :=
∑

ax
x cusp ofXr,k(N)

=
|G(N)|

m|N |(r−k)k
((m+ 1)|N |(r−k)k − 2),

m = (qr−k − 1)(qk − 1)/(q − 1), |N | = qdeg N = qd.

Plugging in, we find:

9.3 Proposition. The genus gr,k(N) of Xr,k(N) is given by

gr,k(N) = 1− |G(N)|+ 1

2
(Aell + Acusp)

with |G(N)|, Aell, Acusp as described in (9.2).

9.4 Example. Let r = 3 and k = 1 or 2. Then

(9.4.1) g3,k(N) = 1 +
1

2
|SL(3, A/N)|( q2 + q

q2 + q + 1
+
|N |2q2 − 2

|N |2(q2 − 1)
− 2).

Suppose moreover that d = deg N = 1. Then |SL(3, A/N)| = (q3 −
1)(q2 − 1)q3, and the above yields

(9.4.2) g3,k(N) = 1 + q(q4 − q3)/2− q2 + 1).

10. The modular curve Xr,k
0 (N).

(10.1) As before, fix some non-constantN ∈ A, and letH be a subgroup

of G̃(N) = GL(r, A/N)/Z. We define the moduli scheme M r,k
H as the

quotient

(10.1.1) M r,k
H = H\M r,k(N).

It is a flat, generically smooth A-scheme, which classifies (r, k)-sparse
Drinfeld A-modules with a structure of level H. In particular, its C∞-
points correspond bijectively to isomorphism classes of such objects
over C∞. Let det(H) ⊂ (A/N)∗/F∗ be the image of H under the
determinant map, with fixed field KH := K+(N)det(H) (see (1.5.1)) and
BH the ring of A-integers in KH . The map det : M r,k(N)−→M1(N) =
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SpecB+(N) induces a faithfully flat map M r,k
H −→SpecBH , and as in

(1.5.2) and (7.6.1),

(10.1.2) M r,k
H ×

A
C∞ =

∐
σ

M r,k
H ×

BH ,σ
C∞,

where σ runs through the K-embeddings of KH into C∞. Again as in
(7.6), we fix one such embedding σ = id and define

(10.1.3) Y r,k
H := M r,k

H ×
BH

C∞,

a smooth connected affine curve over C∞, and Xr,k
H as its smooth com-

pactification. Then

(10.1.4) ΓH\Ωr,k ∼=−→ Y r,k
H (C∞)

induced from ω 7−→ φω with ΓH := {γ ∈ Γ | γ ∈ H modulo N}. Both

Y r,k
H and Xr,k

H are defined over KH , with the fixed field Kr,k(N)H of
H as function field (see (7.7)). It follows from general principles of

moduli schemes but may easily be seen directly that the fibers of M r,k
H

over primes p of BH with p - N are smooth; in other words, Y r,k
H and

Xr,k
H have good reduction at such p.

(10.2) We are mainly interested in the case where H is the para-
bolic subgroup P = P (N) of G̃(N) of matrices with an (r − k) × k

block structure

(
∗ ∗
0 ∗

)
, which encompasses G∞(N). Then det(P ) =

(A/N)∗/Z, so KP = K, and Xr,k
P is defined over K. The scheme M r,k

P

classifies triples (φ, u, φ), where φ is an (r, k)-sparse Drinfeld A-module
with an isogeny u : φ−→φ′ whose kernel is isomorphic with (A/N)k.
(Strictly speaking, this moduli interpretation is valid only above Spec
A[N−1]; for A-characteristics p of φ dividing N the definition of the
level structure on φ is a bit more involved: see [7] Sect. 5. We will

however not need this.) As M r,k
P is fully determined through the data

r, k and N , we write

(10.2.1) M r,k
0 (N), Y r,k

0 (N), Xr,k
0 (N) for M r,k

P , Y r,k
P , Xr,k

P , respectively.
Of course, these collapse to the “classical” Drinfeld modular curves of
Hecke type [12] if (r, k) = (2, 1) (the case we have excluded from our
current considerations).

