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THE GALOIS IMAGE OF TWISTED CARLITZ
MODULES

ERNST-ULRICH GEKELER

Abstract. We determine the defect def(∆, N), i.e., the deviation
from surjectivity of the attached Galois representation, and the
degree f(∆, N) of the constant field extension in the N -th torsion
field of the twisted Carlitz module with discriminant ∆, where
∆, N ∈ A = Fq[T ].

MSC: primary 11G09, secondary 11R32, 11R60

Keywords: Drinfeld module, twisted Carlitz module,
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0. Introduction

Let A = Fq[T ] be the polynomial ring over a finite field Fq with field
of fractions K = Fq(T ). A Drinfeld A-module φ of rank r ∈ N over a
finite field extension F of K provides a Galois representation π = π(φ)
of the absolute Galois group Gal(F ) = Gal(F sep|F ) in the Tate module

T (φ), a free Â-module of rank r, where

(0.1) Â = lim
←−
N∈A

A/N
∼=−→

∏
P prime of A

AP

is the profinite completion of A. Choosing a basis of T (φ), we have

π(φ) : Gal(F ) −→ GL(r, Â).

As an immediate consequence of Drinfeld’s construction [1], π has open

image (i.e., im π(φ) has finite index in the compact group GL(r, Â)) if
r = 1. This has been generalized to r ≥ 2 by Pink and Rütsche
[5], under the obviously necessary assumption that φ has no complex
multiplications, that is, if the endomorphism ring End(φ) is reduced to
A. This is similar to the Tate conjecture for abelian varieties proved
by Faltings [2]. While the above results are effective, the bounds for
the index of imπ(φ) derived from them are rather weak.

In the present paper we give

• an explicit description of im π(φ),
• the degrees of the associated constant field extensions

in the case where r = 1 and F = K, i.e., when φ is a twist φ = ρ(∆)

of the Carlitz module ρ over K (see below for precise definitions). The
1
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main results are Theorem 3.13 and Theorem 4.11. Crudely simplified
versions are as follows.

0.2 Corollary. The defect of ρ(∆) over K, i.e., the index of imπ(ρ(∆))

in GL(1, Â) = Â∗, is always a divisor of q − 1.

0.3 Corollary. Let K(tor(ρ(∆))) be the field extension obtained from
K by adjoining all the torsion points of ρ(∆). Then the degree of the
algebraic closure of Fq in K(tor(ρ(∆))) is a divisor of q − 1.

(Both the quantities occurring in (0.2) and (0.3) are specified in The-
orem 3.13 and 4.11, respectively.)

Notation.

A = Fq[T ] resp. K = Fq(T ) denotes the ring of polynomials resp. the
field of rational functions in the indeterminate T over the finite field
Fq with q elements;
P, Q, ... denote places of A, i.e., monic irreducible polynomials in A;
AP resp. KP is the completion of A resp. K at P ;
FP = A/P = field extension of degree deg(P ) of Fq;
M, N, ... elements of A, rad(N) = radical of N = maximal squarefree
monic divisor of N ;
µn = group of n-th roots of unity in the algebraic closure of Fq,
µ = µq−1 = F∗q;
|X| = cardinality of the finite set X;
A/N = A/(N) = residue class ring of A modulo (N), with multiplica-
tive group (A/N)∗.

1. The Carlitz module and its twists.

We assume the reader to be familiar with the basic theory of Drinfeld
modules as presented e.g. in [3], [6] or [8].

The Carlitz module is the Drinfeld A-module ρ over K defined by the
operator polynomial

(1.1) ρT (X) = TX +Xq ∈ K[X].

