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50-370 WrocÃlaw

Poland
bogdan@pwr.edu.pl

Yana Butko (Kinderknecht)
Saarland University

Department of Mathematics
P.O. Box 15 11 50
66041 Saarbrücken

Germany
yanabutko@yandex.ru, kinderknecht@math.uni-sb.de

Karol Szczypkowski
Universität Bielefeld
Postfach 10 01 31
D-33501 Bielefeld

Germany
and

WrocÃlaw University of Technology
Wybrzeże Wyspiańskiego 27
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Abstract
Schrödinger perturbations of transition densities by singular po-

tentials may fail to be comparable with the original transition den-
sity. A typical example is the transition density of a subordinator
perturbed by any unbounded potential. In order to estimate such
perturbations it is convenient to use an auxilary transition density
majorant and the 4G inequality, which is a modification of the 3G
inequality, involving the original transition density and the majorant.
We prove 4G inequality for the 1/2-stable and inverse Gaussian subor-
dinators, discuss the corresponding class of admissible potentials and
indicate estimates for the resulting transition densities of Schrödinger
operators. The connection of transition densities to their generators
is made via the weak-type notion of fundamental solution, and we
prove a uniqueness result for fundamental solutions in the generality
of strongly continuous operator semigroups.

MSC 2010: Primary 47D06, 47D08; Secondary 35A08, 35B25

Keywords: 4G inequality, Schrödinger perturbation, subordinator,
fundamental solution

1 Introduction and Preliminaries

Schrödinger perturbation consists in adding to a given operator an operator
of multiplication. On the level of inverse operators the addition results in
perturbation series. We focus on transition densities p perturbed by non-
negative functions q. Our main goal is to give pointwise estimates for the
resulting perturbation series p̃ under suitable integral conditions on p and q.
For instance, bounded potentials q produce transition densities p̃ compara-
ble with the original p in finite time. In a series of recent papers, integral
conditions leading to comparability of p̃ and p were proposed which allow for
explicit and rather singular potentials q if p satisfies the 3G Theorem [2, 4].
The integral conditions compare the second term in the perturbation series,
that which is linear in q, with p, the first term of the series. The comparison
is meant to prevent the instantaneous blowup and to control the long-time
accumulation of mass. The first property is more crucial and gets secured
by smallness conditions, like 0 ≤ η < 1 below. The results are analogues of
Gronwall inequality [3] and they utilize p as an approximate majorant for
p̃ in finite time [4]. Similar estimates for Green-type kernels were recently
obtained in [8], [11], [9].
The 3G Theorem, which is related to the quasi-metric condition [8], is com-
mon for transition densities with power-type decay, e.g. the transition den-
sity of the fractional Laplacian. However, already the Gaussian kernel fails to

1



satisfy 3G. In [5] and [3] a more flexible majorization technique is proposed,
motivated by earlier results of [17]. Namely, another transition density p∗

serves as an approximate majorant for the perturbation series. Introducing
p∗ is not merely a technical device: for unbounded q, p̃ may fail to be com-
parable with p in finite time. As we show below, this is always the case if
p is the transition density of a subordinator. Finding an appropriate p∗ is
essentially tantamount to estimating p̃, cf. (1.10), and may be hard, but oc-
casionally p∗ suffices that is a dilation of p. So is the case for the 1/2-stable
subordinator, and the slightly more general inverse Gaussian subordinator,
which are the focal examples in this work. The p∗ majorization technique
involves an integral smallness condition for p, q and p∗, which is implied by
the familiar Kato-type conditions, provided p and p∗ satisfy 4G inequality.
In this paper we prove a 4G inequality for the transition density of the in-
verse Gaussian subordinator, including the 1/2-stable subordinator, reveal
a wide class of unbounded Schrödinger potentials admissible for p, and es-
timate Schrödinger perturbations series for this transition density using the
framework of [5]. We thus extend the scope of the p∗ majorization technique
for Schrödinger perturbations beyond the transition densities of diffusion
processes discussed in [5]. We expect 4G to be valid quite generally, but at
present it is even open for the α-stable subordinators with α 6= 1/2. We note
that the methods of [4], which make assumptions on potentials q in terms of
bridges (see also [2]), fail for unbounded q in this case. In fact, if p is the
transition density of a subordinator and q ≥ 0 is unbounded, then p and p̃
are never comparable, which is proved in Section 3. The above case study
and general results explain why we propose 4G and the framework of [5] as
a viable general method to deal with unbounded Schrödinger perturbations
of transition densities.
The structure of the paper is as follows. Below in this section we give notation
and preliminaries. In Section 2 we present 4G inequality and applications
to Kato-type perturbations for the 1/2-stable subordinator and the inverse
Gaussian subordinator. In Section 3 we discuss unbounded perturbations q,
when applied to subordinators. In Section 4 we discuss the notion of the
fundamental solution and give application to Lévy-type generators.
Let X be an arbitrary set with a σ-algebra M and a (non-negative) σ-
finite measure m defined on M. To simplify the notation we write dz for
m(dz) in what follows. We also consider the Borel subsets B of R, and the
Lebesgue measure, du, defined on R. The space-time, R × X, is equipped
with the σ-algebra B ×M and the product measure du dz = dum(dz). We
consider a measurable transition density p on space-time, i.e. we assume that
p : R×X×R×X → [0,∞] is B×M×B×M-measurable and the following
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Chapman-Kolmogorov equations hold for all x, y ∈ X and s < u < t:
∫

X

p(s, x, u, z)p(u, z, t, y) dz = p(s, x, t, y) . (1.1)

