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Matrix Valued Adaptive Cross Approximation

S. Rjasanow and L. Weggler

July 9, 2015

Abstract

A new variant of the Adaptive Cross Approximation (ACA) for ap-
proximation of dense block matrices is presented. This algorithm can
be applied to matrices arising from the Boundary Element Methods
(BEM) for elliptic or Maxwell systems of partial differential equations.
The usual interpolation property of the ACA is generalised for the ma-
trix valued case. Some numerical examples demonstrate the efficiency
of the new method. The main example will be the electromagnetic
scattering problem, i.e. the exterior boundary value problem for the
Maxwell system. Here, we will show that the matrix valued ACA
method works well for high order BEM and the corresponding high
rate of convergence is preserved. Another example shows the efficiency
of the new method in comparison with the standard technique while
approximating the smoothed version of the matrix valued fundamental
solution of the time harmonic Maxwell system.

Keywords: Adaptive Cross Approximation, Maxwell system,
Boundary Element Methods

1 Introduction

Dense matrices of high dimension appear in many different applications, how-
ever, one of the most important sources for such matrices are the Bound-
ary Element Methods (BEM) for elliptic scalar equations, e.g. Laplace and
Helmholtz equations, as well as for elliptic systems like the system of Lamé
equations in elastostatics. However, one of the most challenging problems
is the time harmonic system of Maxwell equations, i.e. the electromagnetic
scattering problem.
Due to quadratic amount of memory, the classical boundary element real-
isations are applicable only for a rather moderate number N of boundary
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elements. Fortunately, all boundary element matrices can be decomposed
into a hierarchical system of blocks which can be approximated by the use
of low rank matrices. This approximation can be computed by the use of
the ACA-Algorithm. This is nowadays a well established numerical tool in
both, scientific and commercial software. The first publications of the ACA
are [2] in mathematical literature and [10] in an engineering journal. For the
systems of partial differential equations, the fundamental solution is a matrix
valued function leading to the block structure of the final system matrix. The
number of blocks is there equal to the number of partial differential equa-
tions in the system under consideration and, therefore, is rather small. The
dimension of the blocks, however, is big and proportional to the number of
degrees of freedom. As a rule, its blocks will be approximated independently
by the use of the conventional scalar valued ACA-Algorithm, see [3],[12] for
the system of Lamé equations.
In this paper, we introduce a new version of the ACA which is designed
to approximate block matrices having many rather small blocks with their
block-rows and block-columns directly. The dimension of the small blocks is
now equal to the number of partial differential equations and the number of
the blocks is proportional to the number of boundary elements.
The article is organised as follows. A model problem of three-dimensional
electromagnetic scattering and its numerical solution with a high order boun-
dary element method is given in Section 2. In Section 3, we formulate a new
ACA algorithm, state its properties and discuss the problem of the pivoting
which is important for the practical realisation. Two numerical examples
are presented in the final Section 4. The first example shows the numerical
results obtained for a problem by approximating a smoothed version of the
matrix valued fundamental solution. Here we show a comparison with the
standard technique. The second example is an application of the method to
a electromagnetic scattering problem, where the block structure results from
the element matrices in a discontinuous Galerkin approach.

2 Model problem

A typical example, we have in mind, is a numerical solution of the three-
dimensional electromagnetic scattering problem on a perfectly conducting
body Ω ⊂ R3. The scattering is initiated by an incoming plane wave of the
form

Einc(x, t) = Aei(κ·x−ωt) ,
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where the angular frequency ω and the plane of propagation {κ, A} are
given. The physical quantity of interest is the scattered electric field

E ∈H(curl,Ωc) ,

where Ωc = R3 \ Ω is the exterior domain.

