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Abstract

The work of Levin et al. (2004) popularised stroke-based methods
that add color to gray value images according to a small amount of
user-specified color samples. Even though such reconstructions from
sparse data suggest a possible use in compression, only few attempts
were made so far in this direction. Diffusion-based compression meth-
ods pursue a similar idea: They store only few image pixels and inpaint
the missing regions. Despite this close relation and a lack of diffusion-
based color codecs, colorization ideas were so far only integrated into
transform-based approaches such as JPEG.

We address this missing link with two contributions. First, we
show the relation between the discrete colorization of Levin et al. and
continuous diffusion-based inpainting in the YCbCr color space. It de-
composes the image into a luma (brightness) channel and two chroma
(color) channels. Our luma-guided diffusion framework steers the dif-
fusion inpainting in the chroma channels according to the structure in
the luma channel. We show that making the luma-guided colorization
anisotropic outperforms the method of Levin et al. significantly. Sec-
ondly, we propose a new luma preference codec that invests a large
fraction of the bit budget into an accurate representation of the luma
channel. This allows a high-quality reconstruction of color data with
our colorization technique. Simultaneously we exploit the fact that
the human visual system is more sensitive to structural than to color
information. Our experiments demonstrate that our new codec out-
performs the state-of-the-art in diffusion-based image compression and
is competitive to transform-based codecs.

1 Introduction

Colorization is a practically relevant image processing task that has its origins
in the movie industry. In the 1970s, many monochromatic films were remas-
tered manually to include color. Sỳkora et al. [1] provide a good overview over
the history of early colorization methods. Since this task is time-consuming
and tedious, researchers aim at minimizing the amount of user-interaction
that is required while still allowing artists to influence the result. The method
of Levin et al. [2] is a classical discrete model for stroke-based colorization
where the user prescribes a few color scribbles and the algorithm fills in the
missing colors.
In image compression, at first glance an unrelated field, diffusion-based codecs
pursue similar ideas. They create a sparse representation of the image by
carefully selecting and storing only a small fraction of pixels. A physically
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inspired diffusion process propagates this known information into the missing
areas to inpaint (reconstruct) the full image in decompression. The R-EED
codec of Schmaltz et al. [3] combines the reconstruction capabilities of edge-
enhancing anisotropic diffusion (EED) [4] with efficient entropy coding to
outperform the established transform-based coders JPEG [5] and JPEG2000
[6] on grayscale images. A näıve extension to color images in an RGB color
space also exists [3]. However, it is not competitive to the JPEG family, since
it does not provide the option to benefit from the properties of the human
visual system. Both JPEG and JPEG2000 exploit the fact that the human
perception values structure higher than color. In particular, they use color
spaces that decompose the image into brightness and color information to
compress color channels in a coarser manner.
Although diffusion-based codecs appear to be close in spirit to the concept of
Levin et al. w.r.t. filling in missing information, colorization has so far only
been integrated into JPEG and JPEG2000. In our paper, we close this gap
with a new continuous diffusion-framework for colorization and a dedicated
color codec based on R-EED.

1.1 Our Contribution.

While the colorization method of Levin et al. is formulated purely in a dis-
crete setting, we present a new continuous framework for colorization. We
consider the problem in YCbCr space where the luma (brightness) channel
Y is given by the grayscale input image. Our luma-guided diffusion adapts
to the structure of the brightness channel and propagates the user-specified
color scribbles in the chroma (color) channels to the missing areas. We
evaluate four different diffusion models from our general framework, namely
space-variant isotropic and space-variant anisotropic diffusion, as well as two
newly proposed higher-order counterparts to the aforementioned models. We
show that the discrete method of Levin et al. is closely related to our con-
tinuous higher-order isotropic diffusion. Our experiments on well-known test
images demonstrate that our anisotropic models outperform isotropic meth-
ods significantly.
For image compression, we combine our luma-guided diffusion with the R-
EED codec to a luma preference (LP) mode. It relies on the core idea that
the structural information in the luma channel is more important for the
human visual system than the color components. Therefore, this channel
should be stored with higher accuracy than the chroma channels Cb and
Cr. To this end, we dedicate a large part of our file size budget to the luma
channel. The luma-guided diffusion benefits from the accurate structure in
the brightness channel and allows to reconstruct the chroma channels from
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a smaller amount of known data.
Two of the authors have presented preliminary color compression results
with luma-guided EED in a conference paper [7]. Here we go beyond pure
compression: Our continuous colorization framework offers a new area of
application, three additional luma-guided diffusion models, and we establish
connections to prior discrete methods. Moreover, we conduct experiments
with diffusion-based compression on a real-world image database [8].

