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PROJECTIVE LIMITS VIA INNER PREMEASURES

AND THE TRUE WIENER MEASURE

HEINZ KÖNIG

Dedicated to Professor Gustave Choquet

Abstract. The paper continues the author’s work in measure
and integration, which is an attempt at unified systematization.
It establishes projective limit theorems of the Prokhorov and Kol-
mogorov types in terms of inner premeasures. Then it specializes
to obtain the (one-dimensional) Wiener measure on the space of
real-valued functions on the positive halfline as a probability mea-
sure defined on an immense domain: In particular the subspace of
continuous functions will be measurable of full measure - and not
merely of full outer measure, as the usual projective limit theorems
permit to conclude.

The present paper wants to continue the author’s chain of contri-
butions to measure and integration. This is an attempt at unified
systematization, with the particular aim to incorporate the topologi-
cal theory into the abstract one. The basic idea is to develop and to
convert the classical extension method due to Carathéodory into a few
different procedures. These procedures are parallel to each other, but
diversified in two respects: On the one hand as to their basic inner or
outer character, and on the other hand as to their discrete, sequential
or nonsequential limit behaviour. Since 1996 there are the book [11]
(cited as MI) and a series of subsequent papers, and the recent survey
article [15]. A number of topics has been treated with unified results
which extend and improve the former ones in both of the conventional
theories. A typical example is the formation of products in MI chapter
VII and [13].

The present paper will be devoted to the formation of projective lim-

its, like the formation of products in the inner context. This is a topic
of particular importance, and in fact considered to be a crucial one.
We quote a statement from Dellacherie-Meyer [4] of 1978 pp.65/66.

If abstract measure theory ... is compared to the theory of
Radon measures ..., it may seem that the latter is superior to
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Key words and phrases. Projective limit theorems of the Prokhorov and Kol-

mogorov types, Prokhorov condition, inner premeasures and their inner extensions,
direct and inverse images of inner premeasures, transplantation theorems, Wiener
measure and Wiener premeasure, Brownian convolution semigroup.
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the former on four counts. These are, by order of decreasing
importance,

– the existence of a good theorem on inverse (projective) lim-

its of measures,
– the existence of some reasonable topologies ... on the space

of measures,
– the possibility of passing to the limit along uncountable in-

creasing families of lsc (:=lower semicontinuous) functions,
– the removal of certain σ finiteness restrictions.

The notion of a ... Radon measure has a counterpart in abstract
theory: the notion of inner regular measure with respect to a
compact paving. This notion seems to have some applications,
but not of great importance.

A similar statement is in the Introduction of Schwartz [20]. We agree
with the order of the four topics above, and in particular with position
one for the projective limits. But otherwise it must be added that
the statement is outdated with the appearance of our systematization.
There is an abundance of topics which support this claim, and we think
that the present article should be of particular emphasis.

In the sequel we shall obtain projective limit theorems in the spirit
of our systematization, of the Prokhorov type in section 4 and of the
Kolmogorov type in section 5. Before that we need to recall and to
develop the infrastructure of our enterprise in sections 1-3. The ex-
tent of these sections comes from their obvious novelty compared with
the usual procedures, but not at all from added complications. The
two sections 4 and 5 contain the former respective results, but will be
much more comprehensive. Section 4 will illuminate the nature of the
Prokhorov condition (Π) as an equivalent to inner regularity, but not
at all related to downward continuity. It seems that in projective limit
theorems there is no source for continuity other than compactness (or
perfectness), much in contrast to the situation of product measures.

At last section 6 will reveal how comprehensive the projective limit
versions in sections 4 and 5 are: We specialize to obtain the (one-
dimensional) Wiener measure as the maximal inner τ (:=nonsequen-
tial) extension of a simple and natural inner τ premeasure of mass one
on the space R

[0,∞[ of all real-valued functions on [0,∞[. Its domain
is immense compared with the usual product σ algebra, the members
of which are of a certain countable type. In particular this domain
contains the subspace C([0,∞[,R) of continuous functions as a mem-
ber of full measure - while so far this subspace was but a creature
of outer measure one and inner measure zero. This puts a final end
to the possible (though somewhat bizarre) view that Wiener measure
could equally well be considered as concentrated on the complement of
C([0,∞[,R). In section 6 we do not work with the usual probabilistic
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notions like stochastic processes and their modifications. To be sure,
the proof of our main theorem furnishes at the same time the usual
theorem on the existence of continuous modifications [1] 39.3, but this
result turns up well before our new weapon, that powerful inner τ lift,
comes into action.

The author thinks that the present results will have quite some in-
fluence on the probabilistic concepts around stochastic processes. He
also plans to devote another paper to the familiar set-theoretical con-
struction of projective limits, like in Bourbaki [3] chapter III section 7,
and to its implications in the present context.

1. Recollections and Complements on the Inner

Extension Theories

We adopt the terms of MI and [15] but shall recall the most basic and
less obvious notions and facts. Let X be a nonvoid set. For S ⊂ X the
complement will be denoted S ′. For a set function θ : P(X) → [0,∞]
with θ(∅) = 0 we recall the Carathéodory class

C(θ) = {A ⊂ X : θ(M) = θ(M ∩ A) + θ(M ∩ A′) for all M ⊂ X}.

C(θ) turns out to be an algebra, and θ|C(θ) to be a content.

The extension theories come in three parallel versions marked • =
⋆στ , where ⋆ stands for finite, σ for sequential or countable, and τ for
nonsequential or arbitrary. For a nonvoid set system S in X we define
S• and S• to consist of the intersections and unions of its nonvoid
• subsystems. In the sequel let S be a lattice of subsets in X with
∅ ∈ S. We restrict ourselves to the inner situation.

The fundamental definitions are for an isotone set function ϕ : S→
[0,∞[ with ϕ(∅) = 0. We define an inner • extension of ϕ to be an
extension α : A → [0,∞] of ϕ which is a content on a ring, and such
that moreover S• ⊂ A with

α|S• is downward • continuous (note that α|S• <∞), and
α is inner regular S•.

We define ϕ to be an inner • premeasure iff it admits inner • extensions.
The subsequent inner extension theorem characterizes those ϕ which
are inner • premeasures, and then describes all inner • extensions of ϕ.
The theorem is in terms of the inner • envelopes ϕ• : P(X) → [0,∞]
of ϕ, defined to be

ϕ•(A) = sup{ inf
M∈M

ϕ(M) : M ⊂ S nonvoid • with M ↓⊂ A},

where M ↓⊂ A means that M is downward directed with intersection
contained in A. We also need their satellites ϕB

• : P(X)→ [0,∞] with
B ⊂ X, defined to be
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ϕB
• (A) = sup{ inf

M∈M
ϕ(M) : M ⊂ S nonvoid • with

M ↓⊂ A and M ⊂ B ∀M ∈M}.
We recall that ϕ• is inner regular S•. Moreover ϕ = ϕ•|S iff ϕ is
downward • continuous, and ϕ•(∅) = 0 iff ϕ is downward • continuous
at ∅.

Theorem 1.1 (Inner Extension Theorem). Assume that ϕ : S →
[0,∞[ is isotone with ϕ(∅) = 0. Then ϕ is an inner • premeasure iff

ϕ is supermodular and downward • continuous at ∅, and

ϕ(B) ≦ ϕ(A) + ϕB
• (B \ A) for all A ⊂ B in S.

In this case Φ := ϕ•|C(ϕ•) is an inner • extension of ϕ, and a measure

on a σ algebra when • = στ . All inner • extensions of ϕ are restrictions

of Φ. Moreover we have the localization principle which reads

for A ⊂ X: S ∩ A ∈ C(ϕ•) for all S ∈ S =⇒ A ∈ C(ϕ•).

Thus we have S ⊂ S• ⊂ C(ϕ•). It is plain that the members of
S• are the most basic measurable subsets. We also recall a special
case of particular importance: S is called • compact iff each nonvoid •
subsystem M ⊂ S fulfils M ↓ ∅ ⇒ ∅ ∈M. It is obvious that in this
case the above functions ϕ are all downward • continuous at ∅.

The most natural example is that X is a Hausdorff topological space
with S = Comp(X). For an isotone set function ϕ : S → [0,∞[
with ϕ(∅) = 0 then the conditions • = ⋆στ in 1.1 are identical, and if
fulfilled produce the same ϕ• and hence Φ = ϕ•|C(ϕ•). In this case ϕ
is called a Radon premeasure and Φ the maximal Radon measure which
comes from ϕ. The localization principle implies that C(ϕ•) ⊃ Bor(X).

So far the direct recollections of MI and [15]. We continue with a
few simple facts which we will be of constant use. As before let X be
a nonvoid set and S be a lattice of subsets in X with ∅ ∈ S.

Remark 1.2. Let ψ : S• → [0,∞[ be isotone with ψ(∅) = 0. If ψ|S is
downward • continuous at ∅, then ψ is downward • continuous at ∅

as well.

Proof. Let M ⊂ S• be nonvoid • with M ↓ ∅. Then from MI 6.6 =
[15] 2.1.Inn) there exists N ⊂ S nonvoid • with N ↓ ∅ such that each
N ∈ N contains some M ∈M. Thus each N ∈ N fulfils inf

M∈M
ψ(M) ≦

ψ(N), so that we obtain 0 ≦ inf
M∈M

ψ(M) ≦ inf
N∈N

ψ(N) = 0. �

Remark 1.3. Let ϕ : S → [0,∞[ be isotone with ϕ(∅) = 0. i) If ϕ is
an inner ⋆ premeasure and downward • continuous at ∅, then ϕ is an
inner • premeasure. In view of MI 6.32 the converse need not be true,
but there is a partial converse in ii) below.
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ii) Assume that S = S•. If ϕ is downward • continuous, then
ϕ• = ϕ⋆. Hence if ϕ is an inner • premeasure, then ϕ is an inner ⋆
premeasure.

