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Multispectral imaging Exposure fusion Decolourisation

Figure 1: Exemplary applications of our general variational image fusion
technique. Each of the resulting composite images (top) condenses the most
important information from the input stack (bottom). (Input images: [14],
J. Joffre [5], [17])

Abstract

In this paper, we present a general variational method for image
fusion. In particular, we combine different images of the same subject
to a single composite that offers optimal exposedness, saturation, and
local contrast. Previous research approaches this task by first pre-
computing application specific weights based on the input, and then
combining these weights with the images to the final composite later
on. In contrast, we design our model assumptions directly on the fu-
sion result. To this end, we formulate the output image as a convex
combination of the input and incorporate concepts from perceptually
inspired contrast enhancement such as a local and nonlinear response.
This output-driven approach it the key to the versatility of our general
image fusion model. In this regard, we demonstrate the performance
of our fusion scheme with several applications such as exposure fu-
sion, multispectral imaging, and decolourisation. For all application
domains, we conduct thorough validations that illustrate the improve-
ments compared to state-of-the-art approaches that are tailored to the
individual tasks.

1 Introduction

The fusion of multiple images is a key component of many visual computing
applications. Particularly, it is an essential tool when several photographs
or sensors are required to capture all important structures of a scene. In
this context, image fusion approaches aim at condensing the most important
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information from the acquired image stack to single composite that is richer
in details than any input image.
There exist many fusion approaches that are tailored to one specific applica-
tion. Most of them pursue the following two-step pipeline: Based on applica-
tion specific quality measures, they determine weights for each of the input
images in a first step. Then, in a second step, these weights are combined
with the input images to form the output image. Contrary to this two-stage
approach, we propose a conceptually different idea in this paper. Instead of
precomputing weights based on the input images, we present a variational
method that directly aims for an output image with high quality. This has
several advantages: First, all our model assumptions and parameters have an
intuitive meaning and directly influence the fusion result in the desired way.
Moreover, our approach produces images with visual phenomena such as a
Cornsweet illusion that optimise the local contrast. This is not achievable
with standard fusion methods. Most importantly, this output-driven idea is
the key concept to refrain from an application specific weight precomputation
and, in this way, to allow a general image fusion framework that performs
well in many fusion applications.

Main Contributions. While the input data differ for every image fusion
applications, most applications aim at the same goal: an output image with
important perceptual qualities such as well-exposedness or a high local con-
trast. Based on this observation, we introduce a general variational frame-
work for image fusion. We achieve this by refraining from an application
specific precomputation of weights based on the input images. Instead, we
formulate the fusion result as a convex combination of the input, and di-
rectly opt for an output that is optimal w.r.t. our energy functional. Here,
we base our model assumptions on important perceptually inspired image
enhancement concepts that account for the local contrast adaption of the
human visual system. The minimisation of this energy yields to fusion re-
sults that capture the most important information from the input and feature
important visual properties.
This paper is an extended version of our conference paper [34], where we
introduced a variational exposure fusion method. Here, we show and discuss
its general applicability to several fusion applications. In addition to expo-
sure fusion, we demonstrate its performance for multispectral imaging and
decolourisation. For all three main application domains, we conduct thor-
ough evaluations on public image data sets and compare to previous work
in the individual research areas. Last but not least, we improve the runtime
of our algorithm by applying ideas of [10] and [32], in combination with a
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parallel implementation on the graphics card.

Outline. First we discuss related work in Sec. 2. Afterwards we present
our general variational image fusion model in Sec. 3. Its minimisation in
Sec. 4 yields the desired composite image. In Sec. 5, we analyse our model
and investigate its parameters. The evaluation in Sec. 6 demonstrates the
versatility and performance of our technique for different image fusion ap-
plications. After discussing possible limitations of our method in Sec. 7, we
conclude the paper with a summary and an outlook in Sec. 8.

2 Related Work

To explain how our model relates to previous work, let us first give a survey of
our three main application domains. Furthermore, since we base our model
assumptions on variational contrast enhancement concepts, we also review
related work in this field.

2.1 Multispectral Imaging

In multispectral imaging, multiple sensors or filters are used to acquire a
set of images. They all capture a different spectral range of the scene, e.g.
the visible and the near-infrared band [29, 14]. The fusion of these images
results in an image that offers more details than any of the photographs; see
e.g. Fig. 1 (left). Based on brightness and saturation of the visible spec-
trum image, Zhang et al. [66] precompute a weight map to identify image
regions that should be improved. Then, contrast and texture is transferred
from the near-infrared to the visible spectrum. Lau et al. [38] and Eynard
et al. [23] interpret the near-infrared as a fourth colour channel and regard
multispectral image fusion as a colour transformation task. However, this
has the following drawback: In some parts of the image the visible spectrum
is more reliable than the near-infrared, and vice versa. Accordingly, it is not
optimal to assume the same importance of all spectral ranges in every image
region. Hence, contrary to [38] and [23], we interpret the near-infrared infor-
mation as an additional spatial lightness information. As suggested in the
psychophysical study of Fredembach and Süsstrunk [29], we thus explicitly
model a spatially varying importance of the different spectral ranges.
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2.2 Decolourisation

