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Abstract

Compared to well-established transform-based image compression
methods such as JPEG and JPEG 2000, approaches based on partial-
differential equations (PDEs) are still in a proof-of-concept stage.
Nevertheless, they have already surpassed JPEG 2000 quality-wise
for medium to high compression rates for certain classes of images.
This particularly holds for R-EED, a codec employing edge-enhancing
anisotropic diffusion (EED) and rectangular subdivision. However,
today’s requirements for practically viable compression algorithms go
beyond pure compression performance. Codecs must also fulfill the
individual feature requirements of specific applications such as inter-
net media or medical imaging. In this paper we propose three such
features for the R-EED codec. By reordering grey values and exploit-
ing the subdivision scheme, we incorporate a progressive mode into
R-EED. In experiments we can verify that this extension outperforms
JPEG and JPEG 2000. Additionally, we show that the rectangular
subdivision is well-suited for the incorporation of region of interest
(ROI) coding. Our ROI-extensions allows to store image parts with
different quality depending on their importance. Finally, to demon-
strate that R-EED-based decoding can be performed efficiently, we
propose a real-time video player that uses R-EED. All of these exten-
sions are compatible with each other and can be used simultaneously.

1 Introduction

Lossy image compression aims at reducing the file size of an image while
degrading the image quality as little as possible. One of the most prominent
and widely used lossy image compression algorithms today is JPEG [1], which
is based on the discrete cosine transform. Its successor JPEG 2000 [2], which
uses Cohen-Daubechies-Feauveau wavelets, performs noticeably better, but
is not yet widely supported.
Recently, these traditional transformation-based approaches have been chal-
lenged by novel compression methods that rely on an entirely different con-
cept: Algorithms that rely on partial differential equations (PDE s) only store
a subset of all image points and reconstruct the remainder of the image with
PDE-based interpolation.
While there is a long history on research on feature-based image represen-
tations where homogeneous diffusion fills in missing information (see e.g. [3,
4, 5, 6, 7]), most of the early works do not consider applications in image
compression. Only recently it has been shown that edge- or segment-based
homogeneous diffusion approaches can beat JPEG 2000 for cartoon-like im-
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ages [8], as well as for depth maps [9, 10, 11]. Apart from these linear, feature-
based approaches, there are some attempts to use nonlinear PDEs for image
compression. Chan and Zhou [12] propose a variational approach with total
variation regularisation to minimise oscillations in wavelet decompositions.
Work by Solé et al. [13] evaluates different PDEs for compression of digi-
tal elevation maps. Liu et al. integrate inpainting into existing codecs [14].
The image compression algorithm of Galić et al. [15] uses points located
on an adaptive triangulation and stores these locations as a binary tree.
This method reconstructs the remainder of the image with edge-enhancing
anisotropic diffusion (EED) [16]. Even with the improvements introduced
in [17], the performance of this codec only lies between that of JPEG and
JPEG 2000 for medium to high compression ratios. The R-EED approach
of Schmaltz et al. [18] builds upon these ideas. By introducing a number
of novel concepts, e.g. using rectangular subdivisions instead of triangular
ones, the obtained image compression codec yields better results. They can
even surpass those of JPEG 2000 for most compression ratios in images that
are not dominated by texture. Schmaltz et al. demonstrated in [19] how one
can further improve the compression quality of the R-EED algorithm.
However, a good reconstruction at high compression ratios alone is not suffi-
cient, since there are more requirements for an image compression algorithm
in practice. Depending on the field in which the codec is applied, such re-
quirements differ. For example in medical imaging, a high reconstruction
quality in diagnostically relevant regions is essential, while other regions can
contain more errors. In web-based applications, codecs have to be able to
deal with partially transferred files to reduce load times, and in time critical
applications such as video playback, real-time capabilities are important. In
this paper, we address such additional requirements for R-EED. In particu-
lar, we focus on progressive modes, region of interest coding, and real-time
video decoding.

1.1 Related Work

Progressive mode. The progressive mode, which is also referred to as
embedded bitstreams or signal-to-noise ratio scalability, allows to generate
a coarse preview from the beginning of a complete data stream only. This
is especially advisable for applications in which only a limited bandwidth is
available, e.g. when browsing a database of large images.
Progressive modes are readily available in most standard image compression
codecs. Lossless image compression algorithms typically use interleaving or
interlacing, which only changes the order in which pixels are stored. The
well-known GIF file format [20], for example, divides the image into stripes
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with a height of eight pixels each, and stores the resulting lines in each stripe
during multiple passes. PNG [21] employs a similar idea known as Adam7,
which samples in both directions: It subdivides the image into 8× 8 blocks
and stores them in a total of seven passes.
The lossy mode of the JPEG standard provides several optional progressive
modes: The progressive spectral selection reorders the transmission of the DC
and AC components such that all low-frequent coefficients are transmitted
first. Alternatively, one can successively approximate the stored coefficients
by first storing the upper bits of the coefficients, while the lower bits follow
later. It is possible, albeit unusual, to use both approaches at the same
time. From a purely qualitative perspective, the so-called hierarchical mode
provides typically the best results at low bit rates. This mode first stores a
downsampled version of the image. The upsampled, bi-linearly interpolated
version of this smaller image acts as a predictor for the next resolution.
However, the total file size can increase up to one third with this mode [1].
In JPEG 2000, images are always stored in progressive mode due to the
the Embedded Block Coding with Optimal Truncation (EBCOT ) scheme.
EBCOT encodes the bit-planes in three passes. In which pass a bit gets
encoded depends on which coefficients have significant neighbours or are sig-
nificant themselves.
So far, none of the PDE-based image compression methods discussed above
include progressive modes. Note that standard progressive modes of exist-
ing image compression algorithms are not directly applicable to PDE-based
methods, since data is only available at irregularly placed points.

Region of interest coding. There is no direct support for region of interest
coding in JPEG. Nevertheless, a simple standard compliant idea proposed is
to set additional DC coefficients to zero outside the region of interest [1].
JPEG 2000 contains many methods for region of interest coding, namely a
general scaling based approach, a bitplane-by-bitplane shift method (BbB-
Shift), a max-shift method, a partial significant bitplane shift method (PS-
BShift) and a ROI coding through component priority (ROITCOP). Due to
the large amount of approaches, we refer to [22, 23] for details.
To the best of our knowledge, no PDE-based codec with ROI coding capa-
bilities has been presented so far.