All the functions considered below are assumed measurable on their respec-
tive domains. We consider (nonnegative and B ×M-measurable) function
q : R×X → [0,∞]. The Schrödinger perturbation p̃ of p by q is defined as

p̃(s, x, t, y) =
∞∑

n=0

pn(s, x, t, y) , (1.2)

where p0(s, x, t, y) = p(s, x, t, y) and, for n = 1, 2, . . .,

pn(s, x, t, y) =

∫ t

s

∫

X

p(s, x, u, z)q(u, z)pn−1(u, z, t, y)dzdu . (1.3)

The above is an explicit method of constructing of new transition densities.
In particular, p̃ satisfies the Chapman-Kolmogorov equations [2, Lemma 2].
Since q ≥ 0, we trivially have p̃ ≥ p, and we focus on upper bounds for p̃.
These may be obtained under suitable conditions on p1. In [4] (see also [2],
[13] and [18, Lemma 3.1]), the authors assume that for all s < t, x, y ∈ X,

∫ t

s

∫

X

p(s, x, u, z)q(u, z)p(u, z, t, y)dzdu ≤ [η + Q(s, t)]p(s, x, t, y), (1.4)

where 0 ≤ η < ∞ and Q is superadditive: 0 ≤ Q(s, u) + Q(u, t) ≤ Q(s, t).
The following sharp estimates follow: for all s < t, x, y ∈ X,

p̃(s, x, t, y) ≤ p(s, x, t, y)

(
1

1− η

)1+Q(s,t)/η

, (1.5)

provided 0 < η < 1, and for η = 0 we even have

p̃(s, x, t, y) ≤ p(s, x, t, y)eQ(s,t) . (1.6)

The condition (1.4) may be considered as property of relative boundedness
of q, or Miyadera-type condition for bridges [14, 2]. It is convenient to use
(1.4), e.g., for the transition density of the isotropic α-stable Lévy process
because the so-called 3G inequality holds in this case:

p(s, x, u, z) ∧ p(u, z, t, y) ≤ const p(s, x, t, y), s < u < t, x, y, z ∈ Rd.

3G simplifies the verification of (1.4) and essentially specifies the accept-
able growth of q, cf. [2, Corollary 11], [4, Section 4]. In general, however,
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condition (1.4) may be troublesome. For instance the transition density of
the Brownian motion fails to satisfy 3G and (1.4) may be difficult to ver-
ify. Moreover, as we see below, for some transition densities (1.4) holds for
q(u, z) = q(z) only if q is bounded. This explains the need for modifications
of [4]. The approach of [5] is based on the assumption that for all s < t,
x, y ∈ X,
∫ t

s

∫

X

p(s, x, u, z)q(u, z)p∗(u, z, t, y) dz du ≤ [
η + Q(s, t)

]
p∗(s, x, t, y) . (1.7)

Here, furthermore, it is assumed that 0 ≤ η < ∞, Q(s, t) is superadditive,
right-continuous in s and left-continuous in t, and p∗ is a majorizing transition
density, i.e. there is a constant C ≥ 1 such that for all s < t and x, y ∈ X,

p(s, x, t, y) ≤ Cp∗(s, x, t, y) . (1.8)

The above assumptions are abbreviated to q ∈ N (p, p∗, C, η, Q). By [5,
Theorem 1.1], if q ∈ N (p, p∗, C, η,Q) with η < 1, then for ε ∈ (0, 1− η),

p̃(s, x, t, y) ≤ p∗(s, x, t, y)

(
C

1− η − ε

)1+
Q(s,t)

ε

, s < t, x, y ∈ X . (1.9)

For instance p∗(s, x, t, y) = p(cs, x, ct, y) with c > 1 is a convenient choice for
the Gaussian kernel [5]. In principle, (1.7) relaxes (1.4) and allows for more
functions q. This is seen in [5] and again in Section 3 below, where we consider
applications to transition densities of subordinators. We should note that the
flexibility comes at the expense of the sharpness of the resulting estimate,
as seen from comparing (1.5) and (1.6) with (1.9). Also, the methods of
[5] and the present paper are restricted to transition densities, while the
methods of [4] handle general forward integral kernels. Last but not least, it
may be cumbersome to point out p∗ suitable for p, which essentially requires
guessing the rate of inflation in p̃ for a given class of perturbations q. In this
connection we note that, trivially,

∫ t

s

∫

X

p(s, x, u, z)ηq(u, z)p̃(u, z, t, y) dz du ≤ ηp̃(s, x, t, y) . (1.10)

Thus, for perturbations of p by ηq ≥ 0 with 0 ≤ η < 1 one may take p∗ = p̃,
which indicates that estimating p̃ and finding an appropriate majorant p∗

are related. Comparing to the approach of [4] we finally note that p∗ should
reflect the growth patterns of p̃, which p is not always able to do.
We say that q : R×X → R satisfies the parabolic Kato condition if

lim
h→0+

sup
s∈R,x∈X

∫ s+h

s

∫

X

p(s, x, u, z)q(u, z) dzdu = 0 , (1.11)

4



and

lim
h→0+

sup
t∈R,y∈X

∫ t

t−h

∫

X

p(u, z, t, y)q(u, z) dzdu = 0 , (1.12)

cf. [2, (29), (30)]. It is sometimes useful to strengthen (1.11) and (1.12) by
adding possible time change (see [17]): we say that q : R ×X → R belongs
to the parabolic Kato class if for every c > 0,

lim
h→0+

sup
s∈R,x∈X

∫ s+h

s

∫

X

p(cs, x, cu, z)|q(u, z)| dzdu = 0 , (1.13)

and

lim
h→0+

sup
t∈R,y∈X

∫ t

t−h

∫

X

p(cu, z, ct, y)|q(u, z)| dzdu = 0 . (1.14)

For time-independent q, i.e. when q(u, z) = q(z), both parabolic Kato con-
ditions are equivalent. For details of the relations between (1.4) and (1.11),
(1.12) we refer the reader to [2]. A similar discussion can be carried out
for (1.7), and if we specify p∗(s, x, t, y) = p(cs, x, ct, y), then (1.14) will be
involved.
Of particular interest is the special case of convolution semigroups of prob-
ability measures {pt}t≥0 on Rd defined by the generating (Lévy) triplets
(A, b, ν) [15], and generators

Lf(x) =
1

2

d∑

j,k=1

Aj,k
∂2f

∂xj∂xk

(x) +
d∑

j=1

bi
∂f

∂xj

(x) (1.15)

+

∫

Rd

(
f(x + y)− f(x)−

d∑
j=1

yj
∂f

∂xj

(x)1|y|≤1(y)

)
ν(dy) .