(10.3) Let p be a prime of degree one of A with p - N . Then F
∼=−→

Fp := A/p, and the reduced curve Xr,k
0 (N)

(p)

(i.e., the projectivization

of the special fiber M r,k
0 (N) ×

A
Fp is smooth and projective over F of

genus gr,k0 (N) = genus of Xr,k
0 (N)/K. For what follows, we abbreviate

(10.3.1) X0(N) for Xr,k
0 (N)

(p)

,
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which is a (non-Galois) covering of X = Xr,k
(p)

= projective j-line over
Fp = F, of degree [Γ : ΓP ] = [G̃(N) : P (N)] = [G(N) : G(N)∩P (N)].

In accordance with Proposition 4.14, a geometric point x ∈ X(F) is
called elliptic if it corresponds to a Drinfeld module φ that satisfies one
of the conditions (easily verified to be equivalent):

(10.3.2) (a) Aut(φ) ) F∗; (b) Aut(φ) ∼= (F(r))∗; (c) j(x) = j(φ) = 0;
(d) φT (X) = TX + ∆Xqr . (Here T is the image of T in A/p = Fp.)
Similarly, some x ∈ X0(N)(F) is elliptic if it lies above j = 0. It follows
that an elliptic x ∈ X0(N)(F) is ramified above X with ramification
index (qr − 1)/(q − 1). Hence the number of elliptic points is

(10.3.3) |{elliptic points in X0(N)(F)}| = [Γ : ΓP (N)](q− 1)/(qr − 1).

10.4 Proposition. Each elliptic point of X0(N) is defined over F(r),
the field extension of F = Fp of degree r.

Proof. In the given situation, the elliptic Drinfeld A-modules are all
supersingular and thus defined over F(r) [15]. The result then follows
from a standard argument, see. e.g. the proof of Proposition 9.1 in
[18], which applies in a slightly modified form. �

Hence we have a large supply of F(r)-rational points on X0(N)/Fp, and
such curves are good candidates to produce large ratios

number of rational points/genus.

Note that Theorem B is automatic from the construction of Xr,k
0 (N)

and the preceding study of Xr,k(N). Thus our remaining task in order
to find good towers of curves as described in the introduction and to
prove Theorem C is to determine or at least to estimate the genera
gr,k0 (N) of Xr,k

0 (N).

11. The genus of Xr,r−1
0 (T n).

In this section we make very specific choices for our parameters N
and k, namely: N = T n ∈ A, and K = r − 1. For these choices we
obtain explicit albeit unpleasant formulas for the genera of the cor-
responding curves Xr,r−1

0 (T n). These are calculated by applying the
RH formula and the known value of gr,r−1(T n) to the ramified cover-
ing ϕr,r−1

0 (T n) : Xr,r−1(T n)−→Xr,r−1
0 (T n). In the actual calculation

we restrict to the case r = 3; the case r > 3 is more complex con-
cerning computations and presentation but uses essentially the same
arguments; we give the result without full proof details in Theorem
11.13. In contrast, determining gr,k0 (T n) for general k with (r, k) = 1
requires even more efforts and technical tools. In this case, postponed
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to the next section, we restrict to merely presenting the asymptotic
behavior of gr,k0 (T n) for n−→∞.

(11.1) In what follows (up to (11.12)), we assume r = 3 and use the
following simplified notation (which partially conflicts with notation
used earlier).
(11.1.1)
N = T n, n ∈ N, R = A/T n

G = G(N) = {γ ∈ GL(3, R) | det(γ) ∈ F∗}/Z
(where as usual Z is the group of F-valued scalar matrices)

P = P (N) ∩G(N) =

matrices of shape

 ∗ ∗ ∗0 ∗ ∗
0 ∗ ∗

 /Z

C = G∞(N) =


 a ∗ ∗

0
γ

0

 | a ∈ F∗
γ ∈ Car

 /Z, where γ runs through

a fixed Cartan subgroup Car of GL(2,F)

U = U(N) = the p-Sylow subgroup of C =


 a ∗ ∗

0 a 0
0 0 a

 | a ∈ F∗
 /Z

(An asterisk ∗ stands for an arbitrary element of R.)

X = X3,2(N), X0 = X3,2
0 (N), ϕ = ϕ3,2(N) : X−→X3,2

∼=−→ P1,
ϕ0 = ϕ3,2

0 (N) : X−→X0.

