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Arithmetic of Eisenstein series of level T for
the function field modular group GL(2,Fq[T ])

Enrico Varela Roldán

Abstract

In this paper we study the structure of the algebra of Drinfeld
modular forms for the principal congruence subgroup Γ(T ) of the full
modular group GL(2,Fq[T ]).

To this end and based on work of Cornelissen, we introduce a new
class of Eisenstein series and describe their fundamental properties.
These so-called modified Eisenstein series allow for a simplification of
prior results and are an indispensable tool for future work on Drinfeld
modular forms of level T .
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0 Introduction

Drinfeld modular forms are the function field analogue to classical ellip-
tic modular forms. The theory has its origins in Drinfeld’s work [Dri74]
and has subsequently been further developed by many authors, for exam-
ple by Deligne and Husemöller [DH87], Goss [Gos80a, Gos80b], and Gekeler
[Gek86].
In the special case of Drinfeld modular forms of level T the structure of the al-
gebra of modular forms has already been described by Cornelissen [Cor97b].
In particular, the algebra is known to be generated by the Eisenstein se-
ries of weight 1. These special modular forms are defined as lattice sums,
analogously to their counterparts in the classical number field situation.
The aim of this paper is to introduce a new class of modular forms in the Drin-
feld setting for level T based on Cornelissen’s work, which we call modified
Eisenstein series. They are better suited to the description of the structure
of the algebra of modular forms than the ordinary Eisenstein series, since
they satisfy relations better adapted to our considerations.
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Besides their use as generators of the algebra and its subspaces, the modified
Eisenstein series also play a central role for representation theoretical ques-
tions that arise naturally in the Drinfeld situation. We disregard this aspect
for the moment; it will be studied in a future publication.
Our principal results Theorem 3.6, which describes relations between modi-
fied Eisenstein series of different weights, and Theorem 4.12, in which a basis
for the space of cusp forms is given that is compatible with the cusp filtration.
The present paper is a concise summary of the first three chapters of the
author’s dissertation [Var15]. The latter contains all results and proofs in
more detail.
In the first section of this paper I am going to fix some general notation and
give a brief overview of prior results.
The second section introduces the modified Eisenstein series and some fun-
damental properties.
In the third section I present results concerning relations between modified
Eisenstein series of different weights.
In the fourth section I will use mixed products of Eisenstein series to construct
a basis of the space of cusp forms that is compatible with the filtration
induced by the order of cusp forms.
The fifth and final section contains rules for congruences of cusp forms of a
certain shape.

1 Preliminaries

This section provides a brief overview of the well-established Drinfeld setting
without any claim to completeness. While there are many possible references
one could cite here, our notation follows most closely the one used in [Cor97b]
and [GR96], respectively. A more in-depth description of the theory can be
found for example in [Gos96] or [Gek86].
The following notation shall be fixed throughout this paper.

1.1 Notation. Let q = pr be a prime power. Further, let A = Fq[T ] be
the ring of polynomials over the field with q elements and K = Fq(T ) its
field of quotients. On K we fix the normalized absolute value “| · |” induced
by the degree valuation on A. The completion of K with respect to this
absolute value is K∞ = Fq[[T

−1]], the field of formal Laurent series in T −1.
The algebraic closure of K∞ is not itself complete with respect to the unique
continuation of “| · |”; yet its completion

C∞ = K̂∞
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is again algebraically closed. We call

Ω = C∞ \ K∞

the Drinfeld upper half-plane.

Remark. One should think of A, K, K∞, C∞, and Ω as function field ana-
logues to Z, Q, R, C, and the complex upper half-plane H, respectively.
The Drinfeld upper half-plane Ω can be equipped with a rigid analytic struc-
ture. This allows us to define function theoretical objects such as modular
forms analogously to classical elliptic modular forms. Since our focus in this
paper does not lie on analytic problems, we will accept this well-established
analysis of the Drinfeld upper half-plane as given.
For an introduction to rigid analysis in general see, for example [FvdP04].

1.2 Definition. 1. The group Γ(1) = GL(2, A) is called the full modular
group.

2. Let N ∈ A. A subgroup of shape

Γ(N) =

{(
a b
c d

)
∈ Γ(1) | a ≡ d ≡ 1 mod N, b ≡ c ≡ 0 mod N

}

is called the principal congruence subgroup of level N .

Throughout this paper we deal exclusively with the special case of modu-
lar forms for Γ(T ). This group has q + 1 cusps, which can be canonically
parametrized by P1(Fq). The corresponding modular curve has genus 0.
Even when not stated explicitly, concepts like “cusps” or “modular forms”
always refer to the level-T -situation.
We are going to study modular forms (labelled “of type 0” in [GR96, (2.8.2)])
that are defined as follows:

1.3 Definition ([GR96, (2.8.2)]). A (Drinfeld) modular form of weight
k ∈ N0 for the group Γ(T ) is a rigid analytic function f : Ω → C∞ that
satisfies the following three conditions:

1. For γ = ( a b
c d ) ∈ Γ(T ) we have

f |[γ]k(z) := (cz + d)−kf(γz) = f(z),

where Γ(T ) acts on Ω by Möbius transformation.