Real-time video decoding. Almost the whole existing body of work on
PDE-based compression focuses on still image compression. However, there
are some notable exceptions from the rule. Gao [24] used diffusion-based
inpainting to compress optic flow fields for motion compensation in video
coding. However, the actual compression of video data in this approach re-
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lies on block-coding with the discrete cosine transform. Therefore, the codec
is still mainly transform-based. So far, real-time video decoding with fully
PDE-based algorithms has only been implemented by Köstler et al. [25] and
Baum [26]. Note that the work of Köstler et al. is based on linear diffusion
which is computationally much less demanding than the high quality recon-
structions of nonlinear anisotropic methods such as R-EED. Although the
approach of Baum allows both linear and nonlinear anisotropic inpainting, it
only achieves real-time decompression at the price of a noticeably degraded
compression quality.

1.2 Goals

Consequently, the goal of this paper is threefold: First we give a detailed
description how progressive modes can be incorporated into a current PDE-
based image compression algorithm. This first part refines and expands work
previously presented in [27]. Secondly, we extend our algorithm such that it
includes a region of interest coding. This allows us to specify which parts of
the image are important and should be saved with a higher precision. Finally,
we introduce a PDE-based video decoder that allows real-time playback with
nonlinear anisotropic diffusion inpainting.
Since R-EED is currently the most advanced PDE-based general purpose
codec that can surpass JPEG 2000 (see [18]), we use it as the basis of our
approach. However, we have modified R-EED slightly to further enhance
the performance of the algorithm independently of the novel features. Addi-
tionally, all three extensions are designed to be compatible, i.e. progressive
mode and region of interest coding can both be applied simultaneously and
are also applicable to video data.

1.3 Paper Structure

First, we provide a brief overview on PDE-based compression and the baseline
codec R-EED in Section 2. Section 3 contains a detailed discussion of the
progressive mode for R-EED as well as comparisons to JPEG and JPEG 2000.
We introduce the second extension of R-EED, region of interest coding, in
Section 4 and demonstrate its capabilities experimentally. In Section 5, we
propose a real-time video-player based on R-EED compression and compare
its performance to reference results obtained from classical solvers for PDE-
based inpainting. Finally, we conclude the paper with a summary and an
outlook in Section 6.
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2 The Baseline Image Compression Codec

The R-EED codec [19] only stores the image values at a few selected locations,
and employs PDE-based interpolation to reconstruct the missing data when
loading the image. Thus, we first explain the ideas behind inpainting with
PDEs. A description of the complete R-EED algorithm follows in Section
2.2.

2.1 PDE-Based Interpolation

Let f : Ω → R denote a grey value image with a rectangular image domain
Ω ⊂ R2. In PDE-based image interpolation, the grey values are only known
at the locations of the interpolation mask K ⊂ Ω of the complete image f .
The additional assumption that the pixels in Ω\K are regular in some sense
allows to reconstruct the unknown part of the image from the known grey
values in K. For example, one might assume that the reconstructed image u
is piecewise smooth in Ω \K. To fulfil both conditions, we solve the partial
differential equation (PDE)

(1− cK)Lu− cK (u− f) = 0 (1)

for u with reflecting (i.e. homogeneous Neumann) boundary conditions. Thereby,
cK is the characteristic function of K, i.e. a function that has value 1 at the
specified data set K, and 0 elsewhere. The differential operator L ensures
the requested smoothness properties. Since this PDE does not change the
known points in K, we can rewrite it as

Lu = 0 (2)

on Ω \K, with Dirichlet boundary conditions on K, and homogeneous Neu-
mann boundary conditions on the boundary of Ω. One can derive Equa-
tion (1) also as a generalisation of spline interpolation and variational regu-
larisation, as is explained in [28].
To solve Equation (2), we introduce an artificial time parameter t and com-
pute the steady state of the evolution equation ∂tu = Lu with a finite differ-
ence approximation. For the image compression framework used in this pa-
per, we employ the same inpainting operator as proposed in [17, 19], namely
edge-enhancing anisotropic diffusion (EED) [16]:

Lu = div(D(∇uσ)∇u). (3)

In this equation, uσ denotes the image u after smoothing with a 2-D Gaussian
Kσ with standard deviation σ. The diffusion tensor D(∇uσ) is a symmetric,
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positive definite 2× 2 matrix. Its eigenvectors are ∇uσ and ∇u⊥σ , which are
oriented across image edges, and along them, respectively. The corresponding
eigenvalues are given by

µ1 =
1√

1 + |∇uσ |2
λ2

, µ2 = 1. (4)

Consequently, we obtain a smooth interpolation along edges and a discontinuity-
preserving interpolation across edges. A careful adaptation of the contrast
parameter λ to the characteristics of the reconstructed image can improve
the inpainting results.

2.2 The R-EED Codec

The core idea behind the R-EED codec is to store only a small inpainting
mask K and the corresponding grey values. Therefore, a central question
is how to choose the set K for a given image. On the one hand, the set K
should allow a good reconstruction quality. On the other hand, it should be
possible to encode the set K and the corresponding grey values efficiently.
Thus, R-EED does not try to find optimal point positions, as is done in [8],
for example. Instead, a recursive rectangular subdivision scheme restricts
the points in K. In each rectangular region obtained by subdivision, R-EED
only stores the centre and the four corner pixels. Starting from the complete
image, the codec first simulates the inpainting step with these known points.
By means of the mean square error (MSE), this local reconstruction is com-
pared against the original. If the MSE is smaller than a threshold T the local
reconstruction is sufficiently accurate and the region is not divided further.
In order to adapt this threshold to the varying size of the sub-images, it is
defined as T = a`d. Here, a is a global threshold parameter and ` a level
adaption factor that is rescaled exponentially by the recursion depth d. Oth-
erwise, R-EED splits the current sub-image along the middle of its longer
side, and processes both image parts recursively as described above.