All these depend on n, we have

(11.1.2)

|R| = |T n| = qn

|G| = |SL(3, R)| = (q3 − 1)(q2 − 1)q8n−5

|P | = |GL(2, R)||R|2 = (q2 − 1)(q − 1)q6n−3

|C| = (q2 − 1)q2n

|U | = q2n.

(11.2) The cusps of X are in canonical bijection with G/C: If {ξ} is a
system of representatives for G/C, then

G/C
∼=−→ {cusps of X}

ξ 7−→ ξ(∞)
.

If Q = ξ(∞) then the ramification number aQ in ϕ0 : X−→X0 is

(11.2.1) aQ = |P ∩ ξC|+ |P ∩ ξU | − 2,

where ξC = ξCξ−1 and ξU = ξUξ−1, as follows from the definition of
aQ and Theorem 8.4.
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Fix systems of representatives {x} for G/P and {y} for P/C, respec-
tively. Then

(11.2.2) {xy} is a system of representatives for G/C.

11.3 Lemma. yC =


 a ∗ ∗

0
γ

0

 | a ∈ F∗
γ ∈ Car′

 /Z, where γ runs

through a conjugate Car′ of Car in GL(2, R).

Proof. Obvious. �

As each such Car′ projects onto a Cartan subgroup of GL(2,F) under
Car′ ↪→ GL(2, R)−→GL(2,F), we also term such Car′ as Cartan sub-
groups of GL(2, R). The following calculations (see Properties 11.6 and
11.8) will show that |P ∩ ξC| (and thus its p-part |P ∩ ξU |) depends
only on the x-part of ξ = xy. Therefore, to evaluate (11.2.1) we need
to determine |P ∩ xC| for a suitably chosen system {x}.

In the following calculations in G, we usually write matrices and per-
form calculations with them but mean the corresponding elements of
G, that is, classes modulo Z.

11.4 Lemma. The following set RS is a system of representatives for
G/P : RS = RS(1) ∪RS(2) ∪RS(3), where

RS(1) =


1 0 0
v 1 0
w 0 1

 | v, w ∈ R


RS(2) =


u 1 0

1 0 0
w 0 1

 | u ∈ TR, w ∈ R


RS(3) =


u 1 0
v 0 1
1 0 0

 | u, v ∈ TR
 .

Elements of RS(i) are called representatives of type i (i = 1, 2, 3).

Proof. As G/P
∼=−→ GL(3, R)/P̃

∼=−→ P2(R), where P̃ is the parabolic

subgroup


∗ ∗ ∗0 ∗ ∗

0 ∗ ∗

 of GL(3, R), the assertion is well-known and

easy to show. The second bijection maps the class of a matrix in
GL(3, R) to the element of P2(R) determined by the first column. �

(11.5) We let s : R−→{0, 1, . . . , n} be the truncated valuation on R,
s(a) = i if a ∈ T iR�T i+1R for i < n, s(0) = n. For x ∈ RS(1) with
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coordinates v, w, we define s(x) := min{s(v), s(w)}. Then

(11.5.1)
|{x ∈ RS(1) | s(x) = s} = (q2 − 1)q2(n−1−s) 0 ≤ s < n

= 1 s = n
.

11.6 Proposition.

(i) For x ∈ RS(1) with s(x) = s, we have

|P ∩ xC| = (q − 1)qn and thus |P ∩ xU | = qn, s = 0
= qn+2s ” qn+2s, 1 ≤ s < n

2
q2n ” q2n, n

2
≤ s < n

(q2 − 1)q2n ” q2n, s = n.

(ii) The formulas of (i) remain true if C is replaced by yC = yCy−1,
y ∈ P .

Proof. (i) Let x =

1 0 0
v 1 0
w 0 1

 ∈ RS(1) and g =

 a b c
0

γ
0

 repre-

sent an element of C, that is, a ∈ F∗, b, c ∈ R, γ ∈ Car ⊂ GL(2,F).
A small calculation shows that xg = xgx−1 lies in P if and only if the
following condition holds:

(∗) (a− (vb+ wc))

(
v

w

)
− γ
(
v

w

)
=

(
0

0

)
in R2.