System of partial differential equations

The scattered electric field E is a weak solution of the exterior boundary
value problem [11]{

curl curlE − κ2E = 0 , in Ωc ,

γDE = m , on Γ = ∂Ω ,
(1)

where
m = −γDEinc ∈ H−

1
2 (divΓ,Γ)

denotes the Dirichlet trace of the incoming wave on the boundary Γ. We
assume that Ωc is free-space and, therefore, its material parameters are

ε0 = 8.854 · 10−12 As

Vm
, µ0 = 4π · 10−7 Vs

Am
.

The wave number κ in (1) is then

κ = ω
√
ε0µ0 .

In addition, the solution E is subjected to the radiation condition at infinity∣∣∣curlE(x)× x

|x|
− iω ε0E(x)

∣∣∣ = O
(

1

|x|2

)
for |x| → ∞ .

Fundamental solution

For κ 6= 0, the system of differential equations (1) admits the fundamental
solution

K(x,y) =
1

4π

e−iκ|x−y|

|x− y|
· I +

1

κ2
H
(

1

4π

e−iκ|x−y|

|x− y|

)
∈ C3×3 , (2)

where H denotes the Hesse matrix of the scalar valued fundamental solution
of the Helmholtz equation. Thus, for every x 6= y the fundamental solution
is a complex valued, symmetric 3 by 3 matrix. A smoothed version of the
fundamental solution will be used in Section 4.1 for numerical tests.
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Representation formula

Starting point for the numerical solution of the system (1) is the Stratton-
Chu representation formula for x ∈ Ωc

E(x) = SE(j)(x) = Sκ(j)(x) +
1

κ2
∇Sκ(j)(x) , (3)

where

Sκ(j)(x) =

∫
Γ

e−iκ|x−y|

4π|x− y|
j(y) dσy

and

Sκ(j)(x) =

∫
Γ

e−iκ|x−y|

4π|x− y|
divΓj(y) dσy .

Thus, once the surface current j is found, the scattered electric field E can
be determined everywhere by evaluating the surface potentials in (3).

Variational formulation

The surface current j ∈ H−
1
2 (divΓ,Γ) is the unique solution (see [7, 4] for

details) of the variational formulation

〈γDSE(j)× n,φ〉− 1
2

= 〈m× n,φ〉− 1
2

(4)

for all φ ∈ H− 1
2 (divΓ,Γ). In (4), n is the outward unit normal vector field

on the boundary Γ and the brackets 〈·, ·〉 denote the duality pairing

〈·, ·〉− 1
2

: H−
1
2 (curlΓ,Γ)×H−

1
2 (divΓ,Γ)→ C .

The boundary integral equation that underlies (4) is referred to as the Electric
Field Integral Equation (EFIE).

Galerkin BEM

The BEM determines an approximation jhp of the current j in a finite-
dimensional subspace

Vhp(Γ) ⊂ H−
1
2 (divΓ,Γ) , dimVhp(Γ) = Nglob . (5)

The Galerkin method is used to obtain a discretisation of the integral equa-
tion (4). Find jhp ∈ Vhp(Γ) such that (4) is fulfilled for all φ ∈ Vhp(Γ).
Let

{φ`}
Nglob

`=1 (6)
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be a basis in Vhp(Γ) and let (
j1, . . . , jNglob

)>
denote the coefficients in the Galerkin ansatz for jhp. Then, the Galerkin
discretisation of the integral equation simplifies to a set of Nglob linear equa-
tions

Nglob∑
`=1

(γDSE(φ`)× n,φk)Γ j` = (m× n,φk)Γ , k = 1, . . . , Nglob .

