Universität des Saarlandes

Fachrichtung 6.1 – Mathematik

Preprint Nr. 368

The Galois image of twisted Carlitz modules

Ernst-Ulrich Gekeler

Saarbrücken 2015

The Galois image of twisted Carlitz modules

Ernst-Ulrich Gekeler

Saarland University Department of Mathematics Campus E2 4 66123 Saarbrücken Germany gekeler@math.uni-sb.de

Edited by FR 6.1 – Mathematik Universität des Saarlandes Postfach 15 11 50 66041 Saarbrücken Germany

Fax: + 49 681 302 4443 e-Mail: preprint@math.uni-sb.de WWW: http://www.math.uni-sb.de/

THE GALOIS IMAGE OF TWISTED CARLITZ MODULES

ERNST-ULRICH GEKELER

ABSTRACT. We determine the defect def (Δ, N) , i.e., the deviation from surjectivity of the attached Galois representation, and the degree $f(\Delta, N)$ of the constant field extension in the N-th torsion field of the twisted Carlitz module with discriminant Δ , where $\Delta, N \in A = \mathbb{F}_q[T]$.

MSC: primary 11G09, secondary 11R32, 11R60

Keywords: Drinfeld module, twisted Carlitz module, Galois representation

0. Introduction

Let $A = \mathbb{F}_q[T]$ be the polynomial ring over a finite field \mathbb{F}_q with field of fractions $K = \mathbb{F}_q(T)$. A Drinfeld A-module ϕ of rank $r \in \mathbb{N}$ over a finite field extension F of K provides a Galois representation $\pi = \pi(\phi)$ of the absolute Galois group $\operatorname{Gal}(F) = \operatorname{Gal}(F^{\operatorname{sep}}|F)$ in the Tate module $T(\phi)$, a free \hat{A} -module of rank r, where

(0.1)
$$\hat{A} = \lim_{\stackrel{\longleftarrow}{N \in A}} A/N \xrightarrow{\cong} \prod_{P \text{ prime of } A} A_P$$

is the profinite completion of A. Choosing a basis of $T(\phi)$, we have

$$\pi(\phi)$$
: Gal $(F) \longrightarrow$ GL (r, \hat{A}) .

As an immediate consequence of Drinfeld's construction [1], π has open image (i.e., im $\pi(\phi)$ has finite index in the compact group $\operatorname{GL}(r, \hat{A})$) if r = 1. This has been generalized to $r \geq 2$ by Pink and Rütsche [5], under the obviously necessary assumption that ϕ has no complex multiplications, that is, if the endomorphism ring $\operatorname{End}(\phi)$ is reduced to A. This is similar to the Tate conjecture for abelian varieties proved by Faltings [2]. While the above results are effective, the bounds for the index of im $\pi(\phi)$ derived from them are rather weak.

In the present paper we give

- an explicit description of $\operatorname{im} \pi(\phi)$,
- the degrees of the associated constant field extensions

in the case where r = 1 and F = K, i.e., when ϕ is a twist $\phi = \rho^{(\Delta)}$ of the Carlitz module ρ over K (see below for precise definitions). The

main results are Theorem 3.13 and Theorem 4.11. Crudely simplified versions are as follows.

0.2 Corollary. The defect of $\rho^{(\Delta)}$ over K, i.e., the index of $\operatorname{im} \pi(\rho^{(\Delta)})$ in $\operatorname{GL}(1, \hat{A}) = \hat{A}^*$, is always a divisor of q - 1.

0.3 Corollary. Let $K(tor(\rho^{(\Delta)}))$ be the field extension obtained from K by adjoining all the torsion points of $\rho^{(\Delta)}$. Then the degree of the algebraic closure of \mathbb{F}_q in $K(tor(\rho^{(\Delta)}))$ is a divisor of q-1.

(Both the quantities occurring in (0.2) and (0.3) are specified in Theorem 3.13 and 4.11, respectively.)

Notation.

 $A = \mathbb{F}_q[T]$ resp. $K = \mathbb{F}_q(T)$ denotes the ring of polynomials resp. the field of rational functions in the indeterminate T over the finite field \mathbb{F}_q with q elements;

 P, Q, \dots denote places of A, i.e., monic irreducible polynomials in A; A_P resp. K_P is the completion of A resp. K at P;

 $\mathbb{F}_P = A/P =$ field extension of degree deg(P) of \mathbb{F}_q ;

 M, N, \dots elements of A, rad(N) = radical of N = maximal squarefree monic divisor of <math>N;

 $\mu_n = \text{group of } n\text{-th roots of unity in the algebraic closure of } \mathbb{F}_q,$ $\mu = \mu_{q-1} = \mathbb{F}_q^*;$

|X| =cardinality of the finite set X;

A/N = A/(N) = residue class ring of A modulo (N), with multiplicative group $(A/N)^*$.

1. The Carlitz module and its twists.

We assume the reader to be familiar with the basic theory of Drinfeld modules as presented e.g. in [3], [6] or [8].

