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An iterative method for EIT involving only solutions of
Poisson equations. I: Mesh-free forward solver

Thorsten Hohage & Sergej Rjasanow

June 26, 2015

Abstract

An iterative procedure for the numerical solution of both the forward and the in-
verse problem of Electrical Impedance Tomography (EIT) is formulated. As opposed
to existing iterative regularisation methods such as nonlinear Landweber iteration or
Newton-type methods it does not require the solution of multiple forward problems.
In fact, no meshing of the domain is required. In each iteration step updates of the
electric potential and the conductivity are computed by solving simple Poisson equa-
tions. For the repeated solution of the Poisson equation we suggest a combination of
the Boundary Element Method (BEM) and Radial Basis Functions (RBF).

In this paper we consider the case that the update of the conductivity is omitted,
which yields an iterative method for the forward problem. We prove linear con-
vergence with a convergence factor depending on the ratio of the maximal and the
minimal value of the conductivity. We use a fast version of the Boundary Element
Method based on the Adaptive Cross Approximation (ACA) for the approximation
of dense matrices. Numerical examples illustrate the functionality and the efficiency
of the approach.

1 Introduction

Electrical Impedance Tomography consists in reconstructing the electric conductivity of
a body from boundary measurements of voltages and currents. It is a classical inverse
problem with applications in medical imaging and nondestructive testing (see e.g. the
reviews [3, 11] and numerous references therein). The same mathematical model also
describes other stationary diffusion processes, e.g. in heat conduction.

It is beyond the scope of this paper to completely review numerical methods for EIT, we
refer the reader to the reviews cited above. One popular class of numerical methods consists
in formulating the problem as a nonlinear operator equation and applying iterative regular-
isation methods such as Landweber iteration, the Newton-CG, the Levenberg-Marquardt,
or the Iteratively Regularised Gauss-Newton method (see [5] for an overview).

All of these methods involve repeated costly evaluations of the forward operator.
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Another class of reconstruction methods implement uniqueness proofs based on geo-
metrical optics solutions (see e.g. [10, 6]). They exhibit global convergence, but are con-
ceptually fairly complicated and also nontrivial to implement. Moreover, they are much
less flexible concerning modifications of the problem setup than iterative regularisation
methods.

The method suggested in this paper has the advantage of being comparatively simple
to implement: Essentially it involves only the solution of Poisson equations. Of course,
the Poisson equations (as well as the full forward problem) can be solved efficiently by the
finite element method, and we have implemented both to get numerical reference solutions
for our tests.

As an alternative, we suggest to solve the Poisson equations by using special RBF’s to
reconstruct particular solutions of the Poisson equation violating the boundary condition
(see [1]) combined with a fast BEM (see [8]) to correct the boundary condition by solving a
Laplace equation. If the domain is a ball, the BEM may be replaced by an implementation
of the Poisson formula.

If the update of the conductivity is omitted our method yields an iterative method for
the solution of the forward problem. Even though it is not competitive compared to high
order finite elements we believe it is of some interest due to its simplicity. We prove linear
convergence of the iteration scheme with optimal convergence factor αmax−αmin

αmax+αmin
where αmax

and αmin are the maximal and minimal values of the conductivity.
The paper is organised as follows. A model problem of the three-dimensional heat

conduction equation is formulated in Section 2. In Section 3, we formulate a new iterative
algorithm for the solution of the forward problem and prove its convergence. A FEM
solution of the problem is described in Section 4 and the BEM solution in Section 5. A
series of numerical examples for both the FEM and the BEM approach as well as for the
RBF interpolation are presented in the final Section 6.

2 Formulation of the problem

In this paper, we consider the following boundary value problem

− divα(x) grad u(x) = 0 , for x ∈ Ω , (1a)

γ0u(x) = 0 , for x ∈ Γ0 , (1b)

γ0u(x) = u1(x) , for x ∈ Γ1 , (1c)

where
α ∈ L∞(Ω) , 0 < αmin ≤ α(x) ≤ αmax

is the conductivity. The boundary of the three-dimensional simply connected Lipschitz
domain Ω ∈ R3 consists of two parts Γ0 and Γ1 fulfilling

Γ0 ∪ Γ1 = Γ = ∂Ω .
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Our main example later on will be the unit cube and its upper face will be the Γ1 part of
the boundary

Ω = (0, 1)3 , Γ = ∂Ω , Γ1 =
{
x ∈ Γ : x3 = 1

}
.

The operator
γ0 : H1(Ω)→ H1/2(Γ)

is the usual Dirichlet trace operator and u1 ∈ H1/2(Γ1) is the given non-trivial boundary
condition. Under these assumptions, the direct boundary value problem has a unique weak
solution u ∈ H1(Ω).

The inverse problem is formulated as follows. On the part of the boundary Γ1 a signal
u1 is applied and the interior conormal derivative of the resulting solution u

γ1u(x) = lim
x̃→x

(gradx̃ u(x̃), nx) , x ∈ Γ1 , x̃ ∈ Ω (2)

is measured. In (2), nx denotes the outer normal vector at x which is defined for almost all
x ∈ Γ1. From this additional information, we will try to estimate the material parameter
α(x) for all x ∈ Ω. In addition, we assume that a typical value α∗ for the material
parameter α is known. There are two possible situations, either the variable material
parameter α differs only slightly from its typical value α∗ or the part of the domain Ω
where the difference is there is rather small.

