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Abstract

We investigate a modification of the total variation image inpainting
method in higher dimensions, i.e. we assume n ≥ 3 and discuss existence
as well as smoothness of corresponding solutions to the underlying vari-
ational problem. Precisely, we are going to establish that our type of a
linear growth regularization admits a unique solution in the Sobolev space
W 1,1(Ω), i.e. we do not need to consider a suitable relaxed variant of
our original variational problem in the space of functions having bounded
variation. Furthermore, we will prove C1,α interior differentiability of our
unique solution using De Giorgi-type arguments.

1 Introduction

Let us consider a black and white image that is described by a function u : Ω→
[0, 1], where Ω is supposed to be a bounded Lipschitz domain in R

n with n ≥ 3
(e.g. a cuboid in the case n = 3). In the context of image processing, u(x) can be
interpreted as a measure of the intensity of the grey level. Further, we suppose
that we are given a subset D of Ω which is assumed to be Ln-measurable (Ln
denoting Lebesgue’s measure on R

n) and satisfies

0 < Ln(D) < Ln(Ω). (1.1)

Precisely, the region D that is also called“inpainting domain”(see [14]) represents
a certain part of the observed image for which image data are missing or inac-
cessible, i.e. the intensity of the grey level is only known for points x ∈ Ω −D.
Further, the partial observation is represented through a measurable function
f : Ω−D → [0, 1].

Our goal now is to recover the original image in terms of a function u: Ω→ R on
the entire domain Ω based on the partial observation f : Ω − D → [0, 1] which
is usually corrupted by noise stemming from transmission or measuring errors.
In the image processing community, this kind of image interpolation is called
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“inpainting” or “image inpainting”, respectively (compare [14, 22, 23]).
On account of [22], there are essentially four different methods to handle the
inpainting problem, depending on being variational or non-variational and local
or non-local where we like to refer to [2, 5, 15, 17, 16, 18, 22] and the references
quoted therein for more details.

In our note we concentrate on a TV-like variational approach being of non-local
type that has already been proposed in [12] for instance. Precisely we seek mini-
mizers of the following functional

J [w] :=

∫
Ω

ψ(|∇w|) dx+
λ

2

∫
Ω−D

(w − f)2 dx . (1.2)

In this setting, λ is a positive regularization parameter and ψ is supposed to be a
convex and increasing function with non-negative values. From the point of view
of image processing, the second term on the right-hand side of (1.2) represents a
measure for the quality of data fitting, i.e. the deviation of the original image w
from the known data on Ω−D while the first term produces a kind of mollifica-
tion and allows to incorporate some kind of a priori information of the generated
image on the entire domain Ω into the minimization process.

In this context, a common choice of ψ is ψ(|∇w|) := |∇w| leading to the to-
tal variation inpainting model (compare, e.g., [4, 22]). In order to investigate this
variational problem, one has to work with functions Ω → R being of bounded
variation, i.e. in the space BV(Ω). This space covers all L1-functions whose dis-
tributional gradient ∇w is represented by a vector valued Radon measure on Ω
with finite total variation

∫
Ω
|∇w| (see, e.g., [19]).

Due to the lack of ellipticity, we cannot expect regular solutions of variational
problems involving the total variation, in general. For that reason, as already
carried out in the papers [8, 9, 12, 13] and also in the related work [7], the ba-
sic idea was to replace the TV-density ψ(|∇w|) = |∇w| through a family of
strictly convex densities F (∇w) being still of linear growth w.r.t. to the modulus
of the gradient but satisfying better ellipticity properties. However, the study
of smoothness properties of corresponding solutions remains a difficult problem
since the required linear growth of F admits only weak and anisotropic elliptic-
ity conditions. Thus, it stands to reason that regularity highly depends on the
modulus of ellipticity.

Let us now fix the basic setup of our note: As in [8],[9] and [13] we introduce the
energy

I[w] :=

∫
Ω

F (∇w) dx+
λ

2

∫
Ω−D

(w − f)2 dx (1.3)
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for functions w from the Sobolev spaceW 1,1(Ω) being intersected with the Lebesgue
space L2(Ω − D) (for details concerning these spaces, we refer to [1]), i.e. the
functional I is well defined. Further, F : Rn → [0,∞) represents a density of class
C2 satisfying F (0) = 0 and DF (0) = 0. More precisely, we impose the following
conditions on F :
there exist positive constants ν1, ν2, ν3 and a real number µ > 1 such that for any
Y, Z ∈ Rn we have

|DF (Z)| ≤ ν1 (1.4)

and

ν2
1

(1 + |Z|)µ
|Y |2 ≤ D2F (Z)(Y, Y ) ≤ ν3

1

1 + |Z|
|Y |2 . (1.5)

Remark 1.1
An integrand F : Rn → [0,∞) being of class C2 and satisfying (1.4) as well as
(1.5) is called µ-elliptic.

Based on the above hypotheses of µ-elliptic densities we can state some useful
conclusions that have been established on p. 97/98 in [6] for instance.

Lemma 1.2
Suppose that F satisfies (1.4) and (1.5) for some number µ > 1. Then F is
strictly convex on R

n and it holds:

(i) there are real constants ν1 > 0 , ν2 ∈ R such that for all Z ∈ Rn we have

DF (Z) · Z ≥ ν1|Z| − ν2 ;

(ii) F is of linear growth in the sense that for real numbers ν3, ν4 > 0, ν5,
ν6 ∈ R and for all Z ∈ Rn it holds

ν3|Z| − ν5 ≤ F (Z) ≤ ν4|Z|+ ν6 ; (1.6)

(iii) the integrand satisfies a balancing condition: there exists a real constant
ν7 > 0 such that

|D2F (Z)||Z|2 ≤ ν7(1 + F (Z))

for all Z ∈ Rn.

Following the lines of [11] there are prominent examples of integrands being µ-
elliptic where without any doubt, the most prominent one is the minimal surface
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integrand given by F (Z) :=
√

1 + |Z|2, Z ∈ R
n, fulfilling (1.5) for the choice

µ = 3. Since we cannot expect any smoothness results if the ellipticity exponent
satisfies µ > 3 (see [6], Section 4.4 for a counterexample), the limit µ = 3 serves
as an optimal choice.
Consulting [7], another example of a µ-elliptic density seems to be more serious
in the context of TV-regularization: Let us fix µ > 1 and set

ϕµ(r) :=

r∫
0

s∫
0

(1 + t2)−
µ
2 dtds, r ∈ R+

0 .

Since, in the TV-case, the density just depends on the modulus of the gradient,
it does make sense to consider a function Φµ with

Φµ(Z) := ϕµ(|Z|), Z ∈ Rn (1.7)

Here, Φµ : Rn → [0,∞) is of class C2 satisfying (1.4) and (1.5) with the prescribed
elliptic parameter µ.
Moreover, for µ 6= 2, we get a clearer representation of ϕµ(r), precisely

ϕµ(r) =
r

µ− 1
+

1

µ− 1

1

µ− 2
(r + 1)−µ+2 − 1

µ− 1

1

µ− 2
, (1.8)

whereas for µ = 2 it holds

ϕ2(r) = r − log(1 + r).

Observing next that we obtain

(µ− 1)Φµ(Z)→ |Z| as µ→∞ (1.9)

for all Z ∈ Rn, it becomes evident that the density Φµ(∇u) serves as a very good
candidate w.r.t. approximating |∇u| by integrands of linear growth satisfying
better ellipticity properties.

In this note, we will prove two results: Assuming from now on that it holds
µ ∈ (1, 2) for our elliptic parameter we primarily consider the variational problem
I → min with I from (1.3) in the space W 1,1(Ω)∩L2(Ω−D) and show that we are
able to produce a unique minimizer u belonging to the class W 1,1(Ω)∩L2(Ω−D)
with the additional property 0 ≤ u ≤ 1 a.e. on Ω by benefiting from fine proper-
ties of a suitable regularization sequence (uδ)δ∈(0,1). Subsequently, we prove full
interior C1,α-regularity of our minimizer u for any α ∈ (0, 1) on the whole domain
Ω by performing a De Giorgi-type iteration and quoting standard arguments from
elliptic regularity theory. At this point, we highly emphasize that the condition
µ < 2 is of fundamental meaning in the course of both proofs.