1.2 Related Work.

Colorization. Luan et al. [9], classify colorization methods as stroke- or ex-
ample-based. In stroke-based methods [2, 10, 9, 11, 12, 13], the user manually
specifies a small amount of color scribbles on a single image or a sequence of
images. In contrast, example-based algorithms [1, 14, 15, 16] require one or
multiple fully colored images that are similar to the grayscale image to be
colorized. This approach is useful for video sequences and can be combined
with stroke-based approaches: A single frame can be colored with scribbles
and serve as an example for the remaining frames. Due to our focus on
single images, we only consider the stroke-based approach. For a review for
colorization by example, we refer to Luan et al. [9].
In our paper, we establish a close relationship of our diffusion framework
to the work of Levin et al. [2]. They minimize a discrete energy that re-
lies on a simple assumption: Neighboring pixels with similar grayvalues also
have similar colors. First they transform the image to YUV space to ob-
tain a structure-color-decomposition. Then they minimize the difference of
each unknown color pixel in YUV space to a weighted average of its 3 × 3
neighborhood.
Several contributions try to stop color propagation across brightness edges
that is prominent in the model of Levin et al. To this end, Huang et al. [10]
compute thin, closed edges with a Sobel operator and apply multiple post-
processing steps. Hua et al. [17] interpret colorization from a gradient domain
perspective and propose a framework with edge-preserving constraints that
includes colorization among other tasks. Casaca et al. [13] achieve sharp
edges with a completely different approach: They first use the color scribbles
to partition the image into segments and then propagate color according to
segment labels. This approach also allows easy corrections by iterated user-
interaction. In our work, we aim to address edge preservation directly in a
continuous energy formulation.
There are also various non-local approaches for colorization: They have the
advantage that they can propagate color globally to all image areas that
have similar structure. For instance, Yatziv and Sapiro [18] average known
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colors globally according to intensity, while Luan et al. [9] group pixels only
locally by intensity and globally by texture similarity. A mapping between
brightness and color values is obtained by Quang et al. [11] by means of a
machine learning approach, and Yang [12] propagates color information with
a recursive bilateral filter. For the specialized class of monochromatic manga
comics, Qu et al. [19] use clustering according to texture similarity. While
non-local approaches can yield better results, they also tend to achieve this at
the cost of computational complexity which can be a limiting factor in time-
critical applications like video decompression. In our compression codec we
rely on local, diffusion-based colorization.
The higher-order approaches that we consider in Section 2 are very rare in
the literature. To our best knowledge, only Greer et al. [20] have proposed
a nonlinear higher-order model for heat flow on surfaces. It is unrelated to
colorization.
Compression. In the second part of our paper, we propose a new diffusion-
based compression approach. This class of codecs started out with a proof-
of-concept codec by Galić et al. [21]. It combined edge-enhancing anisotropic
diffusion (EED) [4] with a triangular subdivision of the image in order to find
and store known data efficiently. There are many different diffusion models.
For instance, Chan and Shen [22] proposed to use the total variation ap-
proaches of Rudin et al. [23] without conducting actual experiments. When
Schmaltz et al. [3] introduced their PDE-based compression codec, they con-
ducted an evaluation of a wide range of inpainting models and concluded
EED to be the best choice. In particular, they found that good inpainting
methods rely on nonlocality and anisotropy. Therefore, widely used local
and isotropic operators such as total variation [22, 23] do not perform well.
We discuss their codec in more details in Section 2.1. So far, there are no
dedicated color codecs, but there is a variety of other specialized compression
methods, for example for cartoons [24], depth maps [25, 26, 27], 3-D data
[3], or texture [28]. For a full review of diffusion-based compression, we refer
to the in-depth survey of Hoeltgen et al. [29].
The transform-based codecs JPEG [5] and JPEG2000 [6] rely on a com-
pletely different concept, since they apply a discrete cosine or wavelet trans-
form to create a sparse image representation, while diffusion-based codecs
operate in the spatial domain. The JPEG family exploits the properties of
the human visual system in order to improve the perceived fidelity of com-
pressed color images: JPEG performs a subsampling of the chroma channels
in YCbCr space, while JPEG2000 omits fine-scale wavelet coefficients for
the color components of YUV space. With our method, we also want to
exploit perception. However, we go one step further than the JPEG fam-
ily, since we compensate the reduced amount of known data for the color
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channels by reusing structural information from the brightness component.
Similarly, some transformation-based codecs exploit colorization ideas for
compression. Most of them rely on the method of Levin et al. [2]. In [30],
Horiuchi and Tominagaan use an extended version of the method of Levin
et al. in combination with JPEG to restore color information from sam-
ples in CIELab space. Cheng and Vishwanathan [31] investigate a machine
learning approach to the problem. They interpret the method of Levin et al.
as a learning algorithm and incorporate a modified version into JPEG. Ono
et al. [32] explore finding optimal representative pixels for colorization with
the approach of Levin et al. in compression. Furthermore, variations of a
colorization method based on Markov random fields have been applied in a
post-processing step to JPEG [33] and JPEG2000 [34]. Lee et al. [35] also
compress the luma channel with conventional transform-based coding. They
formulate the colorization part as a L1 minimization problem for choosing a
small set of representative color values.

1.3 Organization of the Paper

We first review the core concepts of diffusion-based inpainting and compres-
sion in Section 2.1 since we need them for our new contributions. In Section
2, we propose our new luma-guided colorization framework, establish a con-
nection to the method of Levin et al., and evaluate it experimentally. Section
3 is dedicated to our luma-preference mode for diffusion-based compression.
We describe our new codec and demonstrate its potential with experiments
on a database of well-known test images. Finally, we conclude our paper in
Section 4 with a summary and an outlook on future work.