Let Ptf(x) =
∫
Rd f(z + x)pt(dz), t ≥ 0. Recall that P = (Pt)t≥0 forms

a strongly continuous semigroup on (C0(Rd), || · ||∞), whose infinitesimal
generator L coincides with (1.15) on C2

0(Rd). For all s ∈ R, x ∈ Rd and
φ ∈ C∞

c (R × Rd) (smooth compactly supported functions on space-time
R× Rd) we have

∫ ∞

s

∫

Rd

pu−s(dz)
[
∂uφ(u, x + z) + Lφ(u, x + z)

]
dzdu = −φ(s, x) . (1.16)

The identity is essentially a consequence of the fundamental theorem of calcu-
lus and is proved in the generality of strongly continuous operator semigroups
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in Section 4. In particular we provide a uniqueness result for fundamental
solutions. A special case of L is the Weyl derivative of order 1/2 on the real
line:

∂1/2f(x) = π−1/2

∫ ∞

x

f ′(z)(z − x)−1/2 dz , f ∈ C1
c (R) . (1.17)

We then have

pt(dz) = (4π)−1/2tz−3/2 exp
{−t2/(4z)

}
1z>0 dz , (1.18)

the distribution of the 1/2-stable subordinator [15] (also called the Lévy
subordinator). More generally we let λ ≥ 0, δ > 0 and consider

p(t, z) = (4π)−1/2δtz−3/2 exp

{
−(δt− 2

√
λz)2

4z

}
1z>0 , z ∈ R, t > 0.

(1.19)
We note that p(t, x) is the density function of the inverse Gaussian subor-
dinator i.e. the process ξt = inf{s > 0 : Bs + γs = σt}, where B is the
standard one-dimensional Brownian motion, σ = δ/

√
2 and γ =

√
2λ (cf.

[1]). For f ∈ C1
c (R) the corresponding generator is calculated as

Lf(x) =
1/2

Γ(1/2)

∫ ∞

x

f ′(z) Γλ(−1/2, z − x) dz . (1.20)

Here Γλ(a, z) =
∫∞

z
e−λyya−1 dy for λ, z > 0, a ∈ R, is the incomplete gamma

function. For the readers’s convenience we prove (1.17) and (1.20) in Sec-
tion 4. The generator L is the pseudo-differential operator with the Fourier
symbol u 7→ σ(

√
γ2 + 2iu− γ), and the Laplace symbol u 7→ σ(

√
γ2 + 2u−

γ), see, e.g., [1].

2 4G inequality for the inverse Gaussian sub-

ordinator

Let λ ≥ 0, δ > 0 and let p be the density function given by (1.19). This
density function may be obtained from the density function of the 1/2-stable
subordinator by the Esscher transform and time rescaling, see [15, Example
33.15] or [6, Sec. 4.4.2]. Namely, the Lévy measure ρ of the inverse Gaussian
subordinator is obtained by the exponential tilting of the Lévy measure ν of
the 1/2-stable subordinator:

ν(dy) =
1/2

Γ(1/2)
y−3/21y>0 dy and ρ(dy) = e−λyν(dy).
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For c > 0, 0 ≤ s ≤ t and 0 ≤ x ≤ y we define the transition density

pc(s, x, t, y) := cp(c(t− s), c(y − x)), (2.1)

where p is given by (1.19). If 0 < a < b, then

pb(s, x, t, y) ≤ (b/a)1/2 pa(s, x, t, y) . (2.2)

We observe that the 3G inequality does not hold for pc. Indeed, if u − s =
t− u = z − x = y − z = θ, then

pc(s, x, u, z) ∧ pc(u, z, t, y) = (4π)−1/2δ
√

c θ−1/2 exp
{
−c θ(δ −

√
λ)2/4

}
,

pc(s, x, t, y) = (4π)−1/2δ
√

c (2θ)−1/2 exp
{
−2c θ(δ −

√
λ)2/4

}
,

and the second expression decays exponentially faster as θ →∞.
We recall results of [5, Section 3] on the Gaussian kernel

gc(s, x̄, t, ȳ) := [4π(t− s)/c]−d/2 exp
{−|ȳ − x̄|2/[4(t− s)/c]

}
, (2.3)

where c > 0, 0 < s < t, x̄, ȳ ∈ Rd and d ∈ N. Namely, let

L(α) = max
τ≥α∨1/α

[
ln(1 + τ)− τ − α

1 + τ
ln(ατ)

]
,

and for 0 < a < b denote M =
(

b
b−a

)d/2
exp

[
d
2
L( a

b−a
)
]
. Then,

gb(s, x̄, u, z̄)ga(u, z̄, t, ȳ) ≤ M [gb−a(s, x̄, u, z̄) ∨ ga(u, z̄, t, ȳ)] ga(s, x̄, t, ȳ) ,
(2.4)

where s < u < t and x̄, z̄, ȳ ∈ Rd [5, Theorem 1.3 and Remark 3.2]. More-
over, M is the optimal constant in (2.4). This 4G inequality was used in [5]
to obtain Gaussian estimates for fundamental solutions of Schrödinger per-
turbations of second order parabolic differential operators. In this section we
prove the similar inequality for the transitional density pc defined in (2.1).

