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THE GALOIS IMAGE OF TWISTED CARLITZ
MODULES

ERNST-ULRICH GEKELER

ABSTRACT. We determine the defect def(A, N), i.e., the deviation
from surjectivity of the attached Galois representation, and the
degree f(A, N) of the constant field extension in the N-th torsion
field of the twisted Carlitz module with discriminant A, where
AN e A=TF,[T].

MSC: primary 11G09, secondary 11R32, 11R60
Keywords: Drinfeld module, twisted Carlitz module,
Galois representation

0. Introduction

Let A = F,[T] be the polynomial ring over a finite field F, with field
of fractions K = F,(7). A Drinfeld A-module ¢ of rank r € N over a
finite field extension F' of K provides a Galois representation m = ()
of the absolute Galois group Gal(F') = Gal(F*?|F') in the Tate module

T(¢), a free A-module of rank r, where

(0.1) A=lmA/N = ][] Ar
NeA P prime of A

is the profinite completion of A. Choosing a basis of T'(¢), we have
7(¢) : Gal(F) — GL(r, A).

As an immediate consequence of Drinfeld’s construction [1], m has open
image (i.e., im7(¢) has finite index in the compact group GL(r, A)) if
r = 1. This has been generalized to r > 2 by Pink and Riitsche
[5], under the obviously necessary assumption that ¢ has no complex
multiplications, that is, if the endomorphism ring End(¢) is reduced to
A. This is similar to the Tate conjecture for abelian varieties proved

by Faltings [2]. While the above results are effective, the bounds for
the index of im 7(¢) derived from them are rather weak.

In the present paper we give

e an explicit description of im 7 (¢),

e the degrees of the associated constant field extensions

in the case where r = 1 and F = K, i.e., when ¢ is a twist ¢ = p(®

of the Carlitz module p over K (see below for precise definitions). The
1
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main results are Theorem 3.13 and Theorem 4.11. Crudely simplified
versions are as follows.

0.2 Corollary. The defect of p'® over K, i.e., the index of im w(p®)
in GL(1, A) = A*, is always a divisor of ¢ — 1.

0.3 Corollary. Let K(tor(p'®)) be the field extension obtained from
K by adjoining all the torsion points of p'™ . Then the degree of the
algebraic closure of F, in K (tor(p™®)) is a divisor of q — 1.

(Both the quantities occurring in (0.2) and (0.3) are specified in The-
orem 3.13 and 4.11, respectively.)

Notation.

A =TF,[T] resp. K =T, (T) denotes the ring of polynomials resp. the
field of rational functions in the indeterminate 7' over the finite field
F, with ¢ elements;

P, @, ... denote places of A, i.e., monic irreducible polynomials in A;
Ap resp. Kp is the completion of A resp. K at P;

Fp = A/P = field extension of degree deg(P) of Fy;

M, N, ... elements of A, rad(N) = radical of N = maximal squarefree
monic divisor of N;

i, = group of n-th roots of unity in the algebraic closure of F,,
p= pg—1 = Fy;

| X | = cardinality of the finite set X;

A/N = A/(N) = residue class ring of A modulo (N), with multiplica-
tive group (A/N)*.

1. The Carlitz module and its twists.

We assume the reader to be familiar with the basic theory of Drinfeld
modules as presented e.g. in [3], [6] or [§].

The Carlitz module is the Drinfeld A-module p over K defined by the
operator polynomial

(1.1) pr(X) =TX + X9 € K[X].