The splitting steps described in the last paragraph determine all points in the
inpainting mask K: For each rectangle considered, K contains its centre and
corners. Thus, a binary decision tree that represents which rectangles were
split fully characterises K and allows to encode point positions efficiently.
In order to further reduce the amount of disk space, R-EED first stores two
depth limits: the largest depth until which all sub-images are split and the
smallest depth at which no sub-image is split any more. Thus, it is not
necessary to save the tree structure outside these limits. In between the

6



limits, a single bit marks if the node either has no child nodes at all or
exactly two child nodes. Consequently, the smaller the distance between the
two depth limits, the less bits are necessary to store the tree and therefore
the inpainting mask. Limiting this range by introducing depth constraints
in addition to the threshold T can thus help to reduce the storage cost for
the tree. This additional bit budget is invested into additional mask points
and thus improves the overall reconstruction quality.
In order to reconstruct the image, one also needs the grey values of the
pixels in the mask K. R-EED first quantises these pixel values and encodes
them with a general purpose entropy coding scheme. As explained in detail
in [18, 19], the encoder PAQ [29] yields the best results for all except very
small files, for which adaptive arithmetic coding [30] works best. However,
PAQ is very slow and memory consuming which makes it ill-suited for our
application in real-time video display. Moreover, due to its high complexity,
PAQ is difficult to adapt to our requirements. Due to these reasons, we will
only present results generated with either Huffman coding [31] or arithmetic
coding.
R-EED optimises the contrast parameter λ from Equation (4), and stores
the quantised λ-value that yields the smallest overall reconstruction error.
Since this requires only a single byte, it does not result in a large overhead.
Additionally, it is possible to encode optimised brightness values instead of
the actual brightness in the input image. Despite the fact that this leads to a
higher error at the known pixel locations, the overall reconstruction quality
can be improved this way. Here, we employed a straightforward approach
that optimises the grey values one after each other in random order. More
advanced approaches are explained in detail in [8].
Especially when using high compression ratios, it can occur that the recon-
structed values are actually more accurate than the stored brightness values
in the inpainting mask. This is caused by the quantisation and the optimi-
sation steps explained above. Following the ideas presented in [32] and [18],
we thus perform additional steps after inpainting: First, we mark all points
whose distance to a point in the inpainting mask K is smaller than a thresh-
old as unknown, while the remaining reconstructed points are assumed to be
known. Then, a second inpainting step is performed. The optimal threshold
depends on the image and the compression ratio, and is thus stored in the file
header. Fore more details about the different steps of the R-EED algorithm,
we refer to [19].
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(a) (b) (c)

Figure 1: (a)+(b) Input images used in the experiments. (c) Image recon-
structed from 50% of the data at a compression rate of 40 : 1 without using
the progressive mode proposed in this paper.

3 R-EED in Progressive Mode

3.1 Algorithm

The goal of our progressive mode is to provide a preliminary reconstruction
of the compressed image when only a part of the compressed image has been
transmitted so far. Thus, the brightness values are unknown for some mask
points and only the known part of the inpaintig mask is used for reconstruc-
tion.
The original R-EED algorithm employs an easy and straightforward way to
store the brightness values indicated by the inpainting mask, namely a row-
wise storage from top to bottom and left to right. For progressive mode,
this ordering is not very useful: A partially transmitted file only contains
brightness values of points in the upper part of the image. The pixel values
from the lower part are still missing due to their location at the end of the
compressed file. Figure 1(c) demonstrates that reconstructions from partial
standard R-EED files are not satisfying.
Consequently, one of the core ideas of our progressive mode for R-EED is
to change the order in which the algorithm stores the mask points. We
save the brightness values in such a way that for any given percentage of
the compressed file, known pixel values are distributed over the entire image
domain. While this idea is straightforward, choosing the best order is non-
trivial. Even if we knew in which order the points should be stored to obtain
the best results, saving this order would be far too expensive in general.
As an example, consider a compressed file that stores only 720 grey values.
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Figure 2: These graphs show the performance of JPEG, JPEG 2000, and of
our progressive modes for the image trui (size: 256 × 256, see Figure 1(a))
and compression ratios around 19 : 1 (top left), 38 : 1 (top right), 76 : 1
(middle left), and 160 : 1 (middle right). JPEG is missing from the last of
the four trui plots since it is unable to reach the requested compression ratio.
The last row contains plots for the test image walter at the ratios 39 : 1 and
78 : 1.

Since there are 720! possible ways to order these points, on average, at least
log2(720!) > 5800 bits = 725 bytes are necessary to store such an order.
However, for an image such as trui from Figure 1, 720 points correspond to
a compression ratio of 150 : 1, or a file size of 437 bytes, respectively. That
is, saving this order would increase the file size by 160%. Since the number
of possible orders rises more rapidly than the exponential function in the
number of points, the situation is even worse for smaller compression ratios.
Instead of storing the best order in the compressed file, we therefore compute
a good approximation from the information that is available for the decoder.
This way, the file size of the compressed image does not increase, and we avoid
expensive computations for finding the best order during the compression
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stage. In particular, we exploit the fact that the subdivision scheme from
the last section ensures that each image part contains the fraction of points
that is necessary to obtain a consistent reconstruction quality.
For our progressive mode, we try to maintain these fractions no matter which
amount of the compressed file is already known. Following this core idea, a
region for that only a small percentage of its total known pixel values are al-
ready stored in the compressed file is called underrepresented. Consequently,
during the sequential storage of the grey values, R-EED always chooses the
next value from the most underrepresented image part. In the following, this
approach is denoted by R-EED-P1.
More precisely, for each point to be saved, we traverse the tree starting from
its root. In each node, we move to the child node which has a smaller per-
centage of already stored points. Once we arrive at a tree leaf – or a node
for which all children have already stored all their mask points – we save
the brightness of one unsaved mask point in the image part corresponding to
this tree node. Since the image header contains the tree, no additional over-
head is required to reproduce the same order during decompression. Before
reconstructing a partially transmitted image, we remove mask points with
hitherto unknown brightness values.
In addition to R-EED-P1, we have implemented and evaluated a number of
other approaches to find good orders. Examples include a pseudo-random
permutation, a level-wise storage of the points depending on the depth of
their corresponding tree node, or the respective inverse of these orders. The
idea behind using a reverse order is to reconstruct details early. However, the
reconstruction of the coarse image features noticeably suffers in this approach
if only small file parts are known. Slightly better results can be obtained this
way once a large part of the file is known. Nevertheless, the significantly
worse reconstruction for small parts of the compressed image render this
approach clearly inferior to the approach R-EED-P1. However, to avoid
possible confusions, we choose not to describe and compare against those
inferior methods in detail here.
As long as only a very small part of the compressed image is known, the
inpainting result is unsatisfying, since the information available is insuffi-
cient to reconstruct even basic image structures. Note that this problem is
amplified by the overhead necessary to store the file header. The results of
R-EED-P1 with 25% known data in Figure 3 illustrate this problem.