3 An iterative method for the solution of the forward

problem

3.1 Derivation of the iteration formula for the forward problem

By the use of a typical value α∗, we rewrite the equation (1) as follows

−∆u(x) = div

(
α(x)

α∗
− 1

)
gradu(x) , x ∈ Ω . (3)

The idea is now to formulate an iterative process for an approximative solution of the
problem (3). Starting from

u0(x) = 0 , x ∈ Ω ,

we iterate

For k = 0, 1, . . .

Solve

{
−∆uk+1 = div

( α
α∗
− 1
)

grad uk in Ω

γ0uk+1 = (0, u1) on Γ0 ∪ Γ1.
(4)

Thus, the iterative process consists in a numerical solution of the Laplace equation in the
initial step and a sequence of the Poisson problems during the iteration. Problems of this
type can be solved efficiently by the FEM or by the use of the fast BEM as discussed in
Sections 4 and 5.
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3.2 Convergence analysis

We define the norm on H1
0 (Ω) by

‖u‖H1
0

:=

∫
Ω

| gradu|2 dx

1/2

.

Recall that due to the Poincaré-Friedrich inequality ‖u‖L2 ≤ c‖ gradu‖L2 for u ∈ H1
0 (Ω)

the norm ‖ · ‖H1
0

is equivalent to the norm ‖u‖H1 := (
∫

Ω
|u|2 + | gradu|2 dx)1/2.

Theorem 1. Let u denote the solution to (1), and let uk be defined by (4).

1. The iterates uk satisfy the error estimate

‖uk − u‖H1
0
≤ Θk‖u0 − u‖H1

0
(5)

with the convergence factor

Θ := max
(αmax

α∗
− 1, 1− αmin

α∗

)
.

2. Θ is minimal for the choice

α∗ =
αmin + αmax

2
,

and in this case

‖uk − u‖H1
0
≤
(
αmax − αmin

αmax + αmin

)k
‖u0 − u‖H1

0
. (6)

3. The error bound (5) is optimal in the sense that for any Θ̃ ∈ (0,Θ) there exists a
starting point u0 such that

lim
k→∞

Θ̃−k‖uk − u‖H1
0

=∞.

In particular, the iteration diverges in general if αmax > 2α∗.

Proof. 1. Let u∗ ∈ H1(Ω) be any function satisfying γ0u∗ = (0, u1) and define

β = 1− α

α∗
.

Then ũk = uk − u∗ belongs to H1
0 (Ω). It satisfies the variational equation

〈grad ũk+1, grad v〉L2
= 〈β grad ũk, grad v〉L2

+ 〈(β − 1) gradu∗, grad v〉L2
(7)

for all v ∈ H1
0 (Ω). For β̃ ∈ L∞(Ω) let Lβ̃ : H1

0 (Ω)→ H1
0 (Ω)′ = H−1(Ω) denote the operator

defined implicitly by〈
Lβ̃u, v

〉
H−1,H1

0

=
〈
β̃ gradu, grad v

〉
L2

, u, v ∈ H1
0 (Ω).
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Note that Lβ̃ is bounded with ‖Lβ‖L(H1
0 (Ω),H−1(Ω))‖ ≤ ‖β̃‖∞. Moreover, define U∗ ∈ H−1(Ω)

by U∗(v) := 〈(β − 1) gradu∗, grad v〉L2 . Then we can write

ũk+1 = L−1
1 Lβũk + L−1

1 U∗.

By the definition of the dual norm L1 is isometric, so

‖L−1
1 Lβ‖L(H1

0 (Ω)) ≤ ‖L−1
1 ‖L(H1

0 (Ω),H−1(Ω)) ‖Lβ‖L(H−1(Ω),H1
0 (Ω)) ≤ ‖β‖∞.

As

‖β‖∞ =
1

α∗
‖αmax − α∗‖∞ = Θ, (8)

this means that u 7→ L−1
1 Lβu+ L−1

1 U∗ is a contraction in H1
0 (Ω) with contraction number

Θ if Θ < 1. In this case we obtain by Banach’s fixed point theorem that sequence (ũk)
converges to the unique fixed point u of (7) and ‖ũk − u‖ ≤ Θk‖ũ0 − u‖. ¿From the
derivation we see that u = u − u∗. This implies the first assertion for the case Θ < 1.
Alternatively, we could have derived the result directly from the identity

ũk+1 − u = L−1
1 Lβ(ũk − u) (9)

by induction, which allows to treat the case Θ ≥ 1.
2. The second statement is an obvious consequence of the first statement.
3. Let Θ̃ ∈ (0,Θ). Recall that ‖β‖∞ = inf{t ≥ 0 : |β| ≤ t a.e. on Ω}. Due to (8) there
exist a Lebesgue-measurable set A ⊂ Ω with positive Lebesgue measure such that

|β(x)| ≥ 1

2
(Θ̃ + Θ) for all x ∈ A.