Given any 0 # N € A, we let py(X) € K[X] be the N-th division
polynomial of p (which has degree ¢?°&™) in X) with kernel yp, a free
A/N-module of rank one. For non-constant N, we let K(N) = K(yp)
be the splitting field of pn(X). The field extension K (N)|K is strongly
analogous with a cyclotomic extension of Q, viz:

(1.2) (i) K(N)|K is abelian with Galois group Gal(K(N)|K) —
(A/N)*; if v € yp and og7 € Gal(K (N)|K) corresponds to the class of
M € A coprime with N then oy () = pu(x);
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(ii) if N = P* is a power of the prime P then P is completely rami-
fied in K(N) and any finite prime @ different from P is unramified in
K(N);

(iii) if N = P ... P* is the prime factorization of N, N; = P* then
the K(NV;) are linearly disjoint over K;

(iv) the infinite place of K is tamely ramified in K (N) with decompo-
sition group = ramification group F; < (A/N)*;

(v) if the place P of A is coprime with N (hence P is unramified in
K(N)), then the residue class P of P in (A/N)* is the Frobenius ele-
ment of K(N)|K at P;

(vi) F, is algebraically closed in K (N).

All of this has been shown in [4], see also [3] and [8].

Now let ¢ be another rank-one Drinfeld A-module over K, given by
(1.3) or(X) =TX + AX? = p™M(X) e K[X], 04 A € K,

which we regard as the twist p® of p by A. Let 6 € K*P be a
fixed (¢ — 1)-th root of A. The Drinfeld modules p and p®) become
isomorphic over the field K(§). As for the Carlitz module p, we define

(1.4) o) = kernel of pSVA),
K®)(N) = K(xp®) = the “N-th division field of p®”. Similar to
(1.2)(i), K®)(N) is abelian over K, but with Galois group a possi-
bly proper subgroup of (A/N)*. The main purpose of this work is to
describe the defect
(1.5) def(A,N) := [(A/N)* : Gal(K®(N)|K)]
and to find out how the other statements of (1.2) must be modified for
P As
pr(6X) = dp (X)

(and similarly pn(6X) = 0 pg\,A) (X) for arbitrary N € A), multiplication
with & provides an isomorphism & : p&) —» p, or 61: p —3 p®). In
particular,

5t =, (A)
1.6 NP NP
(16) r — 0 'z
as A-modules. Let Gal(K) be the absolute Galois group of K and
7. Gal(K)—A*, 7®) . Gal(K)—>A* be the Galois representations
attached to p and p™®), respectively. That is, for each N, © composed

with the natural projective A*—(A/N)* is the map from Gal(K) to
(A/N)* described in (1.2)(i), and similarly for 7(%). Let further

(1.7) x@ 1 Gal(K)—p = ptg_1 = Iy

be the character ¢ — ¢(0)/d, which is independent of the choice of
the (¢ — 1)-th root .
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1.8 Lemma. With the above notation, 7 = X(Ar1 X .

Proof. This follows from combining (1.6) and (1.7). O

Using class field theory, we regard x(®) as a character of the idele class
group of K, or of a generalized ideal class group. In particular, its
value x(*(P) on a prime P unramified in K(§) (i.e., P coprime with
A if A is free of (¢ — 1)-th powers) is defined.

1.9 Lemma. Let P be a prime of A coprime with A. Then x™|(P) =

(8)q_1, where (5)q_1 is the (¢ — 1)-th power residue symbol at P, cf.

[6? p. 24.

Proof. Let Kp be the completion of K at P and F' = Fp the Frobenius
clement at P, acting as & — 29" (d := deg(P)) on the residue class
field Fp = A/P. We have

Kp(8) = Kp("VA) = Kp( "VA) = Kp(3),

where A is the reduction (mod P) and 57" = A. Therefore

7)

)q—l
by definition of the power residue symbol. O

Note that (%), is related with (£),_; through the (¢ — 1)-th reci-
procity law ([6], Theorem 3.5).

1.10 Corollary. Let P be a prime of A coprime with N and A. Then
the Frobenius element of P in Gal(K(®(N)|K) < (A/N)* is (&),

v P/q-1
times the residue class P of P modulo N.

Proof. (1.2)(v) + (1.8) + (1.9). O
2. The torsion fields.