Our second progressive mode, R-EED-P2, improves the quality of reconstruc-
tions from small known parts of the compressed image. Its motivation stems
from the observation that in R-EED, the number of stored points is closely
related to the amount of quantisation. For increasing compression ratios,
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both the number of points in the inpainting mask and the number of possi-
ble quantised values decrease in R-EED to guarantee the best compression
results. Given only a small part of the compressed image, though, we know
only very few points, while the quantisation levels are the same as before.
This imbalance is eliminated in our second approach by storing the brightness
values in two parts. The first part allows only a coarse quantisation, while
both parts together result in the same quantisation levels as without using
a progressive mode. This permits to store more brightness values per byte,
since less information is necessary to store a more coarsely quantised value.
In addition, the separation of the brightness values also enables us to use two
small Huffman trees instead of one large one. Since the second tree is not
needed initially, we move out of the file header. Consequently, the total file
header is noticeably smaller than before which makes the first approximation
of the stored image available after a much smaller number of transmitted
bytes. The graphs in Figure 2 illustrate this effect.
In the following we describe how R-EED-P2 splits quantised grey values with
q quantisation levels. The first part consists of the integer values [fi/[

√
q]],

where fi is the i-th grey value and [·] denotes rounding to the closest integer.
Afterwards, we store the remainder ri := fi mod [

√
q].

Note that it does not pay off to store all grey values in two parts. This would
result in the same imbalance as if all points were given in a coarse quanti-
sation. That is, once a certain amount of points is stored, it is possible to
reconstruct the position of most image structures from these points. At this
point, due to the very coarse quantisation of the known data, the reconstruc-
tion quality benefits more from increasing the accuracy of given grey values
than from additional known data with low grey value accuracy.
Consequently, it pays off to save the missing remainders ri next instead of
storing even more coarsely quantised grey values. As the amount of points
necessary to reconstruct the image structures varies with the image and the
compression ratio, we use 5 bits in the file header to indicate how many
percent of the points are stored in two parts.
In total our algorithm incorporates three passes: In the first step, we store
the first Huffman tree and a part of the coarsely quantised brightness values.
In the second pass, we first save the second Huffman tree, followed by the
remainders ri of the brightness values from the first step. Finally, our algo-
rithm stores the grey values completely missing so far. Since storing a novel
Huffman tree for those values would result in a noticeable overhead, we use
the two known Huffman trees to store these values. That is, R-EED-P2 saves
the coarse quantisation and the remainder consecutively for each point.
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3.2 Experiments

We evaluate our proposed progressive modes on different images, varying
compression rates and partial file sizes. As an error measure, we employ the
well-known peak signal to noise ratio (PSNR). Figure 2 shows the resulting
PSNRs for all intermediate file sizes of the images trui and walter. The
examined compression ratios vary from 19 : 1 to 160 : 1. Figure 1 contains the
uncompressed images. To allow comparisons, we also present the resulting
error graphs for JPEG and JPEG 2000. The compressed JPEG and JPEG
2000 images were created using the Linux tool convert (Version ImageMagick
6.8.3-6 2013-03-04 Q16), while we used Irfanview to read partial JPEG 2000
files.
Figure 2 reveals several interesting facts. First of all, R-EED-P2 usually
results in slightly larger files than R-EED-P1. This is due to the fact that
entropy coding is less efficient when every grey value is stored in two passes.
However, there are also cases in which it is the other way round, e.g. when
compressing the image walter with a compression ratio of 78 : 1 in Figure 2.
This happens when the space necessary to store two small entropy coding
functions is smaller than the one necessary to store a large one. Depending
on which of those two effects is stronger, the total file can be smaller or
larger.
Even though the total file size is typically slightly larger when using R-EED-
P2, this approach allows a much higher PSNR after a small amount of bytes
have been transmitted. The first row of Figure 3 clearly demonstrates this
effect. There are two reasons for this behaviour: On one hand, each grey
value requires less bits due to the initially coarse quantisation which results
in a larger amount of known grey values at the price of a lower accuracy. On
the other hand, the overhead necessary to store the entropy coding scheme is
smaller. Therefore, R-EED-P2 is also well-suited for high compression ratios
where the amount of available data in progressive mode is severely reduced.
As Figure 4 demonstrates, R-EED-P2 yields still good results with partial
known data when the compression rate is doubled.
For small compression ratios, JPEG and JPEG 2000 have a similar perfor-
mance as our approach (see Fig. 2 and Fig. 3), while PDE-based progressive
modes yield noticeably better results for medium to high compression ratios.
This observation is not only explained by the different approaches to pro-
gressive modes. Other factors are the large file header used by JPEG 2000,
and the fact that the baseline R-EED algorithm yields better compression
results than JPEG and JPEG 2000.
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Figure 3: Images reconstructed from partial files containing the image trui
compressed with a compression ratio of 76 : 1 using JPEG, JPEG 2000, and
R-EED, respectively.
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Figure 4: Progressive mode experiments for the test images peppers, house
and office. The images were reconstructed with increasing percentages of
known data (left to right) and different compression ratios (top to bottom).
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4 Region of Interest Coding

4.1 Basic Idea

During the rectangular subdivision phase the R-EED encoder decides in
which image region it adds more known data based on local measurements
of the mean square error (MSE). The region of interest (ROI) extension to
R-EED allows to specify an a priori weighting of different locations in the
image. To this end, we introduce local weights ri,j ∈ [0, 1], i ∈ {0, . . . ,M},
j ∈ {0, . . . N} for a discrete images of size M ×N . The ROI-weighted MSE
for a reference image f and the corresponding reconstruction u is computed
by

MSEROI(u,v) :=
∑
i,j∈Ω

ri,j(ui,j − fi,j)2

MN
. (5)

Subdivision steps with the modified MSE lead to a higher density of known
data in regions of interest with high weight r. Consequently, we can recon-
struct these regions more accurately than those regions with a low weight.
Thereby, the ratio of weights between two regions of interests decides the
turning point at which R-EED prefers a smaller quality gain in a high-priority
region over a more substantial gain in quality in a low-priority region.
Note that ROI encoding only influences the choice of the inpainting mask by
modifying the decisions in the subdivision tree. No additional information
needs to be stored and the standard decoder is also applicable for ROI-
encoded files. Furthermore, the error-weighting on a per-pixel basis allows to
specify multiple regions of interest of arbitrary shape and relative importance.