Theorem 2.1 (4G). Let 0 < a < b. For all s < u < t and x < z < y,

pb(s, x, u, z)pa(u, z, t, y) ≤ D
[
pb−a(s, x, u, z) ∨ pa(u, z, t, y)

]
pa(s, x, t, y) (2.5)

holds with D =
(

b
b−a

)3/2
exp

[
3
2
L

(
a

b−a

)]
.
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Proof. We denote r̄ = (r, 0, 0) ∈ R3 for r ∈ R. For c > 0, s < t, x < y,

pc(s, x, t, y) = (4πδ(t− s)/c) gc(x, δs̄− 2
√

λx̄, y, δt̄− 2
√

λȳ) .

By (2.4) for all s < u < t and x < z < y we have

pb(s, x, u, z)pa(u, z, t, y)

=
(4πδ)2(u− s)(t− u)

ab
gb(x, δs̄− 2

√
λx̄, z, δū− 2

√
λz̄)ga(z, δū− 2

√
λz̄, y, δt̄− 2

√
λȳ)

≤ (4πδ)2(u− s)(t− u)

ab
D ga(x, δs̄− 2

√
λx̄, y, δt̄− 2

√
λȳ)×

× [gb−a(x, δs̄− 2
√

λx̄, z, δū− 2
√

λz̄) ∨ ga(z, δū− 2
√

λz̄, y, δt̄− 2
√

λȳ)]

≤ D

[(
t− u

t− s

b− a

b

)
pb−a(s, x, u, z) ∨

(
u− s

t− s

a

b

)
pa(u, z, t, y)

]
pa(s, x, t, y)

≤ D
[
pb−a(s, x, u, z) ∨ pa(u, z, t, y)

]
pa(s, x, t, y) .

Recall that the generator L of the process ξt with transition density p is given
by (1.20). Here is a connection of p̃ with L + q.

Lemma 2.2. If q ∈ N (p, pa, (1/a)1/2, Q, η), where 0 < a < 1, η ∈ [0, 1) and
p, pa are given by (1.19) and (2.1) with c = a, respectively, then

∫ ∞

s

∫

R
p̃(s, x, u, z)

[
∂uφ(u, z) + Lφ(u, z) + q(u, z)φ(u, z)

]
dzdu = −φ(s, x) ,

for φ ∈ C∞
c (R× Rd).

Proof. By (1.16) we have

∫ ∞

s

∫

R
p(s, x, u, z)

[
∂uφ(u, z) + Lφ(u, z)

]
dzdu = −φ(s, x) .

Then the argument is similar to that of [4, Lemma 4].

By Lemma 2.2 and Chapman-Kolmogorov, for φ ∈ C∞
c (R× R) we obtain

∫ t

s

∫

R
p̃(s, x, u, z)

[
∂uφ(u, z) + Lφ(u, z) + q(u, z)φ(u, z)

]
dzdu

=

∫

R
p̃(s, x, t, z)φ(t, w) dw − φ(s, x) , s < t, x ∈ R,
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and by choosing φ constant in time on (s, t), for ϕ ∈ C∞
c (R) we get

∫

R
p̃(s, x, t, z)ϕ(z) dz − ϕ(x) =

∫ t

s

∫

R
p̃(s, x, u, z)

[
Lϕ(z) + q(u, z)ϕ(z)

]
dzdu .

Similar relationships hold for strongly continuous operator semigroups. A de-
tailed discussion of the connection between p̃ and L+ q is given in Section 4.
We now investigate the classN (p, p∗, η, Q,C), where p(s, x, t, y) = pb(s, x, t, y),
p∗(s, x, t, y) = pa(s, x, t, y), C = (b/a)1/2 and 0 < a < b. We only need to
propose conditions that lead to (1.7). We start with a direct consequence of
Theorem 2.1.

Corollary 2.3. Let q : R× R→ R and assume that for all s < t, x < y,

D

∫ t

s

∫

R

[
pb−a(s, x, u, z) + pa(u, z, t, y)

]
|q(u, z)| dzdu ≤ η + Q(s, t) .

Then |q| ∈ N (pb, pa, (b/a)1/2, η, Q).

For V : R× R→ R and c, h > 0 we let

N c
h(V )

= sup
s,x

s+h∫

s

∫

R
pc(s, x, u, z)|V (u, z)|dzdu + sup

t,y

t∫

t−h

∫

R
pc(u, z, t, y)|V (u, z)|dzdu.

Proposition 2.4. Let 0 < a < b and D′ =
(

b−a
a
∨ a

b−a

)1/2
D. If q : R×R→ R

is such that

N
(b−a)∧a
h (q) ≤ η/D′ , (2.6)

for some 0 < h ≤ ∞, then

|q| ∈ N (pb, pa, (b/a)1/2, η, Q) ,

where Q(s, t) = η(t− s)/h.

Proof. Follow [5, p. 165].

The condition limh→0 N c
h(q) = 0 for all c > 0, defines the parabolic Kato

condition, cf. Section 1, and if it is satisfied, then Proposition 2.4 applies.
A thorough discussion of the Kato condition for arbitrary Lévy processes on
Rd is given in the forthcoming paper [10]. For the considered inverse Gaussian
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subordinator (1.19), including the 1/2-stable subordinator, if q(u, z) = q(z)
is time-homogeneous, then the Kato condition is equivalent to

lim
r→0+

sup
x∈R

∫ x+r

x−r

|q(z)||z − x|−1/2dz = 0.

We refer the reader to [10] for this result. In the remainder of this section we
only consider the case λ = 0, i.e. the 1/2-stable subordinator, with emphasis
on honest constants in estimates which are directly available in this case.