2. The function f is holomorphic on Ω.
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3. The function f is holomorphic at the cusps of Γ(T ).

Remark. In simplified terms, condition 3 means that there exists a uni-
formizer τ (analogous to q = e2πiz in the classical setting) such that the
modular form f admits an expansion

f(s, z) =
∑

i≥0

aiτ
i

at any cusp s. The expansion of f at a single cusp is sufficient to determine
the function f .
By abuse of notation we write f(s) for such an expansion of f at a cusp s
although the coefficients depend on choices of representatives. The vanishing
order of f at the cusps is defined accordingly and is independent of these
choices. If every term in the expansion is of degree at least n in τ , we write
f(s) = o(τn).
See [GR96, loc. cit.] for more details.

1.4 Definition. The modular forms of weight k ∈ N0 for Γ(T ) form a C∞-
vector space Mk = Mk(Γ(T )). The graded C∞-algebra

M = M(Γ(T )) =
⊕

k∈N0

Mk

of all modular forms of level T is in fact a direct sum in the space of all
functions from Ω to C∞.
For weight k ∈ N0 those modular forms in Mk that vanish of order at least
n ∈ N0 at all cusps of Γ(T ) form a subspace

Mn
k = Mn

k (Γ(T )) ⊆ Mk.

Modular forms in M1
k are called cusp forms. Modular forms in Mn

k , n ∈ N,
are called n-fold cusps forms or cusp forms of order n.
The resulting filtration of finite length

Mk = M0
k ⊇ M1

k ⊇ M2
k ⊇ . . .

is called the cusp filtration of Mk.

As in the classical setting, Drinfeld modular forms can be viewed as sections
of line bundles. Since the line bundle of modular forms of weight 1 has
degree q (see [Gek86, VII, (6.1)]), the following two results are immediate:

1.5 Proposition. For k ∈ N0

dim Mk = kq + 1.
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1.6 Proposition. Let k ∈ N0. For 0 6= f ∈ Mk the sum of the zeroes of f
at the cusps and in Γ\Ω is kq (counting multiplicities).

An important example of modular forms for Γ(T ) are the Eisenstein series:

1.7 Definition ([Cor97b, I, (6.2)],[Gos80b]). Let k ∈ N and ν = (ν1, ν2) ∈
F2

q \ {(0, 0)}. The (ordinary) Eisenstein series E(k)
ν of weight k and level T

is given by

E(k)
ν (z) :=

1

T

∑

(a,b)∈A2

(a,b)≡ν mod T

(
1

az + b

)k

.

This way, we obtain q2 − 1 modular forms of weight k for Γ(T ).
We write Eν for E(1)

ν .

Remark. In the present paper, we do not concern ourselves with questions of
convergence. However, let us point out that, unlike their elliptic counterparts,
the Eisenstein series do in fact converge for all k ∈ N. See for example
[Gos80b] for further details.

In his dissertation [Cor97b], Cornelissen described the central part Eisenstein
series play for the structure of the algebra M . We cite some fundamental
results:

1.8 Theorem (Cornelissen [Cor97b, IV, Proposition 1.1]). Let k ∈ N. The
Eisenstein series

E(k)
u := E

(k)
(1,u), u ∈ Fq,

E(k)
∞ := E

(k)
(0,1).

form a maximal linearly independent subset of the space of all Eisenstein
series of weight k. We call

Eisk :=
〈
E(k)

∞ , E(k)
u | u ∈ Fq

〉

the space of Eisenstein series of weight k. Then

Mk = Eisk ⊕ M1
k

is a direct sum of C∞-vector spaces. In particular,

M1 = Eis1.
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Remark. In fact, Cornelissen’s proposition holds for arbitrary principal con-
gruence subgroups Γ(N) with non-constant N ∈ A. In this general setting,
the basis of Eisk is indexed accordingly by the cusps of Γ(N).
When we speak of the ordinary Eisenstein series of weight k we always refer
to the subset distinguished in the above theorem.

The importance of the Eisenstein series of weight 1 is illustrated by the
following theorem:

1.9 Theorem (Cornelissen [Cor97b, III, Theorem 3.4]). The algebra M of
modular forms for Γ(T ) is generated by the Eisenstein series of weight 1.
More precisely, M admits a presentation

M = C∞ [Eν | ν ∈ Fq ∪ {∞}]/I,

where the ideal I of relations is generated by the expressions

fi,j :=
∑

α,β∈Fq

αi−1βj(α − β)EαEβ − δj,q−1 ·
∑

α∈Fq

αi−1EαE∞

with 1 ≤ i ≤ j ≤ q − 1. Here, δ·,· is the Kronecker delta and 00 = 1 by
convention.