4.2 Experiments

Examples for applications of ROI coding are given in Figure 5. In medical
imaging, ROI coding can be used to store image regions that are important
for diagnostic reasons with a local error that is close to zero. The algorithm
still reconstructs image regions with a lower priority, albeit with decreased
accuracy. Their primary use is to coarsely represent the neighbourhood of
high priority ROIs to help the observer with identifying the location of the
subregions in respect to the whole imaged object.
Furthermore, ROI coding can provide semantic context to the compression
algorithm. As mentioned in Section 2, the subdivision algorithm tries to
generate images with a consistent quality in all image regions. Especially for
high compression rates, this can lead to suboptimal perceptive image quality
since important image structures like faces are treated equally with relatively
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unimportant background features. This behaviour is particularity detrimen-
tal in cases where unimportant features are costly to compress and thus the
quality of the whole image is diminished (see Figure 5). Providing suitable
ROI weights either manually or automatically, e.g. with a face recognition
algorithm, can substantially improve the perceived quality.

5 Real-Time Video Decoding

In previous publications [19, 18, 17, 15], PDE-based compression codecs fo-
cused on achieving the maximum possible quality at a given compression
rate. In the following, we examine the performance of R-EED with different
numerical solvers and present a framework for real-time video playback with
anisotropic diffusion. First, we discuss different numerical approaches for
solving the inpainting problem.

5.1 Numerical Solvers

In R-EED, the inpainting problem is described by the elliptic PDE

(1− cK) div(D(∇uσ)∇u)− cK (u− f) = 0, (6)

a special case of the general inpainting equation (1). There are different
approaches to discretise and solve this continuous inpainting problem. In
the following we discuss solvers from previous implementations of R-EED
as well as recent cyclic schemes and compare their suitability for real-time
decompression.
One possibility to acquire the inpainted image is to compute the steady state
of the parabolic evolution

∂tu = div(D∇u) on Ω \K × (0,∞), (7)

u(x, t) = f(x) on ∂K × (0,∞), (8)

〈D∇u,n〉 = 0 on ∂Ω× (0,∞). (9)

This formulation as an initial boundary value problem applies reflecting
boundary conditions at the boundary ∂Ω of the rectangular image domain
Ω. Furthermore, the known image data constitutes Dirichlet boundary con-
ditions on K. Experiments show that, independently of the initial value
u(x, 0) on Ω \K, the steady state is the same.
A straightforward and easy to implement approach is the explicit discreti-
sation of the parabolic formulation (7). An explicit scheme discretises both
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Figure 5: Reconstruction examples with and without region of interest coding
for the test images brain, trui and nosferatu. The test images are ordered
from top to bottom by increasing compression rate. Bright areas in the ROI-
mask have a larger weight in error computation than dark areas. For brain
the ROI reconstruction is almost perfect in the cerebellum at the cost of
reduced quality in other parts. Details such as text are reconstructed more
accurately with ROI coding for nosferatu, while background structures are
omitted. Finally, the ROI in trui allows a much higher perceived quality at
high compression rates due to better quality in facial features (in particular
the eyes).
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the temporal and spatial derivatives with suitable finite difference approx-
imations (for more details see [33]). This yields an iterative scheme of the
form

uk+1 − uk

τ
= A(uk)uk (10)

⇔ uk+1 = (I + τA(uk))uk. (11)

Here, A(uk) is the discretisation of the spatial derivative operators from
Equation (7), and τ is the discrete time step size. For stability reasons,
the time step size is severely limited and thus the scheme requires a large
number of iterations to reach the steady state. However, fast explicit diffusion
(FED) [34], a recent cyclic scheme, makes efficient implementations of explicit
approaches possible. In particular, FED is well-suited for parallelisation and
performs exceptionally well on graphic processing units (GPUs).
Alternatively, one can also solve the elliptic formulation (6) of the inpainting
problem directly. Using the same spatial discretisation A(u) of the diver-
gence term as before, one obtains

(I −CK)A(u)u−CK(u− f) = 0. (12)

Here, CK is a quadratic, diagonal matrix that contains the entries of the
discrete inpainting mask vector ck. Following the approach of Mainberger
et al. [8], Equation (12) can be rearranged into the nonlinear system of
equations

((I −CK)A(u)−CK)︸ ︷︷ ︸
=:M(u)

u = CKf . (13)

We obtain the solution of this system by the fixed point iteration

M (uk)uk+1 = CKf . (14)

For each iteration k, a linear system of equations has to be solved. Pre-
vious publications on PDE-based compression [19, 18] use successive over-
relaxation (SOR) (see e.g. [35]) for this task. Unlike FED, SOR is in essence
a sequential algorithm. Therefore, there is virtually no potential for increas-
ing its performance by parallelisation.
In order to analyse the suitability of solvers for real-time video decoding
with R-EED, we compare FED and SOR with respect to their convergence
behaviour. To this end, we compute a reference solution for R-EED com-
pressed frames of the movie Nosferatu [36] by iterating the explicit scheme
until convergence. Each frame has a resolution of 640× 480 and we initialise
the missing image parts with the average grey value of the known data. For
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Figure 6: Comparison of numerical solvers. (a) Mean square error in
respect to reference solution over time on frame 130254 of the movie Nos-
feratu. (b) Known data selected by the R-EED subdivision scheme. Pixels
from the set of mask locations K are marked in black, unknown pixels in
white. (c) EED-Inpainting results after ≈ 0.04 seconds for FED with flat
initialisation. Homogeneous regions with a low density of known data are
not fully inpainted.