Let us introduce the seminorm

|w|A := (

∫
A

| gradw|2 dx)1/2

on H1
0 (Ω) and the corresponding bilinear form

〈w, v〉A :=

∫
A

(gradw, grad v) dx .

For w ∈ H1
0 (Ω) with |w|A > 0, we have

|L−1
1 Lβw|A = sup

|f |A≤1

〈
L−1

1 Lβw, f
〉
A

= sup
|f |A≤1

〈β gradw, grad f〉A

≥ 1

|w|A
〈β gradw, gradw〉A ≥

1

2
(Θ̃ + Θ)|w|A

where we have chosen f := w/|w|A. Now choose u0 such that |ũ0−u|A > 0. Then it follows
from (9) that

|ũk − u|A ≥

(
Θ̃ + Θ

2

)k

|ũ0 − u|A.

As ‖uk − u‖H1
0
≥ |ũk − u|A, this implies the assertion.
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4 A FE method for the forward problem

In this section, we describe a simple finite element method for the direct problem (1). Let
the domain Ω be a cuboid

Ω = (0, L1)× (0, L2)× (0, L3)

and its discretisation Kh consists of

NE = N1 ·N2 ·N3

identical hexahedral finite elements K of the size

h1 = L1/N1 , h2 = L2/N2 , h3 = L3/N3 .

The parameterisation of the element K is as follows

K =
{
x ∈ Ω : x = xc +

1

2
H ξ , ξ ∈ (−1, 1)3

}
,

where xc ∈ K is the central point of the element K and

H = diag(h1, h2, h3) ∈ R3×3 .

Let Nh = Nh,Ω ∪ Nh,Γ be the set of all nodes of the discretisation Kh, where the number
of the interior nodes

N = #Nh,Ω = (N1 − 1) · (N2 − 1) · (N3 − 1)

will be the number of degrees of freedom for the Dirichlet problem we consider here. Next,
we introduce nodal trial functions ϕz for all z ∈ Nh,Ω with ϕz(z) = 1, which are trilinear
within eight finite elements which contain the node z and which are equal to zero on the
outer boundaries of these eight elements. Thus, within each element K eight trial functions
have non-zero values. On the reference element (−1, 1)3, the corresponding basis functions
are defined as follows

ψσ(ξ) =
1

8
(1 + σ1ξ1)(1 + σ2ξ2)(1 + σ3ξ3) , ξ = (ξ1, ξ2, ξ3)> ∈ (−1, 1)3

and σ = (σ1, σ2, σ3)> is one of the eight nodes of the reference element (−1, 1)3, i.e. σ is of
the form

σ = (±1,±1,±1)> .

Thus within an element K, the trial function ψz is defined as

ϕz(x) = ψσ(ξ) , ξ = 2H−1(x− xc) .
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The solution u of the Dirichlet problem

− divα(x) grad u(x) = f(x) , for x ∈ Ω , (10a)

γ0u(x) = g(x) , for x ∈ Γ , (10b)

will be decomposed in a sum u = u0 +uD, where uD is an extension of the Dirichlet datum
g in Ω and u0 fulfils the homogeneous Dirichlet boundary condition γ0u0(x) = 0 , for x ∈ Γ.
The weak formulation of the problem (10) reads: Find u0 ∈ H1

0 (Ω) such that

aΩ(u0, v) = (f, v)− aΩ(uD, v) for all v ∈ H1
0 (Ω) .

The bilinear form aΩ is

aΩ(u, v) =

∫
Ω

α(x) (grad u(x), grad v(x))dx .

Let
Vh = span(ϕz , z ∈ Ω) ⊂ H1

0 (Ω)

be the ansatz space with dimVh = N . Then the discrete weak formulation of the problem
(10) reads: Find u0h ∈ Vh such that

aΩ(u0h, v) = (f, v)− aΩ(uDh, v) for all v ∈ Vh .

This formulation is equivalent to a system of linear equations

Ay = b , A ∈ RN×N , y, b ∈ RN .

The matrix of this system is symmetric and positive definite. Thus, the system can be
solved with Conjugate Gradient Method (CGM). The entries of the matrix as well of the
right hand side b can be computed with the help of the Gauss-quadrature on the reference
element (−1, 1)3. For an efficient practical realisation of this procedure it is necessary to
find a simple and effective method for the extension of the Dirichlet boundary condition
g to a function uDh : Ω → R. The most natural procedure is the interpolation on the
boundary Γ

uDh ∈ span(ϕz , z ∈ Γ) , uDh(z) = g(z) for z ∈ Γ .

No numerical work is necessary to realise this interpolation.