2 From Inpainting to Colorization

2.1 Review: Diffusion-based Inpainting

Let us consider a rectangular image domain Ω ⊂ R2, and an image f =
(fR, fG, fB)> with the RGB channels fc : Ω→ R, c ∈ {R,G,B}. In inpaint-
ing, we know the image content only on a subset K ⊂ Ω of the image domain,
the so-called inpainting mask. Our task is now to reconstruct the missing
areas in the inpainting domain Ω \K. In order to propagate the known data
to the inpainting domain, we consider the image evolution which is described
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by the general diffusion equation

∂tuc = div(D∇uc) on Ω \K, (1)

uc = fc on K, (2)

with reflecting boundary conditions on the outer image boundaries ∂Ω. Ac-
cording to Eq. (1), the diffusion process equilibrates contrast differences be-
tween the pixels over time t. In denoising applications, t → ∞ leads to a
flat steady state containing the average pixel value of the channel. However,
the Dirichlet boundary conditions of Eq. (2) fix the known data on K which
allows the propagation of information from points in K to points in Ω \K,
but not the other way around. This leads to a non-trivial steady state: the
reconstructed image (see e.g. [21]). Experiments for the models that we con-
sider show that the initialization of u on Ω\K at time t = 0 has no influence
on this reconstruction.
Specific diffusion models described by Eq. (1) differ in their choice of the
diffusion tensor D, a positive definite 2×2 matrix that steers the propagation.
Following the taxonomy of Weickert [36], we distinguish diffusion models by
two core properties: If the tensor D depends on the evolving image u, the
method is referred to as nonlinear, and linear otherwise. If the eigenvalues λ1

and λ2 of D are equal, the propagation behavior is the same for all directions
and the method is called isotropic. For instance, Gerig et al. [37] proposed
the following nonlinear isotropic model for color images:

∂tuc = div

(
g
(∑
`∈{R,G,B}

|∇u`|2
)
∇uc

)
, c ∈ {R,G,B}. (3)

Here the diffusion tensor degenerates to a scalar, monotonously decreasing
diffusivity g(

∑
`∈{R,G,B} |∇u`|2). The sum of the gradient magnitude over

all channels acts as an edge detector: At locations of high magnitude, the
diffusivity reduces the amount of diffusion compared to flat regions. We use
the Charbonnier diffusivity [38]

g(s) :=
1√

1 + s/λ2
(4)

with some contrast parameter λ > 0. Note that the scalar diffusivity stops
diffusion in all directions. However, as the evaluation of Schmaltz et al. [3]
has shown, anisotropic models are more powerful in compression. To this
end, we also consider edge-enhancing anisotropic diffusion (EED) [4]. It
adapts the diffusion tensor D to the local image structure according to Di
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Zenzo’s structure tensor for color images [39]:

JRGB :=
∑

c∈{R,G,B}

∇uc,σ∇u>c,σ, (5)

where uk,σ denotes a convolution of the channel uk with a Gaussian of stan-
dard deviation σ. It propagates the structural information to its neighbor-
hood. The nonnegative eigenvalues µ1 ≥ µ2 of JRGB measure the contrast
in the directions of the eigenvectors v1 and v2. To reflect the image struc-
ture, the diffusion tensor D uses the same eigenvectors. In order to reduce
diffusion across edges, we apply the diffusivity from Eq. (4) to µ1. Thus, the
first eigenvalue of the diffusion tensor is λ1 := g(µ1). For full diffusion along
edges we use a constant second eigenvalue λ2 := 1.

2.2 Relation to the Method of Levin et al.

In the following, we show that the discrete colorization approach of Levin et
al. [2] is closely related to the continuous diffusion-based inpainting methods
of Section 2.1. This connection motivates the introduction of a new class of
diffusion-based colorization methods in Section 2.3.
In contrast to inpainting, a full original gray value image is known for col-
orization. In addition, a user can specify some color information at arbitrary
positions, for instance some manually drawn color “scribbles” (see Fig. 1 (b)).
The RGB space from the previous section is not adequate to describe this
situation, since each channel carries color information. Instead, color spaces
like YCbCr provide a separation of the image data into intensity informa-
tion in the luma channel Y and color information in the chroma channels
Cb and Cr; see e.g. [40]. We use the following transform of an RGB image
fRGB = (fR, fG, fB)> to YCbCr space:

(fY , fCb, fCr)
> = (0, 127.5, 127.5)> + TfRGB (6)

T :=

 0.2990 0.5870 0.1140
−0.1687 −0.3313 0.5000

0.5000 −0.4187 −0.0813

 . (7)

