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Abstract

The aim of the present paper is to show by the example of the

S&P 500 return series that a simple non-stationary model seem to fit

the data significantly better than conventional GARCH-type models

outperforming them also in forecasting the distribution of tomorrow’s

return. Instead of a complex endogenous specification of the condi-

tional variance, we assume that the volatility dynamics is exogenous.

Since no obvious candidates for explanatory exogenous variables are at

hand, we model the volatility as deterministic. This approach leads to

a structurally simple regression-type model. Special attention is paid

to the accurate description of the tails of the innovations.

AMS Subject Classification: primary: 62P20; secondary: 91B28, 91B70,
91B84
Key words: distributional forecasts, GARCH process, non-parametric regres-
sion, non-stationarity, stock returns, volatility
Running title: A simple non-stationary model

1 Introduction

Accurate modelling of time series of stock returns is essential for the risk
management of financial investments as well as for the pricing of derivatives.
For at least two decades, the econometric models have expressed the com-
mon wisdom that appropriate modelling of financial returns should allow for
non-linear dynamics. Usually the sample autocorrelation functions (SACF)
of such time series are brought as evidence of their non-linear nature. Con-
sider, for example the daily log returns of the closing prices of the Standard
& Poor’s 500 stock index from the January 2, 1990 to February 21, 2002,
resulting in a time series of 3062 observations (Figure 3.1) (the same data
set is used in the sequel to exemplify our modelling approach). While the re-
turns show almost no autocorrelation at all lags, the absolute returns seem to
have higher correlations over several hundred lags (the so-called long memory
in volatility) (see Figure 1.1). In fact, after declining relatively fast for the
first couple of dozen lags, the SACF of the absolute returns remains almost
constant, seemingly evidence of long-range dependence in the time series of
absolute returns.
While the aspect of the displayed SACFs could be due to stationary, non-
linear dynamics, a precise interpretation of Figure 1.1 is difficult. Since
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Figure 1.1 Sample ACF for S&P 500 returns (Left) and absolute returns
(Right). Since the dependency structure in the data is unknown, no confi-
dence intervals for the correlations are displayed.

the type of dependency in the data is unknown, the significance of the auto-
correlations in these figures can not be assessed (for this reason no confidence
intervals for the correlations are given in the mentioned figure). Another
difficulty is related to distinguishing between stationary long memory, i.e.
significant correlations at large lags, and non-stationarity. A SACF that
displays positive correlations at large lags (like that in Figure 1.1) could be
evidence of stationary, non-linear long-range dependence as well as a sign
of non-stationarities in the second moment structure of the time series; see
Mikosch and Stărică [20],[22].
Among the non-linear models that try to mimic the second moment structure
illustrated by Figure 1.1, the class of GARCH-type models has become ex-
tremely popular. Starting with the seminal papers by Engle [10] and Boller-
slev [2] which introduced the relatively simple ARCH(p) and GARCH(p,q)
models, respectively, more and more complicated modifications were pro-
posed to take into account various stylized facts about returns. While elab-
orated GARCH-type models fit short return time series reasonably well, in-
consistencies arise when one tries to model daily returns over longer periods
(decades for example). For instance, the typical outcome of GARCH(1,1)
quasi-maximum likelihood estimation on a long financial time series is a
IGARCH(1,1) model, which implies an infinite variance of the observed ran-
dom variables. This clearly contradicts the findings of a direct tail analysis
which indicate that daily returns have a finite second moment (see for exam-
ple [12]).
It has been known for a while that both the long range dependence effect and
the IGARCH effect could be explained by non-stationary changes in the time
series; see e.g. Diebold [7], Lamoreux and Lastrapes [19], Hidalgo and Robin-
son [15], Granger and Hyung [11], Diebold and Inoue [9] and Mikosch and
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Stărică [20], [21], to mention just a few articles from the extensive economet-
ric literature on this topic. Models built under the hypothesis of structural
breaks in the volatility of the time series of returns have been proposed in
the econometric literature (Hamilton and Susmel [13], Cai [4]). However,
even when switches between different regimes of low and high volatility are
assumed, the hypothesis of stationarity of the whole time series is, in general,
preserved. A common working hypothesis for this type of models is that the
switches between various levels of volatility are described by a stationary,
Markovian mechanism. The pattern of change is, in this way, supposed to
remain unchanged through decades of economic activity ([13]). Given the
fast pace of changes in the financial markets as well as in the economic en-
vironment, one may seriously question whether stationarity is a reasonable
assumption for long financial time series.
In this paper, we describe a modelling approach, based on a different inter-
pretation of the SACF in Figure 1.1 that seems to address these shortcom-
ings. We show by the example of the above mentioned S&P 500 time series
that a simple non-stationary model fits the data well and produces forecasts
of the distribution of tomorrow’s return that seem to outperform those ob-
tained from conventional GARCH-type models, alleviating at the same time
the somewhat philosophical discomfort caused by the use of a stationary
paradigm in modelling the particularly dynamic environment of the financial
markets.
The paper is organized as follows: Section 2 presents our modelling approach
and introduces our simple non-stationary model. In Section 3 this model
is estimated on the above mentioned S&P 500 time series and the good-
ness of fit is carefully checked. Section 4 evaluates the performance of our
model in forecasting conditional distributions of returns over various hori-
zons and compares it with classical models for financial returns. In Section
5 we comment on the relationship between our modelling approach and the
RiskMetricsTM methodology while Section 6 concludes.

2 A regression model for returns

Denote by Xt the return at time t. We focus on multiplicative models with
constant mean:

(2.1) Xt = µ + σtεt, t = 1, 2, . . . , n,

with innovations εt satisfying E(εt) = 0 and Var(εt) = 1 and volatility pro-
cess (σt). In GARCH-type models, (σt) is a stationary stochastic process.
More concretely, a function of σt is modelled as a linear combination of certain
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functions of past volatilities, σt−1, σt−2, . . . and past returns Xt−1, Xt−2, . . ..
For instance, the GARCH(1, 1) model is given by the relation

(2.2) σ2
t = α0 + α1X

2
t−1 + β1σ

2
t−1,

while an exponential GARCH(1, 1) (or EGARCH(1,1), see [23]) model is
specified by

(2.3) log σ2
t = α0 + α1

|Xt−1|
σt−1

+ γ1
Xt−1

σt−1

+ β1 log σ2
t−1.