2 Modified Eisenstein series

In order to make the relations stated in Theorem 1.9 more suitable for the
following calculations we now introduce certain linear combinations of the
ordinary Eisenstein series.

2.1 Definition. Let k ∈ N. The modified Eisenstein series of weight k (and
level T ) are given by

E
(k)
i :=

∑

u∈Fq

uiE(k)
u , 0 ≤ i ≤ q − 1,

E (k)
∞ :=

∑

u∈Fq

ukE(k)
u + E(k)

∞ ,

with the convention 00 = 1. In the case k = 1 we also write Ei for E
(1)
i and

Eq := E (1)
∞ .

Remark. The modular forms Ei = E
(1)
i already appear in Cornelissen’s work.

Up to a normalizing factor π ∈ C∞ (a generator of the lattice of the Carlitz
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module) they agree with the modular forms Zj, 0 ≤ j ≤ q, which are used
in the proof of Theorem 3.4 in [Cor97b, chapter III].
However, this particular proof was the only instance in which this class of
modular forms is studied in [Cor97b]. In addition, no generalization of this
concept for weights ≥ 2 was considered.

Based on the definition we immediately see:

2.2 Proposition. Let k ∈ N. The modified Eisenstein series

E
(k)
i , 0 ≤ i ≤ q − 1,

E (k)
∞ ,

are linearly independent. In particular, they form another basis of Eisk.

We can now restate Theorem 1.9 with much simpler relations:

2.3 Theorem (Cornelissen [Cor97b, III, Theorem 3.4], [Cor97a, (3.1.3),
Theorem]). The algebra M of modular forms for Γ(T ) admits a presentation

M = C∞ [Ei | 0 ≤ i ≤ q]/I,

where the ideal I of relations is generated by the expressions

EiEj − Ei−1Ej+1 for 1 ≤ i ≤ j ≤ q − 1. (1)

Proof. The new relations can easily be derived from the relations fi,j by
rearranging the terms in the sums according to the definition of the modified
Eisenstein series.

Since different products of Eisenstein series of weight 1 may represent the
same modular form, it is advisable to establish the concept of a standard
form of such expressions. We do this by repeatedly applying the identity

EiEj = Ei−1Ej+1 for 1 ≤ i ≤ j ≤ q − 1 (2)

to eliminate successively all but (at most) one occurrence of an index different
from 0 or q.

2.4 Definition. We call a product of modified Eisenstein series of weight 1
a standard monomial if it contains at most one factor Eb with 1 ≤ b ≤ q − 1;
that is, if it is of shape

Em
0 EbE

n
q or Em

0 En
q

with m, n ∈ N0.
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2.5 Proposition. For every product

Em1

b1
· · · Ems

bs

of modified Eisenstein series of weight 1 with 0 ≤ bi ≤ q and mi ∈ N there
exists precisely one standard monomial which describes the same modular
form.
Write

m := m1 + . . . + ms

and

b := m1b1 + . . . + msbs

with the unique decomposition

b = cq + b, 0 ≤ b ≤ q − 1.

The corresponding standard monomial is then given by

Em1

b1
· · · Ems

bs
=





Em−1−c
0 EbE

c
q b > 0

Em−c
0 Ec

q b = 0.

Proof. Let us assume that the given product is not already a standard mono-
mial (up to sorting).
Hence it contains two factors Eb′ and Eb′′ with 1 ≤ b′, b′′ ≤ q − 1. We can
apply relation (2) to increase simultaneously the larger of these indices and
decrease the smaller one. After a finite number of steps, at least one of the
indices reaches q or 0. This means

Eb′Eb′′ =





E0Eb′+b′′ b′ + b′′ ≤ q,

Eb′+b′′−qEq b′ + b′′ > q.

By repeating this process, the initial product of modified Eisenstein series
can be written as a product, in which at most one factor remains with an
index in {1, . . . , q −1} but which still represents the same modular form. We
have found the desired standard monomial. Since the value of the sum of
indices is fixed in each step, the resulting standard monomial has to be of
the stated shape. The uniqueness is therefore obvious.

By a simple dimension argument we immediately obtain:

2.6 Corollary. The standard monomials of weight k form a basis of Mk for
k ∈ N.
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Certain mixed products of Eisenstein series can be transformed according to
the following relation.

2.7 Lemma. Let 0 ≤ k ≤ i ≤ q. Then

EiE
k
0 = (−1)kEi−kEk

∞.

Proof. By definition we have E0 = E0 − Eq−1 and Eq = E1 + E∞. Thus for
k = 1 we can use relation (2) to get

EiE0 = Ei(E0 − Eq−1) = E0Ei − Ei−1Eq

= E0Ei − Ei−1(E1 + E∞) = E0Ei − E0Ei − Ei−1E∞

= −Ei−1E∞.

The relation follows inductively for 2 ≤ k ≤ i. For k = 0 the statement is
tautological.