The *Carlitz module* is the Drinfeld A-module ρ over K defined by the operator polynomial

(1.1)
$$\rho_T(X) = TX + X^q \in K[X].$$

Given any $0 \neq N \in A$, we let $\rho_N(X) \in K[X]$ be the *N*-th division polynomial of ρ (which has degree $q^{\deg(N)}$ in *X*) with kernel $_N\rho$, a free A/N-module of rank one. For non-constant *N*, we let $K(N) = K(_N\rho)$ be the splitting field of $\rho_N(X)$. The field extension K(N)|K is strongly analogous with a cyclotomic extension of \mathbb{Q} , viz:

(1.2) (i) K(N)|K is abelian with Galois group $\operatorname{Gal}(K(N)|K) \xrightarrow{\cong} (A/N)^*$; if $x \in {}_N \rho$ and $\sigma_{\overline{M}} \in \operatorname{Gal}(K(N)|K)$ corresponds to the class of $M \in A$ coprime with N then $\sigma_{\overline{M}}(x) = \rho_M(x)$;

(ii) if $N = P^k$ is a power of the prime P then P is completely ramified in K(N) and any finite prime Q different from P is unramified in K(N);

(iii) if $N = P_1^{k_1} \cdots P_s^{k_s}$ is the prime factorization of N, $N_i = P_i^{k_i}$, then the $K(N_i)$ are linearly disjoint over K;

(iv) the infinite place of K is tamely ramified in K(N) with decomposition group = ramification group $\mathbb{F}_q^* \hookrightarrow (A/N)^*$;

(v) if the place P of A is coprime with N (hence P is unramified in K(N)), then the residue class \overline{P} of P in $(A/N)^*$ is the Frobenius element of K(N)|K at P;

(vi) \mathbb{F}_q is algebraically closed in K(N).

All of this has been shown in [4], see also [3] and [8].

Now let ϕ be another rank-one Drinfeld A-module over K, given by

(1.3)
$$\phi_T(X) = TX + \Delta X^q = \rho_T^{(\Delta)}(X) \in K[X], \ 0 \neq \Delta \in K,$$

which we regard as the twist $\rho^{(\Delta)}$ of ρ by Δ . Let $\delta \in K^{\text{sep}}$ be a fixed (q-1)-th root of Δ . The Drinfeld modules ρ and $\rho^{(\Delta)}$ become isomorphic over the field $K(\delta)$. As for the Carlitz module ρ , we define

(1.4)
$${}_N \rho^{(\Delta)} = \text{kernel of } \rho_N^{(\Delta)},$$

 $K^{(\Delta)}(N) = K(N\rho^{(\Delta)}) =$ the "N-th division field of $\rho^{(\Delta)}$ ". Similar to (1.2)(i), $K^{(\Delta)}(N)$ is abelian over K, but with Galois group a possibly proper subgroup of $(A/N)^*$. The main purpose of this work is to describe the *defect*

(1.5)
$$\operatorname{def}(\Delta, N) := \left[(A/N)^* : \operatorname{Gal}(K^{(\Delta)}(N)|K) \right]$$

and to find out how the other statements of (1.2) must be modified for $\rho^{(\Delta)}$. As

$$\rho_T(\delta X) = \delta \rho_T^{(\Delta)}(X)$$

(and similarly $\rho_N(\delta X) = \delta \rho_N^{(\Delta)}(X)$ for arbitrary $N \in A$), multiplication with δ provides an isomorphism $\delta : \rho^{(\Delta)} \xrightarrow{\cong} \rho$, or $\delta^{-1} : \rho \xrightarrow{\cong} \rho^{(\Delta)}$. In particular,

(1.6)
$$\begin{array}{cccc} \delta^{-1} : & {}_{N}\rho & \xrightarrow{\cong} & {}_{N}\rho^{(\Delta)} \\ & x & \longmapsto & \delta^{-1}x \end{array}$$

as A-modules. Let $\operatorname{Gal}(K)$ be the absolute Galois group of K and π : $\operatorname{Gal}(K) \longrightarrow \hat{A}^*$, $\pi^{(\Delta)}$: $\operatorname{Gal}(K) \longrightarrow \hat{A}^*$ be the Galois representations attached to ρ and $\rho^{(\Delta)}$, respectively. That is, for each N, π composed with the natural projective $\hat{A}^* \longrightarrow (A/N)^*$ is the map from $\operatorname{Gal}(K)$ to $(A/N)^*$ described in (1.2)(i), and similarly for $\pi^{(\Delta)}$. Let further

(1.7)
$$\chi^{(\Delta)} : \operatorname{Gal}(K) \longrightarrow \mu = \mu_{q-1} = \mathbb{F}_q^*$$

be the character $\sigma \mapsto \sigma(\delta)/\delta$, which is independent of the choice of the (q-1)-th root δ .

1.8 Lemma. With the above notation, $\pi^{(\Delta)} = \chi^{(\Delta)^{-1}} \otimes \pi$.

Proof. This follows from combining (1.6) and (1.7).

Using class field theory, we regard $\chi^{(\Delta)}$ as a character of the idèle class group of K, or of a generalized ideal class group. In particular, its value $\chi^{(\Delta)}(P)$ on a prime P unramified in $K(\delta)$ (i.e., P coprime with Δ if Δ is free of (q-1)-th powers) is defined.

1.9 Lemma. Let P be a prime of A coprime with Δ . Then $\chi^{(\Delta)}|(P) = (\frac{\Delta}{P})_{q-1}$, where $(\overline{P})_{q-1}$ is the (q-1)-th power residue symbol at P, cf. [6] p. 24.