Suppose that s = 0 . Considered (mod T )), (∗) means that
(
v
w

)
is an

eigenvector for γ with eigenvalue a− (vb−wc). That is, γ is the scalar
matrix corresponding to a′, the unique element of F that satisfies a′ ≡
a− (vb+wc)( mod T ). Then (∗) becomes (a−a′− (vb+wc))

(
u
v

)
=
(

0
0

)
.

As
(
u
v

)
6≡
(

0
0

)
(mod T ), we find a′ = a − (vb + wc) belongs to F∗, and

in this case γ is the scalar matrix a′. If v is a unit in R then a, a′, c
may be chosen freely and we may solve for b in order that (∗) holds; if
otherwise w is a unit then we may freely choose a, a′, b and solve for c.
This yields

|P ∩ xC| = (q − 1)2qn/(q − 1) = (q − 1)qn

(where the denominator q− 1 takes care for the group Z that must be
divided out).

Suppose that 0 < s < n . Then (vb + wc)
(
v
w

)
≡
(

0
0

)
(modT 2s), and

(∗) yields

a

(
v

w

)
− γ
(
v

w

)
≡
(

0

0

)
(mod T s+1),
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which is possible only for γ ≡
(
a 0
0 a

)
(modT s+1), so γ =

(
a 0
0 a

)
.

Then (∗) becomes

(∗′) (vb+ wc)

(
v

w

)
=

(
0

0

)
independently of a.

Now suppose 0 < s < n/2 . Then (∗′) is equivalent with s(vb+wc) ≥
n− s. If s(v) = s(x) then c may be freely chosen, and by Lemma 11.7
there are precisely q2s many b ∈ R such that s(vb + w′) ≥ r − s, with
w′ = w · c. If otherwise s(w) = s(x), b may be chosen freely, and there
are q2s many choices for c. We thus find |P∩xC| = (q−1)qr+2s/(q−1) =
qr+2s.

If n/2 ≤ s < n then a, b and c may be chosen freely, so |P ∩ xC| =

(q − 1)q2r/(q − 1) = q2r.

The case s = n , i.e., x = 1 is trivial.

(ii) A closer look to the counting arguments used in (i) (together with
(11.3)) shows that these also apply to the case where the entry γ
of g runs through an arbitrary Cartan subgroup in GL(2, R), i.e., a
GL(2, R)-conjugate of Car ↪→ GL(2,F) ↪→ GL(2, R). �

11.7 Lemma. Suppose 0 < s < n− s < n, and let v, w′ ∈ R be given
with s(v) = s ≤ s(w′). Then there are precisely q2s elements b ∈ R such
that s(vb+w′) ≥ n−s. �

Proof. Easy and omitted. �

11.8 Proposition.

(i) Let x ∈ RS(2) ∪ RS(3). Then |P ∩ xC| = (q − 1)qn and thus
|P ∩ xU | = qn.

(ii) The assertion of (i) remains true if C is replaced by yC, y ∈ P .

Proof. (i) Let x =

u 1 0
1 0 0
w 0 1

 ∈ RS(2), g =

 a b c
0

γ
0

 ∈ C be as

in the proof of (11.6). Calculation yields:

(∗) xg ∈ P ⇔ b = 0 and γ a scalar a′ ∈ R∗.
Therefore a, a′ ∈ F∗and c ∈ R may be arbitrarily chosen in order that
xg ∈ P . That is,

|P ∩ xC| = (q − 1)2qn/(q − 1) = (q − 1)qn.

For x =

u 1 0
v 0 1
1 0 0

 ∈ RS(3) we find the same condition (∗), which

yields the same value for |P ∩ xC|.
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(ii) As in (11.6) the above arguments turn over to yC. �

(11.9) We now have control of the ramification numbers aQ = aQ(ϕ0)
of the cusps Q. Namely,

(11.9.1)
∑

Q cusp of X

aQ = [P : C]
∑
x∈RS

(|P ∩ xC|+ |P ∩ xU | − 2)

by (11.2.1), where the ingredients are given by (11.6) and (11.8).

We define for later use:

(11.9.2) T = T (3, n) =
∑
x∈RS

(|P ∩ xC|+ |P ∩ xU |)

11.10 Proposition. The quantity T is given by

T = q2(n+1) + (q + 1)q3n + 2q2n(q2[n/2] − 1) + 2[
n− 1

2
](q2 − 1)q3n−2,

where [ . ] ist the Gauß bracket.