To be more precise, we formulate our existence and regularity results for the
case of involving µ-elliptic densities.
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Theorem 1.3
Let (1.1) hold where we assume n ≥ 3 and suppose that F satisfies (1.4) and
(1.5) for some µ ∈ (1, 2). Then the problem I → min admits a unique solution
u ∈ W 1,1(Ω)∩L2(Ω−D) satisfying 0 ≤ u(x) ≤ 1 almost everywhere on the entire
domain Ω.

Theorem 1.4
Under the assumptions (in particular, we assume µ ∈ (1, 2)) and with the notation
of Theorem 1.3 it holds u ∈ C1,α(Ω) for any 0 < α < 1 where u is the solution
from Theorem 1.3.

Remark 1.5
Since the unique I-minimizer u automatically satisfies the maximum priniciple
0 ≤ u(x) ≤ 1 a.e. on Ω, it can be interpreted as a measure for the intensity of
the grey level.

Remark 1.6
Considering the case n = 2 we like to remark the following:

• The statement of Theorem 1.3 has already been proven in [8] (see Theorem
1.3 therein). In this situation we do not have to force well definity of our
functional I in such a way as we did above since an application of Sobolev’s
embedding theorem ensures well definity of I for functions from the space
W 1,1(Ω). In fact, following the arguments of the proof of Theorem 1.3 in
[8] it turns out that the unique I-minimizer u ∈ W 1,1(Ω) belongs to the
Sobolev space W 2,s

loc (Ω) for any exponent s ∈ (1, 2) and a new application of
Sobolev’s embedding theorem directly implies local p-integrability of ∇u for
any finite exponent p.

• Full interior C1,α-regularity of the unique I-minimizer u ∈ W 1,1(Ω) for
any α ∈ (0, 1) on the whole domain Ω has been showed in [13], Theorem
2. This result was a substantial improvement of Theorem 1.4 in [8] where
one could show partial C1,β-regularity of u on Ω for any β < 1, i.e. there
exists an open subset Ω0 of Ω satisfying dimH(Ω− Ω0) = 0. By definition,
dimH(Ω−Ω0) = 0 means that Hε(Ω−Ω0) = 0 ((Hε denoting the Hausdorff-
measure of dimension ε) for any ε > 0, i.e. the set of singular points is in
some sense very small.

Remark 1.7
The occurrence of the inpainting quantity

∫
Ω−D(f − w)2 dx causes some severe

problems, if one likes to prove interior C1,α-regularity of minimizers by using De
Giorgi-type arguments. Precisely, we cannot immediately refer to e.g. [6] adding
some obvious modifications. Besides, as done in [13], in the course of the proof
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of Theorem 1.4 we also like to investigate in detail (see Lemma 3.6) what starting
integrability of ∇u is actually needed to obtain its local boundedness.

Remark 1.8
In fact, we cannot expect solvability of the problem I → min in W 1,1(Ω)∩L2(Ω−
D) for arbitrary values of µ. Nevertheless, we can consider suitable relaxed vari-
ants of the original problem, e.g. an appropriate BV -variant by using the notion
of a convex measure function or passing to the dual variational problem, for large
values of µ. In fact, we can establish existence of generalized solutions to these
relaxed variants of our original problem under much weaker assumptions on our
density F (for details we refer to [9] and [Preprint mit Jan Müller]).

Remark 1.9 • It is easy to check that Theorem 1.3 and Theorem 1.4 also
extend to the case D = ∅ (“pure denoising of f“).

• Applying minor adjustments, the results of Theorem 1.3 as well as Theorem
1.4 are also valid in the case that an additional boundary condition as u = u0

on ∂Ω is involved where u0 denotes a sufficently regular function fulfilling
0 ≤ u0 ≤ 1 (see [7] for more details).

2 Proof of Theorem 1.3

Let the inpainting region D satisfy (1.1) where we assume n ≥ 3 and consider a
density F fulfilling (1.4) and (1.5) for some µ ∈ (1, 2). As in [9] (compare Lemma
2.1 in this reference) and [13] (see Lemma 2 therein) we introduce a suitable
regularization of our original problem, i.e. we regularize the energy density F
with Fδ in such a way that we let for fixed δ ∈ (0, 1]

Iδ[w] :=

∫
Ω

Fδ(∇w)dx+
λ

2

∫
Ω−D

(w − f)2dx

where

Fδ(P ) :=
δ

2
|P |2 + F (P ), P ∈ Rn. (2.1)

Then we can give the following lemma:

Lemma 2.1
Suppose that (1.1) holds for the damaged region D and let us assume the validity
of (1.4) as well as (1.5) for some µ > 1. Then the problem Iδ → min in W 1,2(Ω)
admits a unique solution uδ satisfying
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(a) 0 ≤ uδ ≤ 1 a.e. on Ω.

(b) uδ ∈ W 2,2
loc (Ω) ∩ C1,α(Ω) for all 0 < α < 1.

Proof of Lemma 2.1. A proof of this lemma under weaker assumptions on F can
be found in [9], Lemma 3.1.

In order to prove Theorem 1.3 we proceed as in the proof of Theorem 1.3 in [8].
Precisely, the first step is to establish that uδ ∈ W 1,2

loc (Ω) uniformly in δ which
serves as an appropriate auxiliary result for showing Theorem 1.3 subsequently.

Lemma 2.2
It holds uδ ∈ W 1,2

loc (Ω) uniformly in δ.

Proof of Lemma 2.2. Having Lemma 2.1 at hand, uδ solves the euler equation∫
Ω

DFδ(∇uδ) · ∇ϕdx+ λ

∫
Ω−D

(uδ − f)ϕdx = 0 (2.2)

for all ϕ ∈ C∞0 (Ω). Recalling Lemma 2.1, (b), uδ is of class W 2,2
loc (Ω). Further-

more, since |D2Fδ| is bounded, DFδ(∇uδ) is of class W 1,2
loc (Ω,Rn) having partial

derivatives

∂γ(DFδ(∇uδ)) = D2Fδ(∇uδ)(∂γ∇uδ, ·) a.e. on Ω

where γ ∈ {1, . . . , n}. Observing that ∂γϕ represents an admissible choice in the
euler equation (2.2) we arrive at the differentiated version of equation (2.2) by
using an integration by parts. More precisely, we get∫

Ω

D2Fδ(∇uδ)(∂γ∇uδ,∇ϕ)dx = λ

∫
Ω−D

(uδ − f)∂γϕdx

and by approximation, the above equality remains valid for functions ϕ ∈ W 1,2(Ω)
having compact support in Ω.

Next, we fix a point x0 ∈ Ω, a radius R > 0 such that B2R(x0) b Ω and let
η ∈ C∞0 (B2R(x0)) with η ≡ 1 on BR(x0), 0 ≤ η ≤ 1 and |∇η| ≤ c

R
.

Noticing that ϕ := η2∂γuδ is admissible we may follow the calculations in [8],
Proof of Theorem 1.2 with Fδ in place of Hδ and the condition of µ-ellipticity
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(1.5) yields (compare (3.5) in [8] and taking the sum w.r.t. γ)

c

∫
B2R(x0)

η2 |∇2uδ|2

(1 + |∇uδ|2)µ/2
dx

≤ c(R) + λ

∫
B2R(x0)

1Ω−D(uδ − f)∂γ(η
2∂γuδ)dx

(2.3)

where c is a positive constant being independent of δ and BR(x0).
From (2.3) we may conclude∫

BR(x0)

|∇2uδ|2

(1 + |∇uδ|2)µ/2
dx+

∫
BR(x0)

|∇uδ|2dx ≤ c(R) (2.4)

exactly as in [8] by starting with (3.5) in this reference. Here, c(R) represents a
local constant being independent of δ. This proves the claim of Lemma 2.2 after
using a covering argument.