With this transformation, we can describe the colorization task adequately:
We want to obtain a colorized version u : Ω → R3 of a grayscale image
f : Ω → R. In YCbCr space, f corresponds to the Y channel of u, which
yields uY = f on the entire domain Ω. On a subset K ⊂ Ω, color scribbles
uCb = fCb and uCr = fCr are given in addition. Our task is now to reconstruct
the missing colors in Ω \K.
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Levin et al. [2] base their colorization algorithm on the assumption that
for any pixel r from the discrete image domain Ω̃ = [1, ...,m] × [1, ..., n],
the points in its 3× 3 neighborhood N (r) should have similar colors unless
there is a huge discrepancy in the corresponding luma values. Imposing this
constraint onto the reconstructed colors for c ∈ {Cb,Cr} comes down to
minimising the discrete energy

E(uc) =
∑

r∈Ω̃\K̃

(( ∑
s∈N (r)

wr,s

)
uc,r −

∑
s∈N (r)

(
wr,suc,s

))2

, (8)

wr,s ∼ 1 +
1

σ2
r

(uY (r)− µr)(uY (s)− µr). (9)

Levin et al. define confidence weights wr,s in such a way that they sum up to
1. They are based on the luma channel uY in the considered pixels as well as
the mean µr and variance σr in a window around the center pixel r. Interest-
ingly, this model resembles the standard finite-difference approximation [41]
of a divergence term as it appears in the diffusion equation (3). On a discrete
grid with grid size h, we approximate div(g∇uc) in each pixel r := (i, j) of
the channel c. According to [41], we use finite differences of the diffusivity g
and the evolving image uc. If uc,i,j and gi,j denote approximations to uc and
g in pixel (i, j), we obtain

div(g∇uc)i,j ≈
1

h

(gi+1,j + gi,j
2

uc,i+1,j − uc,i,j
h

− gi,j + gi−1,j

2

uc,i,j − uc,i−1,j

h

+
gi,j+1 + gi,j

2

uc,i,j+1 − uc,i,j
h

− gi,j + gi,j−1

2

uc,i,j − uc,i,j−1

h

)
.

(10)

Since all diffusivities gs with s ∈ N (r), the 3× 3 neighborhood of r, appear
in Eq. (10), we can change notation to

wr,s =

{
1
2
gs
h2 (r 6= s),

2 gs
h2 (r = s),

(11)

and obtain the same structure as Eq. (8) for a fixed r ∈ Ω̃ \ K̃:

div(g∇uc)r ≈
( ∑

s∈N (r)

wr,s

)
uc,r −

∑
s∈N (r)

(
wr,suc,s

)
(12)
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This implies that the model of Levin et al. can be interpreted as a discretiza-
tion of the continuous energy

E(uc) =
1

2

∫
Ω\K

(
div(g(|∇uY |2)∇uc)

)2
dx (13)

with natural boundary conditions

n>∇div(g∇uc) = 0, div(g∇uc) = 0, (14)

where n> denotes the outer normal for a boundary point in ∂Ω. Finding a
minimizer uc with gradient descent leads to the following partial differential
equation on Ω \K:

∂tuc = div(g(|∇uY |2)∇(div(g(|∇uY |2)∇uc))). (15)

On the inpainting mask K, we have Dirichlet boundary conditions uc = fc.
According to Eq. (15), the model of Levin et al. can be understood as a
higher-order variant of the isotropic diffusion model in Eq. (3). This bi-
isotropic inpainting also bases its diffusivities purely on the luma channel
uY . In the following we use this observation to derive new diffusion-based
colorization algorithms.

2.3 Generalized Diffusion-based Colorization Models

In Section 2.1, we have learned that anisotropic inpainting models are able to
reconstruct edges more accurately than their isotropic counterparts. There-
fore, we can hope to improve the method of Levin et al. by replacing the
scalar-valued diffusivity in Eq. (13) by a diffusion tensor. We adapt our
colorization locally to the image structure with the luma tensor

JY := ∇uY,σ∇u>Y,σ, (16)

which describes only the known image structure in the brightness channel.
Now we can formulate the colorization in YCbCr space as a variational prob-
lem. We impose a smoothness constraint on the missing parts of the chroma
channels. For a given channel c ∈ {Cb,Cr}, we minimize the energy

E(uc) =
1

2

∫
Ω\K

(
div
(
D(JY )∇uc

))2

dx. (17)

Note that the first eigenvector v1 of the luma tensor JY is parallel to the
luma gradient ∇uY,σ and its second eigenvector v2 is perpendicular to it.
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Table 1: Overview of our Diffusion-based Colorization Methods.

model energy diffusion equation

isotropic E(uc) = 1
2

∫
Ω\K g(|∇uY |2) |∇uc|2 dx ∂tuc = div(g(|∇uY |2)∇uc)

bi-isotropic E(uc) = 1
2

∫
Ω\K

(
div(g(|∇uY |2)∇uc)

)2
dx ∂tuc = div(g(|∇uY |2)∇(div(g(|∇uY |2)∇uc)))

EED E(uc) = 1
2

∫
Ω\K ∇>ucD(JY )∇uc dx ∂tuc = div(D(JY )∇uc)

Bi-EED E(uc) = 1
2

∫
Ω\K

(
div(D(JY )∇uc)

)2
dx ∂tuc = div(D(JY )∇(div(D(JY )∇uc)))