Proof. This follows from inserting the values of |P ∩ xC| and |P ∩ xU |
given by (11.6) and (11.8) and summing up. We omit the complicated
but elementary calculations. �

Due to the next observation, there are no non-cuspidal ramification
contributions.

11.11 Proposition. The map ϕ0 = ϕ3,2
0 (T n) : X3,2(T n)−→X3,2

0 (T n)
is unramified off cusps.

Proof. The only possible ramification may appear at elliptic points.
Let Q0 ∈ X = X3,2(T n) be one such, with ramification group GQ0 =
Car/Z ⊂ G with respect to ϕ, where Car = Car(3) ∼= (F(3))∗ is a Cartan

subgroup of GL(3,F). Then G/GQ0

∼=−→ {elliptic points of X}. For
x ∈ G and Q = x(Q0), the ramification group w.r.t. ϕ0 is P ∩ xGQ0 :=
PQ. As the natural map π : G−→GL(3, R/T )/Z = PGL(3,F) has a p-
group as kernel, π maps PQ isomorphically onto its image in PGL(3,F).
But the intersection of a Cartan group with a parabolic group is trivial
in PGL(3,F); hence PQ = {1} and Q is unramified in ϕ0. �

Remark. The above statement “ϕr,k0 (N) : Xr,k(N)−→Xr,k
0 (N) is

unramified off cusps” holds more generally for all (r, k) and all N ∈ A
that satisfy: gcd {r, deg p | p a prime divisor of N} = 1. Otherwise
there will occur some elliptic ramification.

(11.12) Next, we apply the RHF twice: to ϕ : X−→X3,2(1) = P1 and
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to ϕ0 : X−→X0, and find for the Euler-Poincaré characteristics

e(X) = 2|G| − |G|
|C|

(|C|+ |U | − 2)− |G| q2 − q
q2 + q + 1

(by (9.2))

= |P |e(X0)− |P |
|C|
T + 2

|G|
|C|

(by (11.9) and (11.11)).

Solving and inserting the cardinalities, we may determine e(X0) and
g(X0) = 1− e(X0)/2: see Theorem 11.13.

Now we suppress the restriction to r = 3 and consider the ramified
covering ϕr,r−1

0 (T n) : Xr,r−1(T n)−→Xr,r−1
0 (T n) for arbitrary r ≥ 3.

All the definitions, calculations and assertions from (11.1) to (11.2)
generalize. This finally yields:

11.13 Theorem. The Euler-Poincaré characteristic of Xr,r−1
0 (T n) is

for r ≥ 3 given by
(11.13.1)

e(Xr,r−1
0 (T n)) = − qr−1 + q − 2

(qr−1 − 1)(q − 1)
q(r−1)(n−1) +

T (r, n)

(qr−1 − 1)q(r−1)n
.

Here T (3, n) is as in (11.10), and for r ≥ 4:
(11.13.2)

T (r, n) = q(r−1)(n+1) + qr−1−1
q−1

q(2r−3)n−r+3 + 2q(r−1)n(q(r−1)[n
2

] − 1)

+2(qr−1 − 1)( q
(r−3)n−1

2 −1
qr−3−1

)qrn−2+[n
2

](r−3).

Accordingly, the genus is
(11.13.3)
gr,r−1

0 (T n) = g(Xr,r−1
0 (T n))

= 1 +
qr−1 + q − 2

2(qr−1 − 1)(q − 1)
q(r−1)(n−1) − T (r, n)

2(qr−1 − 1)q(r−1)n
.

11.14 Remarks. (i) The special role of r = 3 in T (r, n) vanishes if

we evaluate the factor q(r−3)[n−1
2 ]−1

qr−3−1
in the last summand of T (r, n) by de

l’Hôpital’s rule, regarding q as a variable. That factor actually comes
from a geometric series in qr−3, which collapses to the number [n−1

2
] of

its terms for r = 3.

(ii) There is no reason a priori that (r, k)-sparse Drinfeld modules or

their moduli schemes M r,k(N) resp. M r,k
0 (N) should be related to

(r, r − k)-sparse Drinfeld modules or their moduli schemes. However,
our purely group theoretic description (9.3) of gr,k(N) shows that it
remains unchanged under replacing k by r − k. It is easy to see that
similarly gr,k0 (N) = gr,r−k0 (N) for arbitrary data, r, k and N .