5 A BE method for the forward problem

5.1 Boundary integral formulation

Boundary element methods can efficiently be applied to partial differential equations with
constant coefficients. One of the most simple examples is the Dirichlet problem for the
Poisson equation

−∆u(x) = f(x) for x ∈ Ω , γ0u(x) = g(x) for x ∈ Γ . (11)
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The solution of this problem is given by the representation formula

u(x) =

∫
Γ

u∗(x, y)t(y)dsy −
∫
Γ

γ1,yu
∗(x, y)g(y)dsy +

∫
Ω

u∗(x, y)f(y)dy (12)

for x ∈ Ω, where t = γ1u is the unknown Neumann datum. The fundamental solution u∗

of the Laplace equation is

u∗(x, y) =
1

4π

1

|x− y|
for x, y ∈ R3 . (13)

By applying the interior trace operator γ0 to the representation formula (12) and using the
jump relations (see e.g. [7]) and the Dirichlet boundary condition, we obtain the boundary
integral equation∫

Γ

u∗(x, y)t(y)dsy =
1

2
g(x) +

∫
Γ

γ1,yu
∗(x, y)g(y)dsy −

∫
Ω

u∗(x, y)f(y)dy (14)

for x ∈ Γ. Thus, we have to solve a first kind boundary integral equation to find t ∈
H−1/2(Γ) such that

(V t)(x) =
1

2
g(x) + (Kg)(x)− (Nf)(x) for x ∈ Γ , (15)

where V denotes the single layer, K the double layer and N the Newton potential.

5.2 Particular solution

The drawback in considering the boundary integral equation (15) is the evaluation of the
Newton potential Nf . Besides a direct computation, there exist several approaches leading
to more efficient methods. One of the most effective is the particular solution approach.
Let up be a particular solution of Poisson equation in (11) satisfying

−∆up(x) = f(x) for x ∈ Ω .

Then, instead of (11), we consider a Dirichlet boundary value problem for the Laplace
operator,

−∆uh(x) = 0 for x ∈ Ω, γ0uh(x) = g(x)− γ0up(x) for x ∈ Γ .

The solution u of (11) is then given by uh + up. The unknown Neumann datum th = γ1u0

is the unique solution of the boundary integral equation

(V th)(x) =
1

2
(g(x)− γ0up(x)) +

(
K
(
g − γ0up

))
(x) for x ∈ Γ .
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This equation is equivalent to the variational problem〈
V th, w

〉
Γ

=
〈(1

2
I +K

)
g̃, w

〉
Γ

for all w ∈ H−1/2(Γ),

where g̃ = g − γ0up is the modified boundary condition. Often, the right hand side f is
not given analytically but, as a rule, is the result of a numerical procedure. In this case
it is impossible, however, also not necessary to find the exact particular solution of the
inhomogeneous problem. The idea is to approximate the right hand side in such a way
that an approximate particular solution can be found and used instead of the exact.

Let
{
φ1, . . . , φNp

}
be a system of functions having the property that each of the Poisson

equations
−∆ψj(x) = φj(x) , j = 1, . . . , Np (16)

has a known analytical solution ψj. Then an approximation of the right hand side f of the
form

fNp(x) =

Np∑
j=1

fjφj(x) (17)

provides an approximate particular solution

uNp(x) =

Np∑
j=1

fjψj(x) . (18)

The approximation (17) can be found either by the interpolation in a set of Np points

f(xi) = fNp(xi) =

Np∑
j=1

fjφj(xi) , i = 1, . . . , Np . (19)

For compactly supported functions φj, the L2−projection is also possible〈
f, φi

〉
L2

=
〈
fNp , φi

〉
L2

=

Np∑
j=1

fj

〈
φj, φi

〉
L2

, i = 1, . . . , Np . (20)

In both cases a system of linear equations has to be solved. For the special form of the
right hand side given in (3), the interpolation method (19) is probably less convenient
since it poses high requirements on the smoothness of the functions α and uk. However,
the L2−projection seems to be perfect〈

f, φi

〉
Ω

=

∫
Ω

div
((α(x)

α∗
− 1

)
grad uk(x)

)
φi(x) dx = (21)

= −
∫
Ω

(
α(x)

α∗
− 1

)
(grad uk(x), gradφi(x)) dx+ (22)

+

∫
Γ

(
α(x)

α∗
− 1

)
γ1uk(x)φi(x) dsx . (23)
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While the conormal derivative γ1uk is known as a direct result of the BEM procedure, the
gradient grad uk inside the domain Ω has to be computed via the representation formula
(12).

5.3 Radial basis functions

Radial basis functions are one of the most popular tools for interpolating or approximating
scattered data in various applications. A single radial basis function φ : R3 → R is a
real-valued function whose value depends only on the distance from the origin, i.e.

φ(x) = φ(|x|) for x ∈ R3 .

Given a set of distinct points {
x1, . . . , xNp

}
⊂ Ω ,

a system
{
φ1, . . . , φNp

}
can be defined as follows

φj(x) = φ(|x− xj|) , j = 1, . . . , Np . (24)

In the following we describe the use of radial basis functions to construct special solutions
to the Poisson equation (see [9, 4]).

The first two columns of Table 1 list some popular radial basis functions. The Wendland
functions φ3,k are compactly supported in the unit ball and belong to the space C2k. In
practice a scaling parameter β > 0 should be introduced, i.e. φ(ρ) should be replaced by
φ(ρ/β).

Since the functions φ are isotropic, we get in spherical coordinates instead of the Poisson
equation an ordinary differential equation

ψ′′(%) +
2

%
ψ′(%) = −φ(%) . (25)

To avoid singularities at zero, we complete the equation (25) with the initial conditions

ψ(0) = ψ0 , ψ′(0) = 0.