both solvers, Fig. 6 (a) provides the evolution over time of the mean square
error (MSE) in relation to the reference inpainting.
On a test system with an Intel Xeon CPU W3565@3.20GHz and an Nvidia
Geforce GTX 460, a parallelised explicit scheme on the GPU typically takes
almost 5 minutes to converge. SOR requires around 6 seconds and paral-
lelised FED still needs approximately 2 seconds for convergence. For ill-posed
frames, the total inpainting runtime can be even longer.
The comparison in Fig. 6 clearly demonstrates that even the advanced cyclic
algorithms with parallelisation cannot achieve real-time video decoding on
consumer hardware. Fig. 6 (b) and (c) show the known data and a recon-
struction with FED after a runtime of 0.04 seconds. This is the time budget
that is available to achieve 25 frames per second. Clearly visible artefacts
make these results unsuitable for video playback.

5.2 Smart Initialisation

One way to reduce the runtime of iterative diffusion schemes is to provide a
good initalisation. So-called coarse-to-fine approaches [37] already success-
fully apply this idea. First, they generate pyramid of subsampled versions of
the inpainting mask. On the coarsest level, i.e. the smallest representation of
the image, inpainting is performed. The upsampled result of this inpainting
provides an initialisation for the next finer level of the pyramid. A successive
ascend through the finer level of the pyramid finally yields a good initialisa-
tion for an inpainting of the full image. Such approaches can be interpreted
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as special cases of multigrid solvers [38, 39].
While coarse-to-fine approaches yield a substantial increase in performance,
subsampling and diffusion on coarser scales creates some overhead. Fur-
thermore, the benefits of parallelisation are less pronounced on coarse levels
due to the smaller number of possible simultaneous calculations. In video se-
quences, however, there is an additional way to obtain suitable initialisations:
In many cases, subsequent frames are very similar. Therefore, the inpainting
result of an already processed frame can be reused as an initialisation for
the next frame. For groups of pictures (GOPs) that are sufficiently similar,
the reuse of inpainting results provides a significant speed-up without any
additional computational cost. Consequentially, the core idea of the smart
initialisation scheme is to segment a video into such GOPs that allow to reuse
as much already computed information as possible.
In some cases, the initialisation with the previous frame is not useful or more
difficult, though. In particular at scene transitions or in the case of rapid
camera movements, the content of subsequent frames can change drastically
and make this initialisation infeasible. Motion can also be a problem if it
affects only small areas of the video. It is possible that the initialisation is
very good for large parts of the frame, but unsuitable in the vicinity of moving
objects. For example, a character rapidly moves a dark object in front of a
bright background in the frames 9420 and 9421 of the movie Nosferatu (see
Fig. 7). This generates almost a worst case initialisation.
However, frames that are partially unsuitable for reuse can still be useful.
Initialisations that deviate significantly from the final steady state are only
problematic if they occur in areas with a low density of known points. If
many known data is given in the corresponding region, their information
does not need to be propagated over large distances. Thus, a small number
of iterations is sufficient to reach a good approximation to the steady state.
Since diffusion only needs a very low amount of known data to reproduce
homogeneous image regions, these are prone to initialisation problems. How-
ever, in homogeneous regions, a good approximation to the steady state can
be achieved by simple and fast linear interpolation.
Therefore, we use a confidence function to decide if parts of initialisation
with the last frame should be replaced by linear interpolation results. Let a
rectangular image section from the R-EED subdivision be given by the set
P of its corner points:

P := {(x1, y1), (x1, y2), (x2, y1), (x2, y2)}. (15)

The confidence into the linear interpolation quality in this rectangle is influ-
enced by two factors: the size of the subimage and its homogeneity. We define
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the size factor sP as the maximum side length of the rectangular region:

sP := max{|x2 − x1|, |y2 − y1|}. (16)

The larger the region is, the larger the expected error of the linear interpo-
lation with the known points from this rectangle. However, this error also
depends on the homogeneity of the region. If the rectangular region is per-
fectly flat, the linear interpolation will be flawless, no matter the size of the
region. The more discontinuities appear in the rectangle, the less accurate it
becomes.
Therefore, we also incorporate a homogeneity factor hp. Since only the known
image points can be used to determine this aspect of the region, we define
hP as

hP := max
(x,y)∈P

f(x, y)− min
(x,y)∈P

f(x, y) (17)

For large maximal deviations of the known grey values in the region, less
accurate results can be expected from the linear interpolation.
A multiplicative combination of the size and homogeneity factors yields the
overall confidence function cP :

cP := ψ(sP ) · hP . (18)

Here ψ is a truncated quadratic function with a threshold parameter ξ (de-
fault value ξ = 30) that also rescales the range of the size factor to the
interval [0, 1]:

ψ(x) = min(x2, ξ)/ξ.

The threshold ξ and the rescaling avoids that the size factor dominates the
confidence measure. This can happen since the size factor is limited to the
range [0, 255] while the image size is not limited. For image sections with a
height or width smaller than ξ, the homogeneity factor is attenuated. For
larger sections, it has the full impact.
The two examples in Figure 7 illustrate that the use of the confidence-
dependent linear initialisation in smart initialisation offers significant im-
provements over a pure reuse initialisation. Experimental results on a large
number of images are discussed in Section 5.5.