Remark 2.3
Setting ϕδ := (1 + |∇uδ|2)1−µ

4 it follows∫
BR(x0)

|∇ϕδ|2dx ≤ c(R)

by taking (2.4) into account. This implies ∇ϕδ ∈ W 1,2
loc (Ω) uniformly w.r.t. δ

after exploiting a covering argument. Considering the case n = 2, an application
of Sobolev’s embedding theorem immediately implies local uniform (in δ) higher
integrability of ∇uδ. Underlying the assumption n ≥ 3, Sobolev’s embedding
theorem merely gives ∇uδ ∈ Lqloc(Ω) uniformly w.r.t. δ where 1 ≤ q < 2n

n−2
.

After proving Lemma 2.2, we now give the proof of Theorem 1.3:
Initially we notice that from Iδ[uδ] ≤ I[0] and from the linear growth of F w.r.t.
the modulus of the gradient we get existence of a positive constant c such that

sup
δ

∫
Ω

|∇uδ|dx ≤ c <∞. (2.5)

Quoting Lemma 2.1 and (2.5), an application of the BV -compactness theorem
leads to existence of a function u belonging to the space BV (Ω) with uδ → u in
L1(Ω) (and a.e. on Ω) by passing to appropriate subsequences. Consequently,
Lemma 2.2 gives u ∈ W 1,2

loc (Ω) and by remarking that BV (Ω) ∩ W 1,2
loc (Ω) is a

subspace of W 1,1(Ω), it follows u ∈ W 1,1(Ω). Further we can arrange uδ ⇁: ũ in
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L2(Ω−D) by passing to an appropriate subsequence (recall Iδ[uδ] ≤ I[0]) and an
application of Egorov’s theorem gives ũ = u a.e. on Ω−D. As a consequence we
get u ∈ W 1,1(Ω) ∩ L2(Ω−D), i.e. I[u] is well defined.

Moreover, the functional I is weakly lower semicontinuous in W 1,2
loc (Ω) which

follows exactly as in the proof of Theorem 1.3 in [8], i.e. we have∫
ω

F (∇u)dx+

∫
ω∩(Ω−D)

(u− f)2dx ≤ lim inf
δ→0

I[uδ]

for compact subregions ω of Ω. Considering a compact exhaustion of Ω and
using 1ω → 1Ω a.e. on Ω it follows by using Lebesgue’s theorem on dominated
convergence

I[u] ≤ lim inf
δ→0

I[uδ] (2.6)

which corresponds to (3.3) in [8].
Thanks to the Iδ-minimality of uδ in W 1,2(Ω) we obtain

I[u] ≤ lim inf
δ→0

I[uδ] ≤ lim inf
δ→0

Iδ[uδ] ≤ lim inf
δ→0

Iδ[v] = I[v]

where v ∈ W 1,2(Ω).
By approximation we can find a sequence (vk) ⊂ W 1,2(Ω) satisfying vk → w in
W 1,1(Ω) ∩ L2(Ω − D) (see [Preprint mit Jan Müller]) and as a consequence we
finally get I[u] ≤ I[w] for any w ∈ W 1,1(Ω) ∩ L2(Ω − D). Thus, u represents a
I-minimizer belonging to the class W 1,1(Ω) ∩ L2(Ω−D).

In accordance with Lemma 2.1 we additionally get 0 ≤ u ≤ 1 a.e. on Ω as
well as u ∈ W 1,2

loc (Ω) by construction. In order to face the uniqueness problem,
let w denote a second function from the space W 1,1(Ω) ∩ L2(Ω − D) being I-
minimizing. By strict convexity it holds ∇u = ∇v a.e. on Ω together with u = v
a.e. on Ω−D. Thus, it follows u = v + c a.e. on Ω for a suitable constant c and
thanks to (1.1) we may infer c = 0 which completes the proof of the theorem.

Remark 2.4
We can state that it holds

Iδ[uδ]→ I[u],

δ

∫
Ω

|∇uδ|2dx→ 0,

uδ → u in L1(Ω),

uδ ⇁ u in W 1,2
loc (Ω)

as δ → 0 not only for a subsequence.
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3 Proof of Theorem 1.4

Suppose that the inpainting region D satisfies (1.1) and that our density F is
µ-elliptic with some µ ∈ (1, 2). Moreover, we will assume n ≥ 3 in the follow-
ing that leads to severe problems since we need existence of local uniform (in
δ) Lp-estimates of ∇uδ (or local uniform Lp-estimates up to a fixed exponent,
respectively) in order to perform a De Giorgi type iteration which gives local uni-
form (in δ) a priori gradient bounds of ∇uδ after applying Stampacchia’s lemma
(compare, e.g., [24], Lemma 5.1, p.219). Recalling Remark 2.3, Sobolev’s embed-
ding theorem merely implies ∇uδ ∈ Lqloc(Ω) uniformly w.r.t. δ where 1 ≤ q < 2n

n−2

and it turns out that this starting integrability of ∇uδ is not good enough for
performing a De Giorgi-type iteration (compare Remark 3.8).
The proof of Theorem 1.4 is organized in four steps: Regularization and local
uniform Lp-estimates of ∇uδ for any finite exponent 1 < p < ∞, Caccioppoli-
type inequality, De Giorgi-type iteration and the Conclusions.

Step 1. Regularization and local uniform Lp-estimates of ∇uδ

As in the proof of Theorem 1.3, we are going to regularize the energy density
F with Fδ from (2.1), i.e. we let

Iδ[w] :=

∫
Ω

Fδ(∇w)dx+
λ

2

∫
Ω

(w − f)2dx.

Recalling the statements of Lemma 2.1 and Remark 2.4 we are able to deduce
higher local uniform (in δ) p-integrability of ∇uδ for any finite exponent 1 < p <
∞. This result will serve as an important tool for carrying out a De Giorgi-type
iteration in step 3 of the present proof.

Lemma 3.1
Suppose that we have (1.1) for D and that F satisfies (1.4) and (1.5) for some
µ ∈ (1, 2). Then for any 1 < p < ∞ and for any ω b Ω there is a constant
c(p, ω), which in particular does not depend on δ, such that

‖∇uδ‖Lp(ω,Rn) ≤ c(p, ω) <∞. (3.1)

Proof of Lemma 3.1. Primarily we are going to establish a variant of Cacciop-
poli’s inequality which only holds for µ ∈ (1, 2).

Lemma 3.2
Let (1.1) hold and suppose that F satisfies (1.4) and (1.5) for some µ ∈ (1, 2).
Then there is a real number c > 0 such that for any s0 ≥ 0, for all η ∈ C∞0 (Ω)
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satisfying 0 ≤ η ≤ 1 and for any δ ∈ (0, 1) it holds

∫
Ω

|∇2uδ|2Γ
s0−µ2
δ η2dx+ δ

∫
Ω

|∇2uδ|2Γs0δ η
2dx

≤
∫
Ω

D2Fδ(∇uδ)(∂γ∇uδ, ∂γ∇uδ)η2Γs0δ dx

≤ c

∫
Ω

D2Fδ(∇uδ)(∂γuδ∇η, ∂γuδ∇η)Γs0δ dx+ c

∫
Ω

|∇η|2Γs0δ dx

+ c

∫
Ω

η2Γs0δ dx

(3.2)

where we have set Γδ := 1 + |∇uδ|2 and c, in particular, is independent of δ.

Proof of Lemma 3.2. We start by noting that the first inequality follows from
(1.5). Next, we fix s0 > 0 (For the case s0 = 0 we refer to Lemma 2.2). Since uδ
is Iδ-minimal we get

∫
Ω

DFδ(∇uδ) · ∇ϕdx+ λ

∫
Ω−D

(uδ − f)ϕdx = 0 (3.3)

for all ϕ ∈ C∞0 (Ω). Recalling the statements of Lemma 2.1 and as already
discussed in the proof of Lemma 2.2 the differentiated version of euler’s equation
(3.3) reads as

∫
Ω

D2Fδ(∇uδ)(∂γ∇uδ,∇ψ)dx = λ

∫
Ω−D

(uδ − f)∂γψdx (3.4)

for all ψ ∈ C∞0 (Ω) and by standard approximation arguments for all ψ ∈ W 1,2(Ω)
with compact support in Ω.