This system of linear equations can be equivalently written with a matrix-
vector notation with Galerkin matrix

A ∈ CNglob×Nglob , (A)k` =
(
γDSE(φ`),φk

)
Γ
∈ C . (7)

A possible construction of the Galerkin basis (6) builds up on a set of Nédélec
elements of the first kind. We shortly recall the construction procedure for
the basis functions of an uniform order p and refer to [8] for a more detailed
description. Let the surface Γ be given by a regular mesh consisting of
curvilinear triangular boundary elements

Γ =
N⋃
i=1

Γi , X i : T̂ → Γi, X i ∈ Pp(T̂ )3 . (8)

Thus, by assumption, the domain of definition of all parameterisations X i

of elements Γi is the reference triangle

T̂ =
{
ξ = (ξ1, ξ2)> ∈ R2 , 0 < ξ1, ξ2 < 1, ξ1 + ξ2 < 1

}
. (9)

The space Pp(T̂ )3 contains all vector valued polynomials of degree p. On the
reference triangle T̂ , a set of Nédélec elements of the first kind [14, 8] will be
defined, i.e.

P1,p(T̂ )⊕P2,p(T̂ ) = span
{
ϕ̂k = (ϕ̂k,1, ϕ̂k,2)> : T̂ → R2

}Nloc

k=1
,

where

P1,p(T̂ ) =
{
ϕ̂ ∈ Pp−1(T̂ ), ϕ̂

∣∣
êi
· τ̂ i ∈ Pp−1(êi), i = 1, 2, 3

}
, p ≥ 1 ,

P2,p(T̂ ) =
{
ϕ̂ ∈ Pp(T̂ ), ϕ̂

∣∣
êi
· τ̂ i ∈ Pp−1(êi), i = 1, 2, 3

}
, p ≥ 1 .
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Here, we use the notation êi for the edges of T̂ and τ̂ i for the corresponding
unit tangent vectors. A set of Nloc corresponding functions on the elements
Γi is defined via Piola transformation, see [5]

ϕik(x) = Ti ϕ̂k
(
X−1

i (x)
)
, Ti =

1

Ji
(−ai,2

...ai,1) ∈ R3×2 , k = 1, . . . , Nloc ,

(10)
where Ji denotes the Jacobian of the parameterisation X i and ai,1, ai,2 are
the natural tangent vector fields on Γi, i.e.,

ai,l(x) =
∂(X i)(ξ)

∂ξl
∈ R3 , l = 1, 2 .

Thus, by Piola transformation, on each element Γi, we are given a set of Nloc

the so-called local functions. A local function is non-polynomial and tangen-
tial on Γ and its support comprises only one element. The local functions al-
low for the definition of the Galerkin basis (6) spanning the finite-dimensional
space Vhp(Γ). Galerkin basis functions are partially continuous across the
edges in the mesh Γ meaning that the scalar-valued function resulting from
a projection with respect to the edge normal vector fields is continuous [6].
As usual, each local function contributes to a unique Galerkin basis func-
tion and, correspondingly, the restriction of the Galerkin basis function on
a specific element in the mesh does either vanish or it coincides with a local
function [8],[15]. Thus, there is an isomorphism ι relating the numbering of
the local functions and the numbering of the globally defined Galerkin basis
functions, namely,

ι : (i, kloc) 7→ kglob such that ϕikloc = φkglob
∣∣
Γi

with kglob = ι(i, kloc) .

(11)
With help of the isomorphism ι the so-called connectivity matrix reads

P ∈ NNNloc×Nglob

0 , (P )i kloc,kglob =

{
±1, kglob = ι(i, kloc) ,

0, kglob 6= ι(i, kloc) .
(12)

The sign in (12) is defined through the orientation of the edge in the element.
Let us assume that the local functions are written in a vector and sorted
element-wise, i.e.,(

ϕ1
1, . . . ,ϕ

1
Nloc

,ϕ2
1, . . . ,ϕ

2
Nloc

, . . . ,ϕN1 , . . . ,ϕ
N
Nloc

)>
,

and define

D =


D11 D12 . . . D1N

D21 D22 . . . D2N

. . . . . . . . . . . .
DN1 DN2 . . . DNN

 ∈ CNNloc×NNloc . (13)
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where the so-called element matrices