To study the zeroes of modified Eisenstein series let us first recall the follow-
ing result by Cornelissen concerning the ordinary Eisenstein series of weight 1:

2.8 Proposition (Cornelissen [Cor97b, III, Proposition 2.2]). Let τ be the
uniformizer mentioned in the remark to Definition 1.3 and let π be chosen
as in the remark to Theorem 1.9.
There is a constant ζ ∈ C×

∞ such that the ordinary Eisenstein series of
weight 1 admit expansions at the cusps as follows:

π−1E∞(∞) = ζ + o(τ 2)

π−1Eu(∞) = τ + o(τ 2), u ∈ Fq

π−1E∞((α : 1)) = τ + o(τ 2), α ∈ Fq

π−1Eu((α : 1)) = (α + u)−1τ + o(τ 2), α, u ∈ Fq, α 6= −u

π−1Eu((α : 1)) = ζ + o(τ 2), α = −u ∈ Fq.

For the modified Eisenstein series of weight 1 we obtain the following result:

2.9 Proposition. Let 0 ≤ i ≤ q. The modified Eisenstein series Ei has a
zero

of order q − i at the cusp ∞,

of order i at the cusp (0 : 1),

and no further zeroes at the cusps (α : 1) with α ∈ F×
q or in Γ(T )\Ω. With

the notation from Proposition 2.8 we observe

π−1Ei((α : 1)) = (−α)iζ + o(τ), α ∈ F×
q .
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Proof. First we determine the vanishing order at the cusp ∞. Cornelissen
shows in the proof of [Cor97b, III, Theorem 3.4] that the modular form called
Zq in his notation does not vanish at ∞. According to the remark following
Theorem 1.9 the same is therefore true for Eq. By Lemma 2.7 we have

EqE0 = −Eq−1E∞.

Since E0 has a simple zero at ∞ and E∞ does not vanish at ∞, this equation
shows that Eq−1 has vanishing order exactly 1 at ∞. A second application of
Lemma 2.7, this time for k = 1 and i = q − 1, results in the equation

Eq−1E0 = −Eq−2E∞.

Thus Eq−2 vanishes at ∞ of order exactly 2. In this way we obtain successively
the vanishing order of all Ei at ∞.
The stated vanishing order at (0 : 1) can be shown to be correct by a similar
argument, starting from the equation

E1E0 = −E0E∞,

and using the fact that the modular form E0 does not vanish at (0 : 1)
according to [Cor97b, loc. cit.].
Since the vanishing orders of all Ei at the cusps ∞ and (0 : 1) add up to q
there can be no further zeroes, see Proposition 1.6.
The stated shape of the series expansion follows directly from the definition
of the modified Eisenstein series by using Proposition 2.8 and has already
been described for Cornelissen’s Zj in [Cor97b, loc. cit.]

The corresponding question for modified Eisenstein series of weight k ≥ 2 is
more difficult to answer. We are going to give results for a special case in the
next section. However, we can immediately describe the standard monomials
at the cusps.

2.10 Corollary. Let k ∈ N. The modular form Ek−1−l
0 EbE

l
q with 0 ≤ b ≤ q−1

and 0 ≤ l ≤ k − 1 has a zero

of order (k − l)q − b at the cusp ∞,

of order lq + b at the cusp (0 : 1),

and no further zeroes.
The modular form Ek

q vanishes at (0 : 1) of order kq and has no further
zeroes.

Proof. The stated vanishing orders at the cusps are a direct consequence
of Proposition 2.9. Since their sum is kq, there can be no further zeroes
according to Proposition 1.6.
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3 Relations for weight k ≤ q

How can modified Eisenstein series of higher weight be expressed as poly-
nomials in terms of modified Eisenstein series of weight 1 (which is possible
according to Theorem 2.3)? In this section we give a partial answer to this
question. Some further results can be found in the author’s dissertation. The
full generalization still remains an open question.
The answer to the corresponding question for ordinary Eisenstein series in-
volves the theory of Goss polynomials. In the simplest case one finds:

3.1 Proposition ([Gek12, Corollary 2.8]). Let k be of shape k = k′pn for
some n ∈ N0 and 1 ≤ k′ ≤ q. Then

E(k)
ν = (E(1)

ν )k = Ek
ν

holds for all ν ∈ Fq ∪ {∞}.

For weight k as in the proposition, the modified Eisenstein series can therefore
be written as linear combinations of powers of ordinary Eisenstein series of
weight 1.

3.2 Lemma. Let k = k′pn for n ∈ N0 and 1 ≤ k′ ≤ q. We have

E
(k)
i =

∑

u∈Fq

uiE(k)
u =

∑

u∈Fq

uiEk
u, 0 ≤ i ≤ q − 1,

E (k)
∞ =

∑

u∈Fq

ukE(k)
u + E(k)

∞ =
∑

u∈Fq

ukEk
u + Ek

∞.