Example. Let r > 2 and f : R→ [0,∞] ∈ Lr(R). We consider q(u, z) = f(z).
Observe that for s < u,

∫

R
pδ

c(s, x, u, z) dz =
c′δ

cδ−1
(u− s)−2(δ−1) , δ ≥ 1 ,

where c′δ = (4π)−δ/2(4/δ)3δ/2−1Γ(3δ/2 − 1) ≤ [
(4π)−1/2(6/e)3/2

]δ−1
. By

Hölder’s inequality, for h > 0,

sup
s,x

∫ s+h

s

∫

R
pc(s, x, u, z)q(u, z) dzdu

≤ sup
s,x

∫ s+h

s

(u− s)−2/r du

(
c′r/(r−1)

)(r−1)/r

c1/r
||f ||r

= h1−2/r
[(

c′r/(r−1)

)(r−1)/r
c−1/r||f ||r/(1− 2/r)

]
.

Thus for every c > 0,

N c
h(q) ≤ h1−2/r 2




(
c′r/(r−1)

)(r−1)/r

(1− 2/r) c1/r
||f ||r


 → 0 , if h → 0+ . (2.7)

Notice also that
(
c′r/(r−1)

)(r−1)/r

≤ [
(4π)−1/2(6/e)3/2

]1/r
. Finally, by Propo-

sition 2.4 we obtain that for all 0 < a < b, we have

q ∈ N (pb, pa, (b/a)1/2, η, Q) ,

with arbitrary η > 0 and Q(s, t) = η(t− s)/h, provided h satisfies

h1−2/r
2D

(
b−a
a
∨ a

b−a

)1/2

(1− 2/r)

[
(4π)−1/2(6/e)3/2

(b− a) ∧ a

]1/r

||f ||r = η .

Indeed, (2.7) implies (2.6).
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We keep investigating the class N (pb, pa, (b/a)1/2, η, Q) by estimating N c
h(q)

for time-independent q. We prove an auxiliary lemma in a general case of
α-stable subordinator, α ∈ (0, 1). Let U : R→ R and

Iδ(U) = sup
x∈R

∫

|x−z|<δ

|U(z)|
|x− z|1−α

dz , δ > 0 .

Lemma 2.5. For all c, r, τ > 0 and 0 < α < 1,

sup
s∈R,x∈R

∫ s+τ

s

∫

R
pc(s, x, u, z)|U(z)| dzdu ≤

(
1

c1−αΓ(α)
+

τ

rα

)
Ir(U) .

Here pc(s, x, t, y) := c p(c(t− s), c(y − x)) = p(c1−αs, x, c1−αt, y) and p is the
transition density of the α-stable subordinator.

Proof. Let c > 0 and k(x) =
∫ τ

0
pc(0, 0, u, |x|)du, K(x) =

∫∞
0

pc(0, 0, , u, |x|)du =
|x|α−1/(c1−αΓ(α)) in [5, Lemma 4.2]. Observe that c1 = τ and c2 = rα/(c1−αΓ(α)).

A direct consequence is that for any α-stable subordinator for all s < t, x < t
and h > 0 we have

∫ t

s

∫

R

[
pb−a(s, x, u, z) + pa(u, z, t, y)

]
|q(z)| dzdu pa(s, x, t, y)

= Ih1/α(q)

[
1

Γ(α)

a1−α + (b− a)1−α

[a(b− a)]1−α
+

2(t− s)

h

]
pa(s, x, t, y) .

For α = 1/2 we may use Theorem 2.1 to get for all s < t, x < y and h > 0,

∫ t

s

∫

R
pb(s, x, u, z)|q(z)|pa(u, z, t, y) dzdu

= DIh2(q)

[
1

Γ(1/2)

√
a +

√
b− a√

a(b− a)
+

2(t− s)

h

]
pa(s, x, t, y) .

Corollary 2.6. Let q : R → R be such that Ih2(q) < ∞ for some h > 0.
Then |q| ∈ N (pb, pa, (b/a)1/2, η, Q) with

η = DIh2(q)
(√

a +
√

b− a
)

/
(
Γ(1/2)

√
a(b− a)

)
,

Q(s, t) = 2DIh2(q)(t− s)/h .
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3 Relative boundedness for subordinators with

transition density

In this section we consider an arbitrary transition density p of a subordinator.
Thus, p is space-time homogeneous, p(s, x, t, y) = 0 whenever s ≥ t or y ≤ x,
and p(s, x, t, y) > 0 otherwise. We first discuss time-independent functions
q, aiming at the condition (1.4).
We denote, as usual, ||f ||∞ = ess supx∈R |f(x)|. Let functions (φj)j∈N be
an approximation to identity in L1(R), that is real-valued on R with the
following properties:

φj ≥ 0 and

∫

R
φj(z)dz = 1 , (3.1)

∀δ>0∃j0∈N∀j≥j0 supp(φj) ⊂ (−δ, δ). (3.2)

Lemma 3.1. Let f ∈ L1
loc(R). If supn∈N ||φn ∗ f ||∞ < ∞, then f ∈ L∞(R).

Proof. We see that φn ∗ f is well defined. Let 0 < δ < R and M =
supn∈N ||φn ∗ f ||∞. Choose j0 ∈ N according to (3.2). Since the functions
f1|z|<R ∗ φn converge to f1|x|<R ∈ L1(R) in the L1 norm, a subsequence
f1|z|<R ∗ φnk

converges almost surely to f1|x|<R. For nk ≥ j0,

f1|z|<R ∗ φnk
(x) = f ∗ φnk

(x) , if |x| < R− δ.

Thus for almost all |x| < R− δ,

|f(x)| = lim
k→∞

|f ∗ φnk
| ≤ M .

Therefore |f(x)| ≤ M for almost all x ∈ R.