The corresponding eigenvalues are µ1 = |∇uY,σ|2 and µ2 = 0. As in the
previous sections, we choose the eigenvectors of D(JY ) to be v1 and v2. Using
once more variational calculus as in Section 2.2, we obtain the corresponding
second-order diffusion process

∂tu = div
(
D(JY )∇

(
div(D(JY )∇c)

))
. (18)

Note that in contrast to the inpainting models in Section 2.1, the diffusion
tensor relies only on information from the luma channel and thus the process
is linear. Its ability to preserve edges in the chroma channels relies on two
factors: The structural information of the luma tensor JY and the location
and value of the specified chroma information. Thereby, brightness informa-
tion can be reused, but the selection of known data still allows the user to
influence the formation of edges in the Cb and Cr channels. We call this new
model luma-guided Bi-EED.
Since first-order models are already successful in inpainting [21, 3], we also
want to investigate if the higher-order approach of Levin et al. can be sim-
plified. To this end, we propose to minimise the energy

E(uc) =
1

2

∫
Ω\K

∇>ucD(JY )∇uc dx. (19)

and obtain the corresponding diffusion process

∂tuc = div(D(JY )∇uc), c ∈ {Cb,Cr}. (20)

As in Section 2.1, we can obtain both isotropic and anisotropic processes
from this model by choosing appropriate eigenvalues for D(JY ). We denote
these two colorization models as isotropic and EED. Table 1 provides an
overview of the four energies and their corresponding diffusion PDEs.

2.4 Colorization Experiments

In the following, we perform two sets of experiments: a quantitative com-
parison and a purely visual one. For our implementation, we use the finite
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original regular color grid Levin et al. EED

original image scribbles Levin et al. EED

Figure 1: Colorization (a) Rows 1 and 2: Quantitative experiments on the Kodak images 24 and
15. Only 1% of the original color data is given on a regular grid and error values are computet w.r.t. the
original image. (b) Rows 3 and 4: Colorization with manual scribbles on images 100099 and 206062
of the Berkeley image database. These to images should be considered as recoloring since we do not use
the original colors for the scribbles.

difference framework of Weickert et al. [42]. We consider the evolution of the
parabolic PDEs from the previous section and solve the inpainting problem
iteratively with fast explicit diffusion (FED) [43] combined with a coarse-to-
fine initialization. We stop the iterative scheme as soon as the norm of the
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Table 2: Average MSE for colorization on the Kodak database.

isotropic bi-isotropic Levin et al. EED Bi-EED

RGB-MSE 20.338 20.328 22.503 13.836 13.831

CIELab error 2.7894 2.7907 2.8155 2.2976 2.2974

residual has decreased by a factor 10−5. Experimentally, we have determined
that a small contrast parameter seems to consistently yield the best results
for all four of our diffusion models. Thereby, the contrast parameter is fixed
to λ = 0.01 for all results.
First, we compare the quality of our four methods luma-guided isotropic and
bi-isotropic diffusion, EED, and Bi-EED against the reference implementa-
tion provided by Levin et al. [2]. For a quantitative evaluation, on the Kodak
database [8] we keep only 1% of the color data, colorize the images, and com-
pute the RGB-MSE w.r.t. the originals. In order to avoid bias towards one of
the algorithms, we keep the known data on a regular grid. As an additional
color distortion measure, we compute the average Euclidean distance in the
CIELab color space [44] (observation angle 2◦, illumination D65) that has
been designed to reflect perceived color differences.
Table 2 demonstrates that higher-order models do not yield a significant ad-
vantage over their simpler counterparts. Empirically we found that their re-
spective evolutions differ, but the steady state is almost identical. Therefore,
we prefer isotropic diffusion and EED for colorization since they converge sig-
nificantly faster. Higher-order models might still be viable for applications
that rely on the evolution, for instance denoising. Compared to Levin et al.,
the isotropic PDEs perform better on average, but the anisotropic models
yield by far the best quantitative results. Fig. 1(a) shows that the edge-
enhancing properties of anisotropic diffusion avoid the substantial colour-
bleeding of the approach of Levin et al. in areas with complex, high-contrast
structures (e.g. tree-branches, hair).
In a second evaluation, we compare EED and Levin et al. on images from the
Berkeley database [45] in a practical colorization scenario: In Fig. 1(b) we
manually specify some rough color scribbles without considering any ground
truth images. These experiments confirm that EED avoids color bleeding also
with rough scribbles: For instance, the bear’s fur in image 100099 is consis-
tently brown for EED, while blue color from the water bleeds in for Levin
et al. Similar phenomena occur at the flower-petals in image 206062. Due
to its consistent performance we use EED colorization for our compression
applications in Section 3.
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3 From Colorization to Compression