Proof. Let K_P be the completion of K at P and $F = F_P$ the Frobenius element at P, acting as $x \mapsto x^{q^d}$ $(d := \deg(P))$ on the residue class field $\mathbb{F}_P = A/P$. We have

$$K_P(\delta) = K_P(\sqrt[q-1]{\Delta}) = K_P(\sqrt[q-1]{\Delta}) = K_P(\overline{\delta}),$$

where $\overline{\Delta}$ is the reduction (mod P) and $\overline{\delta}^{q-1} = \overline{\Delta}$. Therefore

$$\chi^{(\Delta)}(P) = F(\overline{\delta})/\overline{\delta} = \overline{\delta}^{(q^d-1)} = \overline{\Delta}^{(q^d-1)/(q-1)} = N_{\mathbb{F}_q}^{\mathbb{F}_P}(\overline{\Delta}) = (\frac{\Delta}{P})_{q-1}$$

by definition of the power residue symbol.

Note that $(\frac{\Delta}{P})_{q-1}$ is related with $(\frac{P}{\Delta})_{q-1}$ through the (q-1)-th reciprocity law ([6], Theorem 3.5).

1.10 Corollary. Let P be a prime of A coprime with N and Δ . Then the Frobenius element of P in $\operatorname{Gal}(K^{(\Delta)}(N)|K) \hookrightarrow (A/N)^*$ is $(\frac{\Delta}{P})_{q-1}^{-1}$ times the residue class \overline{P} of P modulo N.

Proof. (1.2)(v) + (1.8) + (1.9).

2. The torsion fields.

We fix the data Δ and N. All the groups H, H_0, R, S that appear below depend on these choices.

As follows from (1.6), the field $K^{(\Delta)}(N)$ is contained in the compositum $K(N)(\delta)$ of K(N) and the Kummer extension $K(\delta)$ of K. Now

(2.1)
$$H := \operatorname{Gal}(K(\delta)|K) \hookrightarrow \mu = \mathbb{F}_q^*$$

is the image of $\chi^{(\Delta)}$, and equals μ if and only if Δ is not a *d*-th power for any divisor d > 1 of q - 1. By Galois theory,

(2.2)
$$G := \operatorname{Gal}(K(N)(\delta)|K)$$

is a well-defined subgroup of $\operatorname{Gal}(K(N)|K) \times \operatorname{Gal}(K(\delta)|K) = (A/N)^* \times H$. For an element (\overline{M}, η) of G (where \overline{M} is the residue class of M

modulo N) we have:

$$(\overline{M}, \eta) \text{ acts trivially on } K^{(\Delta)}(N) \Leftrightarrow \forall y \in {}_N \rho^{(\Delta)} : (\overline{M}, \eta)(y) = y \Leftrightarrow \forall x \in {}_N \rho : (\overline{M}, \eta)(\frac{x}{\delta}) = (\frac{x}{\delta}) \Leftrightarrow \forall x \in {}_N \rho : \sigma_{\overline{M}}(x)(\eta \cdot \delta)^{-1} = x\delta^{-1} \Leftrightarrow \forall x \in {}_N \rho : \rho_M(x) = \eta \cdot x,$$

since by (1.7) and (2.1), $\eta \in H$ acts on δ through multiplication by η . This means that \overline{M} as an element of $(A/N)^*$ agrees with $\eta \in H \hookrightarrow \mathbb{F}_q^* \hookrightarrow (A/N)^*$. We thus get the following result.

2.3 Proposition. Let $R \subset G$ be the Galois group of $K(N)(\delta)$ over $K^{(\Delta)}(N)$. Then $R = \{(\overline{M}, \eta) \in G \mid \overline{M} = \eta\}$, and $\operatorname{Gal}(K^{(\Delta)}(N)|K)$ equals the image in $(A/N)^*$ of the homomorphism

$$\begin{array}{cccc} G & \longrightarrow & (A/N)^* \\ (\overline{M}, \eta) & \longmapsto & \eta^{-1}\overline{M} \end{array} . \qquad \qquad \Box$$

We don't know yet the group G, but it consists of certain elements of shape (\overline{M}, η) and fits into the diagram with exact row and column

(2.4)

Thus we can read off:

2.5 Corollary. def $(\Delta, N) := [(A/N)^* : \operatorname{Gal}(K^{(\Delta)}(N)|K)]$ is a divisor of q-1.

2.6 Corollary. def $(\Delta, N) = 1$ if K(N) and $K(\delta)$ are linearly disjoint. This happens in particular if Δ is a constant.

Proof. If K(N) and $K(\delta)$ are linearly disjoint then $G = \text{Gal}(K(N)|K) \times \text{Gal}(K(\delta)|K)$, so by (2.4) the groups Gal(K(N)|K) and $\text{Gal}(K^{(\Delta)}(N)|K)$ have the same order. The second assertion comes from (1.2)(vi). \Box

(2.7) We define the groups $H_0 := \operatorname{Gal}(K(\delta)|K(\delta) \cap K(N)) \subset H$ and $S := \operatorname{Gal}(K(\delta) \cap K(N)|K)$. If h := |H| and $h_0 := |H_0|$, then $H = \mu_h$, $H_0 = \mu_{h_0}, S = \mu_{h/h_0}$, and the restriction map $\psi : H \longrightarrow S$ is the raising to the h_0 -th power in H. Let

$$\varphi$$
: Gal $(K(N)|K) = (A/N)^* \longrightarrow S$

be the other restriction map, induced from $K(\delta) \cap K(N) \hookrightarrow K(N)$. Then

$$G = \{ (M, \eta) \in (A/N)^* \times H \mid \varphi(M) = \psi(\eta) \},\$$

and has order $|G| = h_0 |(A/N)^*|$. Via $H \hookrightarrow \mu = \mathbb{F}_q^* \hookrightarrow (A/N)^*$ we consider H as a subgroup of $(A/N)^*$. Then

$$|R| = |\{(\overline{M}, \eta) \in G \mid \overline{M} = \eta\} = |\{\eta \in H \mid \varphi(\eta) = \psi(\eta)\}|$$
$$= |\ker(\psi\varphi^{-1}|_H)|.$$

As $H_0 \subset \ker(\psi \varphi^{-1}|_H)$, h_0 divides |R|, which in turn divides h. Comparison with (2.4) finally yields

(2.8)
$$def(\delta, N) = [(A/N)^* : Gal(K^{(\Delta)}(N)|K)] = \frac{|R|}{h_0},$$

which in any case is a divisor of $|S| = h/h_0$.