Note that by treating positive and negative returns differently, the
EGARCH(1, 1) model allows for a leverage effect, that is, large negative
returns seemingly have a significantly stronger impact on the future returns
than large positive returns.
In order to improve the fit of this type of models, more and more compli-
cated processes were used to specify the volatility dynamics (often calling for
sophisticated fitting procedures) producing an enormous number of models
(for an overview see [3]). In our opinion a possible explanation for the need
for an increasing complexity in the modelling of volatility could simply be
that a simple endogenous specification of the volatility dynamics does not
exist. If this was the case, the fit could be improved not by a more complex
endogenous specification of the volatility process, but through a change of
the working hypothesis. More concretely, in our approach the volatility is
thought to be exogenous to the process of returns. The evolution of prices
is seen as a manifestation of complex market conditions, hence driven by
exogenous factors. Since no obvious candidates for explanatory exogenous
variables are at hand, we model the volatility as deterministic. This approach
leads to the following structurally simple regression-type model:

Xt = µ + σ(t)εt, t = 1, 2, . . . , n,

εt iid, E(εt) = 0, V ar(εt) = 1,(2.4)

σ(t), t = 1, 2, . . . , n, a smooth, deterministic function of time.

It should be emphasized that by modelling the volatilities as a deterministic
sequence we do not claim that random effects do not play any role in the
volatility dynamics. This modelling approach merely reflects the belief that
both recent past and close future returns (with respect to some moment t)
are manifestations of the same unspecified, exogenous economic factors about
which we are only willing to hypothesize a gradually changing nature. In our
model these economic factors express themselves mainly in the level of the
unconditional variance. Our methodology quantifies the expression of these
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economic factors in the recent past (with respect to the moment t) prices, i.e.
evaluates the current level of unconditional variance, and uses it to forecast
the close future returns since they are supposed to be the manifestation of
(almost) the same constellation of exogenous variables.
To fit this regression-type model to a time series of returns we first remove
the mean by subtracting the average return over the whole period under
consideration producing the de-meaned returns

(2.5) Rt = Xt − X̄n,

where X̄n := n−1
∑n

t=1 Xt is the natural estimator for the mean µ. Neglect-
ing the estimation error in this first step, the squared de-meaned returns R2

t

are independent with mean σ2(t), that is supposed to be a smooth function
of time. Note that the setup is now that of a non-parametric regression
with deterministic equispaced design points t and the squared volatilities
are estimated in the next step by standard non-parametric regression es-
timators applied to the sequence (R2

t ), t = 1, . . . , n. In our data analysis
of the returns on the S&P 500 index, we will use the evaluation weighted
(Nadaraya-Watson) estimator with a normal kernel. However, local linear
kernel estimators like the LOESS procedure work equally well.
Finally, one must model the distribution of the innovations εt. To this end,
define the estimated innovations as

(2.6) ε̂t :=
Rt

σ̂(t)
,

with σ̂(t) denoting the square root of the estimates of σ2(t) obtained in the
second step. In order to avoid further model assumptions, one might be
tempted to use the empirical cumulative distribution function (cdf) of the
innovations as an estimate of the cdf of the innovations. However, very often
the distribution of the innovations is heavy tailed. Thus using the empirical
cdf would underestimate the risk of extreme innovations and hence the risk
of extreme returns, with potentially serious consequences when this approach
is used in managing risk.
Our experience shows that a one-sided Pearson type VII distribution (con-
centrated on the positive half of the real line) with shape parameter m and
scale parameter c having density

(2.7) f(x; m, c) =
2Γ(m)

cΓ(m − 1/2)π1/2

(

1 +
(x

c

)2)−m

, x > 0,

fits the positive innovations and the absolute value of the negative returns
very well. Note that f is the conditional density of a t-distributed random
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variable with ν = 2m − 1 degrees of freedom and scale parameter cν−1/2,
given that it is positive. Denote the densities of the negative and positive
standardized innovations by f−( · ; m−, c−) and f+( · ; m+, c+), respectively.
Because usually there are about as many positive innovations as there are
negative ones, it may be assumed that the cdf of the innovations has median
0. Therefore, we propose modelling the innovations using the following sim-
ple but flexible family of distributions that allows for asymmetry between
the distributions of positive and negative innovations and, in addition, for
arbitrary tail indices for both tails:
(2.8)

fV II(x; m−, c−,m+, c+) =
1

2

(

f−(x; m−, c−)1(−∞,0)(x)+f+(x; m+, c+)1[0,∞)(x)
)

.

We refer to the distribution with density (2.8) (that covers the whole real
axis) as the asymmetric Pearson type VII and denote its cdf by F V II .
To summarize, fV II is determined by 4 parameters m−, c−, m+, and c+,
with (m−, c−) and (m+, c+) being estimated separately by fitting a one-sided
Pearson type VII distribution to the absolute values of the negative and
positive standardized innovations, respectively, e.g. by maximum likelihood.
These parameters, together with the variance estimates σ̂2(t) and the average
return X̄n, fully specify the distribution of the time series of returns in the
model (2.4).
In some instances, in particular when analyzing returns over several decades,
the assumption that all innovations are identically distributed is rather bold.
Instead one may assume that the distribution changes slowly over time. In
that case one would fit the asymmetric Pearson type VII distribution not
to all innovations at once but only to those in a moving window of a given
length (e.g. 1000 consecutive innovations). Anyway, as we will see in the next
section, such a refinement of model (2.4) is not needed for the time series of
S&P 500 returns examined here.

3 Modelling returns of the S&P 500 index

In this section we apply the methods described in the previous section to the
time series of daily returns of the S&P 500 index from the January 2, 1990
to February 21, 2002 (3062 observations) displayed in Figure 3.1.
In Figure 3.2 we display two estimates of the annualized time-varying stan-
dard deviations (s.d.’s)

√
250σ(t) of the S&P 500 time series. The solid line is

the estimate obtained by using a two-sided evaluation weighted (Nadaraya-
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Figure 3.1 Returns of S&P 500 from 01/02/1990 to 02/21/2002.
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Figure 3.2 Annualized estimated volatilities of S&P 500 returns using two-
sided (3.1) (solid line) and one-sided (3.2) (dotted line) smoothing.

Watson) estimator:

(3.1) σ̂2(t) :=

∑n
i=1 Kh(i − t)R2

i
∑n

i=1 Kh(i − t)
,

where Kh(·) = h−1K(·/h) and K is the normal kernel. The band width
parameter is h = 40. For practical reasons, the weights outside a window of
length 300 centered at the return whose variance is being estimated were put
to 0, thus obtaining estimates for the volatility at t = 151, . . . , n−150. (Note
that by a minor modification using boundary kernels one may also estimate
σ2(t) for t = 1, . . . , 150 and t = n − 149, . . . , n.)
The dotted line is the estimate obtained using the one-sided evaluation
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weighted estimator:

(3.2) σ̂2
1(t) :=

∑

1≤i≤t Kh(i − t)R̃2
i

∑

1≤i≤t Kh(i − t)
.

with bandwidth h = 25, where R̃t are defined in (4.1). Note that σ̂2
1(t) uses

only the information available at day t. This estimator (with various values
for h) will be used to produce the forecasting results presented in Section 4.
The annualized volatility estimates shown in Figure 3.2 (i.e.