Next we state that ψ = η2∂γuδΓ
s0
δ is admissible in (3.4) (recall Lemma 2.1 (b) as

well as the product and the chain rule for Sobolev functions) and as a consequence
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we get (from now on summation w.r.t. γ ∈ {1, . . . , n})

∫
Ω

D2Fδ(∇uδ)(∂γ∇uδ, ∂γ∇uδ)η2Γs0δ dx

+ s0

∫
Ω

D2Fδ(∇uδ)(∂γ∇uδ, ∂γuδ∇Γδ)Γ
s0−1
δ η2dx

= −2

∫
Ω

D2Fδ(∇uδ)(∂γ∇uδ, ∂γuδ∇η)ηΓs0δ dx

+ λ

∫
Ω−D

(uδ − f)∂γ(η
2∂γuδΓ

s0
δ )dx.

(3.5)

Studying the last integral on the r.h.s. of (3.5), we obtain

∫
Ω−D

(uδ − f)∂γ(η
2∂γuδΓ

s0
δ )dx

=

∫
Ω

(uδ − f)∂γ(η
2∂γuδΓ

s0
δ )dx−

∫
Ω∩D

(uδ − f)∂γ(η
2∂γuδΓ

s0
δ )dx

= −
∫
Ω

|∇uδ|2η2Γs0δ dx−
∫
Ω

f∂γ(η
2∂γuδΓ

s0
δ )dx

−
∫

Ω∩D

(uδ − f)∂γ(η
2∂γuδΓ

s0
δ )dx

(3.6)

where the last equality follows by performing an integration by parts.

Moreover we have

s0

∫
Ω

D2Fδ(∇uδ)(∂γ∇uδ, ∂γuδ∇Γδ)Γ
s0−1
δ η2dx

=
s0

2

∫
Ω

D2Fδ(∇uδ)(∇Γδ,∇Γδ)Γ
s0−1
δ η2dx.

(3.7)
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Incorporating (3.6) and (3.7) in (3.5), it follows

∫
Ω

D2Fδ(∇uδ)(∂γ∇uδ, ∂γ∇uδ)η2Γs0δ dx

+
s0

2

∫
Ω

D2Fδ(∇uδ)(∇Γδ,∇Γδ)Γ
s0−1
δ η2dx+ λ

∫
Ω

|∇uδ|2η2Γs0δ dx

= −2

∫
Ω

D2Fδ(∇uδ)(∂γ∇uδ, ∂γuδ∇η)ηΓs0δ dx

− λ
∫
Ω

f∂γ(η
2∂γuδΓ

s0
δ )dx− λ

∫
Ω∩D

(uδ − f)∂γ(η
2∂γuδΓ

s0
δ )dx.

(3.8)

An application of the inequality of Cauchy-Schwarz to the bilinear formD2Fδ(∇uδ)
and using Young’s inequality (ε > 0) subsequently, it holds

∣∣∣∣ ∫
Ω

D2Fδ(∇uδ)(∂γ∇uδ, ∂γuδ∇η)ηΓs0δ dx

∣∣∣∣
≤
∫
Ω

(D2Fδ(∇uδ)(∂γ∇uδ, ∂γ∇uδ))
1
2 (D2Fδ(∇uδ)(∂γuδ∇η, ∂γuδ∇η))

1
2ηΓs0δ dx

≤ ε

∫
Ω

D2Fδ(∇uδ)(∂γ∇uδ, ∂γ∇uδ)η2Γs0δ dx

+ ε−1

∫
Ω

D2Fδ(∇uδ)(∂γuδ∇η, ∂γuδ∇η)Γs0δ dx.

13



Recalling 0 ≤ uδ, f ≤ 1 a.e. and absorbing terms by choosing ε = 1
4

it follows∫
Ω

D2Fδ(∇uδ)(∂γ∇uδ, ∂γ∇uδ)η2Γs0δ dx

+ s0

∫
Ω

D2Fδ(∇uδ)(∇Γδ,∇Γδ)Γ
s0−1
δ η2dx

+ 2λ

∫
Ω

|∇uδ|2η2Γs0δ dx

≤ c

∫
Ω

D2Fδ(∇uδ)(∂γuδ∇η, ∂γuδ∇η)Γs0δ dx+ c

∫
Ω

η|∇η||∇uδ|Γs0δ dx

+ c

∫
Ω

η2|∇2uδ|Γs0δ dx+ cs0

∫
Ω

η2|∇uδ||∇Γδ|Γs0−1
δ dx

=: c

∫
Ω

D2Fδ(∇uδ)(∂γuδ∇η, ∂γuδ∇η)Γs0δ dx+
3∑
j=1

Ij.

(3.9)

Starting with I1 we use Young’s inequality (ε > 0) and get

I1 ≤ λ

∫
Ω

η2|∇uδ|2Γs0δ dx+ c

∫
Ω

|∇η|2Γs0δ dx. (3.10)

Studying I3 we obtain by noting |∇Γδ| ≤ c|∇uδ||∇2uδ|

I3 ≤ cs0

∫
Ω

η2|∇2uδ|Γs0δ dx. (3.11)

As a consequence of (3.11) we may put I2 and I3 together and an application of
Young’s inequality (ε > 0) to this new integral leads to

c(s0)

∫
Ω

η2|∇2uδ|Γs0δ dx

≤ c(s0)

∫
Ω

[
εη2Γ

−µ
2

δ |∇
2uδ|2Γs0δ + ε−1η2Γ

s0+µ
2

δ

]
dx

≤ c(s0)

∫
Ω

[
εD2Fδ(∇uδ)(∂γ∇uδ, ∂γ∇uδ)η2Γs0δ + ε−1η2Γ

s0+µ
2

δ

]
dx

(3.12)

where we used (1.5) in the last inequality.
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Incorporating (3.10) and (3.12) in (3.9) it follows by absorbing terms (we choose
ε > 0 sufficiently small)∫

Ω

D2Fδ(∇uδ)(∂γ∇uδ, ∂γ∇uδ)η2Γs0δ dx

+ s0

∫
Ω

D2Fδ(∇uδ)(∇Γδ,∇Γδ)Γ
s0−1
δ η2dx

+ λ

∫
Ω

|∇uδ|2η2Γs0δ dx

≤ c

∫
Ω

D2Fδ(∇uδ)(∂γuδ∇η, ∂γuδ∇η)Γs0δ dx+ c

∫
Ω

|∇η|2Γs0δ dx

+ c

∫
Ω

η2Γ
s0+µ

2
δ dx.

(3.13)

Now, we investigate the last integral on the right-hand side of (3.13). Recalling
µ < 2 at this point and setting p := 2

µ
> 1 as well as q := 2

2−µ > 1 we get by

using Young’s inequality one more time (observe that it holds 1
p

+ 1
q

= 1)

c

∫
Ω

η2Γ
s0+µ

2
δ dx ≤ ε

∫
Ω

η2Γs0+1
δ dx+ cε−1

∫
Ω

η2Γs0δ dx

= ε

∫
Ω

η2Γs0δ |∇uδ|
2dx+ c(ε)

∫
Ω

η2Γs0δ dx.

Hence, absorbing terms, (3.13) yields∫
Ω

D2Fδ(∇uδ)(∂γ∇uδ, ∂γ∇uδ)η2Γs0δ dx

+ s0

∫
Ω

D2Fδ(∇uδ)(∇Γδ,∇Γδ)Γ
s0−1
δ η2dx

+

∫
Ω

|∇uδ|2η2Γs0δ dx

≤ c

∫
Ω

D2Fδ(∇uδ)(∂γuδ∇η, ∂γuδ∇η)Γs0δ dx+ c

∫
Ω

|∇η|2Γs0δ dx

+ c

∫
Ω

η2Γs0δ dx

(3.14)
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where c, in particular, does not depend on δ. Neglecting the non-negative second
and the non-negative third integral on the l.h.s. of (3.14) we immediately get the
desired variant of Caccioppoli’s inequality (3.2).