Dij ∈ RNloc×Nloc , i, j = 1, . . . , N (14)

describe the interaction of the boundary elements Γi and Γj via their set of
local functions. In the context of boundary element methods, the matrix D
appears when a discontinuous Galerkin discretisation is considered because
local functions are not related to each other and thus, they are globally
discontinuous. However, by the connectivity matrix P the discontinuous
Galerkin matrix D can be easily transformed into the Galerkin matrix A
defined in (7). Namely, it holds

A = P>DP . (15)

3 Matrix valued ACA algorithm

Since the fundamental solutions usually exhibit a singularity for x→ y, the
standard procedure of hierarchical clustering of the initial degrees of freedom
has to be applied at the beginning leading to a hierarchical matrix, [9] with
admissible blocks. In what follows, we consider only an approximation of
Trefftz like matrices. The corresponding generalisation for collocation or
Galerkin matrices is obvious. Let X and Y be two non-empty, well separated
subsets of the Euclidean space Rd, where d = 2, 3 is the dimension of the
physical space. Furthermore, let

K : X × Y → Cn×n (16)

be a given matrix valued function of two d−dimensional variables x ∈ X and
y ∈ Y .

Algorithm 1.

1. Initialisation

R0(x,y) = K(x,y) , S0(x,y) = 0

2. For k = 0, 1, . . . compute

2.1 new pivot position

(xk+1,yk+1) = PivotPosition(Rk)
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2.2 new cross

Ck+1(x,y) = Rk(x,yk+1)
(
Rk(xk+1,yk+1)

)−1

Rk(xk+1,y)

2.3 new residuum

Rk+1(x,y) = Rk(x,y)− Ck+1(x,y)

2.4 new approximation

Sk+1(x,y) = Sk(x,y) + Ck+1(x,y)

After m ≥ 1 steps of the ACA-Algorithm 1, we obtain a sequence of residua
R0, . . . , Rm and a sequence of approximations S0, . . . , Sm with the following
properties.

1. Approximation property for k = 0, . . . ,m

Rk(x,y) + Sk(x,y) = K(x,y) , x ∈ X ,y ∈ Y (17)

2. Uniform interpolation property for k = 1, . . . ,m and ` = 1, . . . , k

Rk(x,y`) = Rk(x`,y) = 0 for all x ∈ X , y ∈ Y (18)

or

Sk(x,y`) = K(x,y`) , x ∈ X , Sk(x`,y) = K(x`,y) , y ∈ Y (19)

3. Harmonicity property for k = 0, . . . , n
Let Lx be a partial differential operator. If

LxK(x,y) = 0 , x ∈ Ω

then
LxRk(x,y) = LxSk(x,y) = 0 , x ∈ Ω

4. Non-recursive representation for k = 1, . . . , n

Sk(x,y) = u>k (x)V −1
k wk(y) , Vk ∈ Rnk×nk , uk(x), wk(y) ∈ Rnk×k(20)

with
uk(x) =

(
K(x,y0)>, . . . , K(x,yk−1)>

)>
,

wk(y) =
(
K(x0,y)>, . . . , K(xk−1,y)>

)>
and

Vk =
(
K(xi,yj)

)k
i,j=1
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All of the above properties, except the last one, can be easily seen by induc-
tion. The first proof of the non-recursive representation is more technical
and can be found in [2].
The most crucial step of Algorithm 1 is 2.1 where the position of the new
pivot element is to be fixed. First of all, we have to guarantee the regularity
of the matrix Rk(xk+1,yk+1). In general, it will be no problem. However, if
Rk is regular at many positions, it is not clear how to choose the best one.
In the scalar case, as a rule, we choose the position where the residuum Rk

takes its maximal value (in modulus). In the matrix valued case, however,
there are many possibilities. Let

Rk(x,y) = Uk(x,y)Σk(x,y)V ∗k (x,y)

be the Singular Value Decomposition (SVD) of the residuum Rk with

Σk(x,y) = diag
(
σ

(k)
1 (x,y), . . . , σ(k)

n (x,y)
)

and
σ

(k)
1 (x,y) ≥ σ

(k)
2 (x,y) ≥ . . . ≥ σ(k)

n (x,y) ≥ 0 .