Given any 0 6= N ∈ A, we let ρN(X) ∈ K[X] be the N -th division
polynomial of ρ (which has degree qdeg(N) in X) with kernel Nρ, a free
A/N -module of rank one. For non-constant N , we let K(N) = K(Nρ)
be the splitting field of ρN(X). The field extension K(N)|K is strongly
analogous with a cyclotomic extension of Q, viz:

(1.2) (i) K(N)|K is abelian with Galois group Gal(K(N)|K)
∼=−→

(A/N)∗; if x ∈ Nρ and σM ∈ Gal(K(N)|K) corresponds to the class of
M ∈ A coprime with N then σM(x) = ρM(x);
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(ii) if N = P k is a power of the prime P then P is completely rami-
fied in K(N) and any finite prime Q different from P is unramified in
K(N);
(iii) if N = P k1

1 · · ·P ks
s is the prime factorization of N , Ni = P ki

i , then
the K(Ni) are linearly disjoint over K;
(iv) the infinite place of K is tamely ramified in K(N) with decompo-
sition group = ramification group F∗q ↪→ (A/N)∗;
(v) if the place P of A is coprime with N (hence P is unramified in
K(N)), then the residue class P of P in (A/N)∗ is the Frobenius ele-
ment of K(N)|K at P ;
(vi) Fq is algebraically closed in K(N).
All of this has been shown in [4], see also [3] and [8].

Now let φ be another rank-one Drinfeld A-module over K, given by

(1.3) φT (X) = TX + ∆Xq = ρ
(∆)
T (X) ∈ K[X], 0 6= ∆ ∈ K,

which we regard as the twist ρ(∆) of ρ by ∆. Let δ ∈ Ksep be a
fixed (q − 1)-th root of ∆. The Drinfeld modules ρ and ρ(∆) become
isomorphic over the field K(δ). As for the Carlitz module ρ, we define

(1.4) Nρ
(∆) = kernel of ρ

(∆)
N ,

K(∆)(N) = K(Nρ
(∆)) = the “N -th division field of ρ(∆)”. Similar to

(1.2)(i), K(∆)(N) is abelian over K, but with Galois group a possi-
bly proper subgroup of (A/N)∗. The main purpose of this work is to
describe the defect

(1.5) def(∆, N) := [(A/N)∗ : Gal(K(∆)(N)|K)]

and to find out how the other statements of (1.2) must be modified for
ρ(∆). As

ρT (δX) = δρ
(∆)
T (X)

(and similarly ρN(δX) = δρ
(∆)
N (X) for arbitrary N ∈ A), multiplication

with δ provides an isomorphism δ : ρ(∆)
∼=−→ ρ, or δ−1 : ρ

∼=−→ ρ(∆). In
particular,

(1.6) δ−1 : Nρ
∼=−→ Nρ

(∆)

x 7−→ δ−1x

as A-modules. Let Gal(K) be the absolute Galois group of K and

π : Gal(K)−→Â∗, π(∆) : Gal(K)−→Â∗ be the Galois representations
attached to ρ and ρ(∆), respectively. That is, for each N , π composed
with the natural projective Â∗−→(A/N)∗ is the map from Gal(K) to
(A/N)∗ described in (1.2)(i), and similarly for π(∆). Let further

(1.7) χ(∆) : Gal(K)−→µ = µq−1 = F∗q
be the character σ 7−→ σ(δ)/δ, which is independent of the choice of
the (q − 1)-th root δ.
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1.8 Lemma. With the above notation, π(∆) = χ(∆)−1 ⊗ π.

Proof. This follows from combining (1.6) and (1.7). �

Using class field theory, we regard χ(∆) as a character of the idèle class
group of K, or of a generalized ideal class group. In particular, its
value χ(∆)(P ) on a prime P unramified in K(δ) (i.e., P coprime with
∆ if ∆ is free of (q − 1)-th powers) is defined.

1.9 Lemma. Let P be a prime of A coprime with ∆. Then χ(∆)|(P ) =
(∆
P

)q−1, where (
P

)q−1 is the (q − 1)-th power residue symbol at P , cf.
[6] p. 24.

Proof. Let KP be the completion of K at P and F = FP the Frobenius
element at P , acting as x 7−→ xq

d
(d := deg(P )) on the residue class

field FP = A/P . We have

KP (δ) = KP (
q−1
√

∆) = KP (
q−1
√

∆) = KP (δ),

where ∆ is the reduction (mod P ) and δ
q−1

= ∆. Therefore

χ(∆)(P ) = F (δ)/δ = δ
(qd−1)

= ∆
(qd−1)/(q−1)

= NFP
Fq

(∆) = (
∆

P
)q−1

by definition of the power residue symbol. �

Note that (∆
P

)q−1 is related with (P
∆

)q−1 through the (q − 1)-th reci-
procity law ([6], Theorem 3.5).