Proof. i) Combine ϕ⋆(A) ≦ ϕB
• (A) for A ⊂ B ∈ S with ⋆ and • in

1.1. ii) The first assertion is MI 6.5.iv) = [15] 2.2.4.Inn). The second
one then follows from • and ⋆ in 1.1.

The subsequent remark has been announced without proof in [15]
3.8.Inn).

Remark 1.4. The inner • premeasures ϕ : S → [0,∞[ and the inner
• premeasures φ : S• → [0,∞[ are in one-to-one correspondence via
φ = ϕ•|S• and ϕ = φ|S. Moreover then ϕ• = φ• = φ⋆.

Proof. i) Let ϕ : S → [0,∞[ be an inner • premeasure and φ :=
ϕ•|S•. Then Φ = ϕ•|C(ϕ•) is an inner • extension of ϕ, and hence an
inner • extension of φ. Thus φ is an inner • premeasure. Next we have
ϕ• = φ•, since this holds true on S• and both sides are inner regular
S•. At last φ• = φ⋆ from 1.3.ii) above. ii) Let φ : S• → [0,∞[ be an
inner • premeasure and ϕ := φ|S. Then Φ = φ•|C(φ•) is an inner •
extension of φ, and hence an inner • extension of ϕ. Thus ϕ is an inner
• premeasure, and 1.1 asserts that ϕ• = φ• on C(φ•). In particular
ϕ•|S• = φ. �

Next we recall the fundamental downward • continuity assertions MI
6.7 = [15] 2.8.2.Inn) and MI 6.27 = [15] 3.6.i).

Remark 1.5. Let ϕ : S → [0,∞[ be isotone with ϕ(∅) = 0 and su-
permodular. σ) ϕσ and ϕτ are almost downward σ continuous. τ) If
ϕ is downward τ continuous, then ϕτ |S⊤Sτ is almost downward τ
continuous.

The subsequent lemma comes from our treatment of direct images
for inner • premeasures in [12] section 3. It also extends [13] 2.10.

Lemma 1.6. Let ϕ : S → [0,∞[ be an inner • premeasure. Assume

that R is a lattice in X with ∅ ∈ R ⊂ S⊤S• such that ϕ•|R <∞ and

that ϕ• is inner regular R•. Then ϑ := ϕ•|R is an inner • premeasure

and fulfils ϑ• = ϕ•.

Proof. i) We have R• ⊂ S⊤S• and ϕ•|R• < ∞, and hence 1.5
asserts that ϕ•|R• is downward • continuous. In particular ϑ is down-
ward • continuous, and hence MI 6.5.iii) = [15] 2.2.3.Inn) asserts that
ϑ•|R• is downward • continuous. ii) From i) we have ϑ• = ϑ = ϕ•
on R and hence ϑ• = ϕ• on R•. Thus ϑ• = ϕ• on P(X), since both
sides are inner regular R•. iii) Now ϕ•|C(ϕ•) = ϑ•|C(ϑ•) is a content
on an algebra which fulfils R ⊂ R• ⊂ S⊤S• ⊂ C(ϕ•), and hence an
extension of ϑ; after i) it is an inner • extension of ϑ. Therefore ϑ is
an inner • premeasure. �
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This terminates the plain part of the section. We continue to recall
the old results MI 6.15 and 6.17 on the Carathéodory class C(·), which
were part of the deeper foundations of the edifice built in MI chapter
II (and resulted via transcription from the respective outer results MI
4.20 and 4.22). We restrict ourselves to the special case which will be
needed in the sequel, that is to P = H = {∅}.
Proposition 1.7. Assume that ξ : P(X) → [0,∞] is isotone with

ξ(∅) = 0 and supermodular. Let the nonvoid set system T in X be

upward directed such that ξ|T < ∞ and that ξ is inner regular ⊏ T
(defined to consist of the subsets of the members of T ).

1) If A ⊂ X fulfils ξ(T ) ≦ ξ(T ∩ A) + ξ(T ∩ A′) for all T ∈ T, then
A ∈ C(ξ).

2) If the isotone set function η : P(X) → [0,∞] fulfils η|T = ξ|T
and η ≦ ξ, then ξ|C(ξ) is an extension of η|C(η).

The above proposition will be invoked several times in the sequel.
At the moment we note a consequence of part 2) which is an extension
of MI 18.2.

Proposition 1.8. Let S and T be lattices with ∅ in X, and assume

that

ϕ : S→ [0,∞[ is isotone with ϕ(∅) = 0 and supermodular, and

ψ : T→ [0,∞[ is isotone with ψ(∅) = 0.

If S is upward enclosable T, then

ϕ• = ψ• on T• =⇒ ϕ•|C(ϕ•) is an extension of ψ•|C(ψ•);

and we have ⇐= whenever ψ is an inner • premeasure.

Proof. ⇒) Follows from 1.7.2) applied to ξ := ϕ• and η := ψ• and
to T. It suffices to note that ϕ• = ψ• on T• implies that ϕ• ≧ ψ• on
P(X). ⇐) For T ∈ T• we have T ∈ C(ψ•) ⊂ C(ϕ•) and ϕ•(T ) = ψ•(T ).
�

Our final point is on the cut-off procedure for an inner • premeasure
ϕ : S→ [0,∞[ presented in MI 9.21. We show that the procedure can
be extended from the E ∈ C(ϕ•) to arbitrary subsets E ⊂ X. We recall
that in case • = τ the former procedure led to the basic decomposition
theorem MI 9.24 with 9.25 = [15] 4.11.

We define a content α : A→ [0,∞] on an algebra A in X to live on

E ⊂ X iff all A ⊂ E ′ fulfil A ∈ A and α(A) = 0. This is more than
required in the usual notion of a thick subset E ⊂ X, for example in
Fremlin [5] 132F, the definition of which is that those A ⊂ E ′ which
are in A have α(A) = 0.

Theorem 1.9. Let ϕ : S → [0,∞[ be an inner • premeasure with

Φ = ϕ•|C(ϕ•) and E ⊂ X. Define ϕE : S → [0,∞[ to be ϕE(S) =
ϕ•(S ∩ E) for S ∈ S. Then ϕE is an inner • premeasure and fulfils
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1) (ϕE)•(A) = ϕ•(A ∩ E) for all A ⊂ X.

2) C(ϕ•) ⊂ C((ϕE)•).
3) ΦE = (ϕE)•|C((ϕE)•) lives on E.

4) The following are equivalent. 4.i) ϕ = ϕE. 4.ii) ϕ•(A) = ϕ•(A ∩ E)
for all A ⊂ X. 4.iii) E ∈ C(ϕ•) and Φ(E ′) = 0. 4.iv) Φ lives on E.

Proof. We define Θ : P(X) → [0,∞] to be Θ(A) = ϕ•(A ∩ E) for
A ⊂ X. Thus Θ is isotone with Θ(∅) = 0 and Θ|S• <∞.

i) We claim that

Θ(A ∪ B) + Θ(A ∩ B) = Θ(A) + Θ(B) for A ∈ C(ϕ•) and B ⊂ X.

In fact, we have

Θ(A ∪ B) + Θ(A ∩ B) = ϕ•((A ∪ B) ∩ E) + ϕ•((A ∩B) ∩ E)

=
(

ϕ•
(

A ∩ ((A ∪ B) ∩ E)
)

+ ϕ•
(

A′ ∩ ((A ∪ B) ∩ E)
)

)

+ ϕ•((A ∩ B) ∩ E)

= ϕ(A ∩ E) +
(

ϕ•(A
′ ∩ (B ∩ E)) + ϕ•(A ∩ (B ∩ E))

)

= ϕ•(A ∩ E) + ϕ•(B ∩ E) = Θ(A) + Θ(B).

ii) Θ|S• < ∞ is downward • continuous. In fact, let M ⊂ S• be
nonvoid • with M ↓ D ∈ S•. For M ∈M then i) furnishes

Θ(M) = Θ(D ∪ (M \D)) + Θ(D ∩ (M \D)) = Θ(D) + Θ(M \D)

≦ Θ(D) + ϕ•(M \D) = Θ(D) +
(

ϕ•(M)− ϕ•(D)
)

,

and hence the assertion.
iii) Θ is inner regular S•. To see this let A ⊂ X and c < Θ(A) =

ϕ•(A ∩ E). Then there exists S ∈ S• such that S ⊂ A ∩ E and
c < ϕ•(S). Thus on the one hand S ⊂ A, and on the other hand
S ⊂ E and hence c < ϕ•(S) = ϕ•(S ∩ E) = Θ(S).

iv) We have S ⊂ S• ⊂ C(ϕ•). The restriction ϑ := Θ|C(ϕ•) is an
extension of ϕE which is isotone and modular by i), and hence a content
on C(ϕ•). By ii)iii) it is an inner • extension of ϕE. Thus ϕE is an inner
• premeasure, and we have C(ϕ•) ⊂ C((ϕE)•) and (ϕE)• = ϑ = Θ on
C(ϕ•). In particular (ϕE)• = Θ on S•, and hence (ϕE)• = Θ on P(X)
since both sides are inner regular S• by iii). Thus we have the proved
the initial assertion and 1)2).

v) To see 3) let A ⊂ E ′. For M ⊂ X then

(ϕE)•(M ∩ A) + (ϕE)•(M ∩ A′) = ϕ•(M ∩ A ∩ E) + ϕ•(M ∩ A′ ∩ E)

= 0 + ϕ•(M ∩ E) = (ϕE)•(M),

so that A ∈ C((ϕE)•). Then ΦE(A) = (ϕE)•(A) = ϕ•(A ∩ E) = 0.
vi) It remains to prove 4). We have 4.i) ⇒ Φ = ΦE ⇒ 4.iv) from 3).