3.1 Review: Compression with R-EED

The practical application of our PDE-based colorization in compression builds
on successful concepts from the R-EED codec of Schmaltz et al. [3]. In con-
trast to the inpainting case described in Section 2.1, the whole original image
is known and the inpainting mask K can be chosen freely. The selection of
known data affects the reconstruction quality significantly (see [46, 47]) and
influences the coding cost.
R-EED achieves a good balance between coding efficiency and inpainting ac-
curacy by pursuing a subdivision strategy. It defines a fixed point pattern
which includes the four corner points and the midpoint of a given rectangular
image. With this simple inpainting mask, it reconstructs the image. If the re-
sulting mean squared error (MSE) exceeds a given threshold a, the algorithm
splits the image in its largest dimension. For each rectangular half, R-EED
adds the corresponding point pattern to the mask, inpaints this subimage
locally, and compares the result again with the threshold. We repeat this
successively until the error threshold is respected by all subimages or none of
them can be split any further. This approach restricts the inpainting mask
to a regular adaptive grid (see Fig. 3(a)), which achieves two goals: It limits
the search space, thus improving runtime, and allows to store the positions
of known data efficiently. Each subdivision corresponds to a node in a binary
tree, and the leaves of the whole splitting tree encode the relative positions
for point patterns.
Now that the inpainting mask has been selected, the codec performs a coarse
quantization of each known pixel value to q different, equally spaced intensity
values from the interval [0, 255]. These quantized values can finally be stored
efficiently with a suitable entropy coder such as arithmetic coding [48] or
PAQ [49]. Note that R-EED needs to optimize the number of quantized
values q, the subdivision threshold, and the contrast parameter λ of EED.
In addition, an important post-processing step in R-EED is the so-called
brightness optimization. Instead of quantizing the original pixel values, R-
EED chooses the optimal value at each mask position from the quantized
co-domain. While this introduces an error to the sparse set K of known data,
it has been shown that such brightness optimization can greatly improve the
inpainting quality on the inpainting domain Ω\K [29]. For further technical
details of the original R-EED codec, we refer to [3]. In the following, we
describe how to use our colorization methods for an efficient color extension
of this codec.
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3.2 Color Compression with Luma Preference Mode

Currently, R-EED by Schmaltz et al. [3] only supports compression of color
images in RGB space. It treats all channels equally by inpainting with the
coupled multi-channel EED from Section 2.1. The locations of known data
are shared between these channels. This reduces the overhead since only one
inpainting mask needs to be stored, but it also implicitly encodes the image
structure (such as edges) in all three channels. In the following, we apply
our luma-guided colorization in YCbCr space to eliminate this redundancy.
Since we use YCbCr space, we can also exploit the fact that the human visual
system is much more sensitive to errors in the luma channel than to deviations
in the chroma components (see e.g. [50]). Therefore, we can increase the
perceived quality by storing the luma channel with higher accuracy compared
to the chroma information.
Motivated by the two observations above, we propose a luma preference (LP)
mode for color compression with R-EED. In order to reach our goal of ac-
curate luma compression, we prescribe a target compression ratio R : 1 and
dedicate a larger amount of the resulting bit budget to the brightness chan-
nel. We describe this weighting of the luma and chroma components by the
LP ratio r ≥ 1. This free parameter expresses the file sizes sCb and sCr for
color data as multiples of the luma size sY :

sY = r · sCb = r · sCr. (21)

Therefore, the desired compression ratio R : 1 also determines sY . Due to
Eq. (21), the total size of the compressed file is (1 + 2r)sY . Consequently,
for an original file size sO, LP mode reaches the target ratio if sY satisfies

sY :=
sO

(1 + 2r)R
. (22)

Thus, our channel weighting with the LP ratio introduces perceptive coding
to R-EED in the same sense as chroma subsampling in JPEG. However, this
only addresses one of our two goals. Instead of just improving the quality
of structural information at the cost of color accuracy, we want to exploit
correlations between the channels. Even though the edges are not identical
in the Y, Cb, and Cr components, a luma edge is still a good indicator for
a chroma edge, as the high-fidelity colorizations in Section 2.4 demonstrate.
Therefore, we use the compressed luma channel as the guidance image for
our colorizations method from Section 2. Moreover, we can still influence the
formation of chroma edges by choosing the colorization mask Kc and opti-
mising the chroma contrast parameter λCbCr for the diffusivity from Eq.(4).
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In contrast to Eq. (20), we restore all channels with the luma diffusion ten-
sor and allow individual known data Kc for every channel. On Ω \ Kc, we
compute the steady state of the evolution

∂tuc = div(D(JY )∇uc), c ∈ {Y,Cb, Cr}. (23)

Thus, we perform non-linear EED in the luma channel and linear luma-guided
EED in the chroma channels. Finally, we combine the channel weighting and
luma-guided diffusion to our luma preference codec. In the following, we
describe its compression and decompression pipelines.