11.15 Table. The first few values of gr,r−1
0 (T n) = gr,10 (T n) are given
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in the table

n gr,r−1
0 (T n)

1 0
2 0
3 qr−2(qr−1 + q − 2)/2
4 qr−1(q2r−3 + q2r−4 + qr−1 − 2qr−3 − 1)/2

11.16 Lemma. The quantity T (r, n) satisfies limn→∞ q
−(r−1)(2n−1)T (r, n) =

0.

Proof. It suffices to show the assertion for each of the four summands
of T (r, n) in (11.13.2) or (11.10). This is obvious for the first one, and
follows by small calculations for the three other terms. �

The lemma means that the term containing T (r, n) in (11.13.3) has
strictly smaller magnitude compared to the principal term. Therefore:

11.17 Corollary. gr,r−1
0 (T n) ∼ qr−1+q−2

2(qr−1)(q−1)
q(r−1)(n−1) as n tends to in-

finity. �

Here f ∼ g means asymptotic equivalence of functions f, g on N:

f ∼ g :⇔ lim
n→∞

f(n)/g(n) = 1.

12. Proof of Theorem C.

We present lower estimates for gr,k0 (N) for general data r, k,N , from
which Theorem C will follow.

(12.1) The quantity

(12.1.1) εr,k(N) := [G(N) : G(N) ∩ P (N)]

plays an important role in our formulas. We collect without proofs a
number of easily established properties.

(12.12) The natural map induces a bijection

G(N)/G(N) ∩ P (N)
∼=−→ G̃(N)/P (N).

(12.1.3) The residue class set G̃(N)/P (N) is in natural bijection with
Grassr,r−k(A/N), the set of free direct summands of dimension r−k of
the A/N -module (A/N)r, through the map that associates with each
γ ∈ G̃(N) the submodule generated by the first r − k columns.

(12.1.4) ε(N) is weakly multiplicative, that is εr,k(N1N2) = εr,k(N1) ·
εr,k(N2) if (N1, N2) = 1.
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(12.1.5) If (N) = pn with a prime p of A then

εr,k(N) = εr,k(p)q(r−k)k(n−1) deg p,

where

εr,k(p) = |Grassr,r−k(Fp)| =
GL(r,Fp)

|GL(r − k,Fp)| |GL(k,Fp)|
q−(r−k)k deg p.

Here Fp = A/p = F(deg p).

The preceding suffices to determine εr,k(N) in all cases. For N = T n

we find

(12.1.6) εr,k(T n) =
GL(r,F)

|GL(r − k,F)| |GL(k,F)|
q(r−k)k(n−2).

For such general k, the exact evaluation of the ramification numbers in
ϕr,k0 (T n) : Xr,k(T n)−→Xr,k

0 (T n) has not yet been carried out. However,
a crude estimate (omitted) shows that similar to (11.16) their contri-
bution to the RHF is of smaller magnitude compared to the principal
term. Therefore, arguing as in (11.12), we find

12.2 Proposition. gr,k0 (T n) ∼ qr−k+qk−2
2(qr−k−1)(qk−1)

εr,k(T n)( q−1
qr−1

) as n→∞.

�

We could now use (11.17) and (12.2) to deduce asymptotic lower es-
timates of the ratio of numbers of F(r)-rational points/genera for the

attached curves Xr,k
0 (T n). That estimate doesn’t however depend on

the special towers Xr,k
0 (T n) but is valid in much greater generality.

(12.3) For given coprime natural numbers r − k and k summing up to
r, we define

(12.3.1) Cq(r − k, k) :=
2(qr−k − 1)(qk − 1)

qr−k + qk − 2
,

the harmonic mean of (qr−k − 1) and (qk − 1). It occurs naturally in
our estimate.