Although not immediately obvious, also decolourisation can be interpreted
as an image fusion application. In general, decolourisation describes the
conversion of a colour image to its greyscale representation, while preserving
as much information as possible. For a detailed review and evaluation of
decolourisation approaches before 2009, we refer to the paper of Čad́ık [17].
Thus, we mainly focus on more recent decolourisation methods here. A
straightforward idea is to compute the greyscale image as the Y channel of
the CIE XYZ colour space [25]. However, such a simple global mapping is not
always sufficient to preserve the contrast. Hence, Smith et al. [59] first apply a
global mapping, based on the Helmholtz-Kohlrausch effect. Then they locally
add details with an unsharp masking technique. Gooch et al. [30] propose a
fully local decolourisation method by forcing the differences between pixels
in the greyscale image to resemble them from the colour image. Lu et al. [39]
relax this constraint with a weak colour ordering, i.e. the sign of the colour
difference is not assumed to be fixed. Also the structure preserving technique
of Eynard et al. [23] is applicable for decolourisation. Another successful idea
is to approach the decolourisation task by fusing the colour channels of the
input image [6]. Generally, none of the colour channels or a simple global
combination of them is sufficient to represent the colour image. However, a
spatially varying channel fusion yields satisfying results; cf. Fig. 1 (right).
In this paper, we also approach decolourisation by image fusion. However,
contrary to [6], we do not precompute decolourisation specific fusion weights
based on the input. Rather, we directly aim at an optimal output greyscale
image. This not only affords the general applicability of our model to various
fusion applications, but also allows to realise visual phenomena such as a
Cornsweet illusion that optimise the local contrast. As it turns out, this is a
very important feature to visually preserve the contrast if one considers the
drastic intensity range restriction by a colour to greyscale transformation.

2.3 Exposure Fusion

Classical high dynamic range (HDR) methods combine several low dynamic
range (LDR) images to one HDR image with the help of the exposure times
and the camera response function; see e.g. [41, 21, 45, 62]. However, dis-
playing those HDR results on standard monitors or printing them requires
to compress the high dynamic range again. This process is called tone map-
ping ; see [51] for a survey and [18] for a discussion and evaluation of various
tone mapping operators. Since tone mapping is not the focus of this work,
we restrict our discussion to the most related ones. In their gradient domain
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tone mapper, Fattal et al. [27] account for the local contrast adaption of the
visual system by attenuating large gradients, and maintaining or even en-
hancing the smaller ones. Similarly, Durand and Dorsey [22] decompose the
HDR image into a base and a detail layer. Then they compress the base while
keeping the details. Reinhard et al. [52] apply first a global transform, and
locally increase the contrast afterwards. Also Mantiuk et al. [42] show and
discuss the importance of the contrast adaption of the human visual system
w.r.t. tone mapping. Most related to our work is the two-stage tone mapper
of Ferradans et al. [28] that applies a variational contrast enhancement in
the second stage.
However, if the main focus lies anyway on a displayable and well-exposed
LDR image, there is a popular alternative to the described two-step proce-
dure of HDR imaging and tone mapping, namely exposure fusion [44]. Here,
the task is to skip the HDR image generation by a direct fusion of the dif-
ferently exposed LDR images to an overall well-exposed composite. Such
an exposure fusion approach has several advantages: First, there is no need
to know the exposure times or the camera response function. It is even
possible to include images that do not follow the HDR imaging model, e.g.
flash and no flash photographs or images from different cameras. Second,
this one-step approach allows a direct tuning of the final results without the
detour via an intermediate HDR image. Obviously, exposure fusion is re-
lated to tone mapping. However, the different kind of input data ask for
different algorithmic requirements and different model assumptions. In the
meantime, exposure fusion has even developed to an own research area with
various publications that we review next. Most existing exposure fusion
methods pursue the following processing pipeline: In the first step, based
on exposure fusion specific quality measures, weighting maps are determined
for each of the input images. Such quality measures are for instance the
magnitude of the Laplacian [13, 44], the entropy [31, 35], or the colour satu-
ration [44, 57, 58]. Another idea, e.g. applied by Raman and Chaudhuri [50]
or by Singh et al. [58], is to decompose the input images into base and detail
layers. Then the amount of detail is considered as measure to determine
the input image weights. In the second step, these weighting maps are com-
bined with the input images to form the final composite. Here, the fusion
strategies vary from region-based blending [31] and pixelwise weighted aver-
aging [50, 35, 57, 56, 58] to gradient domain fusion [19, 60] and pyramid-based
techniques [16, 13, 44]. Different to those two-step approaches, Raman and
Chaudhuri [49] propose a variational method to directly compute the fused
composite. However, this requires a smoothness constraint of the final im-
age that may lead to over-smoothed blurry results. A more suitable idea by
Kotwal and Chaudhuri [36] is to formulate the output image as a weighted
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average of the input. Then, they design an energy on this composite. We
follow a similar idea. However, we base our model assumptions on percep-
tually inspired contrast enhancement concepts. This allows to optimise the
local contrast and to produce images with vivid colours. Moreover, we show
that our general model is applicable to various fusion tasks.