(2.9) As the kernel of $(A/N)^* \longrightarrow (A/\operatorname{rad}(N))^*$ is a *p*-group $(p := \operatorname{char}(\mathbb{F}_q))$ and $(A/\operatorname{rad}(N))^*$ is *p*-free, the field $K(\delta) \cap K(N)$ is already contained in $K(\operatorname{rad}(N))$, and the map φ of (2.7) factors over $(A/\operatorname{rad}(N))^*$. This shows that the canonical map

$$(A/N)^*/\operatorname{Gal}(K^{(\Delta)}(N)|K) \longrightarrow (A/\operatorname{rad}(N))^*/\operatorname{Gal}(K^{(\Delta)}(\operatorname{rad}(N))|K)$$

is in fact an isomorphism. Thus:

2.10 Proposition. The defects $def(\Delta, N)$ and $def(\Delta, rad(N))$ agree.

3. The defect of $\rho^{(\Delta)}$.

As the isomorphism type of $\rho^{(\Delta)}$ depends only on the class of $\Delta \in K^*$ in $K^*/(K^*)^{q-1}$, we assume from now on that Δ is integral, i.e., $\Delta \in A \setminus \{0\}$, and not divisible by (q-1)-th powers. Let $c \in \mathbb{F}_q^*$ be a fixed primitive (q-1)-th root of unity. Then we may write

$$(3.1) \qquad \qquad \Delta = c^{k_0} P_1^{k_1} \cdots P_s^{k_s}$$

with different monic primes P_i of A of degrees $d_i = \deg P_i$, and $0 \le k_i < q-1$ for $0 \le i \le s$, with $0 < k_i$ if i > 0. We arrange them in such a way that P_1, \ldots, P_r divide N $(r \le s)$ and P_{r+1}, \ldots, P_s are coprime with N. Note that s = 0, i.e., Δ constant, is allowed.

We next must identify the Kummer extensions $K(\delta) = K(\sqrt[q-1]{\Delta})$ in the framework of Carlitz torsion fields. Let for the moment P be a fixed monic prime in A, of degree d, and $\tilde{P} = (-1)^d P$.

3.2 Lemma. The unique subfield in K(P) of degree q-1 over K is the Kummer extension $K(\sqrt[q-1]{\tilde{P}})$.

Proof. Dinesh Thakur in [7] constructed d Gauß sums g_j $(1 \le j \le d)$ such that $(\prod_{1\le j\le d} g_j)^{q-1} = (-1)^d P = \tilde{P}$. The different g_j lie in the d-th constant field extension $K(P)\mathbb{F}_P$ of K(P) by $\mathbb{F}_P = A/P \cong \mathbb{F}_{q^d}$, while their product

(3.2.1)
$$\mathbf{G}_P := \prod_{1 \le j \le d} g_j$$

lies in K(P). For ramification reasons, $[K(\mathbf{G}_P) : K] = q - 1$, which shows the assertion.

For later use, we recall the transformation formula, where $N_{\mathbb{F}_q}^{\mathbb{F}_P} : \mathbb{F}_P \longrightarrow \mathbb{F}_q$ denotes the norm map:

(3.3)
$$\sigma_{\overline{M}}(\mathbf{G}_P) = N_{\mathbb{F}_q}^{\mathbb{F}_P}(\overline{M}) \cdot \mathbf{G}_P$$

for $\overline{M} \in \mathbb{F}_P^* = (A/P)^* = \text{Gal}(K(P)|K)$, which follows from [7], Theorem I (or may be checked directly).

In view of the above, we define for $\mathbf{k} = (k_1, \ldots, k_s) \in \mathbb{N}^s$

(3.4)
$$\mathbf{G}_{\mathbf{k}} := \prod_{1 \le i \le s} \mathbf{G}_{P_i}^{k_i}$$

As immediate consequences of (3.2) and (3.3), the following hold:

(3.5)(i)
$$\mathbf{G}_{\mathbf{k}} \in K(\operatorname{rad}(\Delta))$$
 (if Δ is as in (3.1));
(ii) $\mathbf{G}_{\mathbf{k}}^{q-1} = (-1)^d \prod_{1 \le i \le s} P_i^{k_i}$, where $d := \sum_{1 \le i \le d} k_i d_i$ is the degree $\operatorname{deg}(\Delta)$ of Δ :

(iii) $\sigma_{\overline{M}}(\mathbf{G}_{\mathbf{k}}) = \lambda_{\mathbf{k}}(\overline{M}) \cdot \mathbf{G}_{\mathbf{k}}$, where $\sigma_{\overline{M}} \in \operatorname{Gal}(K(\Delta)|K) = (A/\Delta)^*$ is the class of $M \in A$, Δ non-constant and coprime with M. Here $\lambda_{\mathbf{k}}$ is the μ -valued character

(3.6)
$$\lambda_{\mathbf{k}} : (A/\Delta)^* \longrightarrow \mu$$
$$\prod_{1 \le i \le s} \nu_i^{k_i}(\overline{M})$$

with the canonical maps

Note that $\lambda_{\mathbf{k}}$ factors over $(A/\mathrm{rad}(\Delta))^*$.