1.10 Corollary. Let P be a prime of A coprime with N and ∆. Then
the Frobenius element of P in Gal(K(∆)(N)|K) ↪→ (A/N)∗ is (∆

P
)−1
q−1

times the residue class P of P modulo N .

Proof. (1.2)(v) + (1.8) + (1.9). �

2. The torsion fields.

We fix the data ∆ and N . All the groups H,H0, R, S that appear below
depend on these choices.

As follows from (1.6), the field K(∆)(N) is contained in the compositum
K(N)(δ) of K(N) and the Kummer extension K(δ) of K. Now

(2.1) H := Gal(K(δ)|K) ↪→ µ = F∗q
is the image of χ(∆), and equals µ if and only if ∆ is not a d-th power
for any divisor d > 1 of q − 1. By Galois theory,

(2.2) G := Gal(K(N)(δ)|K)

is a well-defined subgroup of Gal(K(N)|K)×Gal(K(δ)|K) = (A/N)∗×
H. For an element (M, η) of G (where M is the residue class of M
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modulo N) we have:

(M, η) acts trivially on K(∆)(N)
⇔ ∀ y ∈ Nρ

(∆) : (M, η)(y) = y

⇔ ∀x ∈ Nρ : (M, η)(x
δ
) = (x

δ
)

⇔ ∀x ∈ Nρ : σM(x)(η · δ)−1 = xδ−1

⇔ ∀x ∈ Nρ : ρM(x) = η · x,

since by (1.7) and (2.1), η ∈ H acts on δ through multiplication by η.
This means that M as an element of (A/N)∗ agrees with η ∈ H ↪→
F∗q ↪→ (A/N)∗. We thus get the following result.

2.3 Proposition. Let R ⊂ G be the Galois group of K(N)(δ) over
K(∆)(N). Then R = {(M, η) ∈ G | M = η}, and Gal(K(∆)(N)|K)
equals the image in (A/N)∗ of the homomorphism

G −→ (A/N)∗

(M, η) 7−→ η−1M
.

�

We don’t know yet the group G, but it consists of certain elements of
shape (M, η) and fits into the diagram with exact row and column

(2.4)

1

��
{(1, η) ∈ G}

��
1 //

{
(M, η) ∈ G|M = η

}
q
R

// G

��

// Gal
(
K(∆)(N)|K

)
// 1

(M, η)
� //

_
��

η−1M

M

(A/N)∗

��

Gal(K(N)|K)

1

Thus we can read off:

2.5 Corollary. def(∆, N) := [(A/N)∗ : Gal(K(∆)(N)|K)] is a divisor
of q − 1. �
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2.6 Corollary. def(∆, N) = 1 if K(N) and K(δ) are linearly disjoint.
This happens in particular if ∆ is a constant.

Proof. IfK(N) andK(δ) are linearly disjoint thenG = Gal(K(N)|K)×
Gal(K(δ)|K), so by (2.4) the groups Gal(K(N)|K) and Gal(K(∆)(N)|K)
have the same order. The second assertion comes from (1.2)(vi). �

(2.7) We define the groups H0 := Gal(K(δ)|K(δ) ∩ K(N)) ⊂ H and
S := Gal(K(δ) ∩K(N)|K). If h := |H| and h0 := |H0|, then H = µh,
H0 = µh0 , S = µh/h0 , and the restriction map ψ : H−→S is the raising
to the h0-th power in H. Let

ϕ : Gal(K(N)|K) = (A/N)∗−→S
be the other restriction map, induced from K(δ) ∩ K(N) ↪→ K(N).
Then

G = {(M, η) ∈ (A/N)∗ ×H | ϕ(M) = ψ(η)},
and has order |G| = h0|(A/N)∗|. Via H ↪→ µ = F∗q ↪→ (A/N)∗ we
consider H as a subgroup of (A/N)∗. Then

|R| = |{(M, η) ∈ G | M = η} = |{η ∈ H | ϕ(η) = ψ(η)}|
= |ker(ψϕ−1|H)|.