Lemma 3.2. Let h > 0. Assume that for all 0 < t− s ≤ h and x ∈ R,
∫ t

s

∫

R
p(s, x, u, z)|q(z)| dzdu ≤ M .

Then q ∈ L1
loc(R).

Proof. Let ϕ ∈ C0(R) be such that ϕ ≥ 0, ϕ = 1 on [0, 1/2] and
∫
R ϕ(x) dx =

1. For arbitrary fixed x0 ∈ R we have

M ≥
∫ t

s

∫

R

∫

R
ϕ(x0 − x)p(s, x, u, z)dx |q(z)| dzdu

=

∫ t

s

∫

R
Tu−s ϕ(x0 − z)|q(z)| dzdu ≥ (ε/2)

∫ x0

x0−1/2

|q(z)| dz ,

where 0 < ε ≤ h is such that ||Tuϕ− ϕ||∞ ≤ 1/2 for u ≤ ε.
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Lemma 3.2 generalizes to arbitrary Lévy processes in Rd, see [10].

Theorem 3.3. Let q : R→ R. Assume that for some s < t,

sup
x<y

y−x≤1

∫ t

s

∫

R

p(s, x, u, z)p(u, z, t, y)

p(s, x, t, y)
|q(z)| dzdu < ∞ .

Then q ∈ L∞(R).

Proof. By the assumption there is M ′ > 0 such that for some fixed s < t,
∫ t

s

∫

R

p(s, x, u, z)p(u, z, t, y)

p(s, x, t, y)
|q(z)| dzdu ≤ M ′ , x < y .

By Lemma 3.2, q ∈ L1
loc(R). For s < t and n ∈ N, we let

φn(z) =
1

t− s

∫ t

s

p(s,−1/n, u,−z)p(u,−z, t, 1/n)

p(s,−1/n, t, 1/n)
du , |z| < 1/n ,

and φn(z) = 0 for |z| ≥ 1/n. Obviously φn satisfies conditions (3.1) and
(3.2). Furthermore, for all x ∈ R,

φn ∗ |q|(x) =
1

t− s

∫ t

s

∫

R

p(s, x− 1/n, u, z)p(u, z, t, x + 1/n)

p(s, x− 1/n, t, x + 1/n)
|q(z)|dudz .

Thus, supn∈N ||φn ∗ q||∞ ≤ M ′/(t − s) = M < ∞. Lemma 3.1 ends the
proof.

Corollary 3.4. (i) A time-independent q ≥ 0 satisfies (1.4) if and only if
q ∈ L∞(R).
(ii) Let q : R → [0,∞]. Assume that there are s < t and C ≥ 0 such that
p̃(s, x, t, y) ≤ C p(s, x, t, y) , for all x < y. Then q ∈ L∞(R).

If we allow q to depend on time, obviously the statements of the corollary
are no longer valid. Indeed, let q(u, z) = u

−1/2
+ , where u+ = u ∨ 0. Then for

all s < t and x < y,
∫ t

s

∫

R
p(s, x, u, z)|q(u, z)|p(u, z, t, y) dzdu ≤ 2(t+ − s+)1/2p(s, x, t, y) .

We see that such unbounded time-dependent q belongs to the Kato class of
every transition density p.
Corollary 3.4 means that the methods of [4] fail to deliver interesting per-
turbation results for transition densities of subordinators. On the contrary,
as we see in Section 2, methods based on auxiliary semigroup majorants and
4G have the potential to handle such situations.
The next example builds on the ideas proposed in [13, Example 4].
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Example. Consider the second term p1 of the perturbation series (1.2) for p̃.
Let q(u, z) ≥ 0 be such that

sup
s≤u≤t
x≤z≤y

q(u, z) ≤ η/(t− s) ,

for some η ≥ 0 and for all s < t, x < y such that (s, x), (t, y) ∈ F :=
{(u, z) : q(u, z) > 0}. Then for all s < t and x < y,

p1(s, x, t, y) ≤ η p(s, x, t, y) . (3.3)

For the proof we consider a Borel non-decreasing function ω : [s, t] → R, s <
t, such that ω(s) = x < y = ω(t) let T (ω) = {u : s ≤ u ≤ t, (u, ω(u)) ∈ F}.
If T (ω) is empty, then

∫ t

s

q(u, ω(u)) du = 0 ≤ η .

Otherwise we consider σ = inf{u : u ∈ T (ω)} and τ = sup{u : u ∈ T (ω)} and
there are sn ≤ tn such that (sn, ω(sn)), (tn, ω(tn)) ∈ F , sn ↓ σ and tn ↑ τ ,
hence

∫ t

s

q(u, ω(u)) du =

∫ τ

σ

q(u, ω(u)) du = lim
n→∞

∫ tn

sn

q(u, ω(u)) du

≤ lim
n→∞

(tn − sn) sup
sn≤u≤tn

ω(sn)≤z≤ω(tn)

q(u, z) ≤ η .

Finally, let {Yu}u≥0 be the subordinator. Given s < t, x < y we denote by
{Zu}s≤u≤t the bridge corresponding to {Yu}u≥0, which starts from x at time
s and reaches y at time t. Since the trajectories of {Zu}u≥0 are almost surely
non-decreasing we have for all s < t, x < y,

p1(s, x, t, y)/p(s, x, t, y) = Et,y
s,x

[∫ t

s

q(u, Zu)

]
du ≤ Et,y

s,x

[
η

]
= η ,

as claimed.
Typical applications are q(u, z) = ηz1(0,1/u)(z), cf. [13, Example 4], and
q(u, z) = ηz21F (u, z), where F =

⋃∞
n=1 (1/(n + 1), n) × (n− 1, n). Both

functions tend to infinity when time goes to zero and the space variable
grows correspondingly.