At this point, the naive approach would be to express each ordinary Eisen-
stein series of weight 1 on the right hand side as a linear combination of
modified Eisenstein series and to expand the resulting expression. In prac-
tice this method fails due to the technical complexity as it requires to expand
powers of sums with up to q terms.
Instead, we choose an inductive approach. In each step we simplify the
arising expressions by means of the following variant of the relations between
products of Eisenstein series, which is due to Cornelissen and Zagier:

3.3 Lemma ([Cor97a, Addendum 6]). The relations (1) from Theorem 2.3
are equivalent to

(u − v)EuEv + (Eu − Ev)E∞ = 0 for all u, v ∈ Fq.

First we generalize this for higher weights.
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3.4 Lemma. Let k ∈ N and u 6= v ∈ Fq. Then

Ek
uEv = −

k∑

j=1

1

(u − v)j
Ek+1−j

u Ej
∞ +

1

(u − v)k
EvEk

∞.

Proof. The statement is proven by a straightforward induction with respect
to k.

The following lemma will be used to show the cancellation of certain terms.

3.5 Lemma. Let 1 ≤ k ≤ q − 1 and 0 ≤ b ≤ q − 1. For 0 ≤ i ≤ k we have

∑

u,v∈Fq

u 6=v

uivbEk
uEv =

k∑

j=1

(
b

j

)
(−1)j

∑

u∈Fq

ui+b−jEk+1−j
u Ej

∞ − δi,k

∑

v∈Fq

vbEvEk
∞.

As before, we use the convention 00 = 1 and δ·,· is the Kronecker delta.
In the special case b = 0 we get

∑

u,v∈Fq

u 6=v

uiEk
uEv = −δi,k

∑

v∈Fq

EvEk
∞.

Proof. Using Lemma 3.4, we obtain for the expression on the left hand side:

∑

u,v∈Fq

u 6=v

uivbEk
uEv =

∑

u,v∈Fq

u 6=v

uivb


−

k∑

j=1

1

(u − v)j
Ek+1−j

u Ej
∞ +

1

(u − v)k
EvEk

∞




= −
k∑

j=1

∑

u∈Fq

ui



∑

v∈Fq

v 6=u

vb

(u − v)j




︸ ︷︷ ︸
=:λ1(b,j)

Ek+1−j
u Ej

∞

+
∑

v∈Fq

vb



∑

u∈Fq

u 6=v

ui

(u − v)k




︸ ︷︷ ︸
=:λ2(i,k)

EvEk
∞.

The indicated sums can be simplified as follows:

1. First we compute

λ1(b, j) =
b∑

m=0

(
b

m

)
ub−m(−1)m

∑

w∈F
×

q

wm−j.

12



The inner sum vanishes except for q − 1 | m − j. Taking into account
the possible values for m and j, we observe

−(q − 1) ≤ −k ≤ m − j ≤ b − 1 ≤ q − 2.

Thus m−j is only divisible by q−1 if m−j = 0 or m−j = −k = −(q−1)
holds. Consequently, we have

λ1(b, j) = −

(
b

j

)
ub−j(−1)j − δk,q−1δj,q−1u

b.

2. Analogously, the second sum can be written

λ2(i, k) =
i∑

m=0

(
i

m

)
vi−m

∑

w∈F
×

q

wm−k.

Again we see that the inner sum vanishes except if m = k (which
implies i = k) or m = 0, k = q − 1 (for arbitrary i). Thus

λ2(i, k) = −δi,k − δk,q−1v
i.

By combining these results we get

∑

u,v∈Fq

u 6=v

uivbEk
uEv

=
k∑

j=1

∑

u∈Fq

ui
(

b

j

)
ub−j(−1)jEk+1−j

u Ej
∞ + δk,q−1

∑

u∈Fq

uiubEuEq−1
∞

− δi,k

∑

v∈Fq

vbEvEk
∞ − δk,q−1

∑

v∈Fq

vbviEvEq−1
∞

=
k∑

j=1

(
b

j

)
(−1)j

∑

u∈Fq

ui+b−jEk+1−j
u Ej

∞ − δi,k

∑

v∈Fq

vbEvEk
∞.

The claim for the special case b = 0 follows from
(

0
j

)
= 0 for 1 ≤ j ≤ k.

We can now establish the central result of this section:

3.6 Theorem. Let 1 ≤ k ≤ q. Then

Ek−i
0 E i

q =





E
(k)
i 0 ≤ i ≤ k − 1

E (k)
∞ i = k.
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Proof. Obviously, the theorem is a tautology in the case k = 1.
We complete the proof by showing that the statement is true for k + 1 if it
holds for k.
Assume the statement is true for k ≤ q − 1. For 0 ≤ i ≤ k we compute

Ek+1−i
0 E i

q = E0(E
k−i
0 E i

q) =


∑

v∈Fq

Ev




∑

u∈Fq

uiEk
u + δi,kEk

∞




=
∑

u,v∈Fq

uiEk
uEv + δi,k

∑

v∈Fq

EvEk
∞

=
∑

v∈Fq

viEk+1
v +

∑

u,v∈Fq

u 6=v

uiEk
uEv + δi,k

∑

v∈Fq

EvEk
∞

=
∑

v∈Fq

viEk+1
v = E

(k+1)
i .