√
250 σ̂(t) and√

250 σ̂1(t), respectively) clearly reflect the three obvious consecutive periods
of high, low and high volatilities, respectively. In addition, they also exhibit
strong fluctuations of the volatilities in the last period which are less obvious
from Figure 3.1.
To finish fitting the model, the asymmetric Pearson type VII distribution
F V II (2.8) is estimated on the sequence of the estimated innovations (2.6)
using the maximum likelihood for iid data (a careful check that ε̂t, t =
151, . . . , n − 150, are approximately iid follows below). The resulting esti-
mates of the four parameters are (the s.d. in parentheses)
(3.3)
m̂− = 3.27 (0.28), ĉ− = 1.88 (0.14), m̂+ = 6.65 (1.32), ĉ+ = 3.23 (0.40),

implying a tail index point estimate of 5.53 for the left tail and of 12.31
for the right tail. The fact that the left tail seems heavier is in accordance
with the observation that extreme negative stock returns are usually larger in
absolute value than the largest positive return, thus underpinning the need
for a model that allows for tail asymmetry.
Next we check whether our model assumptions are satisfied. First, we test
whether the estimated innovations are identically distributed. For this, we
divide the sample (ε̂t) in three subsamples of equal length (920 observations

each), (ε̂
(1)
t ), (ε̂

(2)
t ), (ε̂

(3)
t ) respectively. Figure 3.3 displays the QQ-plots for

each pair of blocks. The fact that all 3 QQ-plots are close to the diagonal
supports the hypothesis that the sample cdf of the innovations is approx-
imately the same in all three periods. The visual check is complemented
by a pairwise comparison of the three empirical cdf’s using a two-sample
Kolmogorov-Smirnov test.
For a given pair, say (ε̂(1), ε̂(2)), the working assumptions are that ε̂(1)’s and
ε̂(2)’s are mutually independent (see the independence tests in the sequel for
evidence supporting this assumption) and that all the observations in the
sample (ε̂(1)) come from the same continuous population F (1), while all the
observations in the sample (ε̂(2)) come from the same continuous population
F (2). The null hypothesis is

(3.4) H0 : F (1) and F (2) are identical.

8
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Figure 3.3 QQ-plots of the pairs of 3 periods of innovations (Top and Bot-
tom Left). Normal probability plot of the innovations transformed with es-
timated asymmetric Pearson type VII cdf, F̂ V II with the data on the x-axis
and the normal quantile function on the y-axis (Bottom Right).

The two-sample Kolmogorov-Smirnov test does not reject the hypothesis of
identical distributions for all periods at the 5%-level (p-values of 0.11, 0.59
and 0.24, respectively).
The hypothesis

(3.5) H0 : ε̂t are iid random variables.

is tested using the autocorrelation structure of the estimated innovations (ε̂t)
and their absolute values (|ε̂t|). The left plots of Figure 3.4 show the SACF
of the innovations (Top) and the absolute innovations (Bottom). The dotted
lines indicate the 95%-confidence interval under the hypothesis of indepen-
dence (3.5). In accordance with the model assumptions, both SACFs stay
within the boundary of the confidence interval for most lags. However, the
Portmanteau test for the innovations, that checks at lag h whether the sum
of the first h squared sample autocorrelations multiplied with the number
of innovations exceeds the 0.95-quantile of the χ2-distribution with h de-
grees of freedom, rejects the independence of the innovations for most lags
(Right Top), while the Portmanteau test based on the SACF of the abso-
lute innovations accepts the null hypothesis (3.5) for the first 100 lags. At a
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Figure 3.4 Sample ACF (Left) and Portmanteau test (Right) for the esti-
mated innovations (ε̂t) of the regression model (2.4) fit to the series of S&P
500 returns (Top) and of their absolute values (Bottom).

first glance, this seems very peculiar since in Figure 1.1 the autocorrelation
between the absolute returns appears to be much stronger than the autocor-
relation between the returns. This puzzle can possibly be solved as follows.
The apparently larger autocorrelations in the absolute returns could be due
to non-stationarities in the second moment structure of the time series. The
standardization with the changing volatility displayed in Figure 3.2, which
addresses precisely this type of non-stationarity, changes only the absolute
values and not the signs of the returns. As a result, it removes the aspect of
long range dependence present in the SACF of absolute returns while produc-
ing a SACF of the innovations very similar to that of the returns in Figure
1.1. (The SACF of the innovations (or that of the returns) may indicate ei-
ther weak dependence in the signs of the returns or non-stationarities in the
mean of the time series. Neither of them is taken into account by our model
or by GARCH-type models.) Up to this minor inaccuracy, we conclude that
the innovations seem close to independence.
To test the hypothesis

(3.6) H0 : E(ε̂t) = 0, V ar(ε̂t) = 1,

two estimates of the mean and the variance of the estimated innovations
(ε̂t) together with the corresponding standard deviations are produced. The
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working assumption is that (ε̂t) is an iid sequence of random variables (see
the independence tests (3.5) for evidence supporting this assumption).
Under the hypothesis (3.6), according to the Central Limit Theorem, the
following test statistics