4.iv) ⇒ 4.iii) is obvious. 4.iii) ⇒ 4.ii) because ϕ•(A) = ϕ•(A ∩ E) +
ϕ•(A ∩ E ′) = ϕ•(A ∩ E) for all A ⊂ X. 4.ii) ⇒ 4.i) is obvious. �

We conclude with a pair of important properties of an inner • pre-
measure ϕ : S → [0,∞[ which is such that Φ = ϕ•|C(ϕ•) lives on
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E ⊂ X. We form the set system T = S ⊓ E := {S ∩ E : S ∈ S}
with T• = S• ⊓ E = {S ∩ E : S ∈ S•} ⊂ C(ϕ•), and the set function
ψ = ϕ•|T : T → [0,∞[. Then T is a lattice with ∅ ∈ T in both X
and E, and ψ is defined on a set system T which is in both X and
E. It is plain that at times these two rôles must not be mixed up.
Thus in the latter rôles T and ψ will be denoted T◦ and ψ◦. It follows
that ψ• : P(X)→ [0,∞] and (ψ◦)• : P(E)→ [0,∞] are connected via
(ψ◦)• = ψ•|P(E).

Theorem 1.10. Let ϕ : S → [0,∞[ be an inner • premeasure such

that Φ = ϕ•|C(ϕ•) lives on E ⊂ X, and let Φ|E be the restriction of Φ
to C(ϕ•) ⊓ E = {A ∈ C(ϕ•) : A ⊂ E}. In the above notations then

1) ψ is an inner • premeasure which fulfils ϕ• = ψ• and hence Φ =
ψ•|C(ψ•).

2) ψ◦ is an inner • premeasure which fulfils Φ|E = (ψ◦)•|C((ψ◦)•).

Proof of 1). 1.0) We first show that for each nonvoid • and down-
ward directed N ⊂ T• there exists an M ⊂ S• of the same kind
such that N = M ⊓ E = {M ∩ E : M ∈ M}. In fact, for each
N ∈ N fix some F (N) ∈ S• with N = F (N) ∩ E, and then form
f(N) := ∩

R∈N,R⊃N
F (R) ∈ S•. Thus

f(N) ∩ E = ∩
R∈N,R⊃N

F (R) ∩ E = ∩
R∈N,R⊃N

R = N for N ∈ N.

Moreover A ⊂ B in N implies that f(A) ⊂ f(B). Thus M := {f(N) :
N ∈ N} ⊂ S• is as required.

1.i) ϕ•|T• = Φ|T• < ∞ is downward • continuous. In fact, take
N ⊂ T• nonvoid • with N ↓ B ∈ T• and then M ⊂ S• nonvoid • as in
1.0), so that M ↓ A ∈ S• with A∩E = B. The fact that Φ lives on E
implies that inf

N∈N
Φ(N) = inf

M∈M
Φ(M) = Φ(A) = Φ(B).

1.ii) Φ is inner regular T•. To see this let A ∈ C(ϕ•) and c < Φ(A).
Then there exists S ∈ S• with S ⊂ A and c < Φ(S). Hence T :=
S ∩ E ∈ T• with T ⊂ A and c < Φ(S) = Φ(S ∩ E) = Φ(T ).

1.iii) We see from 1.i)ii) that Φ is an inner • extension of ψ. Thus ψ
is an inner • premeasure, and we have C(ϕ•) ⊂ C(ψ•) and ψ• = ϕ• on
C(ϕ•). From S•,T• ⊂ C(ϕ•) we obtain ψ• = ϕ• on P(X).

Proof of 2). 2.i) In view of 1) and (ψ◦)• = ψ•|P(E) the inner exten-
sion theorem 1.1 shows that ψ◦ is an inner • premeasure.

2.ii) We have Φ|E = ϕ•|{A ∈ C(ϕ•) : A ⊂ E}. Now 1.9.4) asserts
that ϕ•(M) = ϕ•(M ∩ E) for all M ⊂ X. Hence for A ⊂ E we have
A ∈ C(ϕ•) iff ϕ•(M) = ϕ•(M ∩A) +ϕ•(M ∩A′) for all M ⊂ E, which
in view of M ∩A′ = M ∩E ∩A′ = M ∩ (E \A) and of the above says
that A ∈ C((ψ◦)•). Therefore Φ|E = (ψ◦)•|C((ψ◦)•). �
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2. The Transplantation Theorem

The present section is a continuation of MI section 18. We want to
establish a further transplantation theorem for inner ⋆ premeasures.
The main intermediate step is an extension theorem for finite con-
tents, which is based on the well-known extension method due to  Loś-
Marczewski [18]. It is a close relative of Lipecki [17] theorem 1 (and
subsequent work of this author). The present proof will be in the spirit
of MI section 18.

We start to recall the basic result of  Loś-Marczewski [18] theorem
1 in the version of MI 18.29. For A a ring in the nonvoid set X and
E ⊂ X we form

the lattice A[E] := {M ∪ (N ∩ E) : M,N ∈ A} and

the ring A(E) := {(M ∩ E ′) ∪ (N ∩ E)} : M,N ∈ A}.
Thus A ⊂ A[E] ⊂ A(E) and A(E) = R(A[E]), where R(·) denotes the
generated ring. Also note that A(E) is upward enclosable A.

Proposition 2.1. Let α : A→ [0,∞[ be a content with the ⋆ envelopes

α⋆, α
⋆ : P(X)→ [0,∞]. Define ξ, η : A(E)→ [0,∞[ to be

ξ(S) = α⋆(S ∩ E) + α⋆(S ∩ E ′),
η(S) = α⋆(S ∩ E ′) + α⋆(S ∩ E).

Then ξ and η are contents and fulfil ξ = α⋆ and η = α⋆ on A[E], in
particular ξ = η = α on A.

In the sequel we use the notation

P⊓Q := {P ∩Q : P ∈ P and Q ∈ Q} and P⊓E := {P ∩E : P ∈ P}
for nonvoid P,Q ⊂ P(X), and E ⊂ X as before. We fix in X a ring
A and a nonvoid set system M which is totally ordered under inclusion
⊂. The extension theorem in question reads as follows.

Theorem 2.2. Let α : A → [0,∞[ be a content. Then there exists a

unique content β : R(A ⊓M) → [0,∞[ such that β = α⋆ on A ⊓M,

that is

β(A ∩M) = α⋆(A ∩M) for all A ∈ A and M ∈M.

The uniqueness assertion is clear from the classical uniqueness the-
orem contained in MI 3.1.⋆), since A ⊓M is stable under ∩. Thus to
be shown is the existence assertion. For its proof we can assume that
X ∈M. Then A ⊂ A ⊓M ⊂ R(A ⊓M), and the desired content β is
an extension of α.

Proof of the existence assertion. We first assume that n := card(M)
<∞. In case n = 1 we have M = {X} and A = A ⊓M = R(A ⊓M),
so that β = α does it. For the induction step 1 ≦ n ⇒ n + 1 assume
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that M = {E0, E1, · · · , En} with E0 = X ⊃ E1 ⊃ · · · ⊃ En, and put
N = {E0, · · · , En−1}. We claim that

A ⊂ A ⊓N ⊂ R(A ⊓N) =: B ⊂ B[En] ⊂ B(En) = R(A ⊓M).

To be shown is the last =. It rests upon the well-known formula

R(P) ⊓ E = R(P ⊓ E) for nonvoid P ⊂ P(X) and E ⊂ X,

which for E ⊂ En−1 implies that

B ⊓ E = R(A ⊓N) ⊓ E = R((A ⊓N) ⊓ E)

= R(A ⊓ E) = R(A) ⊓ E = A ⊓ E.

Thus B(En) = R(B[En]) = R
(

B ∪ (B ⊓ En)
)

is the ring generated
by B and B ⊓ En = A ⊓ En, and hence in fact the ring generated by
(A ⊓N) ∪ (A ⊓ En) = A ⊓M.

By the induction hypothesis there exists a content β : R(A ⊓N) =
B → [0,∞[ such that β = α⋆ on A ⊓ N, in particular β = α on A.
Then by 2.1 there exists a content ξ : B(En) = R(A ⊓M) → [0,∞[
such that ξ = β⋆ on B[En], in particular ξ = β on B. To be shown is
ξ = α⋆ on A ⊓M = (A ⊓N) ∪ (A ⊓ En).

To see this we note on the one hand that on A ⊓ N ⊂ B in fact
ξ = β = α⋆. On the other hand A ⊓ En ⊂ A[En] ⊂ B[En], so that on
A ⊓ En we have ξ = β⋆ and thus have to prove that β⋆ = α⋆, which
amounts to β⋆ ≦ α⋆, since β is an extension of α and hence β⋆ ≧ α⋆.
Now in order to prove β⋆(S) ≦ α⋆(S) for an S ∈ A⊓En, we look at the
subsetsB ∈ B withB ⊂ S. We haveB ∈ B⊓En−1 = A⊓En−1 ⊂ A⊓N,
and hence β(B) = α⋆(B) ≦ α⋆(S). It follows that β⋆(S) ≦ α⋆(S) as
claimed. This finishes the induction step and hence the case of finite
M.