2.4 Variational Contrast Enhancement

The discussions above show that there are many approaches that are specif-
ically tailored to the individual tasks. However, all presented applications
share a similar goal: The fusion of several images to one composite that
offers optimal local contrast. We use this observation to present a general
variational fusion approach. To this end, we profit from important findings
in histogram modification and contrast enhancement that we review in this
section. Based on the seminal work of Sapiro and Caselles [53] on histogram
modification with differential equations, Bertalmı́o et al. [10] introduce a
variational approach to locally increase the contrast of an image. In this
context, Palma-Amestoy et al. [46] investigate several perceptually inspired
energy terms. In his recent study, Bertalmı́o [8] shows connections to visual
neuroscience. These contrast enhancement approaches have found first appli-
cations: Piella [47] incorporates a gradient domain term in the energy of [10].
This forces the similarity to a precomputed gradient field that combines the
gradients from multiple images. However, the weights for the individual
images are predetermined based on the input. In contrast, our energy min-
imisation that directly aims at an optimal composite is able to refrain from
such an application specific weight precomputation. Recently, Bertalmı́o et
al. [11] propose a gradient-based variational approach to fuse a pair of im-
ages with different exposure times. This method is specifically tailored to
two input images and cannot be extended to multiple images in a straight-
forward way. Nevertheless, these applications motivate us to also base our
model on those perceptually inspired contrast enhancement concepts. They
clearly have demonstrated their usefulness, and their perceptual basis has
been extensively discussed in various publications; see e.g. [10, 46, 9, 48, 8].

3 Variational Model

Our general goal is to fuse n input images f1, . . . , fn to a single composite
u that condenses the most important information from the image stack. To
this end, we first formulate the output image as a convex combination of the
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input:

u(x) =
n∑
i=1

wi(x) · fi(x) , (1)

with

wi(x) ≥ 0 and
n∑
i=1

wi(x) = 1 . (2)

Here, x = (x1, x2)> denotes the position on the rectangular image domain
Ω ⊂ R2 and wi the weight of the image fi.
As discussed in Sec. 2, most previous research concentrates on determining
weights based on application specific quality measures that are defined on
the input images. In contrast to such a weight precomputation, we directly
opt for an optimal fusion result u. To this end, we propose the following
energy functional:

E(w) =
1

2

∫
Ω

( (
u(x)− f̄(x)

)2
+ δ · (u(x)− µ)2

)
dx

− γ

2

∫
Ω

∫
Ω

gσ(x,y) ·Ψ(u(x)− u(y)) dx dy

+
α

2

∫
Ω

n∑
i=1

|∇wi(x)|2 dx

(3)

subject to the constraints (1) and (2). The image weights w = (w1, . . . , wn)>

that follow from this energy optimisation can be seen as a side-product of our
output-driven approach. In fact, we are mostly interested in the fused image
u. However, formulating this image as a convex combination of the input
allows to impose a smoothness constraint on the weights and not on the image
itself. While the later is prone to cause over-smoothed blurry fusion results,
the former is a much more intuitive and meaningful assumption. A further
important advantage of this formulation is the inherent close attachment of u
to the input data that prevents visual artefacts and an unrealistic appearance
of the fusion results.
As discussed in Sec. 2, the energy functional in (3) is inspired by successful
variational histogram modification and contrast enhancement techniques [53,
10, 46, 9]. In particular, these works discuss and analyse in which way the
energy terms mimic important properties of the human visual system and
e.g. relate to Land’s Retinex theory [37].
Following [10], we model a so-called dispersion term (first line in (3)): The
first part first part of this dispersion term forces u to resemble the attachment
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image f̄ , which we choose as an average of the input images. As discussed
in [46], this provides an attachment to the original data and accounts for
the colour constancy assumption [37]. The second part implements the grey
world principle [15, 55, 46]. It provides well-exposed images by keeping the
solution close to the constant µ. Here, the influence of the second assumption
can be steered with the positive parameter δ.
The second term, the contrast term, counteracts this dispersion term since
it penalises uniform images more than images with a high local contrast.
One should note the minus sign in front of the contrast term. Intuitively
speaking, this energy term favours solutions that differ much from pixel to
pixel. Here, the locality is introduced by the Gaussian weighting gσ(x,y)=