Compression in LP mode consists of two sequential steps.
Step 1: Luma Compression. For the luma channel, we obtain the mask
with the R-EED subdivision scheme from Section 2.1. We optimize the
contrast parameter λY , and the number of quantized gray values qY in the
luma channel for the best brightness MSE at the target file size sY . We
approximate sY by compressing the positions of known data represented by
a binary luma tree and the quantized gray values with PAQ [49]. In addition,
we optimize the intensity values at the locations of the final luma inpainting
mask.
Step 2: Chroma Compression. In this compression step, we also perform
subdivision and optimize a contrast parameter λCbCr and a quantization pa-
rameter qCbCr. However, there are some important differences. To find the
colorization mask, we employ the same subdivision scheme as in R-EED.
However, we use the accurate structural information of the already encoded
luma tensor for luma-guided EED colorization. Since this reduces the im-
portance of exact mask positions, we use a joint chroma tree for the Cb and
Cr channels. The reduced cost of the shared tree frees up bits for additional
data points and allows finer quantization. We also optimize our parameters,
known data, and chroma values w.r.t. the final MSE after transformation of
the reconstruction back to RGB space.
Decompression is very straightforward and strictly sequential. A PAQ
decoding yields access to the parameters and known data. The trees enable
us to reconstruct the masks for all channels. After inpainting the luma
channel, we have the structural information of the reconstructed brightness
component and can colorize the image. A transformation from YCbCr to
RGB space concludes the reconstruction.
File Format. We first write all data sequentially in a binary file. The
header contains the image dimensions m,n, the contrast parameters λL and
λCbCr, and the LP factor r, each as a binary number of adequate size (8-16
bit). As in the original R-EED, we store the subdivision trees in terms of
their minimal and maximal depth and a binary sequence that indicates the
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Figure 2: Error distribution on Kodak image database: (a) Top: RGB-MSE over all RGB channels
(lower is better), (b) Bottm Left: SSIM in the luma channel (higher is better), (c) Bottom Right:
Euclidean CIELab Distance in the a and b channels (lower is better).

tree structure in-between. Then we append the quantized luma or chroma
values row-by-row as a sequence of raw binary numbers. Finally, we apply
the entropy coder PAQ [49] to the whole file. Note that in comparison to
our conference publication [7], we have simplified the file format. Originally,
we used entropy encoding for luma and chroma values separately. The joint
PAQ container allows us to write all data sequentially without the need for
jump addresses and can reduce the file size slightly for high compression
ratios.

3.3 Compression Experiments

We compare our luma preference codec to the state-of-the-art in PDE-based
compression, namely R-EED in RGB space, and the established transform
coders JPEG and JPEG2000. For the implementation of our codec we use the
FED-approach with coarse-to-fine initialization from Section 2 and parallelize
it on the GPU. Compared to the original R-EED implementation, which took
days to fully optimise a single 256 × 256 image, R-EED-RGB compression
now takes ≈ 2min to find the mask and ≈ 1h for tonal optimisation. In LP
mode, this time is further reduced to ≈ 1min for tree-building and ≈ 30min
for tonal optimisation (on Intel Xeon CPU W3565@3.20GHz with Nvidia
Geforce GTX 460 ). In both cases, a typical decoding takes ≈ 0.8 seconds
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Figure 3: (a) Top row: Illustration of mask generation. From left to right: example subdivision
with corresponding mask points in red; subdivision tree with numbered leaf nodes that correspond to
subimages; luma and chroma masks for Kodak image 7 at 60:1. (b) Remaining Rows: Results for the
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are used: For MSE in RGB space and Euclidean distance AB in the a and b channels of CIELab lower is
better, for SSIM in the luma channel higher is better.
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which amounts primarily to PAQ decompression.
In our conference paper [7] we have focused on classic test images with low
amounts of texture. Here we consider the Kodak database [8]: It is fre-
quently used for the evaluation of compression methods and contains also
highly textured images. For a quantitative evaluation, we consider mainly
the mean squared error (MSE) over all three channels of RGB space. Since
structural information is particularly important for perception, we also use
the structural similarity index (SSIM), a perceptually motivated measure for
grayscale-converted color images [51]. Moreover, we measure color distortion
in the a and b channels of CIELab space.
The quantitative evaluation in Fig. 2 demonstrates that our LP-mode can
indeed outperform standard R-EED by a large margin in all three error mea-
sures. This shows that LP-mode is not merely a perceptual improvement, but
also makes better use of the given bit budget. In particular, the additional
known data in the luma channel enables it to reconstruct more small-scale
details in textured images than R-EED. This helps to close the gap towards
the transform-based coders which have the advantage that they can deal
better with textured images.
Compared to JPEG, R-EED (LP) is consistently better w.r.t the overall
RGB-MSE. JPEG achieves a slight advantage in the luma channel by reduc-
ing the color accuracy significantly. On average, R-EED (LP) does not quite
reach the quality of JPEG2000 on the full database. However, it is able to
surpass it for those images of the Kodak database that have only moderate
amounts of texture. Fig. 3 illustrates the advantages and limitations of R-
EED (LP): On textured images with low compression rates, JPEG2000 still
yields better results. However, for images with moderate amounts of texture,
it preserves more detail and accurate colors without introducing blocking ar-
tifacts like JPEG and JPEG2000. In particular, R-EED (LP) offers the best
CIELab distance consistently over all compression ratios.