Next, we are going to establish the local uniform p-integrability of ∇uδ for any
finite exponent p where the variant of Caccioppoli’s inequality which was deduced
in Lemma 3.2 will serve as an important tool. In order to prove local uniform
Lp-estimates of ∇uδ we adopt techniques as already applied on pp.116 in [6].

Initially we fix a ball B2R0(x0) b Ω where R0 > 0 denotes a real number be-
ing sufficently small. Next, we assume that there is a real number α0 ≥ 0 such
that

∫
B2R0

(x0)

Γ
α0+ 1

2
δ dx+ δ

∫
B2R0

(x0)

Γα0+1
δ dx ≤ c := c(R0, α0) (3.15)

where c, in particular, is independent of δ and note that (3.15) is valid for α0 = 0
since we have

∫
B2R0

(x0)

Γ
1
2
δ dx+ δ

∫
B2R0

(x0)

Γδdx

≤
∫

B2R0
(x0)

(1 + |∇uδ|)dx+ δ

∫
B2R0

(x0)

Γδdx

≤ c

∫
B2R0

(x0)

[1 + Fδ(∇uδ)]dx

≤ c(R0)

(3.16)

where the last inequality holds true by recalling (1.6) and that
∫
Ω

Fδ(∇uδ)dx is

uniformly bounded in δ.

Now, we set α := α0 + 2 − µ and choose ϕ = η2Γαδ uδ where η ∈ C∞0 (B2R0(x0))
satisfying 0 ≤ η ≤ 1, η ≡ 1 on BR0(x0) and |∇η| ≤ c

R0
. Quoting Lemma 2.1, uδ

is of class W 2,2
loc (Ω) ∩ C1,α(Ω) ⊂ W 2,2

loc (Ω) ∩W 1,∞
loc (Ω), thus ϕ is admissible in the

euler equation (3.3) (recall the product and the chain rule for Sobolev functions)
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and we obtain

0 =

∫
B2R0

(x0)

DFδ(∇uδ) · ∇(η2Γαδ uδ)dx+ λ

∫
B2R0

(x0)−D

(uδ − f)η2Γαδ uδdx

=

∫
B2R0

(x0)

DF (∇uδ) · ∇(η2Γαδ uδ)dx+ δ

∫
B2R0

(x0)

∇uδ · ∇(η2Γαδ uδ)dx

+ λ

∫
B2R0

(x0)−D

(uδ − f)η2Γαδ uδdx

=

∫
B2R0

(x0)

DF (∇uδ) · ∇uδ η2Γαδ dx+ 2

∫
B2R0

(x0)

DF (∇uδ) · ∇η Γαδ ηuδdx

+ α

∫
B2R0

(x0)

DF (∇uδ) · ∇Γδ η
2uδΓ

α−1
δ dx+ δ

∫
B2R0

(x0)

|∇uδ|2η2Γαδ dx

+ 2δ

∫
B2R0

(x0)

∇uδ · ∇η Γαδ uδηdx+ δα

∫
B2R0

(x0)

∇uδ · ∇Γδ η
2Γα−1

δ uδdx

+ λ

∫
B2R0

(x0)−D

(uδ − f)η2Γαδ uδdx.

(3.17)

Recalling 0 ≤ uδ, f ≤ 1 and the boundness of DF (see (1.4)) we get from (3.17)

by exploiting |∇uδ| ≤ Γ
1
2
δ as well as |∇Γδ| ≤ c|∇uδ||∇2uδ| in addition∫

B2R0
(x0)

DF (∇uδ) · ∇uδη2Γαδ dx+ δ

∫
B2R0

(x0)

|∇uδ|2η2Γαδ dx

≤ c

∫
B2R0

(x0)

|∇η|ηΓαδ dx+ c(α)

∫
B2R0

(x0)

|∇2uδ|η2Γ
α− 1

2
δ dx

+ cδ

∫
B2R0

(x0)

|∇η|Γα+ 1
2

δ ηdx+ c(α)δ

∫
B2R0

(x0)

|∇2uδ|η2Γαδ dx

+ c(λ)

∫
B2R0

(x0)

η2Γαδ dx.

(3.18)

By means of Lemma 1.2 (i) we may estimate the l.h.s. of (3.18) as follows∫
B2R0

(x0)

DF (∇uδ) · ∇uδη2Γαδ dx+ δ

∫
B2R0

(x0)

|∇uδ|2η2Γαδ dx
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≥ ν1

∫
B2R0

(x0)

η2Γ
α+ 1

2
δ dx− ν2

∫
B2R0

(x0)

η2Γαδ dx

+ δ

∫
B2R0

(x0)

η2Γα+1
δ dx− δ

∫
B2R0

(x0)

η2Γαδ dx.

Fixing ε > 0 and using Young’s inequality, the r.h.s. of (3.18) turns into

r.h.s. ≤ cε

∫
B2R0

(x0)

η2Γ
α+ 1

2
δ dx+ cε−1

∫
B2R0

(x0)

|∇η|2Γ
α− 1

2
δ dx

+ cε

∫
B2R0

(x0)

η2Γ
α+ 1

2
δ dx+ cε−1

∫
B2R0

(x0)

|∇2uδ|2η2Γ
α− 3

2
δ dx

+ cδε

∫
B2R0

(x0)

η2Γα+1
δ dx+ cδε−1

∫
B2R0

(x0)

|∇η|2Γαδ dx

+ cδε

∫
B2R0

(x0)

η2Γα+1
δ dx+ cδε−1

∫
B2R0

(x0)

|∇2uδ|2η2Γα−1
δ dx

+ c

∫
B2R0

(x0)

η2Γαδ dx.

Hence, by absorbing terms (choose ε > 0 sufficiently small), (3.18) turns into∫
BR0

(x0)

Γ
α+ 1

2
δ dx+ δ

∫
BR0

(x0)

Γα+1
δ dx

≤ c

[ ∫
B2R0

(x0)

|∇η|2Γ
α− 1

2
δ dx+

∫
B2R0

(x0)

|∇2uδ|2η2Γ
α− 3

2
δ dx

+

∫
B2R0

(x0)

η2Γαδ dx

]

+ cδ

[ ∫
B2R0

(x0)

|∇η|2Γαδ dx+

∫
B2R0

(x0)

|∇2uδ|2η2Γα−1
δ dx

+

∫
B2R0

(x0)

η2Γαδ dx

]

=: c
3∑
j=1

Ij + cδ

6∑
j=4

Ij.

(3.19)
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Starting with I1, we recall that by definition of α it holds α− 1
2

= α0 + 3
2
− µ ≤

α0 + 1
2
. As a consequence it follows∫

B2R0
(x0)

|∇η|2Γ
α− 1

2
δ dx ≤ c(R0)

∫
B2R0

(x0)

Γ
α0+ 1

2
δ dx ≤ c

on account of (3.15) where c does not depend on δ.

Since we may assume w.l.o.g. that µ ≥ 3
2

it holds α ≤ α0 + 1
2
. Hence, an

upper bound for I3, δI4 and δI6, which is not depending on δ, can easily be found
by using (3.15).