5.3 An EED-based Framework for Video Playback

In the following, we describe a framework for real-time video reconstruction
with anisotropic diffusion inpainting. In this paper we solely focus on the
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aspect of real-time reconstruction with smart initialisation. To this end, we
first present a wrapper that extends R-EED to video sequences and provides
the necessary structures for frame reuse. We do not address compression
quality and apply frame-by-frame compression with standard R-EED. In fu-
ture publications, the R-EED wrapper can act as a starting point for true
PDE-based video encoders that explicitly exploit temporal redundancies in
the video. The second part of the video player framework is the real-time
decoder that we discuss in detail in Section 5.4.
The core structure of our framework relies on a segmentation of the video in
groups of pictures (GOPs). The primary purpose of these GOPs is to define
regions where smart initialisation is feasible. Therefore, we employ scene
change detection to create a temporal segmentation.
Smart initialisation always requires the reconstruction of the previous frame
to decode the current frame. Therefore, the frames in a GOP require suc-
cessive decoding starting with the first frame of the GOP. This implies that
random access in the video (e.g. for fast forwarding or chapter selection)
is limited to the beginning of GOPs, similar to common video compression
codecs such as the ones from the MPEG and H26X family. Due to this
constraint, we also limit the maximal number of frames N in a GOP. For
practical purposes, we choose N = 32 in this publication.
Each GOP is essentially a collection of up to N R-EED encoded images.
Since by definition the frames in a GOP have similar content, we can choose
a common R-EED contrast parameter λ and a common quantisation param-
eter q for the whole GOP. All other R-EED parameters are identical for the
whole video and thus only the inpainting mask has to be stored for individual
frames. For sufficiently similar frames, it is possible to reuse the mask po-
sitions or even the whole inpainting mask including the grey values without
a significant loss in compression quality. Therefore, we introduce four dif-
ferent frame types which we categorise by the similarity to previous frames.
Depending on the frame type, the framework stores different parts of the
inpainting mask.

• GOP start (type 1): Always contains the binary tree that encodes
the known point positions and the grey values of the inpainting mask.
This guarantees that all information to reconstruct this frame indepen-
dently from other frames is available. The framework assigns type 1 to
a frame if the maximum number N was reached in the previous GOP or
the difference to the previous frame exceeds a threshold t1 > 0 (default
value: t1 = 15). Additionally, we create a new GOP if the difference
between the reference steady state and the reconstruction exceeds a
threshold tref > 0 (default value: tref = 5). This additional constraint
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avoids error spikes at ill-posed images, e.g. those that contain interlac-
ing artefacts.

• No mask reuse (type 2): For this type, the framework does not reuse
point positions, just the initialisation and R-EED parameters. Just like
for a type 1 frame, we store both the binary tree and the quantised grey
values. The framework assigns type 2 if the difference to the previous
frame exceeds the threshold t2 ≤ t1 (default value: t2 = 5).

• Tree reuse (type 3): The point positions from the previous frame
remain unchanged, but we store different quantised grey values for
these positions. The framework assigns type 3 if the difference to the
previous frame exceeds the threshold t3 ≤ t2 (default value: t3 = 1).

• Full mask reuse (type 4): We consider this frame to be fully redun-
dant and no additional data is stored. The framework assigns type 4 if
the difference to the previous frame does not exceed the threshold t1.

Just as in the regular R-EED scheme, we store the mask positions as a binary
sequence of splitting decisions and a minimum and maximum tree depth. An
entropy coder saves the grey values efficiently. Furthermore, a GOP header
contains all information that is needed to decode the GOP frames. It provides
the content-dependent R-EED parameters λ and q, as well as a list of frame
types. Additionally, the header includes a list with the lengths of each GOP
data set to enable separation of the frame data for all possible entropy coders.
Finally, all of the GOP data must be included in a single video file. This
container format consists of a global video header and a concatenation of
all GOP data. The global header contains all parameters that do not have
to be adapted to the specific image content: video resolution, total number
of frames, a colour flag, the entropy encoding type, the point pattern for
rectangular subdivision, and the progressive mode parameters. In order to
allow random access to the GOP start frames, the header also includes the
length of all GOPs. This enables the video player to jump to arbitrary GOP
data.
For the global header and all GOP headers, the parameters are encoded
directly as binary numbers of custom length. The frame and GOP lengths
are stored efficiently with Golomb coding [40].

5.4 Architecture of the Real-Time Decoder

Since the main goal of our framework is real-time video playback, the decoder
has to provide reconstructions of a rate of 25 frames per second. This implies
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that each reconstruction must be available in a time window of 0.04s. Con-
sumer class GPUs can perform around 100 iterations with 5 linear updates
for FED solvers in this time.
Additionally, there is some overhead due to file operations, entropy decoding,
smart initialisation, and data transfer between CPU and GPU. Moreover, at
GOP start frames, there is no initialisation with the reconstruction from the
last frame available. In order to minimise overhead and handle start frames,
we propose a multi-threaded decoder with caching that makes use of widely
available multicore CPUs.
The decoder relies on four distinct threads that operate in parallel and only
communicate over a system of caches for initialisation and reconstructed
image data.

• Loader: The loader parses header data and extracts compressed data
for a single frame from the video file. It rebuilds the inpainting mask
from stored tree data and decompresses the entropy coded grey-value
data. Finally, it computes the linear interpolation for smart initial-
isation. In order to use times of low CPU usage efficiently, a GOP
init cache collects the complete inpainting mask and computed linear
initialisation for multiple GOP start frames ahead of time. Similarly,
the loader cache provides the initialisation data for all other frames.
These caches are separated due to their different amount of localisa-
tion. The initialisations for GOP start frames correspond to video parts
that have a larger temporal distance to the currently displayed frames
in order to enable random access and avoid quality loss through in-
painting activity spikes in video regions with rapid scene changes. In
contrast, precomputed initialisations for other frames only cover GOPs
in a close vicinity to the current frame.

• GOP-start Handler: Another thread is entirely dedicated to generat-
ing an initialisation for GOP-start frames with coarse-to-fine inpainting
on the CPU. It reads the mask and known grey values from the GOP
init cache, reconstructs the start frames and stores them in a third
cache, the GOP start cache. In order to avoid playback pauses, slow-
downs or dropped frames, the start handler dynamically adapts the
number of iterations and nonlinear updates of the numerical solver to
the number of cached frames. If the cache is in danger of running empty,
the number of iterations is reduced, if it is sufficiently full, the number
of iteration is increased. Thereby, fluent playback is maintained at the
cost of a slight degradation in reconstruction quality for the GOP start
frames. This is e.g. relevant for user interaction with random access or
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temporary load spikes of the CPU due to other applications or ill-posed
sections in the video.

• Reconstructor: The reconstructor is responsible for the final inpaint-
ing of the frames. Its main task is to transfer initialisation data to the
GPU, perform FED inpainting and store the finished reconstruction
in the reconstruction cache. For all frames except GOP start frames,
it also generates the final initialisation. According to the confidence
measure for the smart initialisation, it combines the linear interpola-
tion data from the loader cache with the last reconstruction from the
reconstruction cache. Just as the GOP-start handler, the reconstruc-
tor also adapts the number of iterations and nonlinear updates to the
number of cached frames to guarantee fluent playback (if the cache is
nearly empty) or increase the fidelity (if the cache is sufficiently full).