In the next example we show that the estimate (3.3) may not be improved.
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Example. We concentrate on q(u, z) = ηz1(0,1/u)(z), η > 0. Let ν < η. We
claim that there is no superadditive Q such that

p1(s, x, t, y) ≤ [
ν + Q(s, t)

]
p(s, x, t, y) . (3.4)

Indeed, it is clear from [5, Lemma 5.3] that we may assume that Q is regular
superadditive. Thus there is t such that

[
ν + Q(0, t)

]
< (ν + η)/2. On the

other hand for x = (1 + ν/η)/(2t) < y = 1/t we have

p1(s, x, t, y) =

∫ t

0

∫ y

x

p(s, x, u, z)q(u, z)p(u, z, t, y) dzdu

≥ ηx

∫ t

0

∫ y

x

p(s, x, u, z)p(u, z, t, y) dzdu

≥ ηxt p(s, x, t, y) =
[
(η + ν)/2

]
p(s, x, t, y) ,

which is a contradiction.

4 Appendix: Fundamental solutions

In this section we prove (1.16) and its analogues in the setting of general
semigroup theory. We consider a Banach space (Y, ||·||). Let T = (Tt)t≥0 be a
strongly continuous semigroup on Y . Let L be the corresponding infinitesimal
generator with domain D(L) [16, IX].

Theorem 4.1. Let ξ : R→ D(L) be such that

t 7→ ξ(t) is differentiable in (Y, || · ||), (4.1)

t 7→ ξ′(t) is continuous in (Y, || · ||), (4.2)

t 7→ Lξ(t) is continuous in (Y, || · ||), (4.3)

t 7→ ξ(t) has compact support in R. (4.4)

Then
∫ ∞

s

Tu−s

[
ξ′(u) + Lξ(u)

]
du = −ξ(s) , s ∈ R , (4.5)

where the integral is the Riemann type integral of a Banach space valued
function.

Theorem 4.1 applies, e.g., to ξ(t) = f(t)ξ0 with ξ0 ∈ D(L) and f ∈ C1
c (R).

We may summarize (4.5) by saying that (Tt)t≥0 is the fundamental solution
of ∂t + L.
Theorem 4.1 follows from two auxiliary lemmas.
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Lemma 4.2. If ξ satisfies (4.1), then t 7→ Ttξ(t) is differentiable in (Y, || · ||)
and

d

dt
Ttξ(t) = Ttξ

′(t) + TtLξ(t) , t ≥ 0 .

For t = 0 the derivative is understood as the right-hand derivative. The
lemma is a version of the differentiation rule for products.

Proof of Lemma 4.2. Let h 6= 0 (h > 0 if t = 0) and h → 0. Clearly,

Tt+hξ(t + h)− Ttξ(t)

h

= Tt+hξ
′(t) + Tt+h

(
ξ(t + h)− ξ(t)

h
− ξ′(t)

)
+

(
Tt+h − Tt

h

)
ξ(t) .

For some M,ω ≥ 0, we have ||Tt|| ≤ Meωt, t ≥ 0 [16]. The lemma follows
because
∥∥∥∥Tt+h

(
ξ(t + h)− ξ(t)

h
− ξ′(t)

)∥∥∥∥ ≤ Meω(t+h)

∥∥∥∥
ξ(t + h)− ξ(t)

h
− ξ′(t)

∥∥∥∥ → 0 .

Let a, b ∈ R, a < b. We write ξ ∈ C1([a, b], Y ) if ξ : [a, b] → Y and (4.1) and
(4.2) hold, with one-sided derivatives at the endpoints a and b. Here is the
fundamental theorem of calculus for Riemann type Banach space integrals
(see [7, Lemma 1.1.4] or [12, Lemma 2.3.24]).

Lemma 4.3. If ψ ∈ C1([a, b], Y ), then
b∫

a

d
du

[ψ(u)] du = ψ(b)− ψ(a).

Proof of Theorem 4.1. Let s ∈ R. By Lemma 4.2, assumptions (4.2), (4.3)
and (4.4), and by Lemma 4.3, we obtain the result:

∫ ∞

0

Tu

[
ξ′(u + s) + Lξ(u + s)

]
du =

∫ ∞

0

d

du
[Tuξ(u + s)] du = −ξ(s) . (4.6)

In fact, if s is fixed, the assumptions on ξ(t) only need to hold in [s,∞).

We shall give a partial converse to Theorem 4.1 by showing that the infinites-
imal generator of T is the only operator L making (4.5) true. This addresses
question posed by Zhen-Qing Chen.
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Theorem 4.4. Let A be a linear operator on a linear space D(A) ⊂ Y .
Assume ξ : R→ D(A) is such that

t 7→ ξ(t) is differentiable in (Y, || · ||), (4.7)

t 7→ ξ′(t) is continuous in (Y, || · ||), (4.8)

t 7→ Aξ(t) is continuous in (Y, || · ||), (4.9)

t 7→ ξ(t) has compact support in R, (4.10)

∫ ∞

s

Tu−s

[
ξ′(u) + Aξ(u)

]
du = −ξ(s) , s ∈ R . (4.11)

Then ξ(t) ∈ D(L) and Lξ(t) = Aξ(t) for all t ∈ R.

Proof. Let t ∈ R and h > 0. By (4.11),
∫ ∞

t+h

Tu−t

[
ξ′(u) + Aξ(u)

]
du =

∫ ∞

t+h

Tu−(t+h)Th

[
ξ′(u) + Aξ(u)

]
du = −Thξ(t + h) .

Subtracting this from (4.11) with s = t we get

∫ t+h

t

Tu−t

[
ξ′(u) + Aξ(u)

]
du = Thξ(t + h)− ξ(t) .

We get

(
Th − I

h

)
ξ(t) =

1

h

∫ t+h

t

Tu−t

[
ξ′(u) + Aξ(u)

]
du− Th

(
ξ(t + h)− ξ(t)

h

)
.