1
2πσ2 exp

(
−|x−y|2

2σ2

)
. Furthermore, the function Ψλ(z) =

√
z2 + λ2 provides

a nonlinear behaviour. In accordance with [10], its sigmoid-shaped deriva-
tive Ψ′λ(z) = z√

z2+λ2
that appears in the algorithmic iteration (cf. Sec. 4)

mimics the nonlinear response of the human visual system in the sense of a
contrast transducer function [64, 43]. The parameter λ allows to tune this
nonlinearity, and γ ≥ 0 weights the influence of the contrast term.
The third term in our energy functional is a regularisation term that rewards
smooth weight maps. It renders the assumption that neighbouring pixels
in the fused composite should have similar weights. Here, ∇ := (∂x1 , ∂x2)

>

denotes the gradient operator and α ≥ 0 steers the amount of smoothness.
For some scenarios, more sophisticated edge-preserving smoothness terms
might be beneficial. However, in all considered applications, they did not
lead to significant improvements. In fact, mostly a smooth blending of the
input images is desirable.
Last but not least, the simplex constraint (2) restricts the fusion result to
pixelwise convex combinations of the input images. Hence, provides a close
attachment to the input data. In combination with the smoothness con-
straint, this prevents an unnatural high amount of contrast and undesirable
artefacts such as colour shifts or halos in the composite image.

Colour Image Processing. For the sake of simplicity, we have restricted
ourselves to greyscale images so far. In case of colour images, we transform
the input images from the RGB to the YCbCr colour space and define the
dispersion and contrast term on the luminance channel only. To prevent
a colour cast, we compute joint weight maps for all channels. Moreover,
saturated colours make images to look vivid and expressive. To this end, we
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Algorithm 1: Our general variational image fusion.

Input: input images f1, . . . , fn
Output: fused composite u

1 set attachment image f̄
2 repeat
3 gradient descent step (Eq. 5)
4 projection onto simplex (Algo. 2)

5 until convergence
6 assemble u (Eq. 1)

extend our energy (3) for colour images with the following saturation term:

−β
2
·
∫
Ω

((
uCb − 1/2

)2
+
(
uCr − 1/2

)2
)

dx , (4)

where uCb and uCr denote the chroma channels of u. This term favours
values different from grey, and thus images with vivid colours. The positive
parameter β allows to control the amount of colour saturation. Once again,
the minus sign should be noted.

4 Numerical Algorithm

To solve the discussed optimisation problem, we basically apply a gradient
projection method; see e.g. Bertsekas [12]. Generally, each iteration consists
of (i) a gradient descent step, followed by (ii) a projection onto the simplex;
see Algorithm 1.

4.1 Gradient Descent Step

With iteration index k and time step size τ , the gradient descent of energy (3)
with saturation term (4) reads

wk+1
i (x)=wki (x)− τ

(
fYi(x)

(
ukY (x)− f̄Y (x) + δ (ukY (x)− µ)

− γ
∫
Ω

gσ(x,y) ·Ψ′λ(ukY (x)− ukY (y)) dy
)

− β
(
fCbi(x)

(
ukCb − 1/2

)
+ fCri(x)

(
ukCr − 1/2

))
− α ∆wki (x)

)
,

(5)
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Algorithm 2: Projection onto simplex [54].

Input: weights w
Output: projected weights w̃

1 s = sort(w) such that s1 ≥ . . . ≥ sn

2 m = max

{
j ∈ {1, . . . , n}

∣∣∣∣ sj − 1
j

(
j∑
i=1

si − 1

)
> 0

}
3 θ = 1

m

(
m∑
i=1

si − 1

)
4 w̃i = max {wi − θ, 0}

for i=1, . . . , n and with (ukY , u
k
Cb, u

k
Cr)
>=

∑n
i=1w

k
i (x) · (fYi, fCbi, fCri)>. We

discretise Eq. 5 with finite differences on a rectangular grid with uniform
grid sizes, and approximate the integral with the rectangle method. Further-
more, we initialise wi with 1/n, and assume the image to be mirrored at the
boundaries.

4.2 Projection onto Simplex

After each gradient descent step, we account for the simplex constraint (2).
We realise this by projecting the computed weights wk onto the n-dimensional
simplex with Algorithm 2 [54].

4.3 Algorithmic Speed-Up

Due to the integral term in (5), the computational complexity of a gradient
descent step is O(N2), where N denotes the number of pixels. As remedy,
we apply the following numerical approximation [10]: First, we approximate
the odd sigmoid-shaped function Ψ′λ(z) with the polynomial

∑m
i=0 ciz

i of
degree m (here: m = 7). Specifically, we obtain the coefficients c0, . . . , cm by
minimising the quadratic error function (assuming intensity values between
0 and 1)

F (c0, . . . , cm) =

∫ 1

−1

( m∑
i=0

ciz
i −Ψ′λ(z)

)2

dz . (6)
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This allows to approximate the term Ψ′λ(u(x)− u(y)) by