As H0 ⊂ ker(ψϕ−1|H), h0 divides |R|, which in turn divides h. Com-
parison with (2.4) finally yields

(2.8) def(δ,N) = [(A/N)∗ : Gal(K(∆)(N)|K)] =
|R|
h0

,

which in any case is a divisor of |S| = h/h0.

(2.9) As the kernel of (A/N)∗−→(A/rad(N))∗ is a p-group (p := char(Fq))
and (A/rad(N))∗ is p-free, the field K(δ) ∩K(N) is already contained
in K(rad(N)), and the map ϕ of (2.7) factors over (A/rad(N))∗. This
shows that the canonical map

(A/N)∗/Gal(K(∆)(N)|K)−→(A/rad(N))∗/Gal(K(∆)(rad(N))|K)

is in fact an isomorphism. Thus:

2.10 Proposition. The defects def(∆, N) and def(∆, rad(N)) agree.
�

3. The defect of ρ(∆).

As the isomorphism type of ρ(∆) depends only on the class of ∆ ∈ K∗
in K∗/(K∗)q−1, we assume from now on that ∆ is integral, i.e., ∆ ∈
A \ {0}, and not divisible by (q − 1)-th powers. Let c ∈ F∗q be a fixed
primitive (q − 1)-th root of unity. Then we may write

(3.1) ∆ = ck0P k1
1 · · ·P ks

s
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with different monic primes Pi of A of degrees di = deg Pi, and 0 ≤
ki < q− 1 for 0 ≤ i ≤ s, with 0 < ki if i > 0. We arrange them in such
a way that P1, . . . , Pr divide N (r ≤ s) and Pr+1, . . . , Ps are coprime
with N . Note that s = 0, i.e., ∆ constant, is allowed.

We next must identify the Kummer extensions K(δ) = K( q−1
√

∆) in
the framework of Carlitz torsion fields. Let for the moment P be a
fixed monic prime in A, of degree d, and P̃ = (−1)dP .

3.2 Lemma. The unique subfield in K(P ) of degree q − 1 over K is

the Kummer extension K(
q−1
√
P̃ ).

Proof. Dinesh Thakur in [7] constructed d Gauß sums gj (1 ≤ j ≤ d)

such that (
∏

1≤j≤d
gj)

q−1 = (−1)dP = P̃ . The different gj lie in the d-th

constant field extension K(P )FP of K(P ) by FP = A/P ∼= Fqd , while
their product

(3.2.1) GP :=
∏

1≤j≤d

gj

lies in K(P ). For ramification reasons, [K(GP ) : K] = q − 1, which
shows the assertion. �

For later use, we recall the transformation formula, whereNFP
Fq

: FP−→Fq
denotes the norm map:

(3.3) σM(GP ) = NFP
Fq

(M) ·GP

for M ∈ F∗P = (A/P )∗ = Gal(K(P )|K), which follows from [7], Theo-
rem I (or may be checked directly).

In view of the above, we define for k = (k1, . . . , ks) ∈ Ns

(3.4) Gk :=
∏

1≤i≤s

Gki
Pi
.

As immediate consequences of (3.2) and (3.3), the following hold:

(3.5)(i) Gk ∈ K(rad(∆)) (if ∆ is as in (3.1));
(ii) Gq−1

k = (−1)d
∏

1≤i≤s
P ki
i , where d :=

∑
1≤i≤d

kidi is the degree deg(∆)

of ∆;
(iii) σM(Gk) = λk(M) ·Gk, where σM ∈ Gal(K(∆)|K) = (A/∆)∗ is
the class of M ∈ A, ∆ non-constant and coprime with M . Here λk is
the µ-valued character

(3.6)
λk : (A/∆)∗ −→ µ

M 7−→
∏

1≤i≤s
νkii (M)
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with the canonical maps

νi : (A/∆)∗ −→ (A/Pi)
∗ −→ F∗q = µ .

x 7−→ N
FPi
Fq

(x)

Note that λk factors over (A/rad(∆))∗.