We fix the data A and N. All the groups H, Hy, R, S that appear below
depend on these choices.

As follows from (1.6), the field K(*)(N) is contained in the compositum
K(N)(0) of K(N) and the Kummer extension K (4) of K. Now

(2.1) H := Gal(K(8)|K) = j = F:

is the image of x®), and equals p if and only if A is not a d-th power
for any divisor d > 1 of ¢ — 1. By Galois theory,

(2.2) G = Gal(K(N)(9)|K)
is a well-defined subgroup of Gal(K (N)|K)x Gal(K(0)|K) = (A/N)* x

H. For an element (M,n) of G (where M is the residue class of M
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modulo N) we have:
(M,n) acts trivially on K*)(N)
eVyeng™: (Mn)(y) =y
eVrenp: (Mn)(5)=(3)
sVreyp: ox)(n-6) =zt
SVYrenp: pulz)=n-z,

since by (1.7) and (2.1), n € H acts on 0 through multiplication by 7.
This means that M as an element of (A/N)* agrees with n € H —
Fy < (A/N)*. We thus get the following result.

2.3 Proposition. Let R C G be the Galois group of K(N)(d) over
K®)(N). Then R = {(M,n) € G | M = n}, and Gal(K®(N)|K)
equals the image in (A/N)* of the homomorphism
G — (A/N)*
(M.n) — n'M O

We don’t know yet the group G, but it consists of certain elements of
shape (M, n) and fits into the diagram with exact row and column

(2.4)

{(1,n) € G}

{(M.n) € GIM =1}
1— I G Gal(K(A)(N)|K)91
R

(M, ) ————y"'M

1

M

(A/N)* == Gal(K(N)|K)

|
1

Thus we can read off:

2.5 Corollary. def(A, N) := [(A/N)* : Gal(K®)(N)|K)] is a divisor
of g — 1. O
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2.6 Corollary. def(A, N) =1 if K(N) and K () are linearly disjoint.
This happens in particular if A is a constant.
Proof. If K(N) and K (0) are linearly disjoint then G = Gal(K (N)|K)x
Gal(K(8)|K), so by (2.4) the groups Gal(K (N)|K) and Gal(K®)(N)|K)
have the same order. The second assertion comes from (1.2)(vi). O
(2.7) We define the groups Hy := Gal(K(9)|K(d) N K(N)) C H and
S = Gal(K(6) N K(N)|K). If h:=|H| and hy := |Ho|, then H = pp,
Hy = ping, S = pnyny, and the restriction map 1 : H—95 is the raising
to the ho-th power in H. Let
¢: Gal(K(N)|K) = (A/N)*—S
be the other restriction map, induced from K (&) N K(N) — K(N).
Then o o
G ={(M,n) € (A/N)" x H | (M) = ()},
and has order |G| = ho|(A/N)*|. Via H — p = F; — (A/N)* we
consider H as a subgroup of (A/N)*. Then
Bl = {(M.n) e G| M=n}=[{neH]|pn =1}

= |ker(¢p™ )l
As Hy C ker(o|g), ho divides |R|, which in turn divides h. Com-
parison with (2.4) finally yields

(2.8) def(5, N) = [(A/N)* : Gal(K'®(N)|K)] = |hﬂ,
0

which in any case is a divisor of |S| = h/hy.
(2.9) As the kernel of (A/N)*—(A/rad(N))* is a p-group (p := char(F,))
and (A/rad(N))* is p-free, the field K (d) N K(N) is already contained
in K(rad(N)), and the map ¢ of (2.7) factors over (A/rad(N))*. This
shows that the canonical map

(A/N)*/Gal(K® (N)|K)—(A/rad(N))*/Gal(K® (rad(N))| K)

is in fact an isomorphism. Thus:

2.10 Proposition. The defects def(A, N) and def(A,rad(N)) agree.
U

3. The defect of p®).

As the isomorphism type of p(® depends only on the class of A € K*
in K*/(K*)971, we assume from now on that A is integral, i.e., A €
A\ {0}, and not divisible by (¢ — 1)-th powers. Let ¢ € F} be a fixed

primitive (¢ — 1)-th root of unity. Then we may write

3.1 A =ckopf... pk
1 s
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with different monic primes P; of A of degrees d; = deg P;, and 0 <
ki <q—1for0<i<s, with 0 < k; if © > 0. We arrange them in such
a way that P,..., P, divide N (r < s) and P.,q,..., P; are coprime
with V. Note that s =0, i.e., A constant, is allowed.

We next must identify the Kummer extensions K(§) = K( “VA) in
the framework of Carlitz torsion fields. Let for the moment P be a
fixed monic prime in A, of degree d, and P = (—1)¢P.

3.2 Lemma. The unique subfield in K(P) of degree ¢ — 1 over K is
the Kummer extension K ( qi\l/E).

Proof. Dinesh Thakur in [7] constructed d Gauf sums g; (1 < j < d)
such that ( ] g¢;)7' = (=1)4P = P. The different g; lie in the d-th

1<j<d
constant field extension K(P)Fp of K(P) by Fp = A/P = F, while
their product

(3.2.1) Gp:= ][] 9
1<j<d
lies in K(P). For ramification reasons, [K(Gp) : K] = ¢ — 1, which

shows the assertion. O

For later use, we recall the transformation formula, where Ng qP : Fp—F,
denotes the norm map:

(3.3) o37(Gp) = Ng" (M) - Gp

for M € F% = (A/P)* = Gal(K(P)|K), which follows from [7], Theo-
rem I (or may be checked directly).

In view of the above, we define for k = (ky, ..., ks) € N?
(3.4) Gi:= [] Gh.
1<i<s
As immediate consequences of (3.2) and (3.3), the following hold:

(3.5)(1) Gk € K(rad(A)) (if A is as in (3.1));
(i) GI' = (=1)¢ [ PF, where d := 3. kid; is the degree deg(A)

1<i<s 1<i<d
of A;

(ili) o37(Gk) = (M) - G, where o7 € Gal(K(A)|K) = (A/A)* is
the class of M € A, A non-constant and coprime with M. Here Ay is
the p-valued character

)\ki (A/A)* —
(3.6) M — I
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with the canonical maps
vi: (A/A) — (A/P)" — Fi=ypu.
x — Ng, ' ()
Note that A factors over (A/rad(A))*.

Thus we can realize the field K(§) = K(*VA) as a Kummer sub-
extension of K(A) or even of K (rad(A)), provided that cf = (—1)4.
It remains to generalize this to arbitrary scalars cf. Let v be a (g —1)-

th root of ¢ (so it is a primitive (¢ — 1)?-th root of unity). Then
§* 1= yR Gy satisfies (6*)971 = (—=1)?A. Therefore we put

ko, if g or d = deg A is even,

(3.7)  kj =< the unique k = ko + (¢ — 1)/2 (mod g — 1) with
0<k<q—1, otherwise.

Then 6 := 4" Gy is a (¢ — 1)-th root of A.
3.8 Lemma. (i) The degree h = [K(6) : K| equals
(¢g—1)/ged(q — 1, ko, k1, ..., ks) = (g —1)/ged(q — 1, kg, K,y - .., Ks).
(i1) The degree ho = [(K(0) N K(N) : K| is given by
ho = (¢ —1)/ged(q — 1, kS krgay - -, ks).

Proof. (i) The first formula is obvious from (3.1) and Lemma 3.2. The
second one (i.e., that ky may be replaced by kf) can be seen as follows:
Suppose that kf = ko + (¢ — 1)/2 (mod g — 1). Then at least one of
ki,ko,... ks is odd and ¢ — 1 is even. Let g := ged(ky, ..., ks), which
is odd, so 2 is invertible modulo g. Hence the ideal (¢ — 1) generated
by ¢ — 1 in Z/(g) equals the ideal generated by (¢ — 1)/2, which gives
ged((q — 1), ko, ki, ... k) = ged(q — 1, ko, g) = ged((q — 1)/2, ko, 9) =
ged((q —1/2,k5,9) = ged(q — 1, k§, ki, .oy ks).

