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Abstract

We discuss the standard relaxed version of a minimization problem for variational
integrals of linear growth together with prescribed Dirichlet boundary data u0 and
give estimates for the size of the set {x ∈ ∂Ω : u(x) ̸= u0(x)} for BV-minimizers u
which imply Hn−1 ({x ∈ ∂Ω : u(x) < u0(x)}) = Hn−1 ({x ∈ ∂Ω : u(x) > u0(x)}) in
the case of minimal surfaces u not attaining the boundary values u0 on a subset of
∂Ω with positive measure.

To explain our results we first look at the classical variational problem for minimal surfaces

J [u] :=

∫
Ω

√
1 + |∇u|2 dx → min in u0+

◦
W

1
1(Ω) , (1)

where Ω ⊂ Rn, n ≥ 2, is a bounded Lipschitz domain and u0 denotes a given function
from the Sobolev space W 1

1 (Ω) (see, e.g., [Ad] for a definition). As it is outlined for
example in [GMS], the variational problem (1) admits a natural extension to the class
BV(Ω) consisting of all functions u ∈ L1(Ω) having finite total variation (compare [Gi] or
[AFP] for details) i.e. one studies the problem

K[u] :=

∫
Ω

√
1 + |∇u|2 +

∫
∂Ω

|u− u0| dHn−1 → min in BV(Ω) . (2)

Note that the expression
∫
Ω

√
1 + |∇u|2 has to be understood as a convex function

of a measure (see [DT]) which equals the quantity J [u] from formula (1) in case that
u ∈ W 1

1 (Ω). Moreover, we recall that in
∫
∂Ω

|u − u0| dHn−1 the trace of u ∈ BV(Ω) on
∂Ω is considered.

We also note that due to famous examples (see, e.g., Santis example [Sa], compare also
[Gi]), in general the uniqueness of solutions and the attainment of the boundary data
cannot be expected. We wish to mention that a discussion of the (non-) attainment of
the boundary data can also be found in [BS], Theorem 1.4 and 1.5.

Here we can state and prove by an elementary reasoning

Theorem 1. Let u ∈ BV(Ω) denote a solution of the variational problem (2). We define
the sets (up to subsets of ∂Ω with vanishing Hn−1-measure)

∂+Ω := {x ∈ ∂Ω : u(x) > u0(x)} ,

∂−Ω := {x ∈ ∂Ω : u(x) < u0(x)} ,

∂0Ω := {x ∈ ∂Ω : u(x) = u0(x)} .

Then it holds ∣∣Hn−1(∂+Ω)−Hn−1(∂−Ω)
∣∣ ≤ Hn−1(∂0Ω) . (3)
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Formula (3) admits the following nice interpretation:

Corollary 1. If the generalized minimal surface u ignores the boundary data u0 completely
in the sense that Hn−1(∂Ω0) = 0, then – at least in measure – the sets ∂±Ω are equally
distributed.

The proof of Theorem 1 will be obtained as a by-product of the following slightly more
general investigations whose framework is collected in Appendix A.1 of [Bi], where the
interested reader will also find a list of further references.

Let N ≥ 1 and consider a strictly convex integrand F : RnN → [0,∞) with (w.l.o.g.)
F (0) = 0 being of linear growth in the sense that

a|Z| − b ≤ F (Z) ≤ A|Z|+B for all Z ∈ RnN (4)

holds with constants a, A > 0, b, B ≥ 0. Letting

F∞(Z) := lim
t→∞

1

t
F (tZ)

we consider for u ∈ BV(Ω,RN) the functional

L[u] :=

∫
Ω

F (∇au) dx+

∫
Ω

F∞

(
∇su

|∇su|

)
d |∇su|+

∫
∂Ω

F∞ ((u0 − u)⊗ ν) dHn−1 , (5)

where now u0 is a given function from the space W 1
1 (Ω,RN), ⊗ is the tensor product

of vectors and ν stands for the exterior normal of ∂Ω. Moreover, we use the symbols
∇au (∇su) to denote the regular (singular) part of the tensor-valued measure ∇u
w.r.t. Lebesgue’s measure.