If a scaled version φ(ρ/β) of the radial basis function with scaling parameter β > 0 is used,
ψ(ρ) has to be replaced by β2ψ(ρ/β).

For all the radial basis functions listed in Table 1 the corresponding functions ψ can be
computed analytically. The results are listed in the right column.

5.4 Boundary element discretisation

To obtain a boundary element discretisation of the problem, we approximate Γ by a con-
form surface triangulation with NBEM triangles and MBEM nodes. We use the piecewise
constant functions (ψ` is 1 on triangle τ` and 0 outside τ`) as basis and test functions for
the discretised single layer potential. These functions also serve as test functions for the
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name φ(%) ψ(%)

Gaussian exp(−%2)

√
π erf(%)

4%

multiquadric
√

1 + %2 −−8%+ %(5 + 2%2)
√

1 + %2 + 3 arcsinh(%)

24%

inverse
quadric

1

1 + %2
−%(−2 + ln(1 + %2)) + arctan(%)

2%

polyharmonic
splines

{
%k, k = 1, 3, . . .

%k ln(%), k = 2, 4, . . .

{
− %k+2

(k+2)(k+3)
, k = 1, 3, . . .

%k+2

(k+2)(k+3)

(
2k+5

(k+2)(k+3)
−ln(%)

)
, k = 2, 4, . . .

Wendland
function φ3,0

(
1− %

)2

+

{
− 1

20
%4 + 1

6
%3 − 1

6
%2 + 1

12
, % ≤ 1

1
30 %

, % > 1

Wendland
function φ3,1

(
1− %

)4

+

(
4%+ 1

) {
− 1

14
%7 + 5

14
%6 − 1

6
%2 + 1

14
, % ≤ 1

1
42 %

, % > 1

Table 1: Some popular radial basis functions φ and corresponding functions ψ such that
−∆ψ(|x|) = φ(|x|) for x ∈ R3.

double layer potential. The basis functions for the double layer potentials are chosen to
be piecewise linear, i.e. ϕj(xi) = δij, ϕj is linear on each τ`. Thus the BEM Galerkin
procedure consists of the following steps. An initial step is a computation of the BEM
matrices, namely the double layer potential matrix

Kh ∈ RNBEM×MBEM , Kh[k, j] =
1

4π

∫
τk

∫
Γ

(x− y, ny)
|x− y|3

ϕj(y) dsy dsx ,

the single layer potential matrix

Vh ∈ RNBEM×NBEM , Vh[k, `] =
1

4π

∫
τk

∫
τ`

1

|x− y|
dsy dsx ,

the mixed mass matrix

Mh ∈ RNBEM×MBEM , Mh[k, j] =

∫
τk

∫
Γ

ϕj(y) dsy dsx ,

and the linear mass matrix

M
(1)
h ∈ RMBEM×MBEM , M

(1)
h [i, j] =

∫
Γ

∫
Γ

ϕj(y)ϕi(x) dsy dsx .
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Note that the matrices Mh and M
(1)
h are sparse while the matrices Kh and Vh are dense

and probably require an additional approximation technique.
A further preparation step is the L2-projection of the Dirichlet boundary condition g

in the space of piecewise linear functions ϕj. This is equivalent to the numerical solution
of the linear system

M
(1)
h g = b(1) , b

(1)
i =

∫
Γ

g(x)ϕi(x) dsx .

The matrix M
(1)
h is symmetric, positive definite and well conditioned. Thus, this system

can be solved with only few CGM iterations without preconditioning up to the computer
accuracy.

The preparations for the RBF interpolation consist of the computation and eventually
approximation of the interpolation matrix

R ∈ RNp×Np , R[i, j] = φj(xi) .

Then, a series of the Poisson problems

−∆uk+1 = fk , k = 0, 1, . . .

has to be solved. For k = 0, due to u0 = 0, we get f0 = 0 and we have to solve the algebraic
system

Vht1 =
(1

2
Mh +Kh

)
g .

Thus in the first step, the Neumann datum t1 coincides with the homogeneous Neumann
datum t0,1. For k = 1, 2, . . . , the right hand side fk is given recursively by

fk = div
( α
α∗
− 1
)

grad uk

=
1

α∗
(grad α, grad uk) +

( α
α∗
− 1
)

∆uk

=
1

α∗
(grad α, grad uk)−

( α
α∗
− 1
)
fk−1 .

There are two possibilities to compute this right hand side in all interpolation points
xj, j = 1, 2, . . . , Np. First of all, we assume that the diffusion coefficient α and, therefore,
its gradient grad α are given. The gradient grad uk can be computed by the representation
formula. This is problematic in the neighbourhood of the boundary and on the boundary
itself. The second possibility is to interpolate the solution uk by the RBF’s and then to use
the gradient of the interpolant which is given analytically. To this end, the representation
formula will be used for the points uj inside the domain Ω and the analytically given
Dirichlet boundary datum on the boundary Γ.