(i) The field K(0) N K(N) is the Kummer extension of K generated by
6™ . Some power 6" lies in K (V) if and only if the following conditions

are satisfied:

ki-n = 0O(modqg—1), r <1< s,
(3.8.1) ( )

ki-n = 0(modg—1).

Therefore,
ho = min{n € N | (3.8.1) holds for n}
= (q—1)/ged(q— 1,k  kryr, ..., ks).
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With the notation of (2.7) we have the canonical restriction homomor-
phisms

o Gal(K(N)|K) = (A/N)'—8 = Gal(K(8) 1 K(N)|K) = fin,
v H=Gal(K()|K) = u,—S.

As ¢ describes the action of (A/N)* on §™, if is given by

(3.9) P =N

where A is defined in (3.6); raising to the ho-th power, the components

V¥ with r < i < s are annihilated, as is the contribution of the scalar

~yFoho which lies in F. In more detail, ¢ is the map
(A/N)*—=(A/PL---P,)" — S =

v @) =TT @]

What is the restriction of ¢ to F; < (A/N)*? First, the map
Fp,
v+ (A/N)—(A/P)" =% F;
acts on = € I} as v;(r) = gltat+a®™t — gdi Therefore,

pla) = a0 = g,

with ' = > kid;, since d'hg = ( Y. kid;)ho = dhy modulo ¢ — 1, by

1<i<r 1<i<s
(3.8.1). As ¢(z) = a™ for x € H, we find (see (2.7)):

R = |ker(Yp g = |[{x € pp|zto~d0 =1
sry = el = e ) }

= ged((d — 1)hg, h) = ged((d' — 1)hg, h)

Plugging into (2.8) and simplifying gives
(3.11)
def(A,N) = |R|/ho = ged(d' — 1, h/ho)

cd(g—1,k% kr 1,0 ks .
= ged(d' — 1, ggcéq(qfll,(l)cg,ki_,l...,ks))) =ged(d — 1,9 — 1,k k1, ..., k)

=ged(d— 1,9 — L kS, krgay ..oy ks),

where the equality next to the last follows from Lemma 3.12 with b :=
ged(q — 1, kS, krgry ooy ks), L = {k1,...,k}. We need the following
elementary result.

3.12 Lemma. Letb € N and L C N be a finite subset, 0 < d = > d,-£
lel
with non-negative integers dy. Then

ged(d —1,0) = ged(d — 1,b/ ged(b, L)).
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Proof. Obviously the right hand side divides the left hand side. Write
g=ged(b, L), b=g-b*, d=g-d*. The stated equality is

ged(gd® — 1, gb") = ged(gd® — 1,b%).

Each divisor ¢ of the LHS must be coprime with g, which shows that
it divides the RHS. 0

We collect what has been shown.

3.13 Theorem. Let ¢ = p®) be the twisted Carlitz module, where
A = o PM . PR with a primitive (q — 1)-th root of unity ¢ and s > 0

different monic primes P; of degrees d;, 0 < ko <q—1,0<k; <qg—1
for1<i<sandd= ) kd; =degA.

1<i<s
Let further N be a non-constant element of A and suppose that P;
divides N for 1 < i <r and P; is coprime with N forr < i <s. The
image of Gal(K) in Auta(yp®)) = (A/N)* (that is, Gal(K®)(N)|K))
has indez (see (3.7) for k§)

def(A,N) =ged(d — 1,9 — 1, ki, ks oy k).