(3.7) S1,n :=
1

n − 300

n−150
∑

t=151

ε̂t, S2,n :=

∑n−150
t=151 (ε̂2

t − 1)
√

∑n−150
t=151 ε̂4

t

,

should be approximately standard normal. The corresponding two-sided tests
give p-values of 0.31 for S1,n and 0.41 for S2,n, respectively, thus confirming
the hypothesis (3.6).
In addition, we check whether the fitted asymmetric Pearson type VII distri-
bution F̂ V II has the correct mean and variance. Point estimates of these two
quantities, which are simple functions of the parameters, are obtained using
the values in (3.3). The delta method and the large-sample approximation to
the covariance matrix of the maximum likelihood estimators of the Pearson
type VII model given in Section 27.6 of [16] are used to calculate the stan-
dard deviations of these estimates. This approach yields an estimated mean
of 0.04 with s.d. 0.08 and variance of 1.01 with s.d. of 0.03. The pertaining
two-sided parametric tests for mean 0 and variance 1 have p-values 0.55 and
0.93, respectively.
Finally, we check the goodness of fit of the asymmetric Pearson type VII
distribution F̂ V II to the estimated innovations (ε̂t). We do it by testing the
null hypothesis
(3.8)
H0 : The marginal distribution of (Φ−1(F̂ V II(ε̂t))) is a standard normal, Φ(·).
The bottom-right graph in Figure 3.3 displays the normal probability plot of
the sequence (Φ−1(F̂ V II(ε̂t))). The resulting plot is very close to a straight
line providing evidence that the parametric family (2.8) is indeed an appro-
priate model for the innovations. In addition, we also test the transformed
innovations for normality using the two-sided Kolmogorov-Smirnov (K-S),
Shapiro-Wilks (S-W) and Jarque-Bera (J-B) tests. While the first is a gen-
eral non-parametric goodness of fit test, the Shapiro-Wilks and the Jarque-
Bera tests are specifically designed to test normality. The Shapiro-Wilks test
([26]), based on a quadratic statistic which measures the distance of the nor-
mal probability plot from a straight line is an omnibus test for normality. In
contrast, the Jarque-Bera test, commonly used in econometric applications
due to its intuitive appeal (see e.g. [17]), checks only whether the skewness
and kurtosis are approximately equal 0 and 3, respectively, and thus it de-
tects only specific alternatives. The p-values of these three tests are reported
in the last line of Table 1.
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Figure 3.5 Sample ACF (Left) and Portmanteau test (Right) for the abso-
lute values of the estimated innovations (ε̂t) of the Student’s t GARCH(1, 1)
(Top) and of the GED EGARCH(1, 1) (Bottom) fit to the series of S&P 500
returns.

For comparison, a GARCH(1, 1) and a EGARCH(1, 1) model were fit to the
same data. For the innovations we chose the most common distributions
encountered in the literature. For the GARCH(1, 1) model this was the Stu-
dent’s t with ν degrees of freedom, while for the EGARCH(1, 1) model we
used the Generalized Error Distribution (GED) with shape parameter ν.
The models were fit using the ML estimation based on the UCSD GARCH
toolbox for Matlab (http://econ.ucsd.edu/∼ksheppar/research.htm) (some
errors were corrected). In our preliminary studies, the performance of this
estimation procedures was superior to that of the GARCH module of the
commercial software S-plus. The estimated parameters (the s.d. in parenthe-
sis) were

α0 = 2.81 · 10−7 (2.48 · 10−6), α1 = 0.045 (0.002),

β1 = 0.953 (6.85 · 10−4), ν = 6.14 (0.54),

for the GARCH(1, 1) model and

α0 = −0.226 (0.004), α1 = 0.083 (0.011), γ1 = 0.122 (0.004),

β1 = 0.986 (2.52 · 10−5), ν = 1.39 (0.04),
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Figure 3.6 Normal probability plot of the innovations of the Student’s t
GARCH(1, 1) transformed with estimated t cdf and the inverse of the stan-
dard normal cdf (Left) and of the innovations of the GED EGARCH(1, 1)
transformed with estimated GED cdf and the inverse of the standard normal
cdf (Right) with the data on the x-axis and the normal quantile function on
the y-axis (See (3.9).

Model/Test K-S S-W J-B

Student’s t GARCH(1, 1) 0.19 6.73 · 10−5 1.74 · 10−5

GED EGARCH(1, 1) 0.50 9.70 · 10−6 1.35 · 10−5

Our model 0.70 0.42 0.84

Table 1: p-values for the Kolmogorov-Smirnov, Shapiro-Wilks and Jarque-
Bera tests of normality applied to the transformed estimated innovations of
the three models.

for the EGARCH(1, 1) respectively. The SACF of the GARCH(1, 1) and
EGARCH(1, 1) estimated innovations are very similar to the one on Figure
3.4 (Top) and hence we do not reproduce them. The SACF of the absolute
values of the GARCH(1, 1) and EGARCH(1, 1) estimated innovations are
displayed in Figure 3.5. The GARCH(1, 1) innovations pass the Portmanteau
test for any number of lags up to 100 while the EGARCH(1, 1) innovations
fail if the number of lags used in building the statistic is between 30 and 55.
As a goodness of fit of the marginal distribution of the innovations, we display
in Figure 3.6 the normal probability plot of

(3.9) Φ−1(Uν(ε̂t)), ε̂t = Rt/σ̂t,

where σ̂t is the GARCH(1, 1) (EGARCH(1, 1)) estimated volatility and Uν

is the cdf of the Student’s t with ν = 6.14 degrees of freedom (the cdf of the

13



GED distribution with shape parameter ν = 1.39). The visual impression of
a poor fit of the two marginal distributions to the innovations is confirmed by
the p-values of the Shapiro-Wilks and Jarque-Bera tests of normality applied
to the transformed estimated innovations (3.9) given in Table 1. This table
together with Figure 3.5 shows that the fit of our model is superior to that
of the two GARCH-type models.

4 Forecasting comparison

Although GARCH-type models are believed to produce accurate conditional
variance forecasts for 1-day returns ([3]), evaluating their performance (as
forecasters of conditional variances) is difficult due the un-observed nature
of the forecasted quantity (see [1]). By contrast, comparing the accuracy of
various forecasts of the whole conditional distribution of future returns (and
not only of the conditional variance) is, to some extent, easier. It is known,
for example (see [5], [8]) that transforming the observed d-days returns with
their true conditional cdf produces a (d − 1)-dependent sequence of uniform
observations. The quality of various forecasters can be then compared by
assessing how close the d-days returns transformed with the conditional cdf
hypothesized by various models resemble a (d−1)-dependent, marginally uni-
form sequence. The more the transformed returns resemble such a sequence,
the closer is the conditional distribution hypothesized by the model to the
true conditional distribution of the data. Hence our forecasting comparisons
will focus on assessing the quality of the distributional forecast of future re-
turns. Furthermore, forecasting only the volatilities is not sufficient when
risk measures (like the Value at Risk for example) are to be calculated. This
task becomes trivial when accurate distributional forecasts are available.
Most of the studies in the literature (see [8], [6] and the references therein)
focus on model evaluation based on the 1-day-ahead conditional distribution
forecast. Little is however known about the quality of the longer-than-1-
day horizon conditional distribution forecasts of classic models like (2.2) and
(2.3). The focus of this section is two-fold: to compare the forecasting per-
formance of the two models which specify the volatility endogenously ((2.2)
and (2.3)) with that of our model (which treats the volatility as being ex-
ogenous) and to evaluate qualitatively the conditional distribution forecasts
over longer horizons of 20 days and 40 days of the mentioned classic models.
The comparison concerns the forecasted conditional distributions of returns
over 1 day, 20 days and 40 days.
Besides the belief that differences between modelling approaches will be the
more pronounced the longer the forecast period, it is the interest in an accu-
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rate description of longer term risk associated with a portfolio that prompted
our study of the distributional forecasts over longer horizons.
Define