Thus we can realize the field K(δ) = K( q−1
√

∆) as a Kummer sub-
extension of K(∆) or even of K(rad(∆)), provided that ck0 = (−1)d.
It remains to generalize this to arbitrary scalars ck0 . Let γ be a (q−1)-
th root of c (so it is a primitive (q − 1)2-th root of unity). Then
δ∗ := γk0Gk satisfies (δ∗)q−1 = (−1)d∆. Therefore we put

(3.7) k∗0 =

 k0, if q or d = deg ∆ is even,
the unique k ≡ k0 + (q − 1)/2 (mod q − 1) with
0 ≤ k < q − 1, otherwise.

Then δ := γk
∗
0Gk is a (q − 1)-th root of ∆.

3.8 Lemma. (i) The degree h = [K(δ) : K] equals

(q − 1)/gcd(q − 1, k0, k1, . . . , ks) = (q − 1)/gcd(q − 1, k∗0, k1, . . . , ks).

(ii) The degree h0 = [(K(δ) ∩K(N) : K] is given by

h0 = (q − 1)/gcd(q − 1, k∗0, kr+1, . . . , ks).

Proof. (i) The first formula is obvious from (3.1) and Lemma 3.2. The
second one (i.e., that k0 may be replaced by k∗0) can be seen as follows:
Suppose that k∗0 ≡ k0 + (q − 1)/2 (mod q − 1). Then at least one of
k1, k2, . . . , ks is odd and q − 1 is even. Let g := gcd(k1, . . . , ks), which
is odd, so 2 is invertible modulo g. Hence the ideal (q − 1) generated
by q − 1 in Z/(g) equals the ideal generated by (q − 1)/2, which gives
gcd((q − 1), k0, k1, . . . , ks) = gcd(q − 1, k0, g) = gcd((q − 1)/2, k0, g) =
gcd((q − 1/2, k∗0, g) = gcd(q − 1, k∗0, k1, . . . , ks).
(ii) The field K(δ)∩K(N) is the Kummer extension of K generated by
δh0 . Some power δn lies in K(N) if and only if the following conditions
are satisfied:

(3.8.1)
ki · n ≡ 0 (mod q − 1), r < i ≤ s,

k∗0 · n ≡ 0 (mod q − 1).

Therefore,

h0 = min{n ∈ N | (3.8.1) holds for n}
= (q − 1)/ gcd(q − 1, k∗0, kr+1, . . . , ks).

�
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With the notation of (2.7) we have the canonical restriction homomor-
phisms

ϕ : Gal(K(N)|K) = (A/N)∗−→S = Gal(K(δ) ∩K(N)|K) = µh/h0

ψ : H = Gal(K(δ)|K) = µh−→S.

As ϕ describes the action of (A/N)∗ on δh0 , if is given by

(3.9) ϕ = λh0k ,

where λk is defined in (3.6); raising to the h0-th power, the components
νkii with r < i ≤ s are annihilated, as is the contribution of the scalar
γk
∗
0h0 , which lies in F∗q. In more detail, ϕ is the map

(A/N)∗−→(A/P1 · · ·Pr)∗ −→ S = µh/h0

x 7−→ λh0k (x) = [
∏

1≤i≤r
νkii (x)]h0 .