Thus we can realize the field $K(\delta) = K(\sqrt[q-1]{\Delta})$ as a Kummer subextension of $K(\Delta)$ or even of $K(\operatorname{rad}(\Delta))$, provided that $c^{k_0} = (-1)^d$. It remains to generalize this to arbitrary scalars c^{k_0} . Let γ be a (q-1)th root of c (so it is a primitive $(q-1)^2$ -th root of unity). Then $\delta^* := \gamma^{k_0} \mathbf{G}_{\mathbf{k}}$ satisfies $(\delta^*)^{q-1} = (-1)^d \Delta$. Therefore we put

(3.7)
$$k_0^* = \begin{cases} k_0, \text{ if } q \text{ or } d = \deg \Delta \text{ is even,} \\ \text{the unique } k \equiv k_0 + (q-1)/2 \pmod{q-1} \text{ with} \\ 0 \le k < q-1, \text{ otherwise.} \end{cases}$$

Then $\delta := \gamma^{k_0^*} \mathbf{G}_{\mathbf{k}}$ is a (q-1)-th root of Δ .

3.8 Lemma. (i) The degree
$$h = [K(\delta) : K]$$
 equals
 $(q-1)/\gcd(q-1, k_0, k_1, \dots, k_s) = (q-1)/\gcd(q-1, k_0^*, k_1, \dots, k_s).$

(ii) The degree $h_0 = [(K(\delta) \cap K(N) : K]$ is given by

$$h_0 = (q-1)/\gcd(q-1, k_0^*, k_{r+1}, \dots, k_s).$$

Proof. (i) The first formula is obvious from (3.1) and Lemma 3.2. The second one (i.e., that k_0 may be replaced by k_0^*) can be seen as follows: Suppose that $k_0^* \equiv k_0 + (q-1)/2 \pmod{q-1}$. Then at least one of k_1, k_2, \ldots, k_s is odd and q-1 is even. Let $g := \gcd(k_1, \ldots, k_s)$, which is odd, so 2 is invertible modulo g. Hence the ideal (q-1) generated by q-1 in $\mathbb{Z}/(g)$ equals the ideal generated by (q-1)/2, which gives $\gcd((q-1), k_0, k_1, \ldots, k_s) = \gcd(q-1, k_0, g) = \gcd((q-1)/2, k_0, g) = \gcd((q-1/2, k_0^*, g) = \gcd(q-1, k_0^*, k_1, \ldots, k_s)$.

(ii) The field $K(\delta) \cap K(N)$ is the Kummer extension of K generated by δ^{h_0} . Some power δ^n lies in K(N) if and only if the following conditions are satisfied:

(3.8.1)
$$k_i \cdot n \equiv 0 \pmod{q-1}, \ r < i \le s,$$
$$k_0^* \cdot n \equiv 0 \pmod{q-1}.$$

Therefore,

$$h_0 = \min\{n \in \mathbb{N} \mid (3.8.1) \text{ holds for } n\}$$

= $(q-1)/\gcd(q-1,k_0^*,k_{r+1},\ldots,k_s).$

With the notation of (2.7) we have the canonical restriction homomorphisms

$$\varphi: \operatorname{Gal}(K(N)|K) = (A/N)^* \longrightarrow S = \operatorname{Gal}(K(\delta) \cap K(N)|K) = \mu_{h/h_0}$$

$$\psi: H = \operatorname{Gal}(K(\delta)|K) = \mu_h \longrightarrow S.$$

As φ describes the action of $(A/N)^*$ on δ^{h_0} , if is given by

(3.9)
$$\varphi = \lambda_{\mathbf{k}}^{h_0}$$

where $\lambda_{\mathbf{k}}$ is defined in (3.6); raising to the h_0 -th power, the components $\nu_i^{k_i}$ with $r < i \leq s$ are annihilated, as is the contribution of the scalar $\gamma^{k_0^*h_0}$, which lies in \mathbb{F}_q^* . In more detail, φ is the map

$$(A/N)^* \longrightarrow (A/P_1 \cdots P_r)^* \longrightarrow S = \mu_{h/h_0}$$
$$x \longmapsto \lambda_{\mathbf{k}}^{h_0}(x) = [\prod_{1 \le i \le r} \nu_i^{k_i}(x)]^{h_0}.$$

What is the restriction of φ to $\mathbb{F}_q^* \hookrightarrow (A/N)^*$? First, the map

$$\nu_i: (A/N)^* \longrightarrow (A/P_i)^* \xrightarrow{N_{\mathbb{F}_q}^{\mathbb{F}_{P_i}}} \mathbb{F}_q^*$$

acts on $x \in \mathbb{F}_q^*$ as $\nu_i(x) = x^{1+q+\dots+q^{d_i-1}} = x^{d_i}$. Therefore,

$$\varphi(x) = x^{d'h_0} = x^{dh_0}$$

with $d' = \sum_{1 \le i \le r} k_i d_i$, since $d'h_0 \equiv (\sum_{1 \le i \le s} k_i d_i)h_0 = dh_0$ modulo q - 1, by (3.8.1). As $\psi(x) = x^{h_0}$ for $x \in H$, we find (see (2.7)):

(3.10)
$$|R| = |\ker(\psi\varphi^{-1}|_H)| = |\{x \in \mu_h | x^{h_0 - dh_0} = 1\}| = \gcd((d - 1)h_0, h) = \gcd((d' - 1)h_0, h)$$