Studying I2 we state that by definition of α we have α + µ
2
− 3

2
≤ α0 and since

α0 ≥ 0, Lemma 3.2 and (1.5) give

I2 ≤
∫

B2R0
(x0)

|∇2uδ|2η2Γ
α0−µ2
δ dx

≤ c

∫
B2R0

(x0)

D2Fδ(∇uδ)(∂γ∇uδ, ∂γ∇uδ)η2Γα0
δ dx

≤ c

∫
B2R0

(x0)

D2Fδ(∇uδ)(∂γuδ∇η, ∂γuδ∇η)Γα0
δ dx

+ c

∫
B2R0

(x0)

|∇η|2Γα0
δ dx+ c

∫
B2R0

(x0)

η2Γα0
δ dx

≤ c(R0)

∫
B2R0

(x0)

[
Γ
− 1

2
δ + δ

]
Γ1+α0
δ dx+ c(R0)

∫
B2R0

(x0)

Γ
α0+ 1

2
δ dx

+ c

∫
B2R0

(x0)

Γ
α0+ 1

2
δ dx

≤ c(R0, α0)

where the last inequality holds in accordance with (3.15), thus we have found an
upper bound of I2 not depending on δ.

Proceeding with δI5 we distinguish between two cases whereby we first assume
that α ≤ 1. It follows on account of (1.5) and Lemma 3.2

δI5 ≤ δ

∫
B2R0

(x0)

|∇2uδ|2η2dx

19



≤ c

∫
B2R0

(x0)

D2Fδ(∇uδ)(∂γ∇uδ, ∂γ∇uδ)η2dx

≤ c

∫
B2R0

(x0)

D2Fδ(∇uδ)(∂γuδ∇η, ∂γuδ∇η)dx+ c(R0)

≤ c(R0)

∫
B2R0

(x0)

[
Γ
− 1

2
δ + δ

]
Γδdx+ c(R0)

≤ c(R0)

where the last inequality is valid by taking (3.15) and (3.16), respectively, into
account. In particular, the upper bound of I5 does not depend on δ in this case.

Considering the second case (i.e. α > 1), (1.5) and Lemma 3.2 yield

δI5 ≤ c

∫
B2R0

(x0)

D2Fδ(∇uδ)(∂γ∇uδ, ∂γ∇uδ)η2Γα−1
δ dx

≤ c

∫
B2R0

(x0)

D2Fδ(∇uδ)(∂γuδ∇η, ∂γuδ∇η)Γα−1
δ dx+ c

∫
B2R0

(x0)

|∇η|2Γα−1
δ dx

+ c

∫
B2R0

(x0)

η2Γα−1
δ dx

≤ c(R0)

∫
B2R0

(x0)

[
Γ
− 1

2
δ + δ

]
Γαδ dx+ c(R0)

∫
B2R0

(x0)

Γα−1
δ dx

+ c

∫
B2R0

(x0)

Γα−1
δ dx

≤ c(R0, α0).

where we took (3.15) into account once more by noting that α − 1
2
≤ α0 + 1

2
.

Summarizing, we have proved that δI5 is bounded from above by a constant be-
ing independent of δ.

Altogether, by means of (3.19) we were able to show the following statement:
Suppose that (3.15) holds for some given R0 > 0 and α0 ≥ 0. Then there is a
constant which is not depending on δ with∫

BR0
(x0)

Γ
α0+2−µ+ 1

2
δ dx+ δ

∫
BR0

(x0)

Γα0+2−µ+1
δ dx ≤ c. (3.20)
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We now prove by induction that for any m ∈ N there is a constant c(m) > 0,
independent of δ, such that for all δ ∈ (0, 1)∫

BR0/2
m−1 (x0)

Γ
m(2−µ)+ 1

2
δ dx+ δ

∫
BR0/2

m−1 (x0)

Γ
m(2−µ)+1
δ dx ≤ c (3.21)

Since (3.15) holds for α0 = 0, it follows that α0 = 0 is also an admissible choice
in (3.20). Thus, (3.21) extends to m = 1.
Next we assume by induction that (3.21) is true for some m ∈ N. As a conse-
quence, α0 = m(2 − µ) serves as an admissible choice in (3.15) and (3.20) leads
to ∫

BR0/2
m (x0)

Γ
(m+1)(2−µ)+ 1

2
δ dx+ δ

∫
BR0/2

m (x0)

Γ
(m+1)(2−µ)+1
δ dx

≤
∫

BR0
(x0)

Γ
α0+2−µ+ 1

2
δ dx+ δ

∫
BR0

(x0)

Γα0+2−µ+1
δ dx

≤ c

where we like to stress that c does not depend on δ. Hence, (3.21) remains valid
for any choice of m ∈ N.

Next, we let ω b Ω and let p ∈ (1,∞) denote some number. Then there ex-
ists another number m = m(p) ∈ N with p ≤ 1 + 2m(2− µ) and a finite number
of balls BRi(xi) b Ω (i = 1, . . . ,M) such that

ω b
M⋃
i=1

Bρi(xi) ⊂ Ω where ρi :=
Ri

2m−1
.

Making use of (3.21) we infer

‖∇uδ‖pp,ω ≤
M∑
i=1

‖∇uδ‖pp,Bρi (xi) ≤
M∑
i=1

∫
Bρi (xi)

Γ
p
2
δ dx

≤
M∑
i=1

∫
Bρi (xi)

Γ
m(2−µ)+ 1

2
δ dx

≤ c(p, ω)

where the local constant c(p, ω) in particular is independent of δ. This proves
the local uniform p-integrability of ∇uδ w.r.t. δ for any finite exponent p and
therewith Lemma 3.1.
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Remark 3.3
Considering the case n = 2, we directly obtain Lemma 3.1 by quoting Remark
2.3.

Step 2. Caccioppoli-type inequality

As the second step we are going to establish a Caccioppoli-type inequality which
in particular is valid for any µ > 1 and will play an important role when per-
forming a De Giorgi-type iteration in step 3.
Initially, we introduce some notation: We fix a point x0 ∈ Ω and consider radii
0 < r < R < R0 with BR0(x0) b Ω. Moreover, we let Aδ(k,R) := {x ∈ BR(x0) :
Γδ > k} where k > 0 and Γδ denotes the function from Lemma 3.2. Further we
consider η ∈ C∞0 (BR(x0)) with 0 ≤ η ≤ 1, η ≡ 1 on Br(x0) and |∇η| ≤ c

R−r .
Finally, for functions v : Ω→ R we denote max{v, 0} by v+. Then, the following
variant of Caccioppoli’s inequality can be derived.

Lemma 3.4
Suppose that the inpainting region D satisfies (1.1) where n ≥ 3 and that F is µ-
elliptic with the prescribed parameter µ > 1. Then we have the following variant
of Caccioppoli’s inequality∫

Aδ(k,R)

Γ
−µ
2
δ |∇Γδ|2η2dx ≤ c

∫
Aδ(k,R)

|D2Fδ(∇uδ)||∇η|2(Γδ − k)2dx

+ c

∫
Aδ(k,R)

η2|∇uδ|2+µdx+

∫
Aδ(k,R)

η|∇η||∇uδ|3dx

≤ c

(R− r)2

∫
Aδ(k,R)

Γ
ν
2
δ dx

(3.22)

where ν := max{4, 2 + µ} and for a suitable positive constant c independent of
δ, r and R.

Proof of Lemma 3.4. A proof can be found in [13] (see Lemma 3 in this reference).

Remark 3.5
As already outlined in [13], Remark 3, the choice of the parameter ν in Lemma
3.4 is not optimal. In fact, considering the regularization

Fδ,q(Z) :=
δ

q
|Z|q + F (Z)
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for our density F where Z ∈ Rn and q > 1 denotes a number being sufficiently
close to 1, we may choose any ν > max{3, 2 + µ} = 2 + µ.

Step 3. De Giorgi-type iteration

The third step is devoted to the derivation of local uniform a priori gradient
bounds of uδ. In this context the variant of Caccioppoli’s inequality that has
been deduced in the second step as well as the well-known Lemma of Stampac-
chia (see, e.g., [24], Lemma 5.1, p.219 or [6], Lemma 3.26, p. 66) act as essential
tools when performing a De Giorgi-type iteration.
Actually we are going to prove a De Giorgi-type lemma that provides a sufficient
condition in order to close the gap between local uniform p-integrability of the
gradients for a certain exponent p and local uniform a priori gradient bounds.
Hence, concerning future problems or applications, respectively, it might be of
interest to take note of this sufficient condition that is formulated in the following

Lemma 3.6
Suppose that n ≥ 3, uδ is a sequence of class W 2,2

loc (Ω) and that we are given real
numbers p, ν > 3, µ > 1 satisfying

µ+ ν

2
n < p.