What is the restriction of ϕ to F∗q ↪→ (A/N)∗? First, the map

νi : (A/N)∗−→(A/Pi)
∗
N

FPi
Fq−→ F∗q

acts on x ∈ F∗q as νi(x) = x1+q+···+qdi−1
= xdi . Therefore,

ϕ(x) = xd
′h0 = xdh0 ,

with d′ =
∑

1≤i≤r
kidi, since d′h0 ≡ (

∑
1≤i≤s

kidi)h0 = dh0 modulo q − 1, by

(3.8.1). As ψ(x) = xh0 for x ∈ H, we find (see (2.7)):

(3.10)
|R| = | ker(ψϕ−1|H)| = |{x ∈ µh|xh0−dh0 = 1}|

= gcd((d− 1)h0, h) = gcd((d′ − 1)h0, h)

Plugging into (2.8) and simplifying gives
(3.11)

def(∆, N) = |R|/h0 = gcd(d′ − 1, h/h0)

= gcd(d′ − 1,
gcd(q−1,k∗0 ,kr+1,...,ks)

gcd(q−1,k∗0 ,k1,...,ks)
) = gcd(d′ − 1, q − 1, k∗0, k1, . . . , ks)

= gcd(d− 1, q − 1, k∗0, kr+1, . . . , ks),

where the equality next to the last follows from Lemma 3.12 with b :=
gcd(q − 1, k∗0, kr+1, . . . , ks), L := {k1, . . . , kr}. We need the following
elementary result.

3.12 Lemma. Let b ∈ N and L ⊂ N be a finite subset, 0 < d =
∑̀
∈L
d` ·`

with non-negative integers d`. Then

gcd(d− 1, b) = gcd(d− 1, b/ gcd(b, L)).
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Proof. Obviously the right hand side divides the left hand side. Write
g = gcd(b, L), b = g · b∗, d = g · d∗. The stated equality is

gcd(gd∗ − 1, gb∗) = gcd(gd∗ − 1, b∗).

Each divisor t of the LHS must be coprime with g, which shows that
it divides the RHS. �

We collect what has been shown.

3.13 Theorem. Let φ = ρ(∆) be the twisted Carlitz module, where
∆ = ck0P k1

1 · · ·P ks
s with a primitive (q− 1)-th root of unity c and s ≥ 0

different monic primes Pi of degrees di, 0 ≤ k0 < q− 1, 0 < ki < q− 1
for 1 ≤ i ≤ s and d =

∑
1≤i≤s

kidi = deg ∆.

Let further N be a non-constant element of A and suppose that Pi
divides N for 1 ≤ i ≤ r and Pi is coprime with N for r < i ≤ s. The
image of Gal(K) in AutA(Nρ

(∆)) = (A/N)∗ (that is, Gal(K(∆)(N)|K))
has index (see (3.7) for k∗0)

def(∆, N) = gcd(d− 1, q − 1, k∗0, kr+1, . . . , ks).

�

Suppose that M divides N . From the commutative diagram of natural
maps

Gal(K(∆)(N)|K) ↪→ (A/N)∗

↓ ↓
Gal(K(∆)(M)|K) ↪→ (A/M)∗

we see that the quotient by Gal(K(∆)(N)|K) of (A/N)∗ is stable as
soon as rad(N) is divisible by rad(∆). This implies (notations and
assumptions as in (3.13)):

3.14 Corollary. The image of Gal(K) under the representation π(∆) :

Gal(K)−→(Â)∗ provided by the twisted Carlitz module ρ(∆) is the in-

verse image in (Â)∗ of a subgroup of (A/rad(∆))∗ of index

def(ρ(∆)) = def(∆) = gcd(d− 1, q − 1, k∗0).

�

Obviously, this is a sharpening of Corollary 0.2 in the Introduction.

As Gal(K(∆)(N)|K) is now known by (2.3) to (2.8) and Theorem 3.13,
it is straightforward (though laborious if N and ∆ have common divi-
sors) to determine the ramification of K(∆)(N) over K. We restrict to
stating, without details, the result in the most simple case.
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3.15 Example. Suppose that N and ∆ are coprime. From considering
the ramification we find that K(N) and K(δ) are linearly disjoint over
K, so by Corollary 2.6, def(∆, N) = 1, i.e.,

Gal(K(∆)(N)|K)
∼=−→ (A/N)∗.