Plugging into (2.8) and simplifying gives (3.11)

$$def(\Delta, N) = |R|/h_0 = gcd(d' - 1, h/h_0)$$

= $gcd(d' - 1, \frac{gcd(q - 1, k_0^*, k_{r+1}, \dots, k_s)}{gcd(q - 1, k_0^*, k_1, \dots, k_s)}) = gcd(d' - 1, q - 1, k_0^*, k_1, \dots, k_s)$
= $gcd(d - 1, q - 1, k_0^*, k_{r+1}, \dots, k_s),$

where the equality next to the last follows from Lemma 3.12 with $b := gcd(q-1, k_0^*, k_{r+1}, \ldots, k_s), L := \{k_1, \ldots, k_r\}$. We need the following elementary result.

3.12 Lemma. Let $b \in \mathbb{N}$ and $L \subset \mathbb{N}$ be a finite subset, $0 < d = \sum_{\ell \in L} d_{\ell} \cdot \ell$ with non-negative integers d_{ℓ} . Then

$$\gcd(d-1,b) = \gcd(d-1,b/\gcd(b,L)).$$

Proof. Obviously the right hand side divides the left hand side. Write $g = \text{gcd}(b, L), b = g \cdot b^*, d = g \cdot d^*$. The stated equality is

$$gcd(gd^* - 1, gb^*) = gcd(gd^* - 1, b^*).$$

Each divisor t of the LHS must be coprime with g, which shows that it divides the RHS.

We collect what has been shown.

3.13 Theorem. Let $\phi = \rho^{(\Delta)}$ be the twisted Carlitz module, where $\Delta = c^{k_0} P_1^{k_1} \cdots P_s^{k_s}$ with a primitive (q-1)-th root of unity c and $s \ge 0$ different monic primes P_i of degrees d_i , $0 \le k_0 < q-1$, $0 < k_i < q-1$ for $1 \le i \le s$ and $d = \sum_{1 \le i \le s} k_i d_i = \deg \Delta$.

Let further N be a non-constant element of A and suppose that P_i divides N for $1 \leq i \leq r$ and P_i is coprime with N for $r < i \leq s$. The image of Gal(K) in Aut_A($_N \rho^{(\Delta)}$) = $(A/N)^*$ (that is, Gal($K^{(\Delta)}(N)|K$)) has index (see (3.7) for k_0^*)

$$def(\Delta, N) = gcd(d - 1, q - 1, k_0^*, k_{r+1}, \dots, k_s).$$

Suppose that M divides N. From the commutative diagram of natural maps

$$\operatorname{Gal}(K^{(\Delta)}(N)|K) \hookrightarrow (A/N)^*$$

$$\downarrow \qquad \qquad \downarrow$$

$$\operatorname{Gal}(K^{(\Delta)}(M)|K) \hookrightarrow (A/M)^*$$

we see that the quotient by $\operatorname{Gal}(K^{(\Delta)}(N)|K)$ of $(A/N)^*$ is stable as soon as $\operatorname{rad}(N)$ is divisible by $\operatorname{rad}(\Delta)$. This implies (notations and assumptions as in (3.13)):

3.14 Corollary. The image of Gal(K) under the representation $\pi^{(\Delta)}$: Gal(K) \longrightarrow (Â)* provided by the twisted Carlitz module $\rho^{(\Delta)}$ is the inverse image in (Â)* of a subgroup of $(A/\text{rad}(\Delta))^*$ of index

$$\operatorname{def}(\rho^{(\Delta)}) = \operatorname{def}(\Delta) = \operatorname{gcd}(d-1, q-1, k_0^*).$$

Obviously, this is a sharpening of Corollary 0.2 in the Introduction.

As $\operatorname{Gal}(K^{(\Delta)}(N)|K)$ is now known by (2.3) to (2.8) and Theorem 3.13, it is straightforward (though laborious if N and Δ have common divisors) to determine the ramification of $K^{(\Delta)}(N)$ over K. We restrict to stating, without details, the result in the most simple case.

3.15 Example. Suppose that N and Δ are coprime. From considering the ramification we find that K(N) and $K(\delta)$ are linearly disjoint over K, so by Corollary 2.6, def $(\Delta, N) = 1$, i.e.,

$$\operatorname{Gal}(K^{(\Delta)}(N)|K) \xrightarrow{\cong} (A/N)^*.$$

Furthermore, in this case, the infinite prime of K is tamely ramified in $K^{(\Delta)}(N)$ with ramification group $\mathbb{F}_q^* \hookrightarrow (A/N)^*$. Each prime divisor Q of N is ramified in $K^{(\Delta)}(N)$, with ramification group equal to the canonical subgroup $(A/Q^k)^* \hookrightarrow (A/N)^*$ given by the Chinese Remainder Theorem, if Q^k is the exact Q-divisor of N. Each prime divisor P of Δ is ramified in $K^{(\Delta)}(N)$, with ramification group isomorphic with its ramification group in $K(\delta)|K$, and contained in $\mathbb{F}_q^* \hookrightarrow (A/N)^* \xrightarrow{\cong} \operatorname{Gal}(K^{(\Delta)}(N)|K)$.

4. The constant field extension.

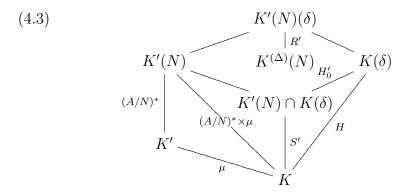
We keep the assumptions of the last section: Δ and N are fixed and subject to (3.1).