The most obvious criterion is to maximise the largest singular value

(xk+1,yk+1) = ArgMax σ
(k)
1 (x,y) .

However, this criterion does not guarantee the regularity of the pivot matrix
Rk(x,y) and, therefore, can not be used. The next possibility, which is
attractive because of geometrical considerations, is to choose the matrix of
“maximal volume” as the pivot element, i.e. to maximise the determinant

(xk+1,yk+1) = ArgMax
∣∣∣detRk(x,y)

∣∣∣ =
n∏
i=1

σ
(k)
i (x,y) .

However, the residua Rk converge quite fast to zero and the corresponding
criterion value will be close to the very small value (εACA)n which can not be
used in the practice even for the less critical case with n = 3 and εACA = 10−6.
The next possibility is based on the condition number of the matrix Rk

(xk+1,yk+1) = ArgMinκ2

(
Rk(x,y)

)
=
σ

(k)
1 (x,y)

σ
(k)
n (x,y)

.

However, this criterion is relative, i.e. the criterion value will not converge
to zero during the iterations. Thus, an important indicator for the ACA
convergence will be lost. Furthermore, it is not clear why the identity matrix
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diag(1, 1) is better pivot element than diag(2, 1). In this paper, we decide to
use the following criterion for the choice of the pivot position

(xk+1,yk+1) = ArgMax σ(k)
n (x,y) .

In the pathological situation

σ(k)
n (x,y) = 0 for all x ∈ X , y ∈ Y ,

there is no possibility to choose a regular pivot matrix Rk(xk+1,yk+1). Thus,
the step 2.2 of Algorithm 1 needs a modification. One possibility is to use
the Moore–Penrose pseudoinverse matrix R+

k (xk+1,yk+1) instead of the non-
existing inverse. However, the price for this modification is the loss of the
uniform interpolation property (18) in this step, i.e.

Rk+1(xk+1,y) = Rk(xk+1,y)−Rk(xk+1,yk+1)R+
k (xk+1,yk+1)Rk(xk+1,y)

=
(
I −Rk(xk+1,yk+1)R+

k (xk+1,yk+1)
)
Rk(xk+1,y) 6= 0

and

Rk+1(x,yk+1) = Rk(x,yk+1)−Rk(x,yk+1)R+
k (xk+1,yk+1)Rk(xk+1,yk+1)

= Rk(x,yk+1)
(
I −R+

k (xk+1,yk+1)Rk(xk+1,yk+1)
)
6= 0 .

Note, that the matrices

I −Rk(xk+1,yk+1)R+
k (xk+1,yk+1)

and
I −R+

k (xk+1,yk+1)Rk(xk+1,yk+1)

are the orthogonal projectors onto the non-trivial subspaces

kerR∗k(xk+1,yk+1) and kerRk(xk+1,yk+1) ,

respectively. Nevertheless, one of the main properties of the Moore–Penrose
pseudoinverse matrix A+ of a matrix A, namely,

AA+A = A ,

guarantee the interpolation property at the pivot position

Rk+1(xk+1,yk+1) = 0 ,
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and, what is even more important, the uniform interpolation property at the
previous points is still valid, i.e. for ` = 1, . . . , k

Rk+1(x`,y) = Rk+1(x,y`) = 0 , for all x ∈ X , y ∈ Y .

A direct way to compute the Moore–Penrose pseudoinverse matrix A+ of a
singular matrix A is to use its SVD

A = U ΣV ∗ , σ1 ≥ σ2 ≥ . . . ≥ σk > 0 , σk+1 = . . . = σn = 0 .

Thus, we get
A+ = V Σ+ U∗ ,

where
Σ+ = diag

(
σ−1

1 , . . . , σ−1
k , 0, . . . , 0

)
.