Besides the inductive hypothesis we have used the fact that we may write the
modified Eisenstein series of weight k ≤ q as sums of powers of the ordinary
Eisenstein series as in Lemma 3.2.
The additional sums in the second to last line cancel out according to the
case b = 0 of Lemma 3.5.
Let now i = k + 1. In this case we have

Ek+1
q = EqE

k
q =


∑

v∈Fq

vEv + E∞




∑

u∈Fq

ukEk
u + Ek

∞




=
∑

v∈Fq

vk+1Ek+1
v + Ek+1

∞

+
∑

u,v∈Fq

u 6=v

ukvEk
uEv +

∑

u∈Fq

ukEk
uE∞ +

∑

v∈Fq

vEvEk
∞

= E (k+1)
∞ ,

since

∑

u,v∈Fq

u 6=v

ukvEk
uEv = −

∑

u∈Fq

ukEk
uE∞ −

∑

v∈Fq

vEvEk
∞

according to Lemma 3.5 for i = k and b = 1.

Remark. The above theorem has an interesting interpretation from a repre-
sentation theoretic point of view: A subspace of Eisk can be expressed as the
k-th symmetric power of the space generated by E0 and Eq. Since this leaves
the scope of this paper we will deal with the details in a future publication.
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Theorem 3.6 can also be used to describe the behavior of those particular
modified Eisenstein series of weight k ≤ q at the cusps.

3.7 Proposition. Let 1 ≤ k ≤ q and 0 ≤ i ≤ k −1. The modified Eisenstein
series E

(k)
i has

vanishing order (k − i)q at the cusp ∞,

vanishing order iq at the cusp (0 : 1),

and no further zeroes.
The modified Eisenstein series E (k)

∞ vanishes at (0 : 1) of order kq and has
no further zeroes.

Proof. This is a direct consequence of the presentations given in Theorem 3.6
and the behavior of E0 and Eq at the cusps as determined in Proposition 2.9.

Remark. For those modified Eisenstein series of weight k ≤ q not covered by
Theorem 3.6 the expression as a linear combination of standard monomials
can be found in [Var15, Satz 2.32]. The resulting formulae are more involved
than the case considered above.

4 The cusp filtration

Let us now study the cusp filtration introduced in Definition 1.4. Our goal
is to construct a basis of M1

k that is compatible with this filtration in the
following sense: The intersection of the basis with a subspace of the filtration
is in turn a basis of the subspace.
As we have seen in Theorem 1.8 there are no non-trivial cusp forms of weight 1
(in fact, we know this to be true for any arithmetic subgroup of Γ(1) by a
result of Gekeler and Teitelbaum [Gek90]). Therefore we may assume k ≥ 2
in this section. Nevertheless, some notation will still include the trivial case
k = 1.
Throughout this section we will make use of the following notation:

4.1 Notation. For weight k ∈ N we fix the decomposition

k = k + k̂(q + 1)

with uniquely determined non-negative integers 1 ≤ k ≤ q + 1 and k̂ ∈ N0.
In addition, we define

m(k) :=

⌊
kq

q + 1

⌋
= k − 1 + k̂q.

It will turn out later that m(k) is the length of the cusp filtration of Mk.

15



Consider the following construction of sets of modular forms:

4.2 Notation. Let k ≥ 2. For each 1 ≤ i ≤ m(k) − 1 we define a set Bi
k

consisting of the modular forms

F
(i,k)
b := Ek−i−1

0 EbE
i
∞, 0 ≤ b ≤ q − 1,

F (i,k)
∞ := (−1)iEk−i

q Ei
0.

Let further B
m(k)
k be the set with elements

F
(m(k),k)
b := E k̂

0EbE
m(k)
∞ , 0 ≤ b ≤ q + 1 − k.

Finally, for 1 ≤ i ≤ m(k) we define

Bi,+
k :=

⋃

i≤j≤m(k)

Bj
k (disjoint union).

All of the monomials defined above describe modular forms of weight k since

k = m(k) + k̂ + 1.

In the remainder of this section we prove that the construction provides a
system of bases of the cusp filtration. We choose an approach that focuses
heavily on the arithmetic of Eisenstein series. An alternative approach using
the theorem of Riemann-Roch is also viable.
In order to show that the constructed modular forms are indeed pairwise
distinct, we study their behavior at the cusps.

4.3 Lemma. Let k ≥ 2.

1. If 1 ≤ i ≤ m(k) − 1 then we have for 0 ≤ b ≤ q − 1:

The vanishing order of F
(i,k)
b at ∞ is (k − i)q − b,

at (0 : 1) is b + i,
at (α : 1), α ∈ F×

q , is i.