Ψ′λ(u(x)− u(y)) ≈
m∑
i=0

ci (u(x)− u(y))i

=
m∑
i=0

ci

(
i∑

j=0

(
i

j

)
ui−j(x) (−1)j uj(y)

)

=
m∑
j=0

(
m∑
i=j

(−1)j ci

(
i

j

)
ui−j(x)

)
uj(y) ,

(7)

with the binomial coefficient
(
i
j

)
= i!

j!(i−j)! . Now we can write the integral
term as

m∑
j=0

(( m∑
i=j

(−1)jci

(
i

j

)
ui−j(x)

)
︸ ︷︷ ︸

(I)

∫
Ω

gσ(x,y)uj(y) dy

︸ ︷︷ ︸
(II)

)
. (8)

We see that (I) can easily be computed with powers of u(x). Moreover,
(II) is nothing else than a Gaussian convolution which we compute with a
fast recursive algorithm [65]. In this way, the overall complexity reduces
from O(N2) to O(N). To further speed up the algorithm, we exchange the
gradient descent step by a Runge-Kutta scheme and accelerate it with a
strategy that is similar to Fast Explicit Diffusion [32]. All this allows a fast
parallel implementation on the graphics card.

5 Model and Parameter Analysis

5.1 Benefits of Local Contrast Term

Inspired by [10], let us first consider a variational histogram equalisation
in Fig. 2. In our framework, this can be achieved by setting α = 0 and
replacing the simplex constraint (2) by 0 ≤ w(x)f(x) ≤ 1. Applying a global
contrast term, i.e. degrading gσ(x,y) to the constant 1/|Ω|, yields a standard
histogram equalisation (middle). On the other hand, a local contrast term
allows to visually increase the contrast in the sense of a Cornsweet illusion [20,
55] (right). This illustrates the general advantages of a local contrast term
compared to a global one.
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Figure 2: Global vs. local contrast term for histogram equalisation. From
left to right : Input, with global contrast term, with local contrast term.
Top: Intensity images. Bottom: Corresponding scanlines, where the x-axes
represent the intensity values and the y-axes the pixels.

Figure 3: Benefits of output-driven optimisation. From left to right: Input
colour image, result of Ancuti et al. [6], our result. Our output-driven opti-
misation implements a local contrast adaption that keeps the colour patches
in the greyscale image distinguishable.

5.2 Benefits of Output-Driven Optimisation

Thanks to our output-driven optimisation, our fusion technique is capable
of producing fusion results with the just discussed Cornsweet illusions. This
is very hard to accomplish with standard fusion methods since they do not
take into account the quality of the final output image when precomputing
weights for the input images in advance. This is illustrated in Fig. 3 with a
decolourisation example: Ancuti et al. [6] (middle) precompute decolourisa-
tion specific weights based on the input and fuse the images later on. In this
way, it is not possible to create greyscale gradients in the individual patches.
In contrast, our output-driven optimisation produces such gradients that op-
timise the local contrast (right). Furthermore, our direct optimisation w.r.t.
the output image is the key concept that allows us to present a general tech-
nique for image fusion without tailoring it to the individual applications.

12



Figure 4: Influence of parameters. From left to right : µ (0.1, 0.9), σ (1%,
100% of image diagonal), γ (0, 0.5), β (0, 2).

5.3 Model Parameters

Let us now illustrate the influence of our main model parameters on the
example of fusing an exposure set; see Fig. 1 (middle). In the first column
of Fig. 4, we apply different values of µ. Since the dispersion term favours
solutions that are close to µ, it is obvious that larger values lead to brighter
results. We propose to compute µ automatically as the average of the input
images. The second column depicts composite images for different scales σ
of the Gaussian gσ in the contrast term. We observe a larger local contrast
with decreasing σ. There is a trade-off: A too large local contrast might be
perceived as unnatural, a too small one as too flat. As a rule of thumb, we
propose to set σ to 10% of the image diagonal. Similar observations apply
to the contrast parameter γ (third column). Choosing it too small yields an
image with low contrast, and choosing it too large gives unrealistic looking
images. In general, setting it to 1/4 provides good results. Last but not
least, the fourth column shows the effects of the proposed saturation term
and its parameter β. Generally, a larger value of β leads to more saturated
colours, and in this way to a more vivid appearance.
In all our experiments below, we apply the discussed procedure to determine
µ and σ automatically. All other parameters are fixed for the individual
applications. Table 1 shows the standard parameter setting. To conclude,
all our model parameters have an intuitive meaning and are fixed or can be
determined automatically. This allows an easy and straightforward use of
our approach, also for non-experts.
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Table 1: Default parameter setting.
α β γ δ λ µ σ

1 1 1/4 1 0.1 input average 10% of diagonal

Table 2: Runtimes on an NVIDIA GeForce GTX 970.
number of images image size runtime in seconds

3 640 × 480 4
3 1024 × 768 7
5 640 × 480 8
5 1024 × 768 18

5.4 Runtime Experiments

Our reference implementation is written in CUDA and runs on an NVIDIA
GeForce GTX 970 graphics card. We assume the algorithm to be converged
if the root mean square difference of two fusion results between 100 iterations
is less than 1 ·10−4. Table 2 lists the runtimes for different number of images
and different image sizes.