(4.1) Let $\mathbb{F}(\Delta, N)$ be the algebraic closure of \mathbb{F}_q in $K^{(\Delta)}(N)$, of degree $f(\Delta, N)$. In this section we determine $f(\Delta, N)$ and also $f(\Delta)$, the degree of the algebraic closure of \mathbb{F}_q in $K(\operatorname{tor}(\rho^{(\Delta)})) = \lim_{\substack{\longrightarrow \\ N}} K^{(\Delta)}(N)$.

(4.2) We next put $\mathbb{F}' = \mathbb{F}_q(\gamma) = \mathbb{F}_{q^{q-1}}$, the extension of degree q-1 of \mathbb{F}_q , $K' = K \cdot \mathbb{F}' = \mathbb{F}'(T)$, $K'(N) = K(N)\mathbb{F}'$, etc. We identify $\operatorname{Gal}(\mathbb{F}'|\mathbb{F}) \xrightarrow{\cong} \mu$, $\sigma \longmapsto \sigma(\gamma)/\gamma$, through the choice of the primitive (q-1)-the root $c \in \mathbb{F}_q^*$ and $\gamma^{q-1} = c$. Then

$$\operatorname{Gal}(K'(N)|K) \xrightarrow{\cong} (A/N)^* \times \mu.$$

As results from definitions, $K^{(\Delta)}(N)$ is contained in $K'(N)(\delta)$. Consider the diagram of subfields



where each line indicates an inclusion and the group nearby is the Galois group.

We find that

 $G' := \operatorname{Gal}(K'(N)(\delta)|K)$

is a subgroup of $\operatorname{Gal}(K'(N)|K) \times \operatorname{Gal}(K(\delta)|K) = (A/N)^* \times \mu \times H$ which projects onto the two factors $(A/N)^* \times \mu$ and H. Let μ' be the image of

$$R' := \operatorname{Gal}(K'(N)(\delta) \mid K^{(\Delta)}(N))$$

under the canonical projection to μ . By Galois theory, μ' is the group of K' over $\mathbb{F}(\Delta, N)(T)$. That is

(4.4)
$$f(\Delta, N) = (q-1)/|\mu'|.$$

Our strategy is thus to determine R' and its projection to μ , which shows some similarity with our proceeding in Section 3.

First, we obtain $h'_0 := |H'_0| = [K(\delta) : K'(N) \cap K(\delta)]$ by a slight modification of the argument of Lemma 3.8: As δ^n lies in K'(N) if and only if

$$(3.8.1)' \qquad \qquad k_i n \equiv \pmod{q-1}, \ r < i \le s$$

holds, we find

(4.5)
$$h'_0 = (q-1)/\gcd(q-1,k_{r+1},\ldots,k_s).$$

Therefore, the canonical map ψ' : $H = \operatorname{Gal}(K(\delta)/K) = \mu$ to $S' = \operatorname{Gal}(K'(N) \cap K(\delta)|K) = \mu_{h/h'_0}$ is $x \mapsto x^{h'_0}$. Second, we describe the natural map

$$\varphi': \operatorname{Gal}(K'(N)|K) \longrightarrow S'$$

As $\delta = \gamma^{k_0^*} G_{\mathbf{k}}$ (see (3.7)),

$$\delta^{h'_0} \equiv \gamma^{k_0^* h'_0} \prod_{1 \le i \le r} G_{P_i}^{k_i h'_0} \text{ modulo } K^*.$$

Hence $(\overline{M}, \omega) \in \operatorname{Gal}(K'(N)|K) = (A/N)^* \times \mu$ acts on $\delta^{h'_0}$ through

$$\begin{split} \sigma_{\overline{M},\omega}(\delta^{h'_0}) &= \omega^{k_0^*h'_0}\lambda_{\mathbf{k}}^{h'_0}(\overline{M})\cdot\delta^{h'_0}\\ &= \omega^{k_0^*h'_0}[\prod_{1\leq i\leq r}\nu_i^{k_i}(\overline{M})]^{h'_0}\cdot\delta^{h'_0}. \end{split}$$

(Compare to (3.9); again the $\nu_i^{k_i}$ with $r < i \leq s$ don't contribute.) Therefore

(4.6)
$$\varphi'(\overline{M},\omega) = \omega^{k_0^*h_0'}\lambda_{\mathbf{k}}^{h_0'}(\overline{M}) \in S' = \mu_{h/h_0'}$$

and

(4.7)
$$G' = \{ (\overline{M}, \omega, \eta) \in (A/N)^* \times \mu \times H \mid \varphi'(\overline{M}, \omega) = \psi'(\eta) \}.$$

We are now able to describe R' similar to (2.3).