Thus, having the Cauchy data
(
tk, g

)
of the function uk, we evaluate its values uk(xj)

in all interpolation points xj, j = 1, 2, . . . , Np, solve the interpolation system of linear
equations

Ruk,Np
= uk , (uk)j = uk(xj)

12



and obtain an easily analytically differentiable function

uk,Np =

Np∑
j=1

(uk,Np
)jφj .

By the use of the gradient of this function, we compute the right hand side fk with the
help of the above recursion, solve the second interpolation problem

Rf
k,Np

= f
k
, (f

k
)j = fk(xj)

and an approximation of the particular solution up,k,Np reads

up,k,Np =

Np∑
j=1

(f
k,Np

)jψj .

Its Dirichlet trace on the boundary Γ is

gp,k,Np = γ0up,k,Np

and its L2-projection is obtained from the linear system

M
(1)
h g

p,k,Np
= bp,k,Np

, (bp,k,Np
)i =

∫
Γ

gp,k,Np(x)ϕi(x) dsx .

Finally, the coefficient vector of the new homogeneous Neumann trace t0,k+1 fulfils

Vht0,k+1 =
(1

2
Mh +Kh

)
(g − g

p,k,Np
)

and the new Cauchy data reads(
tk+1, g

)
=
(
t0,k+1 + γ1up,k,Np , g

)
.

We note that all the matrices involved in this algorithm are computed in advance and
decomposed or approximated in an initial step leading to a fast numerical solution of all
above linear systems.

5.5 Adaptive Cross Approximation

The initial analytical form of the ACA algorithm was designed to interpolate and, hopefully,
to approximate a given function K of two variables x and y by a degenerate function Sn,
i.e.

K(x, y) ≈ Sn =
n∑
`=1

u`(x)v`(y) . (26)

The construction is as follows. Let X and Y be discrete point sets in R3.

13



Algorithm 1.

1. initialisation

1.1 set initial residuum and initial approximation

R0(x, y) = K(x, y) , S0(x, y) = 0

1.2 choose initial pivot position

x0 ∈ X , y0 ∈ Y , R0(x0, y0) 6= 0

2. recursion for k = 0, 1, . . .

2.1 new residuum

Rk+1(x, y) = Rk(x, y)− Rk(x, yk)Rk(xk, y)

Rk(xk, yk)

2.2 new approximation

Sk+1(x, y) = Sk(x, y) +
Rk(x, yk)Rk(xk, y)

Rk(xk, yk)

2.3 new pivot position

xk+1 ∈ X , yk+1 ∈ Y , Rk+1(xk+1, yk+1) 6= 0

After n ≥ 1 steps of the ACA-Algorithm 1, we obtain a sequence of residua R0, . . . , Rn

and a sequence of approximations S0, . . . , Sn with the following properties.

1. Approximation property for k = 0, . . . , n

Rk(x, y) + Sk(x, y) = K(x, y) , x ∈ X , y ∈ Y (27)

2. Interpolation property for k = 1, . . . , n and ` = 0, . . . , k − 1

Rk(x, y`) = Rk(x`, y) = 0 , x ∈ X , y ∈ Y (28)

or

Sk(x, y`) = K(x, y`) , x ∈ X , Sk(x`, y) = K(x`, y) , y ∈ Y (29)

3. Harmonicity property for k = 0, . . . , n
If

LxK(x, y) = 0 , x ∈ Ω

then
LxRk(x, y) = LxSk(x, y) = 0 , x ∈ Ω

14



4. Non-recursive representation for k = 1, . . . , n

Sk(x, y) = u>k (x)V −1
k wk(y) , Vk ∈ Rk×k , uk(x), wk(y) ∈ Rk (30)

with
uk(x) =

(
K(x, y0), . . . , K(x, yk−1)

)>
,

wk(y) =
(
K(x0, y), . . . , K(xk−1, y)

)>
and

Vk =
(
K(xi, yj)

)k−1

i,j=0

Th above properties, except the last one, can be easily seen. The proof of the non-recursive
representation is more technical and can be found in [2].

Algorithm 1 can be easily modified for matrices and computes their low rank approxi-
mation.

6 Numerical examples

6.1 Direct FE solution

In the next two examples, we illustrate the accuracy and convergence of the method for a
series of discretisations of the unit cube

Ω = (0, 1)3

as well as we state a model problem for the direct and inverse formulations.

Example 2. We consider a constant diffusion parameter

α(x) = 1 , x ∈ Ω

and the analytic solution

u(x) = −x1(x1 − 1)x2(x2 − 1)x3(x3 − 1) , x ∈ Ω .