Moreover, suppose that we have a uniform constant c > 0 (with Γδ, Aδ(k,R), r, R,R0, η
as above) such that it holds∫

Aδ(k,R)

Γ
−µ

2
δ |∇Γδ|2η2dx ≤ c

(R− r)2

∫
Aδ(k,R)

Γ
ν
2
δ dx (3.23)

and assume in addition that ∇uδ is locally p-integrable uniformly in δ, i.e.

sup
δ

∫
Ω′

|∇uδ|pdx = c(p,Ω′) <∞, (3.24)

where Ω′ b Ω. Then it holds ∇uδ ∈ L∞loc(Ω,Rn) uniformly in δ.

Having the inpainting model at hand, we may even use (3.1) for any finite p
but as already mentioned in [13], a replacement of condition (3.24) from Lemma
3.6 by (3.1) does not simplify the following proof in an essential way. Precisely
we can state an immediate conclusion of Lemma 3.6.

Proposition 3.7
Suppose that n ≥ 3, µ ∈ (1, 2) and that uδ denotes the approximating sequence
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from Lemma 2.1 to the inpainting model under consideration. Then we have local
uniform (in δ) a priori gradient bounds for uδ.

Remark 3.8
Considering the inpainting model with n ≥ 3, assuming µ ∈ (1, 2) and denoting by
uδ the approximating sequence from Lemma 2.1, we could show that a priori, we
have local uniform (in δ) Lp-estimates of ∇uδ for all 1 ≤ p < 2n

n−2
(see Remark

2.3). Consulting Lemma 3.6 now, it turns out that this initial local uniform
starting integrability of ∇uδ is not sufficient in order to derive uniform local a
priori gradient bounds by citing Lemma 3.6 since we have to require p > 2n at
least (notice that Lemma 3.4 provides a variant of Caccioppoli’s inequality being
in the spirit of (3.23)). Consequently, we had to show higher local uniform (in
δ) p-integrability of ∇uδ up to the fixed exponent µ+ν

2
n+ ε with ε > 0 sufficently

small before quoting Lemma 3.6 for getting uniform (in δ) local a priori gradient
bounds for uδ. In fact, in Lemma 3.1, we could even show local uniform (in δ)
p-integrability of ∇uδ for any finite exponent p.

Remark 3.9
Note that Lemma 3.6 has already been established in [13] (compare Lemma 4 in
this reference) in the case n = 2.

Proof of Lemma 3.6. For proving Lemma 3.6 we adopt techniques as already ap-
plied in [13], Proof of Lemma 4 and in [6], pp.119.

As in [13], we primarily establish a technical proposition being of pure algebraic
nature. Its proof is given in the Appendix.

Proposition 3.10
Consider real numbers p, ν > 3, µ > 1 with

µ+ ν

2
n < p. (3.25)

Then, there exist real numbers s1, s2, s3 > 1 such that

(i) 2
s1

s1 − 1
< p, (ii)

1

s1

n

n− 1
> 1,

(iii) µ
s2

s2 − 1
< p, (iv) ν

s3

s3 − 1
< p,

(v)
1

2

n

n− 1

(
1

s3

+
1

s2

)
> 1.

Now, we start proving Lemma 3.6. Recalling the previous notation and applying
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Sobolev’s inequality we get∫
Aδ(k,r)

(Γδ − k)
n
n−1dx ≤

∫
BR(x0)

(η(Γδ − k)+)
n
n−1dx

≤ c

( ∫
BR(x0)

|∇[η(Γδ − k)+]|dx
) n

n−1

.

Moreover it holds

c

( ∫
BR(x0)

|∇[η(Γδ − k)+]|dx
) n

n−1

= c

( ∫
Aδ(k,R)

|∇[η(Γδ − k)]|dx
) n

n−1

≤ c

( ∫
Aδ(k,R)

|∇η|(Γδ − k)dx

) n
n−1

+ c

( ∫
Aδ(k,R)

η|∇Γδ|dx
) n

n−1

=: c

[
I

n
n−1

1 + I
n
n−1

2

]
.

As a consequence we can state∫
Aδ(k,r)

(Γδ − k)
n
n−1dx ≤ c

[
I

n
n−1

1 + I
n
n−1

2

]
. (3.26)

At this point, we are going to use the algebraic Proposition 3.10 with the same
parameters as given in Lemma 3.6. Since we may assume the validity of (3.25) we
consequently get existence of real numbers si > 1, i = 1, 2, 3 fulfilling the claims
(i)–(v) of Proposition 3.10.

Incorporating (3.24) we obtain Γδ − k ∈ L
p
2 (BR(x0)) uniformly in δ. In accor-

dance with Proposition 3.10, (i) and (3.24), we may therefore conclude Γδ − k ∈
L

s1
s1−1 (BR(x0)) uniformly in δ. By using Hölder’s inequality it follows

I
n
n−1

1 =

( ∫
Aδ(k,R)

|∇η|(Γδ − k)dx

) n
n−1

≤ c

(R− r)
n
n−1

(Ln(Aδ(k,R)))
n
n−1

1
s1

( ∫
Aδ(k,R)

(Γδ − k)
s1
s1−1dx

) n
n−1

s1−1
s1

≤ c

(R− r)
n
n−1

(Ln(Aδ(k,R)))
n
n−1

1
s1

(3.27)
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and since on account of Proposition 3.10, (ii), there exists a real number β :=
n
n−1

1
s1
> 1, (3.27) turns into

I
n
n−1

1 ≤ c

(R− r)
n
n−1

(Ln(Aδ(k,R)))β. (3.28)

Next we discuss I2: Applying Hölder’s inequality and the special type of Cac-
cioppoli’s inequality of condition (3.23) we get

I
n
n−1

2 ≤
[ ∫
Aδ(k,R)

η2|∇Γδ|2Γ
−µ
2
δ dx

] 1
2

n
n−1
[ ∫
Aδ(k,R)

Γ
µ
2
δ dx

] 1
2

n
n−1

≤
[ ∫
Aδ(k,R)

Γ
µ
2
δ dx

] 1
2

n
n−1
[

c

(R− r)2

∫
Aδ(k,R)

Γ
ν
2
δ dx

] 1
2

n
n−1

.

(3.29)

Quoting (3.24) once again we have Γ
µ
2
δ ∈ L

p
µ (BR(x0)) uniformly in δ and by using

Proposition 3.10, (iii) and (3.24) again, we get Γ
µ
2
δ ∈ L

s2
s2−1 (BR(x0)) uniformly in

δ. Thanks to Hölder’s inequality we may estimate[ ∫
Aδ(k,R)

Γ
µ
2
δ dx

] 1
2

n
n−1

≤
( ∫
Aδ(k,R)

Γ
µs2

2(s2−1)

δ dx

) 1
2

n
n−1

s2−1
s2

Ln(Aδ(k,R))
1
2

n
n−1

1
s2

≤ cLn(Aδ(k,R))
1
2

n
n−1

1
s2 .

(3.30)

By means of (3.24) it follows Γ
ν
2
δ ∈ L

p
ν (BR(x0)) uniformly in δ. Taking Proposi-

tion 3.10, (iv) and (3.24) into account it holds Γ
ν
2
δ ∈ L

s3
s3−1 (BR(x0)) uniformly in

δ and Hölder’s inequality implies[ ∫
Aδ(k,R)

Γ
ν
2
δ dx

] 1
2

n
n−1

≤
[ ∫
Aδ(k,R)

Γ
ν
2

s3
s3−1

δ dx

] 1
2

n
n−1

s3−1
s3

Ln(Aδ(k,R))
1
2

n
n−1

1
s3

≤ cLn(Aδ(k,R))
1
2

n
n−1

1
s3 .