(12.4) We again use the reasoning of (11.12). Fix notation as in (11.1):
e(X), e(X0) and g(X), g(X0) are the Euler-Poincaré characteristics

and the genera of X = Xr−k(N) and X0 = Xr,k
0 (N), respectively,

where N ∈ A is arbitrary non-constant,

(12.4.1) G = G(N), P = P (N)∩G(N), C = G∞(N), U = the p-Sylow
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subgroup of C,

Acusp = Acusp(ϕ0) =
∑

Q cusp of X

aQ(ϕ0), the sum of the cuspidal

ramification numbers in the ramified covering ϕ0 : X−→X0,

A′cusp =
∑
Q

(aQ(ϕ0) + 2) = Acusp + 2|G|/|C|,

Aell = Aell(ϕ0) =
∑

Q elliptic point of X

aQ(ϕ0)

(which in most cases vanishes, see remark after (11.11)).

Then by the RHF,

e(X) = 2|G| − |G|
|C|

(|C|+ |U | − 2)− |G|(q
r − q
q − 1

)(
q − 1

qr − 1
)

= |P |e(X0)− Acusp − Aell.

Equating the right hand sides and cancelling, we find

|G| − |G |U |
|C|
− |G|(q

r − q
qr − 1

) = |P |e(X0)− A′cusp − Aell,

thus

(12.4.2) |G|(1− |U |
|C|
− qr − q
qr − 1

) = |P |e(X0)− A′cusp − Aell.

Now [C : U ] = (qr−k − 1)(qk − 1)/(q − 1) =: m, so the factor on the
left hand side is
(12.4.3)

1− |U |
|C|
− qr − q
qr − 1

=
q − 1

qr − 1
− 1

m
= (

q − 1

qr − 1
)(
−qr−k − qk + 2

(qr−k − 1)(qk − 1)
)

= −2(
q − 1

qr − 1
)Cq(r − k, k)−1,

and (12.4.2) becomes

e(X0) = −2(
q − 1

qr − 1
)Cq(r − k, k)−1 |G|

|P |
+
A′cusp

|P |
+
Aell

|P |
,

thus finally, as |G|/|P | = εr,k(N):

(12.4.4) g(X0) = 1 +
q − 1

qr − 1
Cq(r− k, k)−1εr,k(N)− 1

2|P |
(A′cusp +Aell)

Note that A′cusp > 0, Aell ≥ 0, so B := 1
2|P |(A

′
cusp + Aell) > 0.

(12.5) Now we assume that N is coprime with p = (T − 1) and
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g(X0) = gr,k0 (N) > 0, so that the considerations of Section 10 apply.

For X0(N) = X
r,k

0 (N)(p) we find
(12.5.1)
|{F(r) − rational points of X0(N)}|

genus of X0(N)
≥ |{elliptic points of X0(N)}|

g(Xr,k
0 (N))

=
[G(N) : G(N) ∩ P (N)]

g(Xr,k
0 (N))

(
q − 1

qr − 1
) = (

q − 1

qr − 1
)

εr,k(N)

1 + q−1
qr−1

Cq(r − k, k)−1εr,k(N)−B

> (
q − 1

qr − 1
)

εr,k(N)

1 + ( q−1
qr−1

)Cq(r − k, k)−1εr,k(N)

.

Now assume that N tends to infinity, that is N is an element of a series
(Nn)n∈N with deg Nn−→∞. Then εr,k(N)−→∞, too, we may suppress
the constant summand 1 in the limit, and thus

(12.5.2) lim sup
deg N→∞

|{F(r) − rational points of X0(N)}|
genus of X0(N)

≥ Cq(r − k, k).

This holds for each series (Nn)n∈N of elements Nn of A coprime with
p = (T − 1) and deg Nn−→∞.

Theorem C is established.

12.6 Remarks.

(i) (12.5.2) and Theorem C are valid for arbitrary series (Nn)n∈N
with deg Nn−→∞; so we need not assume that the Xr,k

0 (Nn)
form a tower, i.e., conditions like Nn|Nn+1.

(ii) In establishing (12.5.2) we didn’t need to evaluate Acusp, Aell;
we just used non-negativity. Any evaluation of these will result
in a sharpening of the inequality (12.5.1) on a finite level.

(iii) Suppose there exists a series (Nn)n∈N for which the analogue of
(11.16) fails, i.e., where the quantity 1

2
A′cusp/|P | as a function

of n has the same magnitude as the principal term in (12.4.4).
(The magnitude cannot be strictly larger than the principal

term, and 1
2
Aell/|P | is smaller anyway.) Then g(Xr,k

0 (Nn)) would
grow slower, and we had a strictly sharper lower estimate than
(12.5.2). By analogy with (11.16) and (12.2), this appears
highly unlikely.