At last we assume that M is an infinite totally ordered set system
in X with X ∈ M. For each finite P ⊂ M with X ∈ P the above
furnishes a unique content βP : R(A ⊓P)→ [0,∞[ such that βP = α⋆

on A ⊓ P. In case P ⊂ Q it is clear that βP = βQ|R(A ⊓ P). Now
A ⊓M and R(A ⊓M) are the unions of the A ⊓P and the R(A ⊓P)
for all finite P ⊂M with X ∈ P. It follows that the βP for all these P
combine to furnish the required unique content β : R(A⊓M)→ [0,∞[
such that β = α⋆ on A ⊓M. �

After this we turn to the domain of transplantation theorems for
inner ⋆ premeasures. In the sequel we fix a pair of lattices S and T
with ∅ in X such that S is upward enclosable T. We assume an inner
⋆ premeasure ψ : T → [0,∞[ and want to know whether and when it
fulfils

(∃) there exists an inner ⋆ premeasure ϕ : S→ [0,∞[
such that Φ = ϕ⋆|C(ϕ⋆) is an extension of Ψ = ψ⋆|C(ψ⋆);
after 1.8 this is equivalent to ϕ⋆|T = ψ.
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These ϕ can be viewed as the transplants of ψ onto S. In MI section
18 the requirement that S be upward enclosable T turned out to be
an adequate one. We recall the former main result MI 18.10.

Theorem 2.3. Let ψ : T → [0,∞[ be an inner ⋆ premeasure. If

ϑ : S → [0,∞[ is isotone with ϑ(∅) = 0 and supermodular such that

ϑ⋆|T = ψ, then there exists an inner ⋆ premeasure ϕ : S→ [0,∞[ with
ϕ ≧ ϑ such that ϕ⋆|T = ψ.

In MI section 18 there were several important consequences, of which
we emphasize MI 18.18: If ψ satisfies the Marczewski condition (ψ⋆|S)⋆|T
= ψ, then it fulfils (∃). In fact, this is obvious from 2.3 applied to
ϑ := ψ⋆|S. A more involved consequence of 2.3 is the new transplanta-
tion theorem which follows. We recall from MI section 1 for nonvoid set
systems M and N in X the transporter M⊤N := {A ⊂ X : A ∩M ∈
N for all M ∈M}.
Theorem 2.4. Let ψ : T→ [0,∞[ be an inner ⋆ premeasure. Then

inf
S∈S

ψ⋆(S
′) = 0 =⇒ ψ fulfils (∃) when T ⊂ S⊤S, and

inf
S∈S

ψ⋆(S
′) = 0⇐= ψ fulfils (∃) when ψ⋆(X) <∞.

Proof. Let (I) denote the condition inf
S∈S

ψ⋆(S
′) = 0, and (II) denote

the condition inf
V ∈T⊤S

ψ⋆(V
′) = 0. It is obvious that (I) ⇒ (II) when

T ⊂ S⊤S, because T ⊂ S⊤S is identical with S ⊂ T⊤S.
We prove the first assertion, in that we deduce (II) ⇒ (∃) from

the above 2.2. In view of 2.3 it suffices to produce a set function
ϑ : S→ [0,∞[ which is isotone with ϑ(∅) = 0 and supermodular and
which fulfils ϑ⋆|T = ψ. This is done as follows. On the one hand let
Ψ = ψ⋆|C(ψ⋆) and A := [Ψ < ∞], so that α := Ψ|A = ψ⋆|A is a finite
content on the ring A ⊃ T. On the other hand (II) furnishes a sequence
∅ = V0 ⊂ V1 ⊂ · · · ⊂ Vn ⊂ · · · in T⊤S such that ψ⋆(V

′
n) ↓ 0, and

thus the totally ordered set system M := {V ′n : n = 0, 1, 2, · · · } with
X ∈ M. Hence we obtain from 2.2 a content β : R(A ⊓M) → [0,∞[
which fulfils β(A ∩ V ′n) = α⋆(A ∩ V ′n) = ψ⋆(A ∩ V ′n) for all A ∈ A and
n ≧ 0. In particular β is an extension of α and hence an extension of
ψ.

After this we define ϑ = β⋆|S. Then ϑ : S → [0,∞[, because each
S ∈ S is contained in some T ∈ T where β(T ) = ψ(T ) < ∞. It is
clear that ϑ is isotone with ϑ(∅) = 0 and supermodular. At last we fix
T ∈ T and prove that ϑ⋆(T ) = ψ(T ).

1) For S ∈ S with S ⊂ T we have ϑ(S) = β⋆(S) ≦ β(T ) = ψ(T ).
Hence ϑ⋆(T ) ≦ ψ(T ).

2) We have T ∈ T ⊂ A ⊂ R(A ⊓M) and T ∩ V ′n ∈ R(A ⊓M), and
hence T ∩ Vn = T \ (T ∩ V ′n) ∈ R(A ⊓M) with

β(T ∩ Vn) = β(T )− β(T ∩ V ′n) = ψ(T )− ψ⋆(T ∩ V ′n) ↑ ψ(T )
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for n→∞. But T ∩ Vn ∈ S since Vn ∈ T⊤S, and hence β(T ∩ Vn) =
β⋆(T ∩ Vn) = ϑ(T ∩ Vn) ≦ ϑ⋆(T ). It follows that ϑ⋆(T ) ≧ ψ(T ). Thus
we have proved ϑ⋆|T = ψ and hence the first assertion.

The proof of the second assertion is much simpler. Let ϕ : S →
[0,∞[ be an inner ⋆ premeasure such that ϕ⋆|T = ψ. i) We have
ψ⋆ = (ϕ⋆|T)⋆ ≦ ϕ⋆. ii) For each S ∈ S there is a T ∈ T with S ⊂ T ,
so that ϕ(S) ≦ ϕ⋆(T ) = ψ(T ) ≦ ψ⋆(X). Hence ϕ⋆(X) ≦ ψ⋆(X) < ∞.
¿From i)ii) we obtain for each ε > 0 an S ∈ S with ϕ(S) > ϕ⋆(X)− ε
and hence with ψ⋆(S

′) ≦ ϕ⋆(S
′) = ϕ⋆(X) − ϕ(S) < ε. Thus we have

proved (I). �

Remark 2.5. The first assertion in 2.4 need not be true without the
assumption that T ⊂ S⊤S. As an example let X be a compact Haus-
dorff topological space with S = Comp(X) and T = Bor(X), so that
ψ : T→ [0,∞[ can be an arbitrary finite content. Then the assumption
inf
S∈S

ψ⋆(S
′) = 0 is true for the trivial reason that X ∈ S, but (∃) is not

true unless ψ is inner regular S, that means is a Borel-Radon measure.
There is a simple example for X = [0, 1] in [14] 1.4.

In conclusion we note that the idea of the new transplantation the-
orem 2.4 came from Fremlin [5] theorem 416O, which is kind of a
Radon measure transplantation result like Henry’s well-known theo-
rem [5] 416M = MI 18.22. It reads as follows: Let α : A→ [0,∞[ be a

content on an algebra A in the Hausdorff topological space X. Assume

that

1) α is inner regular A ∩ Cl(X), and
2) α(X) = sup{α⋆(K) : K ∈ Comp(X)}.

Then α can be extended to an (of course finite) Radon measure. The
result can be reformulated so as to fall under the first assertion in 2.4
for S = Comp(X) and a lattice T ⊂ Cl(X) ⊂ S⊤S with ∅, X ∈ T.
But the proof in [5] is quite different and an involved combination of
abstract and topological pieces.

3. Direct and Inverse Images

The present section is another preparation for the final sections. We
fix a map H : X → Y between nonvoid sets X and Y . We start with
the basics on direct and inverse images of contents and measures under
H. Then we pass to the direct and inverse images of inner premeasures.
Part of the present section updates and extends the earlier [12] sections
2 and 3.

Our first remark presents a most useful computation rule, while the
next one introduces the system SatH ⊂ P(X) of the saturated subsets
of X. The proofs are routine.

Remark 3.1. H
(

A ∩H−1(B)
)

= H(A) ∩ B for all A ⊂ X and B ⊂ Y .

In particular H
(

H−1(B)
)

= B ∩H(X).
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Remark 3.2. Define SatH := H−1(P(Y )) = {A ⊂ X : A = H−1(H(A))} ⊂
P(X). Then SatH is stable under arbitrary unions and intersections
and under complement formation. Moreover

H
(

∩
M∈M

M
)

= ∩
M∈M

H(M) for all nonvoid M ⊂ SatH.

For an algebra A in X we define the direct image
→

HA := {B ⊂ Y : H−1(B) ∈ A} ⊂ P(Y ),

which is an algebra in Y . It must not be confused with the set system
H(A) := {H(A) : A ∈ A}. Then for a content α : A→ [0,∞] on A we

define the direct image
→

Hα :
→

HA→ [0,∞] to be
→

Hα(B) = α(H−1(B))

for B ∈
→

HA. Thus
→

Hα is a content on
→

HA and lives on H(X) ⊂ Y .
We note that

→

HA =
→

H(A ∩ SatH) and
→

Hα =
→

H(α|A ∩ SatH).

Next for an algebra B in Y we define the inverse image
←

HB := H−1(B) = {H−1(B) : B ∈ B} ⊂ SatH ⊂ P(X),

which is an algebra in X. Then let β : B → [0,∞] be a content on

B which lives on H(X) ⊂ Y . For A ∈
←

HB and the B ∈ B with
A = H−1(B) we have H(A) = H(H−1(B)) = B ∩ H(X) ∈ B and

β(H(A)) = β(B). Thus we can define the inverse image
←

Hβ :
←

HB→
[0,∞] to be

←

Hβ(A) = β(H(A)) = β(B) for A ∈
←

HB and the B ∈ B

with A = H−1(B). Then
←

Hβ is a content on
←

HB.
Both times the same holds true for σ algebras and measures. The

next assertion compares the two kinds of images. The proof is routine.