The vanishing order of F (i,k)
∞ at ∞ is i,

at (0 : 1) is (k − i)q,
at (α : 1), α ∈ F×

q , is i.

2. For 0 ≤ b ≤ q + 1 − k we have:

The vanishing order of F
(m(k),k)
b at ∞ is q − b + k̂q,

at (0 : 1) is b + m(k),
at (α : 1), α ∈ F×

q , is m(k).

16



Proof. In each case the vanishing order can be read off directly using Propo-
sition 2.8 and Proposition 2.9.

4.4 Lemma. For every integer 1 ≤ l ≤ (k − 1)q there exists precisely one
modular form in B1,+

k which has vanishing order l at the cusp ∞.

Proof. We only have to show the existence of modular forms with the required
vanishing orders. Uniqueness follows from the cardinality of B1,+

k .
For 1 ≤ l ≤ m(k) − 1 we may choose F (l,k)

∞ ∈ Bl
k.

For m(k) ≤ l ≤ (k̂ + 1)q the modular form

F
(m(k),k)

(̂k+1)q−l
∈ B

m(k)
k

is well-defined and has vanishing order l at ∞.
For 1 + (k̂ + 1)q ≤ l ≤ (k − 1)q there is 1 ≤ j ≤ m(k) − 1 such that

1 + (k − j − 1)q ≤ l ≤ (k − j)q.

The modular form
F

(j,k)
(k−j)q−l ∈ Bj

k

is well-defined and has the desired vanishing order.

The following properties of the sets constructed in Notation 4.2 are now
obvious:

4.5 Proposition. The set B1,+
k consists of (k−1)q linearly independent mod-

ular forms of weight k. In particular, all monomials constructed in Notation
4.2 represent pairwise distinct modular forms.
For 1 ≤ i ≤ m(k) we have

#Bi,+
k = kq + 1 − i(q + 1).

4.6 Lemma. Let k ≥ 2 and 1 ≤ i ≤ m(k). Then

Bi
k ⊆ M i

k

and no element of Bi
k lies in one of the subspaces M j

k with j > i.
In other words: The subspace M i

k is the smallest subspace of the cusp filtration
that contains elements of Bi

k.

Proof. In Lemma 4.3 we have already determined the vanishing orders at the
cusps. By applying the estimates

(k − i)q − b > k − 1 + k̂q = m(k) > i (3)

17



for 1 ≤ i ≤ m(k) − 1 and 0 ≤ b ≤ q − 1, and

q − b + k̂q ≥ k − 1 + k̂q = m(k) (4)

for 0 ≤ b ≤ q + 1 − k we see that each element of Bi
k is indeed a cusp form

of order i and that there is at least one cusp such that the vanishing order is
exactly i.

4.7 Corollary. Let k ≥ 2 and 1 ≤ i ≤ m(k). Then

Bi,+
k ⊆ M i

k.

With a simple dimension argument we observe:

4.8 Proposition. Let k ≥ 2. The set B1,+
k forms a basis of M1

k .

The following lemma describes the interaction between the subsets of the
basis and the cusp filtration in more detail.

4.9 Lemma. Let k ≥ 2 and 1 ≤ i ≤ m(k). There is no non-trivial linear
combination of elements of Bi

k which lies in M i+1
k .

Proof. Let us first consider the case where 1 ≤ i ≤ m(k) − 1. Assume there
is a non-trivial linear combination

F :=
q−1∑

b=0

λbF
(i,k)
b + λ∞F (i,k)

∞ ∈ M i+1
k

with coefficients in C∞. That is, we assume that F has vanishing order at
least i + 1 at each cusp.
If we compare the vanishing orders at the cusps of the elements of Bi

k (re-

membering the estimates given in (3) and (4)) we see that F
(i,k)
0 is the only

modular form in Bi
k which vanishes at (0 : 1) of order exactly i. Similarly,

F (i,k)
∞ is the only modular form that has vanishing order exactly i at ∞.

In order for F to be an i + 1-fold cusp form we must therefore have

λ0 = λ∞ = 0.

We can now write

F =
q−1∑

b=1

λbF
(i,k)
b =

q−1∑

b=1

λbE
k−i−1
0 EbE

i
∞ = Ek−i−1

0 Ei
∞

q−1∑

b=1

λbEb.

Here, the factor Ek−i−1
0 Ei

∞ has vanishing order exactly i at the cusps (α :
1) with α ∈ F×

q . According to our initial assumption this means that the

modular form
∑q−1

b=1 λbEb vanishes at all cusps (α : 1) with α ∈ F×
q . Since it

also vanishes at (0 : 1) and ∞, we have a modular form of weight 1 with
q + 1 zeroes; a contradiction.
Analogously, we prove that the statement is true in the case i = m(k).
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4.10 Corollary. Let k ≥ 2. For i > m(k) we have

M i
k = {0}.