Thus, the Dirichlet boundary condition is homogeneous

g(x) = γ0u(x) = 0 , x ∈ Γ

and the right hand side is given by

f(x) = 2x2(x2 − 1)x3(x3 − 1) + 2x1(x1 − 1)x3(x3 − 1) + 2x1(x1 − 1)x2(x2 − 1)

for x ∈ Ω.
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Table 2: Numerical results for the FEM solution, Example 1

N1 N L2-Norm CF H1-Norm CF Iter

4 27 4.02 · 10−4 - 8.41 · 10−4 - 4
8 343 9.88 · 10−5 4.06 4.18 · 10−4 2.01 16

16 3 375 2.46 · 10−5 4.02 2.08 · 10−4 2.01 29
32 29 791 6.13 · 10−6 4.01 1.04 · 10−4 2.00 65
64 250 047 1.53 · 10−6 4.01 5.21 · 10−4 2.00 130

128 2 097 152 3.83 · 10−7 3.99 2.60 · 10−4 2.00 261
256 16 581 375 9.58 · 10−8 4.00 1.30 · 10−4 2.00 548

The numerical results are presented in Table 2. The number of elements in one space
dimension N1 = N2 = N3 is listed in the first column of the table. The second column
contains the number of unknowns, while in the third column of Table 2 the relative L2-
norm of the error is given. The fourth column of this table shows the convergence factor
for the L2 norm. Note that the convergence is quadratic in h = 1/n. The relative error in
the Sobolev norm

‖u‖H1 =

∫
Ω

(
u2 + | gradu|2

)
dx

1/2

is listed in the next column and the convergence factor in column six. The convergence is,
as expected, linear. Finally in the last column, we show the number of iterations of the
CG method without preconditioning for the relative accuracy εCGM = 1.0 · 10−15. Also its
behaviour is as expected.

Example 3. In the second example we choose

Γ1 =
{
x ∈ Γ : x3 = 1

}
and

g(x) = γ0u(x) =
(

sin(π x1) sin(π x2)
)2

, x ∈ Γ1 .

We consider

α(x) =

{
1 + 1

2 r4

(
|x− x∗|2 − r2

)2

for |x− x∗| − r < 0

1 for |x− x∗| − r ≥ 0
(31)

as a diffusion coefficient, i.e. a ball like inclusion at x∗ of the radius r.

The boundary condition on Γ1 is shown in Figure 1 and the diffusion coefficient for
x∗ = (0.7, 0.7, 0.7)> and r = 0.25 in Figure 2.

There is no analytic solution of this problem. The numerical Neumann datum shown
in Figure 3 for N1 = N2 = N3 = 32 elements in one direction or N = 29 791 unknowns
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Figure 1: Boundary condition at x3 = 1
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Figure 2: Diffusion coefficient at x3 = 0.7
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Figure 3: Neumann datum at x3 = 1.0

was obtained after 153 CGM iteration for the accuracy εCGM = 1.0 · 10−15. In Figure 4, we
show the Neumann datum obtained for the same boundary condition but for the constant
diffusion coefficient α(x) = 1. Optically, the results are very similar. However, Figure 5
shows the difference of the both solution and Figure 6 the corresponding contours. This
example seems to be suitable for both, direct and inverse formulations.

6.2 Iterative FE solution

Example 4. We consider again the diffusion coefficient (31) and the series of discretisa-
tion as in the first example.

For the pure FEM formulation, the direct iteration (4) takes the form

u0 = 0 , Aα∗uk+1 =
(
Aα∗ − Aα

)
uk + f , k = 0, 1, . . . ,

where the FEM matrices Aα∗ and Aα correspond to the constant and variable diffusion
coefficients. In Table 3, we show the number of direct iterations of the algorithm (4) needed
to reach the accuracy of εDirInter = 1.0 · 10−15 in the discrete L2-norm, i.e

‖Aαuk − f‖2

in column three, this number is displayed for non-optimal value of α∗ = 1 while the next
column shows the number of iterations for the optimal choice of α∗ = 5/4. It is clear to
see that the number of direct iterations is only weakly dependent of the discretisation and
bounded from above. Furthermore, for this example, the number of iterations is rather low.

18



10

20

30

10

20

30

0

2

4

6

10

20

30
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Table 3: Numerical results for the FEM solution, Direct iteration

N1 N α∗ = 1 α∗ = 5/4 CGM-Iter

4 27 17 21 7
8 343 24 21 23-25

16 3 375 31 20 48-50
32 29 791 31 19 89-120
64 250 047 29 19 175-202

128 2 097 152 26 18 347-402
256 16 581 375 23 17 686-790
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0.001

Figure 7: Convergence history for N = 3 375

The last column shows the number of CGM-Iterations during each of the direct iteration
which slightly varies. The CGM-accuracy was as in all above examples εCGM = 1.0 · 10−15.
In Figure 7, we show the convergence history for N = 3 375 for the optimal value α∗ = 5/4.
Note that the scale of this plot is logarithmic. Figure 8 shows the convergence factor, i.e. a
quotient of two consecutive errors. The theoretically predicted convergence factor Θ = 1/5
can be perfectly seen in this plot.

6.3 Direct BE solution

Example 5. We again consider a constant diffusion parameter

α(x) = 1 , x ∈ Ω

and the analytic solution

u(x) =
1

4π |x− x∗|
, x ∈ Ω
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Table 4: Numerical results for the BEM solution, ACA

MBEM NBEM εACA Mem(Kh) % Mem(Vh) %

386 768 1.00 · 10−3 2.00 88.46 1.67 37.05
1538 3072 1.00 · 10−4 17.36 48.15 13.35 18.54
6146 12288 1.00 · 10−5 121.95 21.17 99.16 8.61

24578 49152 1.00 · 10−6 723.74 7.85 674.34 3.66
98306 196608 1.00 · 10−7 3939.79 2.67 4230.20 1.43

for x∗ = (1.5, 1.5, 1.5)>. Thus, the function u is harmonic in Ω and its trace g(x) = γ0u(x)
will be used as the Dirichlet boundary condition in (10).