Comparison 3.3. For each pair of contents

α : A→ [0,∞] on an algebra A in X, and
β : B→ [0,∞] on an algebra B in Y which lives on H(X) ⊂ Y

we have the equivalences

α is an extension of
←

Hβ ⇐⇒
→

Hα is an extension of β;

α|A ∩ SatH is a restriction of
←

Hβ ⇐⇒
→

Hα is a restriction of β.

The remainder of the section will be devoted to the direct and inverse
images of inner • premeasures. We start with a few preparations for
pairs of isotone set functions ξ : P(X)→ [0,∞] and η : P(Y )→ [0,∞]
which are related via η = ξ

(

H−1(·)
)

. The first remark is for illustration
and will not be needed below; for the Choquet integral see MI section
11 and [15] section 5.

Remark 3.4. For each pair of isotone set functions ξ : P(X) → [0,∞]
and η : P(Y ) → [0,∞] with ξ(∅) = η(∅) = 0 the following are
equivalent.
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1) η = ξ(H−1(·)).
2)

∫

−hdη =
∫

−(h ◦H)dξ for all h ∈ [0,∞]Y .

Proof. 1)⇒2) For 0 < t < ∞ we have [h ◦ H ≧ t] = {x ∈ X :
h(H(x)) ≧ t} = {x ∈ X : H(x) ∈ [h ≧ t]} = H−1([h ≧ t]) and hence
ξ
(

[h◦H ≧ t]
)

= η
(

[h ≧ t]
)

. Thus the definition of the Choquet integral
furnishes

∫

−(h ◦H)dξ =
→∞
∫

0←

ξ
(

[h ◦H ≧ t]
)

dt =
→∞
∫

0←

η
(

[h ≧ t]
)

dt =
∫

−hdη.

2)⇒1) Let B ⊂ Y and A = H−1(B) ⊂ X. Then h = χB implies
that h ◦ H = χA, so that

∫

−hdη =
∫

−(h ◦ H)dξ reads η(B) = ξ(A) =
ξ(H−1(B)). �

Lemma 3.5. Let ξ : P(X)→ [0,∞] be isotone and η = ξ(H−1(·)), so
that η : P(Y ) → [0,∞] is isotone as well. 1) Let P be a nonvoid set

system in X such that ξ is inner regular P. Then η is inner regular

H(P). 2) Let Q be a nonvoid set system in Y such that ξ|H−1(Q)
is almost downward • continuous. Then η|Q is almost downward •
continuous.

This lemma has a routine proof. Next we put our former result 1.7.1)
on the Carathéodory class C(·) into action.

Lemma 3.6. Let ξ : P(X) → [0,∞] be isotone with ξ(∅) = 0 and

supermodular, and put η = ξ(H−1(·)), so that η : P(Y ) → [0,∞] is of

the same kind. Assume that the nonvoid set system T ⊂ SatH in X
is upward directed such that ξ|T <∞ and that ξ is inner regular ⊏ T.

Then
→

HC(ξ) = C(η) and hence
→

H(ξ|C(ξ)) = η|C(η).

Proof. i) For B ⊂ Y we have B ∈ C(η)

⇔ η(N) = η(N ∩ B) + η(N ∩ B′) ∀N ⊂ Y

⇔ ξ
(

H−1(N)
)

= ξ
(

H−1(N) ∩H−1(B)
)

+ ξ
(

H−1(N) ∩ (H−1(B))′
)

∀N ⊂ Y

⇔ ξ(M) = ξ
(

M ∩H−1(B)
)

+ ξ
(

M ∩ (H−1(B))′
)

∀M ∈ SatH.

In particular B ∈
→

HC(ξ), which means H−1(B) ∈ C(ξ), implies that
B ∈ C(η). ii) Now assume T ⊂ SatH as above. For B ∈ C(η) we see
from i) that

ξ(T ) = ξ
(

T ∩H−1(B)
)

+ ξ
(

T ∩ (H−1(B))′
)

∀T ∈ T.

Thus 1.7.1) applied to ξ furnishes H−1(B) ∈ C(ξ) or B ∈
→

HC(ξ). �

Lemma 3.7. Let ϕ : S → [0,∞[ be an inner • premeasure on a

lattice S with ∅ ∈ S in X. Put η = ϕ•
(

H−1(·)
)

and assume that

η|H(S) < ∞. Then
→

HC(ϕ•) = C(η), so that Φ = ϕ•|C(ϕ•) fulfils
→

HΦ = η|C(η).
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Proof. 3.6 can be applied to ξ := ϕ• and T := H−1(H(S)), because
ϕ•(T ) = ϕ•

(

H−1(H(S))
)

= η(H(S)) < ∞ for T = H−1(H(S)) with
S ∈ S, and since ϕ• is inner regular S• ⊂ (⊏ T). �

Proposition 3.8. Let S in X and T in Y be lattices with ∅ such

that H(S) is upward enclosable T. Let ϕ : S → [0,∞[ be an inner •
premeasure with Φ = ϕ•|C(ϕ•), and assume that ψ := ϕ•(H

−1(·))|T <
∞. Then

1)
→

HΦ is an extension of ψ⋆|C(ψ⋆).
2) Assume that (←)H−1(T) ⊂ S⊤S• and hence (⇐)H−1(T•) ⊂

S⊤S•. Then ψ is downward • continuous, and
→

HΦ is an extension

of ψ•|C(ψ•) and an extension of ψ•|T• (but ψ need not be an inner •
premeasure).

3) Assume that moreover (⇒)H(S•) ⊂ T•. Then ψ is an inner

• premeasure with Ψ = ψ•|C(ψ•) which fulfils ψ• = ϕ•(H
−1(·)) and

→

HΦ = Ψ.

Proof. We put η := ϕ•(H
−1(·)), so that η : P(Y ) → [0,∞] is

isotone with η(∅) = 0 and supermodular. We have η|T = ψ <∞ and

η|
→

HC(ϕ•) =
→

HΨ.

i) By assumption η|H(S) <∞. Thus 3.7 asserts that
→

HΦ = η|C(η).
ii) η and T fulfil in 1.7 the assumptions for ξ and T, because 3.5.1)

implies that η is inner regular H(S•) ⊂ (⊏ T). Then ψ⋆ fulfils in 1.7.2)
the assumptions for η, because ψ⋆ = ψ = η on T and hence ψ⋆ ≦ η
on P(Y ). Thus 1.7.2) asserts that η|C(η) is an extension of ψ⋆|C(ψ⋆).
¿From i)ii) we obtain 1).

iii) From (⇐) and 1.5 we see that ϕ•|H−1(T•) is almost downward
• continuous. Thus 3.5.2) asserts that η|T• is almost downward •
continuous and hence downward • continuous. In particular ψ = η|T
is downward • continuous, and hence MI 6.5.iii) = [15] 2.2.3.Inn) asserts
that ψ•|T• is downward • continuous. It follows that ψ•|T• = η|T• and
hence ψ• = (ψ•|T•)⋆ = (η|T•)⋆.

iv) Now 1) applied to η|T• instead of η|T = ψ asserts that
→

HΦ is
an extension of ψ•|C(ψ•). Moreover H−1(T•) ⊂ S⊤S• ⊂ C(ϕ•) shows

that T• ⊂
→

HC(ϕ•), and iii) asserts that on T• we have ψ• = η =
→

HΦ.
Thus we obtain 2).

v) Under the assumption (⇒) we see from 3.5.1) that η is inner
regular T•. Thus η|T• = ψ•|T• implies that η = ψ•. In particular
→

HΦ = η|
→

HC(ϕ•) is inner regular T• and hence an inner • extension
of ψ. Therefore ψ is an inner • premeasure, and Ψ = ψ•|C(ψ•) is an

extension of
→

HΦ and hence =
→

HΦ. �

Example 3.9. Let X = Y = N, and H be the identity map of N. Let
S consist of the finite subsets of N, and T consist of ∅ and of the
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{1, · · · , n} with n ∈ N. Then ϕ := card|S is an inner • premeasure
ϕ : S → [0,∞[ which is an obvious example for the final assertion in
3.8.2).

The above proposition contains in 3) the main theorem on direct
images of inner • premeasures, which we reproduce in view of its im-
portance.

Theorem 3.10. Let S in X and T in Y be lattices with ∅ such that

(⇒) H(S•) ⊂ T•, and
(⇐) H−1(T•) ⊂ S⊤S•.

Let ϕ : S → [0,∞[ be an inner • premeasure with Φ = ϕ•|C(ϕ•), and
assume that ψ := ϕ•(H

−1(·))|T <∞. Then ψ : T→ [0,∞[ is an inner

• premeasure with Ψ = ψ•|C(ψ•) which fulfils ψ• = ϕ•(H
−1(·)) and

→

HΦ = Ψ.

We call ψ : T → [0,∞[ the direct image of ϕ under H and write

ψ =
→

Hϕ. Note that ψ =
→

Hϕ of course depends on the prescribed T,
while ψ• and hence Ψ do not.

Example 3.11. The most natural example is that X and Y are Haus-
dorff topological spaces with S = Comp(X) and T = Comp(Y ). Then
ϕ and ψ are Radon premeasures on X and Y . The assumptions
(⇒)(⇐) stand for the condition that the map H be continuous. Of
course S = S• and T = T•, but the distinction in (⇒)(⇐) will be
relevant beyond the example.

In fact, we need a word on the conditions (⇒)(⇐) in 3.10. One could
think that in place of these conditions we should rather have required

(→) H(S) ⊂ T or the weaker H(S) ⊂ T•, and
(←) H−1(T) ⊂ S⊤S or the weaker H−1(T) ⊂ S⊤S•.