We have

Proposition 1. Let F satisfy (4) and define L according to (5).

i) The minimization problem

L[w] → min in BV(Ω,RN) (6)

admits at least one solution.

ii) It holds

inf
u0+

◦
W 1

1(Ω,RN )

∫
Ω

F (∇w) dx = inf
BV (Ω,RN )

L[w]

iii) The solutions of problem (6) are in one-to-one correspondence with the L1–limits
of minimizing sequences for problem (6) restricted to the class of functions from

u0+
◦
W1

1(Ω,RN).
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With a given function f : [0,∞) → [0,∞), f(0) = 0, being strictly increasing and
strictly convex we additionally impose the structure condition

F (Z) = f (|Z|) , Z ∈ RnN , (7)

so that

F∞(Z) = f∞(|Z|), f∞ := lim
t→∞

1

t
f(t) .

Then it holds

Theorem 2. Let F satisfy (4) and (7) and consider a solution u ∈ BV(Ω,RN) of
problem (6) with L defined in formula (5).

Then we have the estimate (as above ∂0Ω := {x ∈ ∂Ω : u (x) = u0 (x)})∣∣∣∣∫
∂Ω∩[u̸=u0]

u− u0

|u− u0|
dHn−1

∣∣∣∣ ≤ Hn−1(∂0Ω) . (8)

Clearly (3) is a consequence of (8): if we are in the scalar case, then it holds∫
∂Ω∩[u̸=u0]

u− u0

|u− u0|
dHn−1 = Hn−1(∂+Ω)−Hn−1(∂−Ω)

and we obtain the following

Corollary 2. Let the assumptions of Theorem 2 hold together with N = 1. Then inequal-
ity (3) is true.

Proof of Theorem 2. From L[u] ≤ L[u+ ξ] for any ξ ∈ RN we find that

ξ 7→
∫
∂Ω

F∞ ((u0 − (u+ ξ))⊗ ν) dHn−1

attains its minimum at ξ = 0, which by the structure condition (7) means that we just
have to discuss the convex function

g : RN → [0,∞), g(ξ) :=

∫
∂Ω

|u− u0 + ξ| dHn−1 .

Let ∂g(0) denote the subgradient of g at 0, i.e. the closed and convex subset ( ̸= ∅) of RN

consisting of those vectors η ∈ RN such that

g(y) ≥ g(0) + η · y for all y ∈ RN .

Since g(y) ≥ g(0) for any y ∈ RN , it holds

0 ∈ ∂g(0) . (9)
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Let us write

g(ξ) = g0(ξ) + g1(ξ) ,

g0(ξ) := |ξ|Hn−1(∂0Ω) ,

g1(ξ) :=

∫
∂Ω∩[u̸=u0]

|u+ ξ − u0| dHn−1 .

From Proposition 2 below we get

∂g(0) = Bα(ξ) , (10)

where we have set

α := Hn−1(∂0Ω), ξ := ∇g1(0) =

∫
∂Ω∩[u̸=u0]

u− u0

|u− u0|
dHn−1 .

Note that the existence of the gradient of g1 at the origin together with the formula
follows by elementary calculations.

Combining (9) and (10) we find that |ξ| ≤ α holds, hence (8) is established.

Let us finally discuss

Proposition 2. Let h : RN → [0,∞) denote a convex function for which ξ := ∇h(0)
exists. For a number α ≥ 0 consider the function G := α| · |+ h.

Then it holds
∂G(0) = Bα(ξ) . (11)

Proof of Proposition 2. W.l.o.g. consider the case h(0) = 0 together with α = 1. For
any vector v ∈ RN , |v| ≤ 1, it holds

G(y) = |y|+ h(y) ≥ v · y + ξ · y for all y ∈ RN ,

hence v + ξ ∈ ∂G(0) and in conclusion B1(ξ) ⊂ ∂G(0).

Fix some vector w ∈ ∂G(0), i.e.

G(y) ≥ w · y for all y ∈ RN .

For t > 0 we get from this inequality and the definition of G

|y|+ 1

t
h(ty) ≥ w · y ,

thus after passing to the limit t → 0

|y|+ ξ · y ≥ w · y ,
which means |y| ≥ (w − ξ) · y and thereby |w − ξ| ≤ 1 by the arbitrariness of y.

This means that w ∈ B1(ξ) and (11) follows. This completes the proof of Proposition 2
and thereby the proof of Theorem 2. �
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