A further remark is that taking the pseudoinverse is not a continuous op-
eration. An arbitrarily small change of a singular value from a zero value
to non-zero leads to an arbitrarily big change in the pseudoinverse matrix.
Thus, numerically it is necessary to work with some tolerance and to declare
all singular values below this tolerance to be zeros.
Note, that in the regular situation, we have to solve a linear system with
the matrix Rk. To this end, we will always use its SVD decomposition,
which is the most stable solution technique for linear systems, since it is
already computed for the choice of the pivot element. Therefore, no LU
decomposition of the matrix Rk or other technique is necessary.
Finally, we remark that for reducible matrices, having the exact zero blocks,
the usual control of the “column sum” and “row sum” is applied to prevent
the situation where only a part of the matrix will be approximated. We skip
the details.

4 Numerical examples

4.1 Fundamental solution

For the numerical tests, we first consider a smoothed version of the funda-
mental solution (2)

Kα(x,y) =
1

4π

e−iκ
√
|x−y|2+α2√

|x− y|2 + α2
· I +

1

κ2
H

(
1

4π

e−iκ
√
|x−y|2+α2√

|x− y|2 + α2

)
∈ C3×3

with α = 0.1, κ = 5.0 and a series of the discretisations of the unit sphere
by N plane triangles as it is shown in Figure 4.1. Let zi be the midpoint
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Figure 1: Discretisations of the unit sphere for N = 512 and N = 2048

Table 1: ACA approximation. Fundamental solution. Standard technique

N M εACA = 10−2 εACA = 10−4 εACA = 10−6

MB % MB % MB %

2048 1026 337.83 58.65% 345.46 59.98% 354.96 61.63%
8192 4098 1952.69 21.19% 2198.87 23.86% 2507.64 27.21%

32768 16386 8210.48 5.57% 10186.20 6.91% 12756.61 8.65%

of the boundary element Γi , i = 1, . . . , N . The first possibility is to number
the elements in such a way that the resulting matrix is of the form

D =

D11 D12 D13

D21 D22 D23

D31 D32 D33

 ,

where the big blocks

Dij ∈ CN×N , i, j = 1, 2, 3

Table 2: ACA approximation. Fundamental solution. Matrix valued ACA

N M εACA = 10−2 εACA = 10−4 εACA = 10−6

MB % MB % MB %

2048 1026 278.32 48.32% 280.34 48.67% 282.82 49.10%
8192 4098 1405.44 15.25% 1569.48 17.03% 1789.75 19.42%

32768 16386 6030.95 4.09% 7299.07 4.95% 9039.05 6.13%
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have the entries(
Dij

)
k`

=
(
Kα(zk, z`)

)
ij
, i, j = 1, 2, 3 , k, ` = 1, . . . , N .

The matrix is complex-symmetric. This property can be used, and only
the six blocks D11, D12, D13, D22, D23 and D33 will be approximated by the
ACA algorithm. So far, this is the standard procedure for systems of partial
differential equations, see [3],[12] for the system of Lamé equations and [13]
for the system of Maxwell equations with high order boundary elements.
The second possibility is to number the DOF’s in such a way that the matrix
exhibits a block structure

D =


D11 D12 . . . D1N

D21 D22 . . . D2N

. . . . . . . . . . . .
DN1 DN2 . . . DNN

 ,

where the small matrices

Dij ∈ C3×3 , i, j = 1, . . . , N

have the entries(
Dij

)
k`

=
(
Kα(zi, zj)

)
k`
, i, j = 1, . . . , N , k, ` = 1, 2, 3 .

Then the matrix valued ACA algorithm presented in Section 3 can be applied.
The results of our tests are presented in Tables 1 and 2. It is clearly seen
that the matrix valued ACA-Algorithm works better for all dimensions of the
matrix. An explanation for this fact can be the size of the matrix. It is well
known that the ACA suffers from the dimension. The standard technique,
however, divides the whole big matrix in a set of smaller matrices which are
approximated independently.