(4.1) R̃t = Xt − X̄t−1,

with X̄t := n−1
∑t

i=1 Xi being the natural estimator for the mean µ based
on returns up to day t. Given σ̂2

1(·), an estimate of the unconditional vari-
ance σ2(·) based only on past information, denote by F̂ V II

t , the asymmetric
Pearson type VII distributions (2.8) with MLE parameters estimated on the
series (R̃1/σ̂1(1), R̃2/σ̂1(2),. . . , R̃t/σ̂1(t)).
Based on the model (2.4), the distributional forecast at time t of the d-day
return Xt+1 + . . . + Xt+d is then given by

X
(d)
t = dX̄t + σ̂1(t) (ε1 + . . . + εd),

εi , i=1, . . . d, are iid random variables with distributions F̂ V II
t .(4.2)

Hence the distributional forecast for model (2.4) is that of a scaled (by an
estimate of the standard deviation σ(t)) and centered (by an estimate of
the mean µ) convolution of d iid random variables with cdf F̂ V II

t , thus im-
plicitly assuming that over the forecasting horizon the volatility does not
change much. In practice, since a tractable theoretical description of these
convolutions is not available, we used simulations: d iid observations from
the distribution F̂ V II

t are summed and then scaled by the current level of
the volatility σ̂1(t) and centered by the mean estimate X̄t. The operation is
repeated 10,000 times.
For our forecasting exercise we use

σ̂2
1(t) =

∑

1≤i≤t Kh(i − t)R̃2
i

∑

1≤i≤t Kh(i − t)
,

the one-sided kernel estimate of the unconditional covariance σ2(t) defined
in (3.2).
The bandwidth h depends on the forecasting horizon: for the 1-day, h1 = 25,
for the 20-days forecast h20 = 60, while for the 40-days forecast we used
h40 = 100. The weights outside a window of length 150 (400, 500 respectively)
at the left of the return whose variance is being estimated were put to 0 for
the 1-day (20-day, 40-day respectively) forecast. Note that it is intuitively
plausible that forecasters over longer horizons use a larger bandwidth because
they need to predict an average volatility level over the forecasting horizon
(unlike the 1-day-ahead forecasters which produce instantaneous volatility
readings).
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For the GARCH-type models, the 1-day conditional distributions are given
by (2.1) and the volatility dynamics postulated by (2.2) or (2.3). For d ≥ 2
the distributions cannot be described in a simple closed form and simulations
are needed. The conditional distributions are used to sequentially simulate
next day return for a sequence of days of the desired length d. Then the d
simulated daily returns are summed up and centered by d times an estimate
of µ to produce one return over a d-day period. Again 10,000 simulations
were made.
The performance of the models is judged based on the quality of the distribu-
tional forecast. More concretely, we are interested in evaluating the ability of
a forecaster based on past observations G

(d)
t = G

(d)
t (Xt, Xt−1, . . .) to describe

the conditional cdf of the returns over a d-days period

(4.3) F
(d)
t (x) = P

(

d
∑

i=1

Xt+i ≤ x
∣

∣

∣
Xt, Xt−1, . . .

)

.

If G
(d)
t = F

(d)
t , i.e. if the forecaster perfectly describes the conditional dis-

tribution of the returns over a d-days period, transforming the observed d-
days returns with G

(d)
t will produce a (d − 1)-dependent sequence z

(d,G)
t =

G
(d)
t (

∑d
i=1 Xt+i) of uniform observations (see [5], [8]). Equivalently,

(4.4) z̃
(d,G)
t = Φ−1

(

G
(d)
t

(

d
∑

i=1

Xt+i

)

)

(where Φ is the normal cdf) will be a (d − 1)-dependent sequence of nor-
mal observations. (We prefer the transformation to normals for the sake of
commodity and also for a better emphasize on the tail behavior.) The closer

the stochastic process z̃
(d,G)
t to a marginally normal, (d − 1)-dependent se-

quence, the more accurate the forecaster G
(d)
t . (In the sequel the index (d,G)

in (4.4) will be dropped whenever the context makes clear the forecaster in
discussion.)
Before discussing in detail the results of the forecasting of the conditional
distribution, we need to say a few words about the concrete model specifica-
tions used in our comparisons. For 1-day (20-day and 40-day) forecasts and
for all the models, the first 1000 (1300) observations were used for mean and
parameter estimation while the rest of 2062 (1762) were used to check the
quality of the forecasts (the increase in the number of observations dedicated
to the preliminary estimation step accommodated the longer window used in
the estimation of the local variance for the 20-day and 40-day forecasting).
Always an estimate of the mean was subtracted from the data before fitting
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Figure 4.1 Goodness of fit of the 1-day-ahead conditional distribution of
Student’s t GARCH(1, 1) model. The data analyzed are z̃

(1)
t (4.4), i.e. daily

returns transformed with the conditional cdf specified by (2.1) and (2.2) and
the inverse of the standard normal cdf. Top: The normal probability plot
(Left). The sample ACF of the data (Right). Bottom: The sample ACF
of the absolute values (Left). The Portmanteau test for the absolute values
(Right).

the multiplicative models. For the GARCH(1, 1) and EGARCH(1, 1) mod-
els we investigated two possible setups. In both of them the models were
re-estimated periodically every 100 days. (This is done to save on comput-
ing time but simulations with re-estimation every 10 days yield essentially
the same results.) In the first approach (called in the sequel Setup 1), the
re-estimation of the mean and the model parameters was done on all the
data from the beginning of the sample to the day of re-estimation, while
in the second approach (called from now on Setup 2), a moving window of
most recent 1000 observations was employed. The mean of the window of
data used for the re-estimation was always subtracted from the data before
re-estimating the models.
To summarize, in a given day t, the forecasters we evaluate are the conditional
distributions of returns over d days given by model (2.1) with (2.2) and (2.3)
and (2.4), respectively, with the most recently estimated parameters. The

17



−4 −3 −2 −1 0 1 2 3

0.001

0.003

0.01 
0.02 

0.05 

0.10 

0.25 

0.50 

0.75 

0.90 

0.95 

0.98 
0.99 

0.997

0.999

Data

Pr
ob

ab
ilit

y

Normal Probability Plot

0 10 20 30 40 50 60 70 80 90 100
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

0 20 40 60 80 100

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

lag

Port
man

teau
 p−v

alue

Figure 4.2 Goodness of fit of the 1-day-ahead conditional distribution of
GED-EGARCH(1, 1) model. The data analyzed are z̃

(1)
t (4.4), i.e. daily

returns transformed with the conditional cdf specified by (2.1) and (2.3) and
the inverse of the standard normal cdf. Top: The normal probability plot
(Left). The sample ACF of the data (Right). Bottom: The sample ACF
of the absolute values (Left). The Portmanteau test for the absolute values
(Right).

evaluation consists in testing the hypothesis:
(4.5)

H0 : (z̃
(d,G)
t ) is a (d − 1)-dependent sequence of N (0,1) random variables.