13. Concluding remarks.

In this final section we address some open questions that naturally arise
from the present work, and propose topics of future research.

(13.1) In order to construct the curves that occur in Theorem C, viz

X0(N) = reduction of Xr,k
0 (N) at the place p of A of degree one,



TOWERS OF GL(r)-TYPE 55

we had chosen the parabolic subgroup P =

{(
∗ ∗
0 ∗

)}
of G̃(N) and

put Xr,k
0 (N) = P \Xr,k(N) (see Section 10). The fact that G∞(N) ⊂ P

is helpful for the calculation of gr,k0 (N) performed in a special case in
Section 11, but is not crucial for the construction of good towers as
in Theorem C. Instead of P we could use any subgroup H of G̃(N)
with det(H) = (A/N)∗/F∗, for example other parabolic groups (i.e.,
groups H encompassing a Borel subgroup of G̃(N)), in particular the
Borel subgroup of upper triangular matrices in G̃(N). Then again,

Xr,k
H (N) := H \ Xr,k(N) is defined over K with good reduction at

places p 6 |N , and the reasoning of Section 12 yields the statement of
Theorem C even for that larger class of curves. We preferred to state
Theorem C as in the introduction for the Xr,k

0 (N) only, for reasons of
presentation and to avoid technicalities.

(13.2) While that generalization - replacing Xr,k
0 (N) by Xr,k

H (N) as
above - doesn’t give better constants in the asymptotic estimate (0.4.1),
it enhances our supply of curves which are candidates for a large ratio
number of rational points/genus on a finite level.

As many of the optimal or record curves in [9] are modular of some
sort (elliptic, Shimura, Drinfeld ...) or derived from such curves, it is
quite likely that intelligent choices of the parameters (r, k), N and H
will give rise to new record curves. Therefore we propose to perform a
systematic study of the Xr,k

H (N), which essentially means to calculate
their genera. To do so, we must generalize the results of section 11
from

• k = r − 1 to arbitrary k, notably k ≈ r/2;
• N = T n to arbitrary elements N of A;
• H = P to arbitrary subgroups H as in (13.1).

There will result awfully complicated formulas, but which will allow a
computer-aided search for interesting curves.

(13.3) The curves Xr,k(N) are defined as the projective models of
Y r,k(N) = Γ(N) \ Ωr,k, where only the latter have an immediate mod-
ular interpretation. In our work we by-passed any modular interpre-
tation of the cusps. It is desirable to work this out and to describe
the local geometry of Xr,k(N) at its intersection with the boundary of
Γ(N) \ Ωr.

(13.4) The reduction F of F0 modulo ∞ (see the proof of Proposition
6.8) is some local version of Xr,k(N), but interesting in its own as a
(not necessarily connnected) affine curve over F. Describe its connected
components and their projective models!
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(13.5) What is the motivic significance of the curves Xr,k
H (N)? More

specifically, is there a comprehensive characterization of the abelian va-
rieties that occur as isogeny factors of the Jacobian of Xr,k

H (N) similar

to the case X2,1
0 (N) dealt with in [17] Sect. 8?

(13.6) Instead of the vanishing locus Ωr,k of g1, . . . , ĝk, . . . , gr−1 in Ωr

one might consider the vanishing locus of less than r − 2 of the forms
gi (or of other modular forms on Ωr). The associated subvarieties of
Γ(N) \Ωr can be studied with methods similar to those of the present
paper.

(13.7) It would be interesting to describe the image λ(Ωr,k) of Ωr,k (or
of more general vanishing loci as in (13.6)) under the building map
λ : Ωr−→I(Kr

∞)(Q) of (6.5). We expect that λ(Ωr,k) is a sub-tree T r,k
of the simplicial complex I(Kr

∞), and the graph Γ(N) \ T r,k should
provide a combinatorial picture of the canonical reduction at ∞ of
Γ(N) \ Ωr,k. Presumably, this allows a study of Γ(N) \ T r,k similar to
that performed in [16] for the case (r, k) = (2, 1).

The preceding isn’t but a brief extract of a long list of natural questions
that come up in connection with the moduli of sparse Drinfeld modules
and the curves Xr,k(N).
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