We consider the same discretisation sequence of the unit cube as for FEM and dividing
all surface rectangles in two triangles, we obtain a regular triangulation of the surface Γ. In
Figure 9 an example of such discretisation for NBEM = 3072 boundary elements. The quality
of the ACA approximation is illustrated in Table 4. In the first column of this table, the
number MBEM of boundary nodes is displayed while the second column shows the number
of boundary elements NBEM. The required relative ACA accuracy εACA is presented in third
column. The fourth column contains the memory requirements data for the NBEM ×MBEM

double layer potential matrix Kh in Mbytes and the fifth the corresponding percentage with
respect to the full memory. The same data for the NBEM×NBEM single layer potential matrix
Vh is shown in columns six and seven. The increasing accuracy of the ACA approximation
is necessary to guarantee the optimal order of BEM convergence which can be seen in Table
5. The L2-norm of the error in the Dirichlet and Neumann data is displayed in the columns
three and five. The corresponding convergence factors in the columns four and six. The
quadratic convergence for the Dirichlet as well as linear convergence for the Neumann
datum is almost perfect.
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Figure 9: BEM discretisation for NBEM = 3072

Table 5: Numerical results for the BEM solution, Accuracy

MBEM NBEM Dirichlet datum CF Neumann datum CF

386 768 2.01 · 10−4 - 3.32 · 10−2 -
1538 3072 4.88 · 10−5 4.12 1.57 · 10−2 2.11
6146 12288 1.20 · 10−5 4.07 7.56 · 10−3 2.08

24578 49152 2.97 · 10−6 4.04 3.71 · 10−3 2.04
98306 196608 7.39 · 10−7 4.02 1.84 · 10−3 2.02
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Table 6: Numerical results for the RBF interpolation, Accuracy

N1 Np β L2 H1 H2

4 125 1.0 3.36 · 10−4 3.78 · 10−3 6.60 · 10−2

8 729 2.0 2.57 · 10−5 6.19 · 10−4 2.57 · 10−2

16 4913 5.0 2.99 · 10−6 1.59 · 10−4 1.44 · 10−2

6.4 RBF interpolation

Example 6. This example illustrates the interpolation with Radial Basis Functions. We
consider the infinitely smooth function defined in the unit cube Ω = (0, 1)3

u(x) =
1

1 + |x− x∗|2
, x∗ = (1.5, 1.5, 1.5)> , x ∈ Ω .

and interpolate it in the nodes of the hexahedral FEM discretisation of Ω. The system of
interpolation functions is

φj(x) =
1

1 + β|x− xj|2
, j = 1, . . . , Np ,

where Np = (N1 + 1)(N2 + 1)(N3 + 1) is the number of nodes.

The accuracy results are presented in Table 6. The third column of this table shows the
a priori chosen parameter β of the inverse quadric function ψ while the last three columns
contains the relative error of the RBF interpolation measured in the L2 as well as in the
Sobolev norms H1 and H2. The quality of the interpolation of the function itself and of
its gradient is sufficiently high for our main task, to interpolate the right hand side of the
iterative BEM solution of the direct problem.

6.5 Iterative BE solution

Here we consider the same inhomogeneous problem as in Example 3 with the diffusion
coefficient (31). Again, for a non-optimal α = 1.0 and for the optimal α∗ = 1.25, we solve
a series of BEM discretisations by the use of the RBF interpolation and particular solution
technique as described in Subsection 5.4. The results are shown in Table 7 where the last
two columns show the number of direct iterations. Thus, the convergence results are almost
the same as for the FEM discretisation. The RBF interpolation of the approximation uk
and of the right hand side fk was performed on the Np = 729 = 7 × 7 × 7 RBF grid
independent of the BEM discretisation. We have used the norm of the difference between
two subsequent approximation uk and uk+1 as a stopping criteria

‖uk − uk+1‖2 ≤ εDirInter

with εDirInter = 1.0 ·10−15. The evaluation of the norm was done on the RBF interpolation
grid inside the domain Ω.
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Table 7: Numerical results for the FEM solution, Direct iteration

MBEM NBEM α∗ = 1 α∗ = 5/4

98 192 33 21
386 768 33 20

1 538 3 072 32 20
6 146 12 288 33 21

Conclusions

In this paper, we propose a new iterative procedure to solve boundary value problems with
variable coefficients. We prove linear convergence with a convergence factor depending on
the ratio of the maximal and the minimal value of the conductivity. This method, applied
to the forward problem, can not be competitive with the standard FEM. However, it offers
the possibility to apply a fast version of the Boundary Element Method based on the
ACA. Numerical examples illustrate the functionality and the efficiency of the approach.
The most important feature of the idea is the possibility to apply the proposed iterative
procedure for the inverse problem of reconstructing the electric conductivity of a body
from boundary measurements.
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