(3.31)

Putting (3.29) - (3.31) together and exploiting Proposition 3.10, (v) we may infer

existence of a real number β̃ := 1
2

n
n−1

( 1
s2

+ 1
s3

) > 1 such that

I
n
n−1

2 ≤ c

(R− r)
n
n−1

Ln(Aδ(k,R))β̃. (3.32)
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Assuming w.l.o.g. that Ln(Aδ(k,R)) < 1 , (3.26), (3.28) and (3.32) imply exis-
tence of a real number β > 1 with∫

Aδ(k,r)

(Γδ − k)
n
n−1dx ≤ c

(R− r)
n
n−1

Ln(Aδ(k,R))β. (3.33)

At this point we define the following quantities for k ≥ 2 and r < R0:

τδ(k, r) :=

∫
Aδ(k,r)

(Γδ − k)
n
n−1dx, aδ(k, r) := Ln(Aδ(k, r))

and observe that

τδ : (k0,∞)× (0, R0)→ [0,∞), (h, ρ) 7→ τδ(h, ρ) :=

∫
Aδ(h,ρ)

(Γδ − h)
n
n−1dx

is a non-negative real-valued function defined for h > k0 and ρ < R0. Moreover,
τδ is for fixed ρ non-increasing in h and is non-decreasing in ρ if h is fixed. Now,
suppose that there are given two real numbers h, k with h > k > 2, i.e. we have
Γδ−k
h−k ≥ 1 on Aδ(h,R). Consequently it holds

aδ(h,R) ≤
∫

Aδ(h,R)

(Γδ − k)
n
n−1 (h− k)−

n
n−1dx,

thus

aδ(h,R) ≤ 1

(h− k)
n
n−1

τδ(k,R). (3.34)

From (3.33) and (3.34) it follows

τδ(h, r) ≤
c

(R− r)γ(h− k)α
τδ(k,R)β (3.35)

where

γ :=
n

n− 1
> 0, α :=

n

n− 1
β > 0, β > 1. (3.36)

Having (3.35) and (3.36) at hand we may apply Stampacchia’s well-known lemma
(see, e.g., Lemma B.1, p. 63 in [21]) and obtain local uniform a priori gradient
bounds of uδ. To be more precise, an application of Stampacchia’s lemma ensures
existence of a positive quantity dδ such that

τδ(dδ + k0, R0 − σR0) = 0
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for all σ ∈ (0, 1) with

dαδ =
2

(α+β)β
β−1 C

σγRγ
0

[τδ(k0, R0)]β−1 ≤ dα.

where d is a constant not depending on δ since we may use (3.24) (recall p > 2n).
Choosing k0 = 2 and σ = 1

2
we infer

0 = τδ(dδ + 2, R0/2) ≥ τδ(d+ 2, R0/2) ≥ 0,

i.e. it holds

τδ(d+ 2, R0/2) = 0. (3.37)

Condition (3.37) finally leads to the uniform estimate

|∇uδ| ≤ c

a.e. on BR0/2(x0) for all δ ∈ (0, 1) where c in particular is independent of δ since
Γδ ≤ d a.e. on BR0/2(x0).

Using a covering argument, we finally get

||∇uδ||L∞(ω,Rn) ≤ c(ω)

for all ω b Ω and δ ∈ (0, 1), i.e. uδ is locally uniformly Lipschitz continuous with
Lipschitz constant c(ω) > 0. This completes the proof of Lemma 3.6.

Step 4. Conclusions

Taking the assumption µ ∈ (1, 2) into account, an application of Proposition
3.7 results in ∇uδ ∈ L∞loc(Ω,R

n) uniformly in δ. Quoting Remark 2.4 we know
uδ → u in L1

loc(Ω) and since uδ is locally uniformly (in δ) Lipschitz continuous,
the assumptions of Arzelà-Ascoli’s theorem are satisfied. This theorem finally
gives u ∈ C0,1(Ω).

As the last step of the proof of Theorem 1.4 we are going to close the gap between
local Lipschitz continuity of u and Hölder continuous first partial derivatives of
u in Ω. For that reason we are going to show that u is weak solution of a partial
differential equation having its prinicipal part in divergence form. Quoting stan-
dard results about elliptic partial differential equations of second order we finally
get the desired result.

28



For proceeding with the proof of Theorem 1.4 we let ω b Ω be arbitrary and
note that u is solution of the Euler equation∫

Ω

DF (∇u)∇ϕdx = −
∫
Ω

gϕdx (3.38)

for all ϕ ∈ C∞0 (Ω) where we have set g := λ1Ω−D(u− f).
Since u is Lipschitz continuous, we may argue with the standard difference quo-
tient technique to get u ∈ W 2,2

loc (Ω). Moreover, we have DF (∇u) ∈ W 1,2
loc (Ω,Rn)

by using the chain rule for Sobolev functions. Thanks to these results, we obtain
after performing an integration by parts

−
∫
ω

D2F (∇u)(∂α∇u,∇ϕ)dx = −
∫
ω

g∂αϕdx.

for all ϕ ∈ C∞0 (Ω).
Setting v := ∂αu, we get∫

ω

D2F (∇u)(∇v,∇ψ)dx =

∫
ω

g∂αψdx.

where the coefficients aαβ(x) := ∂2F
∂pα∂pβ

(∇u) are strictly elliptic and bounded on

ω (This fact follows from (1.5) and from the local Lipschitz continuity of u).
Finally, Theorem 8.22, p.200, of [20] ensures interior Hölder continuity of v and
therefore of ∂αu for all α ∈ {1, . . . , n}, i.e. u has locally Hölder continuous first
partial derivatives in Ω. This completes the proof of Theorem 1.4.

4 Appendix

In the Appendix, we give the proof of the algebraic Lemma 3.10 that served as a
technical tool during the proof of Lemma 3.6. Before proving this lemma we will
repeat its statements below

Lemma 4.1
Consider real numbers p, ν > 3, µ > 1 with

µ+ ν

2
n < p. (4.1)

Then, there exist real numbers s1, s2, s3 > 1 such that

(i) 2
s1

s1 − 1
< p, (ii)

1

s1

n

n− 1
> 1,

(iii) µ
s2

s2 − 1
< p, (iv) ν

s3

s3 − 1
< p,

(v)
1

2

n

n− 1

(
1

s3

+
1

s2

)
> 1.
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Proof of Lemma 4.1. Primarily we choose p̃ < p such that (4.1) still holds for p̃
instead of p.
Due to (4.1) it holds p̃ > ν n

2
. As a consequence, the statements (i) and (iv) are

obvious by setting s1 := p̃
p̃−2

> 1 as well as s3 := p̃
p̃−ν > 1. Besides, combining

µ > 1 and (4.1) we may conclude the validity of the inequality p̃ > 2n. Recalling
our choice of the parameter s1 from above we immediately obtain (ii). For proving
(v) we observe that we have

m := 2
n− 1

n
− 1

s3

= 2− 2

n
− 1 +

ν

p̃
< 1 (4.2)

since p̃ > ν n
2
.

Thanks to (4.2) we may choose s2 > 1 in such a way that

m <
1

s2

< 1 (4.3)

and an application of (4.3) implies

1

2

n

n− 1

(
1

s3

+
1

s2

)
>

1

2

n

n− 1

(
1

s3

+m

)
= 1

which shows (v).
In order to verify the last statement of Lemma 4.1 we claim that it holds

1

s2

< 1− µ

p̃
(4.4)

and remark that the validity of (4.4) directly implies assertion (iii) of Lemma 4.1.
On account of (4.1) it follows

m− 1 +
µ

p̃
=
ν + µ

p̃
− 2

n
< 0.

Thus, we get

m < 1− µ

p̃

and consequently we may choose s2 > 1 in addition to (4.3) in such a way that

m <
1

s2

< 1− µ

p̃
.

This shows (4.4) and completes the proof of Lemma 4.1.
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second ordre à coefficients discontinus, Ann. Inst. Fourier (Grenoble) 15
(1965), no. fasc. 1, 189-258.

32