However, it is not clear how to succeed with (→)(←): It is well-known
and has been used before that H−1(T•) = (H−1(T))•, so that the
weaker (←) implies (⇐) and hence is equivalent to (⇐). But the
relation H(S•) ⊂ (H(S))•, which would do the same for (→) and (⇒),
does not hold true but under severe restrictions [12] 3.3. We present the
most useful positive result on this relation, which is a fortified version
of [12] 3.4 and has the same proof.

Remark 3.12. Assume that the nonvoid set system S in X is • com-
pact (each nonvoid M ⊂ S fulfils ∅ ∈ M• ⇒ ∅ ∈ M⋆), and that
H−1({b}) ∈ S⊤S• for all b ∈ Y . Then

H( ∩
M∈M

M) = ∩
M∈M

H(M) for all M ⊂ S nonvoid • downward directed .

Thus if S is stable under ∩ then H(S•) ⊂ (H(S))•.

We turn to the main theorem on inverse images of inner • premea-
sures.
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Theorem 3.13. Assume that the lattices S in X and T in Y with ∅

fulfil S• = H−1(T•). Let ψ : T→ [0,∞[ be an inner • premeasure such

that Ψ = ψ•|C(ψ•) lives on H(X) ⊂ Y . Then ϕ := ψ•(H(·))|S is an

inner • premeasure with Φ = ϕ•|C(ϕ•) which fulfils

1) ϕ•(A) = ψ•
(

(H(A′))′
)

for all A ⊂ X.

2) ϕ•(A) = ψ•(H(A)) for A ∈ SatH, equivalent to ϕ•(H
−1(·)) = ψ•.

3)
→

HΦ = Ψ, equivalent to Φ|
(

C(ϕ•) ∩ SatH
)

=
←

HΨ by 3.3.

4) ϕ• = Φ⋆ = (
←

HΨ)⋆.
5) H(C(ϕ•)) ⊂ C(ψ•).

We call ϕ : S → [0,∞[ the inverse image of ψ under H and write

ϕ =
←

Hψ. Note that ϕ =
←

Hψ of course depends on the prescribed S,
while ϕ• and hence Φ do not. We see that there are simple relations
between

Φ the maximal inner • extension of the inverse image ϕ =
←

Hψ of ψ,
and
←

HΨ the inverse image of the maximal inner • extension Ψ of ψ,
but that the two need not be equal.

Proof. 0) We see from 1.9.4) that ψ•(B) = ψ•(B ∩ H(X)) for all
B ⊂ Y . We invoke 1.10 in order to realize that the members of T and
hence the members of T• can be assumed to be contained in H(X).
In fact, we see from 1.10.1) that the lattice D := T ⊓H(X) has D• =
T• ⊓ H(X), and that δ := ψ•|D is an inner • premeasure δ : D →
[0,∞[ which fulfils δ• = ψ•. It follows that S• = H−1(D•) and that
ϕ = δ•(H(·))|S. Thus the theorem for ψ : T → [0,∞[ is identical
with that for δ : D → [0,∞[, where the members of D and of D• are
indeed ⊂ H(X). The additional assumption thus achieved implies that
H(S•) = H(H−1(T•)) = T• ⊓H(X) = T•. This will be important in
part iii) below.

i) We define ξ : P(X) → [0,∞] to be ξ(A) = ψ•
(

(H(A′))′
)

for
A ⊂ X. We claim that ξ(A) = ψ•(H(A)) for A ∈ SatH. In fact, for
A = H−1(B) with B ⊂ Y we have A′ = H−1(B′) and hence H(A′) =
B′ ∩ H(X) or (H(A′))′ = B ∪ (H(X))′, so that (H(A′))′ ∩ H(X) =
B ∩H(X) = H(H−1(B)) = H(A), which proves the present claim.

ii) ξ is inner regular S• = H−1(T•). In fact, let A ⊂ X and c <
ξ(A) = ψ•

(

(H(A′))′
)

. Then there exists T ∈ T• with T ⊂ (H(A′))′

and c < ψ•(T ). From H
(

H−1(T ) ∩ A′
)

= T ∩ H(A′) = ∅ after 3.1
we have H−1(T ) ∩ A′ = ∅ or H−1(T ) ⊂ A, and from i) we obtain
ξ(H−1(T )) = ψ•(H(H−1(T ))) = ψ•(T ∩H(X)) = ψ•(T ) > c.

iii) From i) we have ξ|S• < ∞. We claim that ξ|S• is downward
• continuous. To see this fix M ⊂ S• nonvoid • with M ↓ A ∈ S•.
From the last assertion in 3.2 then H(M) ↓ H(A). Now after 0) we
can assume that H(S•) = T•. Since ψ•|T• is downward • continuous
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it follows from S• = H−1(T•) ⊂ SatH and i) that

inf
M∈M

ξ(M) = inf
M∈M

ψ•(H(M)) = ψ•(H(A)) = ξ(A).

iv) We know that
←

HΨ is a content on the algebra
←

HC(ψ•) = H−1
(

C(ψ•)
)

⊂
SatH in X. ¿From the definition

←

HΨ(A) = Ψ(H(A)) = ψ•(H(A)) = ξ(A) for A ∈
←

HC(ψ•)

we see that
←

HΨ = ξ|
←

HC(ψ•). Now S ⊂ S• = H−1(T•) ⊂
←

HC(ψ•).

Thus
←

HΨ is an extension of ξ|S• <∞, and in particular an extension

of ϕ = ξ|S. By ii)iii) hence
←

HΨ is an inner • extension of ϕ. Thus ϕ is

an inner • premeasure, and we have ϕ• =
←

HΨ = ξ on
←

HC(ψ•) and in
particular on S•. Once more from ii) it follows that ϕ• = ξ on P(X).
Thus we have proved 1)2).

v) Assertion 3) follows from 2) combined with 3.7.

vi) It is obvious that ϕ• = Φ⋆. Thus to be shown in 4) is Φ⋆ = (
←

HΨ)⋆.

In fact, (
←

HΨ)⋆(A) for A ⊂ X is by definition

= sup{Ψ(B) : B ∈ C(ψ•) with H−1(B) ⊂ A}
= sup{Ψ(T ) = ψ•

(

H(H−1(T ))
)

: T ∈ T• with H−1(T ) ⊂ A}
= sup{ψ•(H(S)) = ϕ•(S) : S ∈ S• with S ⊂ A} = ϕ•(A) = Φ⋆(A).

vii) To prove 5) we fix M ∈ C(ϕ•). For A ⊂ X then

ψ•((H(A))′) = ϕ•(A
′) = ϕ•(A

′ ∩M) + ϕ•(A
′ ∩M ′)

= ψ•
(

(H(A ∪M ′))′
)

+ ψ•
(

(H(A ∪M))′
)

= ψ•
(

(H(A))′ ∩ (H(M ′))′
)

+ ψ•
(

(H(A))′ ∩ (H(M))′
)

≦ ψ•
(

(H(A))′ ∩H(M)
)

+ ψ•
(

(H(A))′ ∩ (H(M))′
)

≦ ψ•((H(A)′)),

where we used (H(M ′))′∩H(X) ⊂ H(M) and that ψ• is supermodular.
Thus

ψ•
(

(H(A))′
)

= ψ•
(

(H(A))′ ∩H(M)
)

+ ψ•
(

(H(A))′ ∩ (H(M))′
)

.

Now let B ⊂ Y and put A := H−1(B′) ⊂ X. ¿From (H(A))′∩H(X) =
B ∩ H(X) we conclude that ψ•

(

(H(A))′ ∩ N
)

= ψ•(B ∩ N) for any
subset N ⊂ Y . Therefore ψ•(B) = ψ•(B ∩H(M)) + ψ•(B ∩ (H(M))′)
for all B ⊂ Y , so that H(M) ∈ C(ψ•). �

4. The Prokhorov Type Theorem

The present section will be devoted to the principal results. The
section is under the assumption formulated in 4.1 below.
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Assumption 4.1. Let I be a nonvoid index set, equipped with an order

≦ under which I is upward directed.

a) For each p ∈ I let Yp be a nonvoid set, and for each pair p ≦ q
in I let Hpq : Yp ← Yq. For each p ∈ I let Tp be a lattice in Yp with

∅ ∈ Tp. For each pair p ≦ q in I assume that

(→)Hpq(Tq) ⊂ (Tp)•, and
(←)H−1pq (Tp) ⊂ Tq⊤(Tq)• and hence (⇐)H−1pq ((Tp)•) ⊂ Tq⊤(Tq)•.

We shall have as a rule that Hpp is the identity map of Yp, and that
Hpr = Hpq ◦Hqr for p ≦ q ≦ r in I.

b) For each p ∈ I let ψp : Tp → [0,∞[ be an inner • premeasure

with Ψp = (ψp)•|C((ψp)•). For each pair p ≦ q in I assume that ψp =
(ψq)•(H

−1
pq (·))|Tp.

A) Let X be a nonvoid set, and for each p ∈ I let Hp : Yp ← X. For

each pair p ≦ q in I assume that Hp = Hpq ◦Hq. Let S be a lattice in

X with ∅ ∈ S. For each p ∈ I assume that

(→)Hp(S) ⊂ (Tp)•, and
(←)H−1p (Tp) ⊂ S⊤S• and hence (⇐)H−1p ((Tp)•) ⊂ S⊤S•.

There is no part B) in the assumption. It will rather be the aim of
the present section to establish an appropriate B).

Aim 4.2. B) There exists an inner • premeasure ϕ : S→ [0,∞[ such
that ψp = ϕ•(H

−1
p (·))|Tp for all p ∈ I. Each such ϕ will be named a

solution.

wB) There exists an inner ⋆ premeasure φ : S• → [0,∞[ such that

(ψp)• = φ⋆(H
−1
p (·)) on (Tp)• for all p ∈ I. Each such φ will be named

a weak solution.