6 Evaluation

In this section, we demonstrate the performance of our method on differ-
ent fusion applications. To evaluate our general technique, we compare to
the best performing state-of-the-art approaches in all three main application
areas, using public benchmark images. For fair comparisons, we either use
the implementations of the authors with the default parameter settings or,
if provided, their resulting images directly.

6.1 Multispectral Imaging

The idea of multispectral imaging is to capture different spectral ranges with
two or more photographs of the same scene. Fusing them allows to produce
an image that offers details that cannot be captured only within the visible
spectrum. In this regard, Fig. 1 (left) illustrates the performance of our
method for the enhancement of standard photographs (RGB) with an near-
infrared image (NIR). We process the images in the following way: First
we convert the RGB image to the YCbCr colour space. Then we apply the
presented technique to fuse the luminance channel Y with the NIR image.
Since we want to stay close to the visible spectrum image while adding details
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Figure 5: Comparison of multispectral image fusion. From left to right : Lau
et al. [38], Eynard et al. [23], and proposed. Top: Full images. Bottom:
Zooms. Our fusion result features the most local details from both spectral
ranges without appearing unrealistic. (Input images: [2])

from the near-infrared range, we choose the luminance channel as attachment
image f̄ . Finally, we combine the fused luminance composite with the original
chroma channels to form the output image.
In Fig. 5, we show our fusion result (last column) for a test image set used
by Lau et al. [38] and Eynard et al. [23]. As mentioned in Sec. 2, contrary
to Lau et al. (third column) and Eynard et al. (fourth column), we do not
regard the near-infrared range as a fourth colour channel. Instead, inspired
by psychophysical studies [29], we treat it as an additional spatial lightness
information. As our result demonstrates, this is an important model as-
sumption. Compared to both competing approaches, our fused image offers
the most details from both spectral ranges; see for instance the trees and
the mountains. Besides providing better quality, our approach has an addi-
tional important advantage compared to the approach of Eynard et al.: Their
method requires the user to specify the output colour of some pixels explic-
itly. This is important for reasonable results. In contrast, our output-driven
approach requires no such user interaction and works fully automatic.
To underline these findings, we conduct a detailed comparison to Eynard et
al. [23] on further image sets. To this end, we use the public database by
Brown and Süsstrunk [14], which contains RGB and NIR images for different
real-world sceneries. Fig. 6 depicts for three of those image sets the input
RGB images (left), the results of Eynard et al. (middle), and our results
(right). Since the method of Eynard et al. requires user interaction by an
expert, we compare to resulting images that are kindly provided by them.
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First, the experiments show that both approaches add important structures
to the final images that have not been visible in the input RGB images. How-
ever, in this respect, the zooms illustrate that our results are richer in details.
Second, for the results of Eynard et al., one can observe undesirable colour
casts compared to the RGB images; cf. for instance Fig. 6 (last row). This
would be acceptable if the details would increase significantly in this way.
However, this is not the case. Since we regard the NIR image as an additional
spatial lightness information, our results do not suffer from such artefacts.
To demonstrate the overall good performance of our general fusion approach
for the multispectral imaging application, we include our resulting images
for all 477 image sets from the mentioned database in the supplementary
material (http://www.mia.uni-saarland.de/Research/Image_Fusion).
In our last multispectral experiment (Fig. 7), we deal with more than two
input images or spectral ranges, respectively (first four columns). Also here,
our fused image in the last column demonstrates the capability of our method
to incorporate structures from all spectral ranges, without leading to an
unrealistic appearance.