4.11 Lemma. Let k ≥ 2. Let 0 6= F ∈ M1
k and let 1 ≤ i ≤ m(k) be such that

the decomposition of F with respect to the basis B1,+
k contains an element of

Bi
k with a non-zero coefficient. Then there is at least one cusp at which F

has vanishing order at most i.
If, in addition, i is minimal with these properties, then there exists at least
one cusp such that the vanishing order of F at this cusp is exactly i.

Proof. Write F = F1 + . . .+Fm(k) where for each 1 ≤ j ≤ m(k) the summand

Fj is a linear combination of basis elements in Bj
k. This decomposition is

unique.
According to Lemma 4.9 each of these Fj is a cusp form of order exactly j if
it is non-trivial. If i is minimal such that Fi 6= 0 there can be no cancellations
and the vanishing order of F is exactly i for at least one cusp.

We are now able to prove the main result of this section.

4.12 Theorem. Let k ≥ 2 and 1 ≤ i ≤ m(k). The set Bi,+
k is a basis of M i

k.

Proof. Obviously, Bi,+
k spans a subspace of M i

k.
If a cusp form F is not an element of the space generated by Bi,+

k there
must be at least one cusp such that the vanishing order of F at this cusp is
strictly less than i by Lemma 4.11. Therefore F is not in M i

k and the proof
is complete.

Remark. For some applications it is helpful to extend the above concepts to
the trivial case k = 1.
The statement

M i
k = {0} for i > m(k)

is again true in this situation since m(1) = 0.

In analogy to Notation 4.2, we define a set B0
1 = B

m(1)
1 consisting of the

modular forms
F

(0,1)
b := Eb, 0 ≤ b ≤ q.

This set is in fact a basis of

M
m(1)
1 = M1 = Eis1.
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5 Congruences of cusp forms

In this final section we study a certain type of cusp forms under reduction
modulo cusp forms of higher order. The resulting congruence formula Propo-
sition 5.4 has applications for descriptions of transformation properties of the
basis of M1

k constructed in the previous section (see [Var16]).

5.1 Lemma. Let 1 ≤ i ≤ q − 1 and 0 ≤ m < q − i. For any l ∈ N the
congruence

E l
qEmEi

∞ ≡ E l
1EmEi

∞ mod M i+1
i+l+1

holds.

Proof. According to the definition of the modified Eisenstein series we have

E l
qEmEi

∞ = (E1 + E∞)lEmEi
∞ = E l

1EmEi
∞ +

l∑

j=1

(
l

j

)
E l−j

1 EmEi+j
∞ .

We determine the vanishing order of the modular form E l−j
1 EmEi+j

∞ for 1 ≤
j ≤ l at each cusp by using Proposition 2.8 and Proposition 2.9.
In this way, we see that this modular form vanishes at the cusps (α : 1) with
α ∈ F×

q of order
i + j ≥ i + 1.

The vanishing order at (0 : 1) is

l − j + m + i + j = i + m + l ≥ i + 1,

since we assume l ≥ 1. Finally, according to the prerequisites the vanishing
order at ∞ satisfies the inequality

q − m + (l − j)(q − 1) ≥ q − m > i.

Thus we see that
E l−j

1 EmEi+j
∞ ∈ M i+1

i+l+1

for 1 ≤ j ≤ l and the proof is complete.

For the next step the idea is to transform the factor E l
1Em into a standard

monomial and to apply the lemma again to eliminate all occurrences of Eq.
By repeated iteration we receive the following lemma whose proof is straight-
forward but technical and will be omitted for brevity’s sake.

5.2 Lemma. Let 1 ≤ i ≤ q − 1. For l ∈ N and 0 ≤ b ≤ q − 1 we have

E l
1EbE

i
∞ ≡ E l

0E[l+b]E
i
∞ mod M i+1

i+l+1,

where “[ · ]” denotes the unique representative modulo q − 1 in {1, . . . , q − 1}.
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In combination with Lemma 5.1 this leads to the following, more refined
variant:

5.3 Lemma. Let 1 ≤ i ≤ q − 1 and 0 ≤ m < q − i. For l ∈ N0 we have

E l
qEmEi

∞ ≡ E l
0E[l+m]E

i
∞ mod M i+1

i+l+1.

The lemma also holds in the trivial case l = 0, if we replace “[ · ]” with the
symbol “〈 · 〉” defined as

〈x〉 =





0 x = 0

[x] else.

We can now state the following general formula for reduction modulo cusp
forms of higher order.

5.4 Proposition. Let 1 ≤ i ≤ q − 1 and 0 ≤ m < q − i. For l ∈ N let
arbitrary a1, . . . , al ∈ {0, . . . , q} be given. Then




l∏

j=1

Eaj


 EmEi

∞ ≡ E l
0E〈a+m〉E

i
∞ mod M i+1

i+1+l

with a := a1 + . . . + al.

Proof. In case all aj equal q, this is just a restatement of Lemma 5.3. In the
non-trivial case the proposition is proven by transforming products of mod-
ified Eisenstein series into standard monomials and applying the reduction
rules established previously in this section.
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