For the 1-day ahead forecasts the test is facilitated by the simpler form of
the hypothesis

(4.6) H0 : (z̃
(1,G)
t ) is an iid sequence of N (0,1) random variables.

We start now presenting the results of the comparison of the 1-day ahead
forecasts. Since the differences between Setup 1 and 2 are in this case min-
imal we will only present the results of the analysis under the Setup 2. To
test the null of normality, the top left graphs in Figures 4.1–4.3 display the
normal probability plot of the time series (z̃

(1)
t ) based on the 1-day-ahead

forecasts for the GARCH(1,1) model (2.1), (2.2) with t-distributed innova-
tions, the EGARCH(1,1) model (2.1), (2.3) with GED-innovations and the
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Figure 4.3 Goodness of fit of the 1-day-ahead conditional distribution of
the regression model. The data analyzed are z̃

(1)
t (4.4), i.e. daily returns

transformed with the conditional cdf specified by (2.4) and the inverse of the
standard normal cdf. Top: The normal probability plot (Left). The sample
ACF of the data (Right). Bottom: The sample ACF of the absolute values
(Left). The Portmanteau test for the absolute values (Right).

regression-type model (2.4), respectively. The sequences (z̃
(1)
t ) associated

with the GARCH-type models are poorly fitted by a normal distribution dis-
playing strong deviations in the tails. This visual impression is confirmed
by the p-values of the Kolmogorov-Smirnov, Shapiro-Wilks and Jarque-Bera
tests given in the Table 2. Indeed, for both GARCH-type models the Shapiro-
Wilks and Jarque-Bera strongly reject the hypothesis of normality and the
EGARCH(1,1) model even fails the Kolmogorov-Smirnov test. In contrast,

the normal probability plot of the standardized returns (z̃
(1)
t ) corresponding

to our model (2.4) is very close to a straight line. This sequence comfortably
passes all the three tests of normality.
To check the independence of the standardized return sequences (z̃

(1)
t ) implied

by the three models, we display the SACF of (z̃
(1)
t ) (Top Right) and of (|z̃(1)

t |)
(Bottom Left) and the Portmanteau p-values for (|z̃(1)

t |) (Bottom Right) (Fig-

ures 4.1–4.3). The SACFs of the sequences (z̃
(1)
t ) are very similar for all three

models, and they closely resemble a SACF of an iid sequence. However, they
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Model/Test K-S S-W J-B

Student’s t GARCH(1, 1) 0.06 4.9 · 10−4 3.4 · 10−3

GED EGARCH(1, 1) 0.01 6.5 · 10−5 6.0 · 10−5

Our model 0.29 0.27 0.25

Table 2: p-values for the Kolmogorov-Smirnov (K-S), Shapiro-Wilks (S-W)

and Jarque-Bera (J-B) tests of normality applied to the sequences (z̃
(1)
t ) as-

sociated with the three models: (2.1) with (2.2) and (2.3), (2.4), respectively.

are affected by the same problem as the SACF of the returns (Xt) and of the
estimated innovations (ε̂t). That is, despite the small values of the SACFs,
a Portmanteau test rejects the hypothesis of independence of the sequence
(z̃

(1)
t ) for all three models (see the discussion in Section 3). In contrast, the

Portmanteau test based on the absolute standardized returns (|z̃(1)
t |) rejects

the hypothesis of independence for the EGARCH(1,1) model only (its SACF

is positive for most of the first 50 lags!), while the sequences (|z̃(1)
t |) seem

independent for the GARCH(1,1) model and our regression model.

To summarize the evaluation of the 1-day forecasts, the sequences (z̃
(1)
t ) are

approximately iid standard normal for the regression-type model while the
normality is rejected for both GARCH-type models, and independence is
rejected for the EGARCH(1,1) model, which seems least suited for 1-day-
ahead forecasts.
Next we turn to evaluating the 20-days-ahead (Figures 4.4–4.6) and 40-days-
ahead (Figures 4.7–4.9) forecasts. For the GARCH-type models, we consider
both Setup 1, using the whole past in the re-estimation step, and Setup
2, where only the last 1000 observations are used to re-fit the model. The
figures display in the top panels the normal probability plots, while the Setup
2 SACFs of (z̃

(d)
t ) and (|z̃(d)

t |), for d=20 and 40, are displayed in the bottom
panels (the SACFs under Setup 1 are very similar and are not displayed for
space reasons). Since the dependency structure in the data is unknown, no
confidence intervals for the autocorrelations are displayed.
The evaluation of the three models consists in a discussion of the hypothesis
(4.5) and has a more qualitative flavor than the analysis performed for the
1-day forecasts. The significance of the departures from a straight line of the
normal probability plots as well as the significance of the auto-correlations
in Figures 4.4–4.9 are not easy to assess due to the (d−1)-dependence of the
series. It is a well-known fact that dependency can be mistaken for departure
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Figure 4.4 Goodness of fit of the 20-days-ahead conditional distribution of
Student’s t GARCH(1, 1) model. The data analyzed are z̃

(20)
t , the 20-day

returns transformed with the conditional cdf specified by (2.1) and (2.2) and
the inverse of the standard normal cdf. Top: The normal plot of the data
obtained in Setup 1 (Left) and Setup 2 (Right). Bottom: The sample ACF
of data (Setup 2)(Left) and absolute values (Right).