Furthermore, in this case, the infinite prime of K is tamely ramified
in K(∆)(N) with ramification group F∗q ↪→ (A/N)∗. Each prime di-

visor Q of N is ramified in K(∆)(N), with ramification group equal
to the canonical subgroup (A/Qk)∗ ↪→ (A/N)∗ given by the Chi-
nese Remainder Theorem, if Qk is the exact Q-divisor of N . Each
prime divisor P of ∆ is ramified in K(∆)(N), with ramification group
isomorphic with its ramification group in K(δ)|K, and contained in

F∗q ↪→ (A/N)∗
∼=−→ Gal(K(∆)(N)|K).

4. The constant field extension.

We keep the assumptions of the last section: ∆ and N are fixed and
subject to (3.1).

(4.1) Let F(∆, N) be the algebraic closure of Fq in K(∆)(N), of degree
f(∆, N). In this section we determine f(∆, N) and also f(∆), the
degree of the algebraic closure of Fq in K(tor(ρ(∆))) = lim

−→
N

K(∆)(N).

(4.2) We next put F′ = Fq(γ) = Fqq−1 , the extension of degree q − 1
of Fq, K ′ = K · F′ = F′(T ), K ′(N) = K(N)F′, etc. We identify

Gal(F′|F)
∼=−→ µ, σ 7−→ σ(γ)/γ, through the choice of the primitive

(q − 1)-the root c ∈ F∗q and γq−1 = c. Then

Gal(K ′(N)|K)
∼=−→ (A/N)∗ × µ.

As results from definitions, K(∆)(N) is contained in K ′(N)(δ). Con-
sider the diagram of subfields

(4.3) K ′(N)(δ)

PPPPPPP

jjjjjjjjjj
R′

K ′(N)

(A/N)∗

(A/N)∗×µ
@@@@@@@@@@

@@@@@@@@@@

TTTTTTTTTT K(∆)(N) K(δ)

H

�������������������

K ′(N) ∩K(δ)

S′

H′0 nnnnnnn

K ′

µ UUUUUUUUUUUUUUUU

K
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where each line indicates an inclusion and the group nearby is the
Galois group.

We find that

G′ := Gal(K ′(N)(δ)|K)

is a subgroup of Gal(K ′(N)|K) × Gal(K(δ)|K) = (A/N)∗ × µ × H
which projects onto the two factors (A/N)∗ × µ and H. Let µ′ be the
image of

R′ := Gal(K ′(N)(δ) | K(∆)(N))

under the canonical projection to µ. By Galois theory, µ′ is the group
of K ′ over F(∆, N)(T ). That is

(4.4) f(∆, N) = (q − 1)/|µ′|.
Our strategy is thus to determine R′ and its projection to µ, which
shows some similarity with our proceeding in Section 3.

First, we obtain h′0 := |H ′0| = [K(δ) : K ′(N) ∩ K(δ)] by a slight
modification of the argument of Lemma 3.8: As δn lies in K ′(N) if and
only if

(3.8.1)′ kin ≡ (mod q − 1), r < i ≤ s

holds, we find

(4.5) h′0 = (q − 1)/ gcd(q − 1, kr+1, . . . , ks).

Therefore, the canonical map ψ′ : H = Gal(K(δ)/K) = µ to S ′ =
Gal(K ′(N) ∩ K(δ)|K) = µh/h′0 is x 7−→ xh

′
0 . Second, we describe the

natural map

ϕ′ : Gal(K ′(N)|K)−→S ′.
As δ = γk

∗
0Gk (see (3.7)),

δh
′
0 ≡ γk

∗
0h
′
0

∏
1≤i≤r

G
kih
′
0

Pi
modulo K∗.

Hence (M,ω) ∈ Gal(K ′(N)|K) = (A/N)∗ × µ acts on δh
′
0 through

σM,ω(δh
′
0) = ωk

∗
0h
′
0λ

h′0
k (M) · δh′0

= ωk
∗
0h
′
0 [
∏

1≤i≤r
νkii (M)]h

′
0 · δh′0 .