U

Suppose that M divides N. From the commutative diagram of natural
maps
Gal(K®(N)|K) < (A/N)*
! !
Gal(K®(M)|K) — (A/M)*
we see that the quotient by Gal(K®)(N)|K) of (A/N)* is stable as

soon as rad(N) is divisible by rad(A). This implies (notations and
assumptions as in (3.13)):

3.14 Corollary. The image of Gal(K) under the representation ) :
Gal(K)—(A)* provided by the twisted Carlitz module p*®) is the in-
verse image in (A)* of a subgroup of (A/rad(A))* of index

def(p'™)) = def(A) = ged(d — 1,q — 1, k).

Obviously, this is a sharpening of Corollary 0.2 in the Introduction.

As Gal(K®(N)|K) is now known by (2.3) to (2.8) and Theorem 3.13,
it is straightforward (though laborious if N and A have common divi-
sors) to determine the ramification of K(*)(N) over K. We restrict to
stating, without details, the result in the most simple case.
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3.15 Example. Suppose that N and A are coprime. From considering
the ramification we find that K (N) and K (0) are linearly disjoint over
K, so by Corollary 2.6, def(A, N) =1, i.e.,

Gal(K'™(N)|K) — (A/N)".

Furthermore, in this case, the infinite prime of K is tamely ramified
in K®)(N) with ramification group F; — (A/N)*. Each prime di-
visor @ of N is ramified in K®)(N), with ramification group equal
to the canonical subgroup (A4/Q*)* < (A/N)* given by the Chi-
nese Remainder Theorem, if Q% is the exact Q-divisor of N. Each
prime divisor P of A is ramified in K®) (), with ramification group
isomorphic with its ramification group in K(0)|K, and contained in

< (A/N)* =5 Gal(K®(N)|K).
4. The constant field extension.

We keep the assumptions of the last section: A and N are fixed and
subject to (3.1).

(4.1) Let F(A, N) be the algebraic closure of F, in K®)(N), of degree
f(A,N). In this section we determine f(A,N) and also f(A), the
degree of the algebraic closure of F, in K (tor(p®))) = lii}nK(A)(N).

N

(4.2) We next put F' = F,(y) = F, -1, the extension of degree ¢ — 1
of F,, K' = K -F = IF’( ( ) = K(N)F', etc. We identify

),
Gal(F'|F) = i, o — o(7)/7, through the choice of the primitive
(¢ — 1)-the root ¢ € F; and 74~" = c. Then
Gal(K'(N)|K) = (A/N)* x

As results from definitions, K(*)(N) is contained in K'(N)(§). Con-
sider the diagram of subfields

(4.3) ( 5)
/

K'(N) <A N>H, K (9)
(A/N)* K'(N) mK(é)
(A/N)? <
K/

\
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where each line indicates an inclusion and the group nearby is the
Galois group.

We find that
G' = Gal(K'(N)(9)|K)

is a subgroup of Gal(K'(N)|K) x Gal(K(0)|K) = (A/N)* x u x H
which projects onto the two factors (A/N)* x pu and H. Let y/ be the
image of

R := Gal(K'(N)(5) | K®(N))
under the canonical projection to . By Galois theory, p' is the group
of K’ over F(A, N)(T). That is

(4.4) F(AN) = (g —1)/In].
Our strategy is thus to determine R’ and its projection to p, which
shows some similarity with our proceeding in Section 3.

First, we obtain h{ := |H|}| = [K(0) : K'(N) N K(J)] by a slight

modification of the argument of Lemma 3.8: As " lies in K'(N) if and
only if

(3.8.1) kn= (modqg—1), r<i<s
holds, we find
(45) h6 = (q_ 1)/ng(q_ 17kr+1a"'7ks)'

Therefore, the canonical map ¢’ : H = Gal(K(§)/K) = p to ' =
Gal(K'(N) N K(6)|K) = pupm, is @ — 2", Second, we describe the
natural map

¢ Gal(K'(N)|K)—S".
As § = yR Gy (see (3.7)),

/ * 1/ k:h'’
§ho = ~kaho H Gp ° modulo K™.