from normality, if one does not take it into account while testing. Classical
time series theory also shows that the presence of positive dependence widens
the confidence intervals for the autocorrelation.
Bearing in mind this caveat, let us note that for the GARCH(1,1) model the
normal fit seems better in the Setup 2 when only the last 1000 returns are
used to re-fit the model. For the EGARCH(1,1) model this finding is less
obvious with a slightly straighter plot for the Setup 2. The regression model
produces a sequence (z̃t) whose distribution seems very close to a standard
normal. The SACFs of the sequences (z̃t) and (|z̃t|) in Setup 2 (bottom
panels) are rather small for lags greater than d and resemble closely the
dependency structure of a MA(d) process for all models. The SACFs do not
seem to indicate violations of the null of d − 1 dependence.
Lacking a viable methodology, we do not formally test either the normality
of the standardized d-day returns or their d-dependent structure. However,
we will complement the graphical evaluation of the normality hypothesis for
the sequences (z̃

(20)
t ) based on the normal probability plots in Figures 4.4–
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Figure 4.5 Goodness of fit of the 20-days-ahead conditional distribution of
GED EGARCH(1, 1) model. The data analyzed are z̃

(20)
t , the 20-day returns

transformed with the conditional cdf specified by (2.1) and (2.3) and the in-
verse of the standard normal cdf. Top: The normal plot of the data obtained
in Setup 1 (Left) and Setup 2 (Right). Bottom: The sample ACF of data
(Setup 2)(Left) and absolute values (Right).

4.6 with two qualitative investigations. (The very strong and far-reaching
dependence and the small sample size are good arguments for not extending
the qualitative analysis to the 40-day forecasts.)
As mentioned, the classical tests employed previously cannot be used directly
to assess the null of standard normal marginals, since the correct critical
values are unknown. In [5] and [8] it is suggested to split the whole time

series into d sub-samples (z̃
(d)
i+td)), 1 ≤ i ≤ d, t = 0, 1, . . ., of iid random

variables and to construct a test of size less than or equal to α of the null
(4.5) by performing d tests of size α/d of the hypothesis (4.6) on the sub-
samples. The test is formulated as follows:
(4.7)
reject the null (4.5) for the whole sample if at least one of the d test rejects.

This approach is probably not sound for time series displaying rather strong
positive dependency like in our case. While the Bonferroni inequality guar-
antees a size of at most α, the presence of the strong positive dependency
between the sub-samples can make the real size of the test be much smaller
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Figure 4.6 Goodness of fit of the 20-days-ahead conditional distribution of
the regression model. The data analyzed are z̃

(20)
t , the 20-day returns trans-

formed with the conditional cdf specified by (2.4) and the inverse of the stan-
dard normal cdf. Top: The normal plot of the data. Bottom: The sample
ACF of data (Setup 2)(Left) and absolute values (Right).

than α. However, the method could offer a qualitative insight highlighting
the relative behavior of the three models.
In Table 3 we provide the minimum pmin of the twenty p-values for the
Shapiro-Wilks test of normality applied to the sub-samples of iid random
variables of the sequences (z̃

(20)
t ) associated with the three models. Since

pmin exceeds 0.05/20=0.0025, the assumption of normality cannot be rejected
at the 5%-level for any of the three models. The second line of the table
gives the p-value of the test (4.7) if the sub-samples were independent, i.e.
1 − (1 − pmin)

20. The size of EGARCH(1, 1) model comes the closest to the
5% level while the other two sizes seem comfortably far from it.
The second qualitative analysis consists in simulating the asymptotic dis-
tribution of the three statistics, Kolmogorov-Smirnov, Shapiro-Wilks and
Jarque-Bera for MA(20) processes with normal innovations and coefficients

and variance of the residuals estimated on the three series (z̃
(20)
t ). (We note

that the three sets of estimated coefficients are very close. In fact, they
do not differ statistically.) The approximation of the dependency structure

of the sequences (z̃
(20)
t ) by a MA(20) (although justified by a good fit), to-
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GARCH(1, 1) EGARCH(1, 1) Our model

pmin 0.021 0.006 0.044

p-value (if indep.) 0.35 0.11 0.59

Table 3: First line: The smallest p-values for the Shapiro-Wilks test of nor-
mality applied to the 20 sub-samples of iid random variables of the the se-
quences (z̃

(20)
t ) associated with the three models: (2.1) with (2.2) and (2.3),

(2.4), respectively. Second line: The p-value of the test (4.7) if the sub-
samples were independent (1 − (1 − pmin)

20).

Model/Test K-S S-W J-B

Student’s t GARCH(1, 1) 0.68 0.02 0.04

GED EGARCH(1, 1) 0.65 0.69 0.56

Our model 0.74 0.75 0.48

Table 4: p-values for the Kolmogorov-Smirnov (K-S), Shapiro-Wilks (S-W)
and Jarque-Bera (J-B) tests of normality for MA(20) data applied to the

sequences (z̃
(20)
t ) associated with the three models: (2.1) with (2.2) and (2.3),

(2.4), respectively.

gether with the use of estimated parameters in generating the asymptotic
distributions of the three mentioned statistics might have distorted to some
extent the p-values in Table 4. It is, hence, without giving the weight of a
formal test to these results, that we state our conclusions. The Jarque-Bera
and the Shapiro-Wilks tests reject (at the statistical level of 5%) the nor-

mality of the sequence (z̃
(20)
t ) associated with the Students’s t GARCH(1, 1)

model while seemingly not rejecting it for the ones obtained using the GED
EGARCH(1, 1) and the regression model. The Kolmogorov-Smirnov test

does not reject the normality of (z̃
(20)
t ) for any of the models confirming in

this way the impression of being the least discriminating test among the
three.
To summarize, the qualitative results of the two tests we applied to the
dependent sequences (z̃

(20)
t ) corresponding to the three models confirm the

visual impression given by the normal probability plots in Figures 4.4–4.6
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Figure 4.7 Goodness of fit of the 40-days-ahead conditional distribution of
Student’s t GARCH(1, 1) model. The data analyzed are z̃

(40)
t , the 40-day

returns transformed with the conditional cdf specified by (2.1) and (2.2) and
the inverse of the standard normal cdf. Top: The normal plot of the data
obtained in Setup 1 (Left) and Setup 2 (Right). Bottom: The sample ACF
of data (Setup 2)(Left) and absolute values (Left).

that the regression model seems to behave better in forecasting future returns
over 20-day intervals then the other classic GARCH-type models.
We conclude that, also for longer horizons, the distributional forecasts based
on our regression model seem to outperform the forecasts given by the GARCH-
type models considered.