(Compare to (3.9); again the νkii with r < i ≤ s don’t contribute.)
Therefore

(4.6) ϕ′(M,ω) = ωk
∗
0h
′
0λ

h′0
k (M) ∈ S ′ = µh/h′0

and

(4.7) G′ = {(M,ω, η) ∈ (A/N)∗ × µ×H | ϕ′(M,ω) = ψ′(η)}.
We are now able to describe R′ similar to (2.3).
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4.8 Proposition. (i) R′ = {(M,ω, η) ∈ G′ | M = η};
(ii) R′ ∼= {(η, ω) ∈ H × µ | ηh′0(d−1) = ω−k

∗
0h
′
0}.

Proof. (i) The argument is the same as in the proof of Proposition 2.3.
(M,ω, η) ∈ G acts trivially on K(∆)(N)
⇔ ∀x ∈ Nρ : (M,ω, η)(x/δ) = x/δ
⇔ ∀x ∈ Nρ : σM,ω(x)/(ηδ) = x/δ
⇔ ∀x ∈ Nρ : ρM(y) = ηx
⇔M = η as elements of (A/N)∗.
(ii) This results from (i), (4.7), and the descriptions of ψ′ and ϕ′ given
in (4.5) and (4.6), taking into account that for M = η ∈ F∗q ↪→ (A/N)∗,

λ
h′0
k (η) = ηd

′h′0 = ηdh
′
0

since d′h′0 = (
∑

1≤i≤r
kidi)h

′
0 ≡ (

∑
1≤i≤s

kidi)h
′
0 modulo q − 1. �

The following elementary lemma is left as an exercise.

4.9 Lemma: Let m,n be natural numbers, a, b integers, µm resp. µn
the corresponding groups of roots of unity.
(i) |{(η, ω) ∈ µm × µn | ηa = ωb}| = gcd(mn, an, bm).
(ii) The projection of the group in (i) to the second factor µn has order
gcd(mn, an, bn)/ gcd(a,m).

We apply this to the description of R′ given in (4.8), with m = h,
n = q − 1, a = h′0(d− 1), b = h′0k

∗
0, and find upon simplification: The

group µ′ of (4.3) and (4.4) has order

(4.10) |µ′| = gcd(
h

h′0
(q − 1), (d− 1)(q − 1), hk∗0)/ gcd(

h

h′0
, d− 1).

Note that the only ingredient of this formula that depends on N is
h′0 = (q− 1)/ gcd(q− 1, kr+1, . . . , ks), which takes the value 1 if rad(N)
is a multiple of rad(∆). We thus get the wanted description of f(∆, N)
and f(∆), which covers Corollary 0.3 from the Introduction.

4.11 Theorem. (i) The degree f(∆, N) of the constant field extension
in K(∆)(N) is given by

f(∆, N) = (q − 1)/|µ′|

with |µ′| as in (4.10).
(ii) If rad(N) is a multiple of rad(∆) then f(∆, N) =: f(∆) = (q −
1)/|µ′| with

|µ′| = gcd(h(q − 1), (d− 1)(q − 1), hk∗0)/ gcd(h, d− 1).

(iii) Suppose that h = q − 1. Then

f(∆, N) = gcd((q − 1)/h′0, d− 1)/gcd((q − 1)/h′0, d− 1, k∗0)
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and
f(∆) = gcd(q − 1, d− 1)/ gcd(q − 1, d− 1, k∗0).

�

We conclude with simple examples for the evaluation of the quantities
that occur in Theorem 4.11.

4.12 Examples. (i) Let ∆ = ck0 be constant. Then h = (q −
1)/gcd(q − 1, k∗0), h′0 = 1 and |µ′| = q − 1. Therefore f(∆, N) = 1
for each N .
(ii) Let ∆ = ck0P with some prime P and N be coprime with P . Then
h = h′0 = |µ′| = q − 1 and therefore f(∆, N) = 1.
(iii) Let ∆ = ck0P be as in (ii) with deg P = d and N be divisible by P .
Then h = q−1, h′0 = 1, |µ′| = (q−1) gcd(q−1, d−1, k∗0)/ gcd(q−1, d−1),
and f(∆, N) = gcd(q−1, d−1)/ gcd(q−1, d−1, k∗0). Through suitable
choices of d and k0, each divisor of q − 1 may be realized as f(∆, N)
for such ∆ and N .
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