4.8 Proposition. (i) $R' = \{(\overline{M}, \omega, \eta) \in G' \mid \overline{M} = \eta\};$ (ii) $R' \cong \{(\eta, \omega) \in H \times \mu \mid \eta^{h'_0(d-1)} = \omega^{-k_0^* h'_0}\}.$

Proof. (i) The argument is the same as in the proof of Proposition 2.3. $(\overline{M}, \omega, \eta) \in G$ acts trivially on $K^{(\Delta)}(N)$ $\Leftrightarrow \forall x \in {}_{N}\rho : (\overline{M}, \omega, \eta)(x/\delta) = x/\delta$ $\Leftrightarrow \forall x \in {}_{N}\rho : \sigma_{\overline{M},\omega}(x)/(\eta\delta) = x/\delta$ $\Leftrightarrow \forall x \in {}_{N}\rho : \rho_{M}(y) = \eta x$ $\Leftrightarrow \overline{M} = \eta$ as elements of $(A/N)^{*}$. (ii) This results from (i), (4.7), and the descriptions of ψ' and φ' given

in (4.5) and (4.6), taking into account that for $\overline{M} = \eta \in \mathbb{F}_q^* \hookrightarrow (A/N)^*$,

$$\lambda_{\mathbf{k}}^{h_0'}(\eta) = \eta^{d'h_0'} = \eta^{dh_0'}$$

since $d'h'_0 = (\sum_{1 \le i \le r} k_i d_i)h'_0 \equiv (\sum_{1 \le i \le s} k_i d_i)h'_0 \text{ modulo } q-1.$

The following elementary lemma is left as an exercise.

4.9 Lemma: Let m, n be natural numbers, a, b integers, μ_m resp. μ_n the corresponding groups of roots of unity.

(i) $|\{(\eta, \omega) \in \mu_m \times \mu_n \mid \eta^a = \omega^b\}| = \gcd(mn, an, bm).$

(ii) The projection of the group in (i) to the second factor μ_n has order gcd(mn, an, bn)/gcd(a, m).

We apply this to the description of R' given in (4.8), with m = h, n = q - 1, $a = h'_0(d - 1)$, $b = h'_0k_0^*$, and find upon simplification: The group μ' of (4.3) and (4.4) has order

(4.10)
$$|\mu'| = \gcd(\frac{h}{h'_0}(q-1), (d-1)(q-1), hk_0^*) / \gcd(\frac{h}{h'_0}, d-1).$$

Note that the only ingredient of this formula that depends on N is $h'_0 = (q-1)/\gcd(q-1, k_{r+1}, \ldots, k_s)$, which takes the value 1 if $\operatorname{rad}(N)$ is a multiple of $\operatorname{rad}(\Delta)$. We thus get the wanted description of $f(\Delta, N)$ and $f(\Delta)$, which covers Corollary 0.3 from the Introduction.

4.11 Theorem. (i) The degree $f(\Delta, N)$ of the constant field extension in $K^{(\Delta)}(N)$ is given by

$$f(\Delta, N) = (q-1)/|\mu'|$$

with $|\mu'|$ as in (4.10).

(ii) If rad(N) is a multiple of rad(Δ) then $f(\Delta, N) =: f(\Delta) = (q - 1)/|\mu'|$ with

$$|\mu'| = \gcd(h(q-1), (d-1)(q-1), hk_0^*) / \gcd(h, d-1).$$

(iii) Suppose that h = q - 1. Then

$$f(\Delta, N) = \gcd((q-1)/h'_0, d-1)/\gcd((q-1)/h'_0, d-1, k_0^*)$$

and

$$f(\Delta) = \gcd(q-1, d-1) / \gcd(q-1, d-1, k_0^*).$$

We conclude with simple examples for the evaluation of the quantities that occur in Theorem 4.11.

4.12 Examples. (i) Let $\Delta = c^{k_0}$ be constant. Then $h = (q - 1)/\gcd(q - 1, k_0^*)$, $h'_0 = 1$ and $|\mu'| = q - 1$. Therefore $f(\Delta, N) = 1$ for each N.

(ii) Let $\Delta = c^{k_0}P$ with some prime P and N be coprime with P. Then $h = h'_0 = |\mu'| = q - 1$ and therefore $f(\Delta, N) = 1$.

(iii) Let $\Delta = c^{k_0}P$ be as in (ii) with deg P = d and N be divisible by P. Then h = q-1, $h'_0 = 1$, $|\mu'| = (q-1) \operatorname{gcd}(q-1, d-1, k_0^*)/\operatorname{gcd}(q-1, d-1)$, and $f(\Delta, N) = \operatorname{gcd}(q-1, d-1)/\operatorname{gcd}(q-1, d-1, k_0^*)$. Through suitable choices of d and k_0 , each divisor of q-1 may be realized as $f(\Delta, N)$ for such Δ and N.

References

- Drinfeld, V. G.: Elliptic modules. (Russian) Mat. Sb. (N.S.) 94(136) (1974), 594-627, 656.
- [2] Faltings, G.: Endlichkeitssätze für abelsche Varietäten über Zahlkörpern. (German) [Finiteness theorems for abelian varieties over number fields] Invent. Math. 73 (1983), no. 3, 349-366.
- [3] Goss, D.: Basic structures of function field arithmetic. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 35. Springer-Verlag, Berlin, 1996.
- [4] Hayes, D. R.: Explicit class field theory for rational function fields. Trans. Amer. Math. Soc. 189 (1974), 77-91.
- [5] Pink, R.; Rütsche, E.: Adelic openness for Drinfeld modules in generic characteristic. J. Number Theory 129 (2009), no. 4, 882-907.
- [6] Rosen, M.: Number theory in function fields. Graduate Texts in Mathematics, 210. Springer-Verlag, New York, 2002.
- [7] Thakur, D.S.: Gauss sums for $\mathbb{F}_q[T]$. Invent. Math. 94 (1988), no. 1, 105-112.
- [8] Thakur, D.S.: Function field arithmetic. World Scientific Publishig Co., Inc., River Edge, NJ, 2004.

Ernst-Ulrich Gekeler Fachrichtung 6.1 Mathematik Universität des Saarlandes Campus E2 4 66123 Saarbrücken Germany gekeler@math.uni-sb.de