5 The Relationship to RiskMetrics

In the last few years the RiskMetricsTM methodology developed by J.P.Morgan
has become a kind of un-official industry standard for forecasting volatilities
and assessing the risk of financial investments. In this section we discuss
similarities and differences between this methodology and our approach. To
this end, we focus on the standard RiskMetrics approach which ignores the
mean of the returns and assumes normal innovations, although we also briefly
discuss more refined models.
In the RiskMetrics manual [25] it is suggested to forecast the volatility by an
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Figure 4.8 Goodness of fit of the 40-days-ahead conditional distribution of
GED EGARCH(1, 1) model. The data analyzed are z̃

(40)
t , the 40-day returns

transformed with the conditional cdf specified by (2.1) and (2.3) and the in-
verse of the standard normal cdf. Top: The normal plot of the data obtained
in Setup 1 (Left) and Setup 2 (Right). Bottom: The sample ACF of data
(Setup 2)(Left) and absolute values (Right).

exponential filter of the squared returns:

(5.1) σ̂2
RM,t :=

∑m
i=1 λiX2

t−i
∑m

i=1 λi
,

where for a one-day-ahead forecast the values λ = 0.94 and m = 74 are rec-
ommended. In the next step, the standardized returns Xt/σ̂RM,t are treated
as (approximately) independent normal random variables when the Value at
Risk and related quantities are calculated.
Unfortunately, the probabilistic model that forms the basis of this statistical
procedure is, according to our reading of the RiskMetrics manual, faulty.
In the conclusion of the fourth chapter, “Statistical and probability founda-
tions”, section 4.6 titled “RiskMetrics model of financial returns: A modified
random walk”, the model receives the following description: “The variance
of each return, σ2

i,t and the correlation between returns, ρi,t, (the index i and
the presence of ρ are for the description of the multivariate case, n.n) are
a function of time. The property that the distribution of returns is normal
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Figure 4.9 Goodness of fit of the 40-days-ahead conditional distribution of
the regression model. The data analyzed are z̃

(40)
t , the 40-day returns trans-

formed with the conditional cdf specified by (2.4) and the inverse of the stan-
dard normal cdf. Top: The normal plot of the data. Bottom: The sample
ACF of data (Left) and absolute values (Right).

given a time dependent mean and correlation matrix assumes that returns
follow a conditional normal distribution-conditional on time.”
In formulae, as specified on page 73 of [25], a conditional, multiplicative
model of the type (2.1) with µ = 0 and normal independent innovations is
assumed, i.e.

(5.2) Xt = σt εt, εt ∼ N (0, 1).

The vague description of σt as “a function of time” is made precise eight
chapters later, i.e. in Section B.2.1 of the Appendix B as

(5.3) σ2
t = λσ2

t−1 + (1 − λ)X2
t−1.

This specification is, up to a constant term, that of a IGARCH process
(explaining why in the literature the RiskMetrics model is often thought of
as being an IGARCH model). However, seemingly small in appearance, this
difference is very big in substance. Results by Kesten [18] and Nelson [24]
imply that a time series evolving according to the dynamics (5.2) and (5.3)
will tend to 0 almost surely!
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From our point of view, the claimed close relationship between the Risk-
Metrics methodology and GARCH-type models (prompted by the deceiving
formal analogy between the specification (2.2) and (5.3) and emphasized by
the comparisons in Section 5.2.3 of [25]) is misleading. Instead, the Risk-
Metrics approach can be motivated by our non-stationary regression model
(2.4).
Indeed, if one assumes a zero mean (i.e. Xt = Rt), then the forecast (5.1) is
just a kernel estimator of the type (3.2) with an exponential kernel Kexp(x) =
ax1[−1,1](x), a = λm and h = m. Our experience shows that replacing the
normal kernel with the exponential leads to results very similar to the ones
reported in Section 4. This finding is in line with the well-known fact that
the choice of the bandwidth h affects the performance of a kernel regression
estimator much more strongly than the choice of the kernel. In fact, in the
Sections 3 and 4 we have deliberately chosen the normal kernel instead of
the exponential filter (more common in time series analysis) to demonstrate
that the choice of the kernel does not matter much.
While the volatility forecasts by the RiskMetrics methodology are similar to
ours, the assumption of normal innovations is too restrictive to yield accurate
forecasts of the distribution of future returns. This has also been observed
in [25]. In Appendix B of the RiskMetrics document normal mixture models
or GED models for the innovations are proposed. However, these alternative
models lack two features that turned out to be essential for a successful fit
of many real data sets: they do not allow for asymmetry of the distribution
of innovations and they assume densities with exponentially decaying tails,
thus excluding heavy tails. Simulations as well as the results in Herzel et al.
[14] show that the reason for the inferiority of distributional forecasts based
on RiskMetrics (like for the GARCH-type models discussed in the previous
sections) is mainly due to this inflexibility of the model for the innovations.
A second, though minor, difference between our approach and the Risk-
Metrics procedure is that we explicitly include a non-vanishing mean in our
model. Although the standard deviation of the S&P 500 returns is about 27
times bigger than their mean, ignoring the mean altogether leads to a sub-
stantial loss in model and forecasting accuracy, while the simple assumption
of a constant mean suffices to obtain a good model fit and accurate forecasts
as well.
To summarize this discussion, our non-stationary approach of modelling the
financial returns as independent observations with a changing unconditional
variance provides the needed theoretical background for the RiskMetrics
methodology. At the same time, our more flexible modelling of innovations
significantly improves the fit and the forecasting performance. (For evidence
in the multivariate setup we refer the reader to Herzel et al. [14].)

28



6 Conclusions

In this paper a simple model for stock returns was introduced. Unlike most
of the econometric models for financial returns in our approach the volatil-
ity is thought to be exogenous to the process of returns. The evolution of
prices is seen as a manifestation of complex market conditions, hence driven
by exogenous factors. Since no clear candidates for explanatory exogenous
variables are at hand, we model the volatility as a deterministic function
of time σ(t). The methodological frame is that of nonparametric regression
with non-random equidistant design points where the regression function is
the evolving unconditional variance. The regression function is estimated by
an evaluation weighted (Nadaraya-Watson) estimator with a normal kernel,
although the particular choice of the kernel is of minor importance. The
innovations are iid random variables with asymmetric heavy tailed and are
modelled parametrically.
The model, together with an Student’s t GARCH(1, 1) and Generalized Error
Distribution EGARCH(1, 1) were estimated on the last 12 years of daily
log returns of the closing prices of the Standard & Poor’s 500 stock index.
Our model apparently fits the data significantly better than conventional
GARCH-type models.
In the forecast setup, our approach models future returns as an iid sequence
with a variance estimated on the very recent past returns and a distribu-
tion estimated on a long series of past innovations. A comparison of the
forecasted distribution of returns over various horizons by our model and
the classic GARCH-type of models mentioned earlier revealed a significantly
better performance of the regression-type model.
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