• Presenter: The presenter handles all user interaction and video-playback
with the OpenGL toolkit GLUT. It reads the decompressed images
from the reconstruction cache at a rate of 25 frames per second.

The architecture of the decoder allows to dedicate more time to the actual
inpainting by focussing the time-critical GPU interpolation to a single thread
and distributing all other tasks to the three other threads. Additionally, the
caching system even allows to increase the inpainting runtime above 0.04s if
a larger time budget is available. This can happen if time is saved due to the
reuse of whole frames (frame type 4) or if the user pauses the video.

5.5 Experiments

In the following we present experiments that assess the quality of the de-
coded images with different initialisation strategies. Since the decoded results
should approximate the steady-state as accurately as possible, we compare
them against reference results.
These reference inpaintings result from an explicit scheme with FED acceler-
ation. As a stopping criterion, we used the maximal per-pixel change after a
stopping time of T = 10000 with 20 nonlinear updates. For the initialisation
uk and the corresponding reconstruction uk+1 after a diffusion time of 10000
we define the per-pixel change

d(uk,uk+1) := max
i,j
{|uki,j − uk+1

i,j |}. (19)

For u0 we use a flat initialisation with the average grey value of the known
data. The FED inpaintings with stopping time T = 10000 are then iterated
until d(uk,uk+1) < 0.001.
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Table 1: Deviation of inpainting results from the corresponding reference
reconstructions. Different initialisation strategies with a Fast Explicit Dif-
fusion solver are compared in respect to the reference MSE on the movie
Nosferatu. The default parameters from Section 5.3 were used for encoding.
The maximum error is the same for reuse and smart initialisation due to the
application of the tref threshold (see Section 5.3). Note that the main benefit
of smart initialisation is the removal of local artefacts. Nevertheless, there is
also an improvement in the average error.

Strategy Flat (FED) Reuse (FED) Smart (FED)

Maximum Error 16788.51 4.99 4.99

Average Error 461.46 0.20 0.19

Error < 0.5 1.39% 91.42% 91.60%

Error < 1 2.51% 95.31% 95.68%

Error < 5 4.91% 100% 100%

Error < 10 6.94% 100% 100%

All tests were performed on an Intel Xeon CPU W3565@3.20GHz with an
Nvidia Geforce GTX 460. A restored version of the classical movie Nos-
feratu [36] from 1922 acts as a test file. The frames in Fig. 7 and Fig. 6
are copyrighted by the Friedrich-Wilhelm-Murnau-Foundation and are pub-
lished with their consent. It has 141680 grey scale frames at a resolution of
640 × 480. For our testing purposes, the full movie was encoded at a com-
pression rate of 20:1 with the default encoder parameters from Section 5.3.
For the decoder, we used an FED scheme with 5 nonlinear updates and 20
iterations per cycle for all tested initialisation strategies.
In Table 1 the deviation of the inpainting results from the reference solutions
are displayed for several initialisation strategies. We measure this deviation
in terms of the mean square error (MSE) between the reference reconstruction
and the decoder reconstructions with different initialisation strategies.
Using a flat initialisation is completely infeasible for video playback. An av-
erage error of 37.82 suggests severe artefacts in many frames. In contrast, the
reuse heuristic already decreases the average MSE to 0.25. In fact, 95.31%
of the frames have a reference MSE below 0.5 and are visually indistinguish-
able from the reference solution in practice. We also compare against our
smart initialisation strategy, which is mainly used to avoid the creation of
local artefacts in worst case scenarios as described in Section 5.2. The re-
sults in Table 1 also demonstrate that smart initialisation does not introduce
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significant negative side effects. In contrary, the average error is decreased
by 5%.
For the reuse and smart initialisation strategies, there are still some frames
with an MSE close to the GOP reference threshold tref = 5. However, their
number is relatively small and the visual difference is hard to spot at 25
frames per second.
In total, the results show that real time playback of R-EED-encoded videos
is possible on consumer hardware. In particular, no compromises have to be
made in regard to encoding quality in order to achieve a good approximation
of the reference solution. Due to smart initialisation, no additional data has
to be stored in problematic regions.

6 Conclusion

With the three extensions introduced into this paper, we have made a strong
case for the suitability of R-EED for real-world applications. In particular,
the real-time decoding capabilities of our video player framework demon-
strate that even though PDE-based methods are in general more computationally-
intensive than transformation-based methods, a clever use of available re-
sources allows surprising performance on consumer hardware. These exten-
sions mark the first step of an evolution of PDE-based compression schemes
from the proof-of-concept stage to fully grown codecs with relevance for prac-
tical applications.
In our future work, we plan to investigate efficient video encoding algorithms
for the PDE-based video decoding algorithm presented here. To further en-
hance the performance of the proposed progressive modes, especially for very
small file parts, we plan to look into progressive modes that only store a part
of the tree structure in the file header, while the remainder is stored closer
to the end of the file. Another line of research is to transfer our progressive
mode and region of interest coding scheme to other PDE-based compression
approaches for 2-D, 3-D and video data.
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Frame 4931 Frame 4932 Frame 9600 Frame 9601

Reference Flat Initialisation Reuse Initialisation Smart Initialisation

MSE 1141.64 MSE 28.45 MSE 0.14

MSE 34.61 MSE 20.47 MSE 0.53

Figure 7: Reconstruction of scenes with quick movement based on differ-
ent initialisations (compression ratio 20:1). The first row shows the original
frames 4932 and 9601 and their predecessors. From Frame 4931 to 4932 a
book page is flipped. Frames 9600 and 9601 contains quick movement of a
hat in the hand of the character to the left. The first columns displays the
reference inpainting, while the second column uses a flat, black initialisation.
The results in the third column were obtained using the last frame as an
initialisation and the last column is based on a smart initialisation that com-
bines information from the last frame and linear interpolation results based
on a confidence measure. Smart initialisation provides the lowest MSE for
the total reconstruction.

32