1<i<r
Hence (M, w) € Gal(K'(N)|K) = (A/N)* x p acts on 6" through
o7 (0%) = NP - o'
= W[ T vF (M) - 6.
1<i<lr '

(Compare to (3.9); again the v/ with r < i < s don’t contribute.)
Therefore

(4.6) ¢ (M,w) = NN (M) € ' = pun
and
(A7) G ={(M,w,n) € (A/N) x px H| ¢(M,w) = ¢'(n)}.

We are now able to describe R’ similar to (2.3).
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4.8 Proposition. (i) R = {(M,w,n) € G' | M =1n};
(ii) R = {(n,w) € H x | =1 = -kiko},

Proof. (i) The argument is the same as in the proof of Proposition 2.3.
(M,w,n) € G acts trivially on K®)(N)

eVr € yp: (M,w,n)(x/d) =x/d

& Vo € np: oy, (2)/(n6) = 2/6

Ve enp: puly) =ne

& M = n as elements of (A/N)*.

(i) This results from (i), (4.7), and the descriptions of ¢" and ¢’ given
in (4.5) and (4.6), taking into account that for M = n € F; < (A/N)*,

Iy v ’
AN (n) =t = p?o
since d'hy = (1<Z< kid;)hi = (1<Z< k;d;)h{, modulo ¢ — 1. O

The following elementary lemma is left as an exercise.

4.9 Lemma: Let m,n be natural numbers, a,b integers, i, resp. i,
the corresponding groups of roots of unity.

(i) {(n,w) € pm X pi | n* = W'} = ged(mn, an, bm).

(ii) The projection of the group in (i) to the second factor u, has order
ged(mn, an,bn)/ ged(a, m).

We apply this to the description of R’ given in (4.8), with m = h,
n=q—1,a=h{(d—1), b= hyk, and find upon simplification: The
group g’ of (4.3) and (4.4) has order

h . h
(430) ] = sed(1r (g — 1), (4 1)(g — 1), bk3), ged(1rd 1)

0 0
Note that the only ingredient of this formula that depends on N is
hi =(q—1)/ged(q—1,kpi1, ..., ks), which takes the value 1 if rad(NV)
is a multiple of rad(A). We thus get the wanted description of f(A, N)
and f(A), which covers Corollary 0.3 from the Introduction.

4.11 Theorem. (i) The degree f(A, N) of the constant field extension
in K®)(N) is given by

fIAN) = (¢—1)/IK|
with || as in (4.10).
(i) If rad(N) is a multiple of rad(A) then f(A,N) =: f(A) = (¢ —
1)/|p'] with
1] = ged(h(q — 1), (d — 1)(g — 1), hk})/ ged(h d — 1).
(1i) Suppose that h = q— 1. Then

f(A,N) = ged((q = 1)/ho, d = 1) /ged((q — 1)/ hg, d = 1, kg)
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and
O

We conclude with simple examples for the evaluation of the quantities
that occur in Theorem 4.11.

4.12 Examples. (i) Let A = ¢* be constant. Then h = (q —
1)/gcd(q — 1,k§), hy = 1 and || = ¢ — 1. Therefore f(A,N) =1
for each N.

(ii) Let A = ¢* P with some prime P and N be coprime with P. Then
h = hy = || = ¢ — 1 and therefore f(A, N) = 1.

(iii) Let A = c™ P be as in (ii) with deg P = d and N be divisible by P.
Then h = q—1, hy = 1, |¢/| = (¢—1) ged(q—1,d—1,k§)/ ged(¢—1,d—1),
and f(A,N) =ged(g—1,d—1)/ged(q—1,d—1, k). Through suitable
choices of d and ko, each divisor of ¢ — 1 may be realized as f(A, N)
for such A and N.
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