6.2 Decolourisation

We approach the decolourisation task in the following way: Basically we
regard the RGB channels of the colour image as input of our fusion algorithm.
Then we fuse all three channels to a grey-valued image that offers an optimal
local contrast. Here we use the average over all colour channels as attachment
image f̄ and set δ to zero. Fig. 1 (right) illustrates this procedure and
depicts our corresponding decolourisation result. While a single channel is
not enough to preserve the details from the colour image, our fused composite
is.
In [17], Čad́ık presents a decolourisation benchmark containing 24 images
that represent various image classes. Based on this benchmark, we compare
to different state-of-the-art decolourisation approaches. In Fig. 8, we depict
three of those 24 images. Due to space restrictions, we decided to put the
rest to the supplementary material. There we additionally compare to results
from other decolourisation techniques. Here we restrict ourselves to the best
performing ones, namely the method of Lu et al. [39] (second column) and
Eynard et al. [23] (third column). All decolourisation results in Fig. 8 are
of high quality. However, in some image regions, our greyscale images (last
column) preserve more details from the colour image than the other ones.
Lu et al. [40] argue that the decolourisation benchmark by Čad́ık [17] is biased
to synthetic images. Hence, they propose a new one with 250 colour images.
Additionally, they introduce the so-called E-score quality measure to quan-
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titatively judge different decolourisation results. Unfortunately, as it turns
out, this measure does not take the local contrast adaption of the human
visual system into consideration. Rather, it even penalises effects such as a
Cornsweet illusion with high errors. This is illustrated in Fig. 9: Although,
the right image offers a better visual quality, it receives a significantly worse
E-score. Here, a higher E-score means a better quality, and τ defines a colour
difference that is not perceivable by the human visual system; cf. [40]. Hence
we decided to apply a global contrast term for the E-score evaluation. The
corresponding E-score graphs for the benchmarks of Čad́ık [17] and Lu et
al. [40] are depicted in Fig. 10. Considering the benchmark of Čad́ık (left),
we obtain the best quality measures for almost all τ values. For the de-
colourisation benchmark of Lu et al. (right), we get results of similar quality
w.r.t. their E-score measure. We even outperform all other methods for
larger τ . First, this shows that our general image fusion approach performs
well for the decolourisation task. It produces greyscale images that are of
similar or even superior quality than state-of-the-art approaches which are
tailored to decolourisation. Second, as Fig. 9 illustrates, our results could be
even improved with a local contrast term. In this regard, we believe that an
extension of a decolourisation quality measure to incorporate such properties
of the visual system is of great importance. We plan this in future work.
colour

6.3 Exposure Fusion

The task of exposure fusion is to combine differently exposed images to a
single composite that offers optimal exposedness and local contrast. This is
illustrated in Fig. 1 (middle). Here, our fused image contains details from
all input images, is well-exposed, and features a good contrast.
To evaluate our general image fusion method for the task of exposure fusion,
we conduct a thorough comparison to two state-of-the-art approaches. First,
we consider the popular exposure fusion method by Mertens et al. [44]. It
builds the basis of many exposure fusion approaches and provides still top
results compared to more recent techniques. Second, we consider the method
of Singh et al. [58]. It is a very recent exposure fusion method that provides
high quality results and compares favourably to other state-of-the-art tech-
niques. As mentioned in Sec. 2, both methods precompute weights based
on the input images, and fuse them later on. Here we will show that our
idea, which directly aims for an optimal output image, is able to outperform
those input based approaches. In agreement with Singh et al., we selected
twelve representative exposure sets from the HDR photographic survey of
Fairchild [24]. Each set consists of nine differently exposed LDR images.
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Due to space constraints, we depict in Fig. 11 results for three exposure sets.
A comparison for the other sets can be found in the supplementary material.
There, we additionally include our fusion results for all images sets (105) by
Fairchild to show the generally good performance of our method for expo-
sure fusion. Especially in the zooms in Fig. 11, the higher amount of local
contrast provided our approach is obvious, both in dark and bright image
regions. Moreover, our images do not suffer from halos or blurring effects
that can be observed for the method of Singh et al. [58].
Unfortunately, no meaningful perceptually motivated quality measures exist
to objectively evaluate the exposure fusion results based on the given input
LDR images. However, in a related context, Aydin et al. [7] introduced the
so-called Dynamic Range Independent Metric (DRIM). This metric bases on
properties of the human visual system and can be applied to compare images
with a different dynamic range, e.g. an HDR reference image and an LDR
representative of it. To have such a ground truth reference image, we use
publicly available HDR images [1] and create sets of LDR images with differ-
ent exposure times from it. To ensure that those images are representatives
of real LDR images, we apply appropriate exposure times and a common
camera response function. Specifically, we compute for each HDR image five
LDR images separated by one exposure value. These images serve as input
for the exposure fusion techniques. Finally, we apply DRIM to compare the
reference (ground truth) HDR image with the fused LDR results. DRIM uses
the following colour code: Green indicates a loss of visible contrast, blue an
amplification of invisible contrast, and red a reversal of visible contrast. In
addition, the colour saturation is proportional to the amount of distortion.
Fig. 12 depicts the fusion results and the corresponding DRIM distortion
maps for two image sets produced by the method of Mertens et al. (left), by
Singh et al. [58] (middle), and our approach (right). As the DRIM measure
indicates, our results show less distortions. This illustrates that our model
assumptions, which are based on perceptually inspired concepts from varia-
tional contrast enhancement, are well-suited to create exposure fusion results
with a high perceptual quality.
In our last exposure fusion experiment in Fig. 13, we additionally compare to
the method of Kotwal and Chaudhuri [36] since it is a related exposure fusion
approach. The higher local contrast provided by our approach compared to
all other methods is visible. Furthermore, in comparison to Kotwal and
Chaudhuri, our method does not suffer from a colour cast and provides a
vivid colour impression. We achieve this by the proposed saturation term
and the coupled handling of all colour channels. Considering the result of
Singh et al., our result does not only feature more local contrast, but is also
free from an unrealistic and undesirable detail enhancement; see e.g. the
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wall.