4.2 Galerkin BEM

In this section, the matrix valued ACA algorithm from Section 3 is applied
to solve electromagnetic scattering problems. The electromagnetic scattering
has been considered in Section 2 and a high order BEM has been introduced.
Moreover, special attention has been paid to explain that the conventional
Galerkin matrix A allows for a reformulation in terms of the discontinuous
Galerkin matrix D, (13). A closer look at this matrix makes clear that D
exhibits a structure which allows the application of the matrix valued ACA
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Table 3: Galerkin BEM with p = 1. Matrix valued ACA.

N Nloc Nglob εACA MB % εGMRES Iter Error

2048 3 3072 10−4 280.00 48.55% 10−6 254 1.51 · 10−1

8192 3 12288 10−5 1563.00 16.96% 10−8 509 6.38 · 10−2

32768 3 49152 10−6 7631.00 5.18% 10−10 1008 3.13 · 10−2

Table 4: Galerkin BEM with p = 2. Matrix valued ACA.

N Nloc Nglob εACA MB % εGMRES Iter Error

2048 8 10240 10−4 1848.00 45.12% 10−6 611 1.08·10−2

8192 8 40960 10−5 9584.00 14.62% 10−8 1262 2.77·10−3

32768 8 163840 10−6 44028.00 4.20% 10−10 2295 7.00·10−4

driven by the small element matrices (14). Thus, the idea is to approximate
the discontinuous Galerkin matrix D by matrix valued ACA and enforce the
connectivity of the local functions within the iterative solver by (15). We
consider a plane wave with complex amplitude

Einc(x) = e−iκx3e1, κ = 5.0 .

This plane wave impinges on a perfectly conducting scatterer of spherical
shape, see Figure 1. The problem has the analytic solution and explicit
formulae for the surface current j are found in [1], for instance. Thus the
error of the numerical solution can be carefully computed.
Numerical results for several Galerkin BEM simulations with varying order of
approximations, p = 1, 2, 3, are shown in Tables 3–5. Note that the compres-
sion result refers to the total dimension of the discontinuous Galerkin matrix
which is NNloc. The complex symmetry of the matrix D is also exploited for
the approximation. In order to keep the convergence of the high order BEM,
we increase the accuracy of the ACA approximation with the dimension of
the matrix. Thus, the linear, quadratic and even cubic convergence can be
clearly seen in the last columns of Tables 3–5.
Finally, we remark that all computations with small Nloc×Nloc matrices are

Table 5: Galerkin BEM with p = 3. Matrix valued ACA.

N Nloc Nglob εACA MB % εGMRES Iter Error

2048 24 21504 10−6 6187.00 42.97% 10−8 3767 5.20 · 10−4

8192 24 86016 10−8 35300.00 15.32% 10−10 7956 6.58 · 10−5
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done by the use of the very effective third level BLAS and LAPACK libraries.
The computational times for all the SVD decompositions and for the solution
of the small linear systems is not really measurable and the change from
Nloc = 3 in Table 2 to Nloc = 24 in Table 5 does not exhibit a real cubic
behaviour. This can be seen in LAPACK starting from the dimension about
10 000. The total computational time is by the matrix valued version of
the ACA is, as by the scalar version too, more or less proportional to the
memory. Thus, in the first example, the new version is about 20% faster
than the standard technique.

5 Conclusions

A new version of the ACA algorithm for dense matrices which have an addi-
tional block structure is introduced and tested. The algorithm fits perfectly
to the high order discontinuous Galerkin philosophy of discretisation. It
works well for different orders p of the boundary elements and guarantees
the corresponding high rate of convergence for the exterior electromagnetic
scattering problem. Furthermore, in comparison with the standard technique
for block matrices, i.e. approximation of big blocks independently, the new
scheme appears to consume less memory.
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