4 Conclusion and Outlook

We have presented a new diffusion-based colorizations framework in YCbCr
space and have shown that the method of Levin et al. is related to isotropic
diffusion inpainting. Our luma-guided anisotropic diffusion outperforms the
approach of Levin et al. and can reconstruct color from very sparse known
data. This makes it a valuable tool for compression: Our luma preference
mode introduces perceptive coding to PDE-based compression. This provides
another important step towards reaching the same sophisticated level of en-
gineering as transform-based codecs. An evaluation on the Kodak database
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demonstrates that on images with medium amounts of texture, LP mode can
beat both PDE- and transform-based competitors. Even for highly textured
images, our method outperforms JPEG and comes close to the quality of
JPEG2000.
Our contributions open up interesting perspectives for future work: In com-
bination with optic flow or 3-D diffusion, luma-guided diffusion is promising
for video colorization. Moreover, the new higher-order models could be eval-
uated in different applications. On the compression side, the performance
on textured images can be addressed by applying texture synthesis in the
luma channel. Our general concept of LP mode can be extended with any
new reconstruction approaches such as promising hybrid approaches with
non-local and PDE-based inpainting [28]. Overall, our contributions demon-
strate that there is still a lot of unexplored potential for new applications in
diffusion-based image processing.
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[21] I. Galić, J. Weickert, M. Welk, A. Bruhn, A. Belyaev, and H.-P. Seidel,
“Image compression with anisotropic diffusion,” Journal of Mathemati-
cal Imaging and Vision, vol. 31, no. 2–3, pp. 255–269, 2008.

[22] T. Chan and J. Shen, “Mathematical models for local nontexture in-
paintings,” SIAM Journal on Applied Mathematics, vol. 62, no. 3, pp.
1019–1043, Jul. 2002.

[23] L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based
noise removal algorithms,” Physica D, vol. 60, pp. 259–268, Nov. 1992.

[24] M. Mainberger, A. Bruhn, J. Weickert, and S. Forchhammer, “Edge-
based compression of cartoon-like images with homogeneous diffusion,”
Pattern Recognition, vol. 44, no. 9, pp. 1859–1873, 2011.

[25] J. Gautier, O. L. Meur, and C. Guillemot, “Efficient depth map compres-
sion based on lossless edge coding and diffusion,” in Proc. 29th Picture
Coding Symposium, Krakow, Poland, May 2012, pp. 81–84.

[26] Y. Li, M. Sjostrom, U. Jennehag, and R. Olsson, “A scalable coding ap-
proach for high quality depth image compression.” in 3DTV-Conference:
The True Vision - Capture, Transmission and Display of 3D Video,
Zurich, Switzerland, Oct. 2012, pp. 1–4.

[27] S. Hoffmann, M. Mainberger, J. Weickert, and M. Puhl, “Compression
of depth maps with segment-based homogeneous diffusion,” in Scale-
Space and Variational Methods in Computer Vision, ser. Lecture Notes
in Computer Science, A. Kuijper, K. Bredies, T. Pock, and H. Bischof,
Eds. Berlin: Springer, 2013, vol. 7893, pp. 319–330.

[28] P. Peter and J. Weickert, “Compressing images with diffusion- and
exemplar-based inpainting,” in Scale-Space and Variational Methods in
Computer Vision, ser. Lecture Notes in Computer Science, J.-F. Aujol,

21



M. Nikolova, and N. Papadakis, Eds. Berlin: Springer, 2015, vol. 9087,
pp. 154–165.

[29] L. Hoeltgen, M. Mainberger, S. Hoffmann, J. Weickert, C. H. Tang,
S. Setzer, D. Johannsen, F. Neumann, and B. Doerr, “Optimising spatial
and tonal data for PDE-based inpainting,” in Variational Methods in
Image Analysis. Berlin: De Gruyter, 2016, to appear.

[30] T. Horiuchi and S. Tominaga, “Color image coding by colorization ap-
proach,” EURASIP Journal on Image and Video Processing, vol. 2008,
no. 158273, 2008.

[31] L. Cheng and S. Vishwanathan, “Learning to compress images and
videos,” in Proc. 24th International Conference on Machine Learning,
Corvallis, OR, Jun. 2007, pp. 161–168.

[32] S. Ono, T. Miyata, and Y. Sakai, “Colorization-based coding by focus-
ing on characteristics of colorization bases,” in Proc. Picture Coding
Symposium (PCS) 2010, Dec. 2010, pp. 230–233.

[33] H. Noda, N. Takao, and M. Niimi, “Colorization in YCbCr space and
its application to improve quality of JPEG color images,” in Proc. 14th
IEEE International Conference on Image Processing, vol. 4, San Anto-
nio, TX, Sep. 2007, pp. 385–388.

[34] H. Noda and M. Niimi, “Local MAP estimation for quality improvement
of compressed color images,” Pattern Recognition, vol. 44, no. 4, pp.
788–793, 2011.

[35] S. Lee, S.-W. Park, P. Oh, and M. G. Kang, “Colorization-based com-
pression using optimization,” IEEE Transactions on Image Processing,
vol. 22, no. 7, pp. 2627–2636, 2013.

[36] J. Weickert, Anisotropic Diffusion in Image Processing. Stuttgart:
Teubner, 1998.
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