6.4 Multilight Image Collection

In contrast to the classical two-stage pipeline of high dynamic range imaging
and tone mapping, our approach is completely independent of the knowledge
of the exposure times and the camera response function. On top of that, also
images that do not follow the HDR imaging model, e.g. images from different
cameras or images captured under non-constant lightning conditions, can be
included easily into the input stack. We illustrate this by fusing a flash and
no-flash image set in Fig. 14, and by fusing images with changing illumination
in Fig. 15.

7 Limitations

Our model is tailored to static scenes, i.e. the input images should be aligned.
Obviously, this is no problem for decolourisation. However, exposure series
and multispectral acquisition techniques may suffer from either camera or
object motion. This results in so-called ghosting artefacts in the fused im-
age; cf. Fig. 16. To overcome this problem, a registration of the input images
in a preprocessing step is required; see e.g. [33] for the alignment of exposure
series. Moreover, our variational approach generally allows to directly incor-
porate specific deghosting strategies (cf. [61, 63] and references therein) in the
energy functional. Such an adaptation of our fusion technique to unaligned
images is part of our future work.

8 Conclusions

In this paper, we have presented a general variational method for image
fusion. The main difference to previous research is that we intentionally
refrain from precomputing application specific weights based on the input
images, and combining the images with those predetermined weights later
on. Instead, we model an energy functional that directly opts for an opti-
mal composite image. This output-driven idea is the key concept why our
method works that well in various application areas. We demonstrate this
by means of thorough evaluations in all three main application areas, namely
multispectral imaging, decolourisation, and exposure fusion. We compare to
the state-of-the-art and best performing methods of each field. As it turns
out, our general approach produces results of similar high quality, and even
outperforms competing methods for various example images. This shows the
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generally good performance and versatility of our technique. On top of that,
all components of our variational model have an intuitive meaning and allow
a direct manipulation of desired properties of the output. In this regard, all
parameters can be fixed or determined automatically in a straightforward
way. This allows an easy use, even by non-experts. To conclude, we believe
that our presented technique is generally suitable for applications that re-
quire the fusion of multiple images. It provides a composite that condenses
the most important information from the input images in an adequate way,
and offers important features such a local contrast adaption.
As discussed in Sec. 7, the extension of our method to the case of unaligned
input images is part of our future work. Additionally, we plan to test and
evaluate our general approach for even more fusion applications, e.g. focus
fusion. First steps in this direction show very promising results.
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Figure 6: RGB and NIR fusion. Our fused images (right) show more details
than the standard photographs on the left, and also than the resulting images
of Eynard et al. [23] in the middle. Odd rows : Full images. Even rows :
Zooms. (Input images: [14])
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Figure 7: Multispectral imaging. From left to right : Visible spectrum, raking
light, infrared, ultraviolet fluorescence, and our fused composite. Our fusion
scheme condenses the information from all spectral ranges to one visually
pleasant composite. (Input images: [4])

Figure 8: Decolourisation result for the benchmark of [17]. From left to right :
Input colour image, Lu et al. [39], Eynard et al. [23], and our result.
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Figure 9: Effect of global (left) and local (middle) contrast term on the E-
score measure of Lu et al. [40] (right). Unfortunately, the E-score measure
does not account for the local contrast adaption of the visual system. It even
penalises it with much smaller E-score values.
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Figure 10: E-score evaluation [40]. The higher, the better. Left : Benchmark
of Čad́ık [17]. Right : Benchmark of Lu et al. [40].
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Figure 11: Exposure fusion results (with zooms) for LDR image sets provided
by Fairchild [24]. From left to right : Result of Mertens et al. [44], Singh
et al. [58], and our result. High resolution images and results for further
exposure sets can be found in the supplementary material.
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Figure 12: From left to right : Exposure fusion of Mertens et al. [44], Singh et
al. [58], and our composite image. Odd rows : Resulting images. Even rows :
Corresponding DRIM distortion maps. The more colours, the more visible
distortions.
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Figure 13: Exposure fusion results of Kotwal and Chaudhuri [36], Mertens
et al. [44], Singh et al. [58], and our result. Particularly at the lamps, the
better local contrast provided by our method is obvious. This is achieved
without producing artefacts; compare for instance the wall in the result of
Singh et al. and in the proposed one. (Input images: [3])

Figure 14: Fusion of flash and no-flash photographs. From left to right :
Ambient, flash, and our fused image.

Figure 15: Fusion of images captured under varying light conditions. First
three columns : Multilight image collection [26]. Last column: Our fused
result. It contains details from all input images where the amount of details
can be steered with the contrast parameters γ and σ.

Figure 16: Moving objects may lead to ghosting artefacts in the fused com-
posite. First three: Input images from [61]. Right : Fused image with ghosts.
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