The relation between these two concepts follows at once from the
simple facts 1.2-1.5: For the set functions φ : S• → [0,∞[ we have
from 1.2 and 1.3 the equivalence

φ inner • premeasure ⇐⇒ φ inner ⋆ premeasure and

φ|S downward • continuous at ∅.

Then 1.4 asserts that these φ : S• → [0,∞[ are in one-to-one cor-
respondence with the inner • premeasures ϕ : S → [0,∞[ via both
ϕ = φ|S and φ = ϕ•|S•. For a couple ϕ and φ moreover ϕ• = φ• = φ⋆

and hence ϕ•|C(ϕ•) = φ⋆|C(φ⋆). As to B) and wB) we note for p ∈ I
the equivalence

ψp = ϕ•(H
−1
p (·))|Tp ⇐⇒ (ψp)•|(Tp)• = φ⋆(H

−1
p (·))|(Tp)•.

Here⇐= is clear, and we have =⇒ because φ⋆(H
−1
p (·))|(Tp)• = ϕ•(H

−1
p (·))|(Tp)•

is almost downward • continuous in view of 1.5 with H−1p ((Tp)•) ⊂
S⊤S• and 3.5.2).
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Consequence 4.3. The solutions ϕ : S → [0,∞[ are in one-to-one

correspondence with the particular weak solutions φ : S• → [0,∞[ of
which the restrictions φ|S are downward • continuous at ∅, via both

ϕ = φ|S and φ = ϕ•|S•. For a couple ϕ and φ moreover ϕ• = φ• = φ⋆

and hence ϕ•|C(ϕ•) = φ⋆|C(φ⋆).

We shall see that there is quite a difference between solutions and
weak solutions. The most pleasant particular situation is of course that
S is • compact, where the two notions are identical.

We start with two preliminaries. The first point is to note that 3.8
leads to certain fortifications of the basic relations in b) and B)wB).

Remark 4.4. Let p ≦ q in I. Then the direct image
→

HpqΨq is an exten-
sion of Ψp (note that this contains the assumption ψp = (ψq)•(H

−1
pq (·))|Tp).

In particular Ψp(Yp) =
→

HpqΨq(Yp) = Ψq(Yq). Thus the value C :=
Ψp(Yp) ∈ [0,∞] is independent of p ∈ I. Moreover if (⇒)Hpq((Tq)•) ⊂
(Tp)• then (ψp)• = (ψq)•(H

−1
pq (·)) and

→

HpqΨq = Ψp.

Proposition 4.5. Let φ : S• → [0,∞[ be a weak solution with Φ =

φ⋆|C(φ⋆). For p ∈ I then
→

HpΦ is an extension of Ψp (note that this
contains the assumption (ψp)• = φ⋆((H

−1
p (·)) on (Tp)•). In particular

C = Ψp(Yp) =
→

HΦ(Yp) = Φ(X). Moreover if (⇒)Hp(S•) ⊂ (Tp)• then

(ψp)• = φ⋆(H
−1
p (·)) and

→

HpΦ = Ψp.

Proofs. In 4.4 the assertions follow from 3.8.2)3) applied to the
lattices Tq in Yq and Tp in Yp under the map Hpq and to the set func-
tions ψq and ψp. In 4.5 the assertions follow from 3.8.1)3) applied to
the lattices S• in X and (Tp)• in Yp under the map Hp and to the
set functions φ and (ψp)•|(Tp)•, but in case ⋆. One has to note that
(

(ψp)•|(Tp)•
)

⋆
= (ψp)•. �

The second point is to introduce the so-called Prokhorov condition
into the present situation 4.1. This is the fundamental condition which
dominates the traditional treatment in the concrete situations based
on Radon measures. It is due to Prokhorov [19].

Lemma 4.6. Assume that p ∈ I satisfies inf
S∈S

Ψp

(

(Hp(S))′
)

= 0. Then

Ψp lives on Hp(X) ⊂ Yp. Moreover C = Ψp(Yp) <∞.

Proof. For S ∈ S we have Hp(S) ∈ (Tp)• ⊂ C((ψp)•). Thus for
A ⊂ Yp it follows that

(ψp)•(A) = (ψp)•(A ∩Hp(S)) + (ψp)•(A ∩ (Hp)S))′)

≦(ψp)•(A ∩Hp(X)) + (ψp)•((Hp(S))′) for S ∈ S,

so that the present assumption implies that (ψp)•(A) = (ψp)•(A ∩
Hp(X)). From 1.9.4) the first assertion follows. The second assertion
is obvious. �
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After this we define the Prokhorov condition to be

(Π) inf
S∈S

sup
p∈I

Ψp

(

(Hp(S))′
)

= 0.

Thus (Π) is the uniform fortification of the condition inf
S∈S

Ψp

(

(Hp(S))′
)

= 0 for the individual p ∈ I which appears in 4.6. Therefore (Π)
implies that Ψp lives on Hp(X) ⊂ Yp for all p ∈ I, and that C < ∞.
We prove that the existence of a weak solution φ : S• → [0,∞[ with
Φ(X) = C <∞ enforces that condition (Π) is fulfilled. This statement
can be fortified as follows.

Proposition 4.7. Assume that φ : S• → [0,∞[ is isotone with φ(∅) =
0 and supermodular, and that

(ψp)• ≦ φ⋆(H
−1
p (·)) on (Tp)• and hence on P(Yp) for each p ∈ I.

If moreover φ⋆(X) <∞ then condition (Π) is fulfilled.

Proof. For fixed ε > 0 there exists an S ∈ S with φ(S) ≧ φ⋆(X) −
ε. Since φ⋆ is supermodular we have φ⋆(S

′) + φ(S) ≦ φ⋆(X) and
hence φ⋆(S

′) ≦ ε. Now for p ∈ I and P := (Hp(S))′ we have ∅ =
Hp(S) ∩ P = Hp

(

S ∩ H−1p (P )
)

from 3.1 and hence S ∩ H−1p (P ) = ∅

or H−1p (P ) ⊂ S ′. Thus the assumption furnishes (ψp)•
(

(Hp(S))′
)

=

(ψp)•(P ) ≦ φ⋆(H
−1
p (P )) ≦ φ⋆(S

′) ≦ ε. �

After these preliminaries we head for the main results. These are
the converse assertion that condition (Π) implies the existence of weak
solutions, and another fortification of their properties. For the sub-

sequent development up to 4.9 and 4.10 we assume that Ψp lives on

Hp(X) ⊂ Yp for all p ∈ I.
For p ∈ I we have on the one hand the inverse image

←

HpΨp of Ψp.
On the other hand we form the lattice Sp := H−1p (Tp) with ∅ in X, so

that (Sp)• = H−1p ((Tp)•). Then after 3.13 we have the inverse image
ϕp := (ψp)•(Hp(·))|Sp of ψp. Thus ϕp : Sp → [0,∞[ is an inner •
premeasure with Φp = (ϕp)•|C((ϕp)•) which fulfils

3.13.1) (ϕp)•(A) = (ψp)•
(

(Hp(A
′))′

)

for A ⊂ X,
3.13.2) (ϕp)•(A) = (ψp)•(Hp(A)) for A ∈ SatHp or (ϕp)•(H

−1
p (·)) =

(ψp)•,

3.13.3)
→

HpΦp = Ψp or Φp|
(

C((ϕp)•) ∩ SatHp

)

=
←

HpΨp.

In particular Φp(X) = C. From 4.1 one cannot expect simple inclusions
between the Sp and (Sp)• for different p ∈ I. But from 1.8 we obtain
the basic fact which follows.

Lemma 4.8. Let p ≦ q in I. Then Φq is an extension of Φp. It follows

that (ϕp)• ≦ (ϕq)•.

In particular C(ϕp)•) ⊂ C(ϕq)•). For later use we also note the
obvious fact that SatHp ⊂ SatHq.
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Proof. We show that 1.8 can be applied to ϕq : Sq → [0,∞[ and ϕp :
Sp → [0,∞[. Thus we have to prove that 1) Sq is upward enclosable
Sp, and 2) (ϕq)• = (ϕp)• on (Sp)•. 1) Let B ∈ Sq, so that B = H−1q (Q)
for some Q ∈ Tq. Then Hpq(Q) ∈ (Tp)• and hence Hpq(Q) ⊂ some
P ∈ Tp. It follows that

B = H−1q (Q) ⊂ H−1q

(

H−1pq (Hpq(Q))
)

⊂ H−1q (H−1pq (P )) = H−1p (P ) ∈ Sp.

2) Let A ∈ (Sp)• = H−1p ((Tp)•), so that A = H−1p (P ) = H−1q (H−1pq (P ))
for some P ∈ (Tp)•. Then

(ϕq)•(A) = (ψq)•
(

Hq(H
−1
q (H−1pq (P ))

)

= (ψq)•
(

H−1pq (P ) ∩Hq(X)
)

= (ψq)•(H
−1
pq (P )),

(ϕp)•(A) = (ψp)•(Hp(H
−1
p (P )) = (ψp)•(P ∩Hp(X)) = (ψp)•(P )),

and the two final terms are equal in view of 4.4. Thus 1.8 asserts that
Φq is an extension of Φp. �

We conclude from 4.8 that A := ∪
p∈I

C((ϕp)•) is an algebra in X, and

that there is a unique content α : A→ [0,∞] such that α|C((ϕp)•) = Φp

for all p ∈ I. In particular α(X) = C. The definition implies that

α⋆ = sup
p∈I

(Φp)⋆ = sup
p∈I

(ϕp)•.