By (4.7)–(4.9) the limit on the right hand side exists as h → 0+ and equals

Lξ(t) = T0 (ξ′(t) + Aξ(t))− T0ξ
′(t) = Aξ(t) .

In fact, the assumptions (4.7)–(4.11) only need to hold on [t, t+ε), ε > 0.

Remark 4.5. We call ξ satisfying (4.7)–(4.10) a path for A. Define

D(A, T ) = {ξ(t) : t ∈ R, ξ is a path for A satisfying (4.11)}.
If A is the infinitesimal generator of a strongly continuous semigroup S =
(St)t≥0 on Y and D(A, T ) contains the cores of L and A, then L ≡ A and
T ≡ S. Indeed, by the comment following Theorem 4.1, for the infinitesimal
generator L of T = (Tt)t≥0 we have D(L, T ) = D(L). Theorem 4.4 means
that D(A, T ) ⊆ D(A)∩D(L), and A = L on D(A, T ). This identifies L with
A and T with S.
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We now focus on Lévy semigroups and generators discussed in Introduction.

Proof of (1.16). Recall that C∞
c (Rd) ⊂ C2

0(Rd) ⊂ D(L). We shall verify the
assumptions of Theorem 4.1 for ξ(t) = φ(t, ·). It suffices to justify (4.3).
Recall that (1.15) holds for f ∈ C2

0(Rd) and L is continuous from C2
0(Rd)

to C0(Rd) [15, p. 211]. We note that t 7→ φ(t, ·) is continuous in C2
0(Rd).

Therefore t 7→ Lφ(t, ·) is continuous in (C0(Rd), || · ||∞). By Theorem 4.1,

−ξ(s) =

∫ ∞

s

Pu−s

[
ξ′(u) + Lξ(u)

]
du

in C0(Rd). Recall that the Riemann integrals converge in norm. Evaluation
at a point is continuous on (C0(Rd), || · ||∞), therefore the above identity
holds pointwise, i.e. (1.16) holds. The integral in (1.16) may be interpreted
as absolutely Lebesgue integral on R× Rd.

Theorem 4.6 (Uniqueness). Let C∞
c (Rd) be a core of a closed linear op-

erator A with domain D(A) ⊂ (C0(Rd), || · ||∞). If for all s ∈ R, x ∈ Rd and
φ ∈ C∞

c (R× Rd),

∫ ∞

s

∫

Rd

pu−s(dz)
[
∂uφ(u, x + z) + Aφ(u, x + z)

]
dzdu = −φ(s, x) , (4.12)

then A ≡ L.

Proof. For ϕ ∈ C∞
c (Rd) and f ∈ C1

c (Rd) we let ξ(t) = f(t)ϕ. Then ξ is
a path for A and ζ(t) :=

∫∞
t

Pu−t

[
ξ′(u) + Aξ(u)

]
du ∈ C0(Rd) converges in

norm. By continuity of evaluations and (4.12) with φ(t, x) = f(t)ϕ(x) we
have ζ(t)(x) = −ξ(t)(x), t ∈ R, x ∈ Rd. By Theorem 4.4, A = L on the
common core C∞

c (Rd). This ends the proof.

Remark 4.7. If the Lévy process {Xt} has (transition) density function, i.e.
pt(dy) = p(t, y)dy for t > 0, then (1.16) reads as

∫ ∞

s

∫

Rd

p(u− s, z − x)
[
∂uφ(u, z) + Lφ(u, z)

]
dzdu = −φ(s, x) , s ∈ R, x ∈ Rd .

We shall focus on the case when d = 1 and {Xt} is a subordinator i.e.
nondecreasing Lévy process. The Lévy measure ν of Xt is concentrated on
(0,∞). Since

∫
(x ∧ 1)ν(dx) < ∞ and L is a closed operator, (1.15) may be

rearranged: we obtain C1
0(R) ⊂ D(L) and

Lf(x) = b
df

dx
(x) +

∫ ∞

0

(
f(x + y)− f(x)

)
ν(dy) , f ∈ C1

0(R) .

18



Here b ≥ 0 is the drift coefficient. Furthermore, for f ∈ C1
c (R) we obtain

∫ ∞

0

(
f(x + y)− f(x)

)
ν(dy) =

∫ ∞

0

∫ y

0

f ′(x + z) dz ν(dy)

=

∫ ∞

0

f ′(x + z)

(∫ ∞

z

ν(dy)

)
dz .

Let ν(z) =
∫∞

z
ν(dy). We thus have

Lf(x) = b f ′(x) +

∫ ∞

x

f ′(z) ν(z − x) dz , f ∈ C1
c (R) . (4.13)

Example. Let α ∈ (0, 1) and {Xt} be the α-stable subordinator, i.e.

b = 0 and ν(dy) =
α

Γ(1− α)
y−α−11y>0 dy .

We see that the generator of {Xt} coincides on C1
c (R) with the Weyl fractional

derivative (cf. (1.17) for the case α = 1/2). The potential operator for {Xt}
is the Weyl fractional integral,

W−αf(x) =

∫ ∞

0

Ttf(x) dt =
1

Γ(α)

∫ ∞

x

f(z)(z − x)α−1 dz , f ∈ Cc(R) .

We note in passing that W−α∂α = −I on C1
c (R). Schrödinger perturbations

of W−α were discussed in [4, Example 2 and 3]. The discussion was facilitated
by the fact that 3G Theorem holds for its kernel density (y − x)α−1

+ /Γ(α).

Example. Since the inverse Gaussian subordinator is obtained by the Esscher
transform (tempering) of the 1/2-stable subordinator (cf. [6], Sec. 4.4.2), for
f ∈ C1

c (R) the generator of the inverse Gaussian subordinator is given by
(1.20).
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