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Abstract

We discuss the standard relaxed version of a minimization problem for variational
integrals of linear growth together with prescribed Dirichlet boundary data ug and
give estimates for the size of the set {z € 9Q : u(x) # ug(z)} for BV-minimizers u
which imply H" ™ ({z € 90 : u(x) < up(x)}) = H" 1 ({x € 90 : u(x) > up(x)}) in
the case of minimal surfaces v not attaining the boundary values ug on a subset of
02 with positive measure.

To explain our results we first look at the classical variational problem for minimal surfaces

Ju) == / V14 |Vul|?dz — min in up+ I/f/}(Q) , (1)
Q

where 0 C R", n > 2, is a bounded Lipschitz domain and ug denotes a given function
from the Sobolev space W(Q) (see, e.g., [Ad] for a definition). As it is outlined for
example in [GMS], the variational problem (1) admits a natural extension to the class
BV(Q) consisting of all functions v € L'(2) having finite total variation (compare [Gi] or
[AFP] for details) i.e. one studies the problem

Klu] := / 1+ |Vul? + / |u — uo| dH" ™' — min in BV(Q). (2)
0 o9

Note that the expression [,+/1+ |Vu|?> has to be understood as a convex function
of a measure (see [DT]) which equals the quantity J[u] from formula (1) in case that
u € W{(Q). Moreover, we recall that in [, [u — ug| dH""" the trace of u € BV(Q2) on
052 is considered.

We also note that due to famous examples (see, e.g., Santis example [Sa], compare also
[Gi]), in general the uniqueness of solutions and the attainment of the boundary data
cannot be expected. We wish to mention that a discussion of the (non-) attainment of
the boundary data can also be found in [BS], Theorem 1.4 and 1.5.

Here we can state and prove by an elementary reasoning

Theorem 1. Let u € BV(Q)) denote a solution of the variational problem (2). We define
the sets (up to subsets of O with vanishing H" '-measure)
0.0 = {z€d: ulx) >uy(r)},
0-Q = {z€d: u(x) <u(x)},
00 = {x€dQ:ulx)=uy(zr)} .
Then it holds
|7 H(0:Q) — H"H(0-Q)| < H M (9) . (3)



Formula (3) admits the following nice interpretation:

Corollary 1. If the generalized minimal surface u ignores the boundary data uy completely
in the sense that H"~1(9) = 0, then — at least in measure — the sets 0+ are equally
distributed.

The proof of Theorem 1 will be obtained as a by-product of the following slightly more
general investigations whose framework is collected in Appendix A.1 of [Bi], where the
interested reader will also find a list of further references.

Let N > 1 and consider a strictly convex integrand F: R™™ — [0, 00) with (w.l.o.g.)
F(0) = 0 being of linear growth in the sense that

alZ| -b< F(Z) < AlZ|+ B forall Z e R"™Y (4)

holds with constants a, A > 0, b, B > 0. Letting

Fo(Z) := lim 1F(tZ)

t—oo t

we consider for u € BV(Q, RY) the functional

L] ;:/QFNGU) dx+/ﬂFoo (;—:Z') d|V5u|+/m Fo (o — w) @ ) dH™, (5)

where now ug is a given function from the space W1(Q,RY), ® is the tensor product
of vectors and v stands for the exterior normal of 0€2. Moreover, we use the symbols
Ve (V*u) to denote the regular (singular) part of the tensor-valued measure Vu
w.r.t. Lebesgue’s measure.

We have
Proposition 1. Let F satisfy (4) and define L according to (5).

i) The minimization problem
L[w] — min in BV(Q,RY) (6)
admits at least one solution.

i) It holds
inf /F(Vw) de = inf L[]
Q

N
'U‘O“FV?/%(QJRN) BV(QvR )

i) The solutions of problem (6) are in one-to-one correspondence with the L'-limits
of minimizing sequences for problem (6) restricted to the class of functions from

up+ WHQL RN,



With a given function f: [0,00) — [0,00), f(0) = 0, being strictly increasing and
strictly convex we additionally impose the structure condition

F(Z)=f(4]), ZeR™, (7)
so that )
Foo<Z):foo(|Z|>’ foo = tllglogf(t)

Then it holds

Theorem 2. Let F satisfy (4) and (7) and consider a solution u € BV(Q,RY) of
problem (6) with L defined in formula (5).

Then we have the estimate (as above o) := {x € 0N : u () = up (x)})

/ S0 gt < HPY(6,0) (8)
0N

uFuo] |u - u0|
Clearly (3) is a consequence of (8): if we are in the scalar case, then it holds

/ ST aynt = T H(0,.Q) - HHO-Q)
0

QN [uuo] ‘U - Uo‘
and we obtain the following

Corollary 2. Let the assumptions of Theorem 2 hold together with N = 1. Then inequal-
ity (3) is true.

Proof of Theorem 2. From L[u] < L{u + £] for any £ € RY we find that

Er | Fuo((uo— (u+§))@v) dH"
o0

attains its minimum at £ = 0, which by the structure condition (7) means that we just
have to discuss the convex function

g: RY = [0,00), g(¢&):= /BQ lu — ug + €] dH™ L.

Let 0g(0) denote the subgradient of g at 0, i.e. the closed and convex subset (# () of RY
consisting of those vectors 7 € RY such that

g(y) > g(0) +n-y forallyecRY.
Since g(y) > g(0) for any y € RY | it holds

0 € dg(0). (9)



Let us write

9(&) = 90(&) +5(8),
go(€) = [g|H" (),

0() = / U+ € — ug| dHL.
O0N[uug]

From Proposition 2 below we get

99(0) = Ba(£), (10)

where we have set

a:=H"0Q), £€:=Vg(0)= /

A0N[uzuo)] [u — |

U — Ug

dH™ .

Note that the existence of the gradient of g; at the origin together with the formula
follows by elementary calculations.

Combining (9) and (10) we find that |¢| < « holds, hence (8) is established.

Let us finally discuss

Proposition 2. Let h : RY — [0,00) denote a convex function for which & := Vh(0)
exists. For a number a > 0 consider the function G := a| - | + h.

Then it holds
9G(0) = Ba(§) - (11)

Proof of Proposition 2. W.l.o.g. consider the case h(0) = 0 together with o = 1. For
any vector v € R, |v| < 1, it holds

Gly) =yl +h(y) >v-y+&-y forally e RY,
hence v + £ € 9G(0) and in conclusion Bi(&) C 0G(0).

Fix some vector w € dG(0), i.e.
Gly) >w-y forallyecRY.
For t > 0 we get from this inequality and the definition of G
o]+ hity) > -y,
thus after passing to the limit t — 0
yl+&y=zw-y,
which means |y| > (w — &) - y and thereby |w — £| < 1 by the arbitrariness of y.

This means that w € By(§) and (11) follows. This completes the proof of Proposition 2
and thereby the proof of Theorem 2. O
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