Next we define T to be the lattice generated by ∪
p∈I

(Sp)•. Thus T

consists of the nonvoid-finite unions of the nonvoid-finite intersections
of members of ∪

p∈I
(Sp)•. We list its relevant properties.

i) T ⊂ ∪
p∈I

(

C(ϕp)• ∩ SatHp

)

⊂ A. This follows from 4.8.

ii) T ⊂ S⊤S• = S•⊤S•. This follows from (⇐) in A).
iii) S and hence S• are upward enclosable T. In fact, for S ∈
S we have Hp(S) ∈ (Tp)• from (→) in A) and hence S ⊂
H−1p (Hp(S)) ∈ H−1p ((Tp)•) = (Sp)• ⊂ T.
iv) α is inner regular T and hence an inner ⋆ extension of α|T <
∞. This is clear from the definition of α.

We see from iv) that ψ := α|T is an inner ⋆ premeasure ψ : T→ [0,∞[
and that Ψ = ψ⋆|C(ψ⋆) is an extension of α. Thus A ⊂ C(ψ⋆) and
ψ⋆ = α on A. It follows that ψ⋆ = α⋆ and hence Ψ = α⋆|C(α⋆). Then we
use iii) to see that 1.8 can be applied in case ⋆ to the lattices S• and T,
and to any inner ⋆ premeasure φ : S• → [0,∞[ with Φ = φ⋆|C(φ⋆) and
the above ψ : T→ [0,∞[. In view of ii) we have T ⊂ S•⊤S• ⊂ C(φ⋆),
so that =⇒ in 1.8 reads that

Φ extension of ψ =⇒ Φ extension of Ψ.

We combine this with the obvious implications

Φ extension of Ψ = α⋆|C(α⋆) =⇒ Φ extension of α =⇒
Φ extension of α| ∪

p∈I

(

C(ϕp)•)∩SatHp

)

=⇒ Φ extension of α|T = ψ,
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where the last =⇒ follows from i). The result is that all these assertions
are equivalent. Now the third assertion means that Φ is an extension

of Φp|
(

C((ϕp)•)∩ SatHp

)

=
←

HpΨp for all p ∈ I, where 3.13.3) has been

used. Equivalent by 3.3 is that
→

HpΦ is an extension of Ψp for all p ∈ I,
and hence by 4.5 that φ is a weak solution. Thus we have proved what
follows.

Theorem 4.9. Assume that Ψp lives on Hp(X) ⊂ Yp for all p ∈ I,
so that the inverse images ϕp : Sp → [0,∞[ are defined, and likewise

their combination α : A→ [0,∞] which fulfils

α⋆(A) = sup
p∈I

(ϕp)•(A) = sup
p∈I

(ψp)•
(

(Hp(A
′))′

)

for all A ⊂ X.

Then each inner ⋆ premeasure φ : S• → [0,∞[ with Φ = φ⋆|C(φ⋆)
fulfils

φ is a weak solution ⇐⇒ Φ is an extension of α⋆|C(α⋆).

In this case α⋆ ≦ φ⋆.

We continue to invoke the new transplantation theorem 2.4 in order
to obtain the main result. Because of iii)ii) the implication =⇒ in
2.4 can be applied to the lattices S• and T, and to the above inner ⋆
premeasure ψ : T → [0,∞[. Now on the one hand the assumption in
=⇒ requires that inf{ψ⋆(S

′) : S ∈ S•} = inf{ψ⋆(S
′) : S ∈ S} be = 0.

To appreciate this we recall that our previous formulas combine to

ψ⋆(A
′) = α⋆(A

′) = sup
p∈I

(ϕp)•(A
′) = sup

p∈I
(ψp)•

(

(Hp(A))′
)

∀A ⊂ X.

Thus the assumption in question is identical with the Prokhorov condi-
tion (Π). On the other hand the conclusion (∃) in =⇒ asserts that there
exists an inner ⋆ premeasure φ : S• → [0,∞[ such that Φ = φ⋆|C(φ⋆)
is an extension of Ψ = α⋆|C(α⋆). In view of 4.9 this means that φ is a
weak solution. Thus 2.4 leads at once to the main result which follows.
We need to recall that condition (Π) implies the overall assumption
that Ψp lives on Hp(X) ⊂ Yp for all p ∈ I.

Theorem 4.10. Assume that (Π) is fulfilled. Then there exists at least

one weak solution φ : S• → [0,∞[.

Example 4.16 at the end of the section will show that condition (Π)
does not enforce the existence of solutions ϕ : S → [0,∞[. At last we
want to obtain a uniqueness assertion. We need a simple remark and
two more utensils.

Remark 4.11. Let p ≦ q in I. i) For A ⊂ X we have H−1p (Hp(A)) ⊃
H−1q (Hq(A)). ii) ForA ⊂ X withHp(A) ∈ C((ψp)•) we have (ψp)•(Hp(A)) ≧
(ψq)•(Hq(A)).
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Proof. i) We haveH−1p (Hp(A)) = H−1q

(

H−1pq (Hpq(Hq(A)))
)

⊃ H−1q (Hq(A)).

ii) We haveH−1pq (Hp(A)) ∈ C((ψq)•) with Ψp(Hp(A)) = Ψq(H
−1
pq (Hp(A))),

and H−1pq (Hp(A)) ⊃ Hq(A). �

Next we define the set function ϑ : dom(ϑ) → [0,∞] as follows. Its
domain consists of the subsets A ⊂ X such that there exists u ∈ I with
Hp(A) ∈ C((ψp)•) for all p ≧ u in I. From 4.11.ii) then (ψp)•(Hp(A)) ≧
(ψq)•(Hq(A)) for u ≦ p ≦ q in I. We are entitled to define

ϑ(A) = inf
p∈I,p≧u

(ψp)•(Hp(A)) =: lim
p↑I

(ψp)•(Hp(A)),

because the infimum in question does not depend on the individual
u ∈ I. In particular S ⊂ dom(ϑ) and ϑ|S < ∞. Moreover 3.13.5)
implies that A ⊂ dom(ϑ) when Ψp lives on Hp(X) ⊂ Yp for all p ∈ I.
We note some properties.

Remark 4.12. i) Each weak solution φ : S• → [0,∞[ fulfils φ⋆(A) ≦

ϑ(A) for all A ∈ dom(ϑ). In particular φ ≦ ϑ on S.
ii) Assume that Ψp lives on Hp(X) ⊂ Yp for all p ∈ I. Then

α⋆(A) ≦ ϑ(A) and C = ϑ(A) + α⋆(A
′) for all A ∈ dom(ϑ).

In particular in case C < ∞ one has α⋆(A) = ϑ(A) for A ∈ dom(ϑ) ∩
C(α⋆).

Proof. i) For A ∈ dom(ϑ) let as in the definition for p ≧ u in I be
Hp(A) ∈ C((ψp)•), so that H−1p (Hp(A)) ∈ C(φ⋆) and φ⋆

(

H−1p (Hp(A))
)

= (ψp)•(Hp(A)) after 4.5. This implies that φ⋆(A) ≦ ϑ(A).
ii) For A ∈ dom(ϑ) let once more be Hp(A) ∈ C((ψp)•) for p ≧ u in

I. Then

(ϕp)•(A) = (ψp)•((Hp(A
′))′) = (ψp)•

(

(Hp(A
′))′ ∩Hp(X)

)

≦ (ψp)•(Hp(A)),

C = (ψp)•(Hp(A)) + (ψp)•((Hp(A))′) = (ψp)•(Hp(A)) + (ϕp)•(A
′).

These relations and the monotone dependence on p ≧ u of the terms
involved furnish the two assertions. �

The other concept to be introduced is the uniqueness condition

(UC•) for each S ∈ S there exists a nonvoid • subset K ⊂ I

such that ∩
p∈K

H−1p (Hp(S)) = S.

In case • = τ one can take K = I. In view of 4.11.i) one can take K in
case • = σ to be an isotone sequence p(1) ≦ · · · ≦ p(n) ≦ · · · in I, and
in case • = ⋆ to be K = {p} for some p ∈ I. Thus K can be assumed
to be upward directed. Then 4.11.i) implies that {H−1p (Hp(S)) : p ∈
K} ↓ S.

Remark 4.13. Assume that i) S is • compact,
ii) H−1p ({b}) ∈ S⊤S• for all b ∈ Yp and p ∈ I,
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iii) for each S ∈ S there exists a nonvoid • subset K ⊂ I
such that ∩

p∈K
H−1p ({Hp(a)}) ⊂ S for all a ∈ S.

Then (UC•) is fulfilled.

Let us note that in case • = τ condition iii) is satisfied when the
product map (Hp)p∈I : X → Π

p∈I
Yp is injective.

Proof. Fix S ∈ S and then a nonvoid • subset K ⊂ I as in iii).
We can assume as before that K is upward directed. We claim that
for this K condition (UC•) is satisfied. In fact, let u ∈ X such that
u ∈ H−1p (Hp(S)) or Hp(u) ∈ Hp(S) for all p ∈ K. To be shown is
u ∈ S. For p ∈ K note that Ap := {x ∈ S : Hp(x) = Hp(u)} =
H−1p ({Hp(u)})∩S is nonvoid and ∈ S• by ii). Since S• is • compact it
follows that {Ap : p ∈ K} ↓ some nonvoid A ⊂ S. For each a ∈ A ⊂ S
we obtain u ∈ ∩

p∈K
H−1p ({Hp(a)}) and hence u ∈ S in view of iii). �

With condition (UC•) we obtain the uniqueness assertion which fol-
lows.

Proposition 4.14. Assume that (UC•) is fulfilled. Then each solution

ϕ : S → [0,∞[ must be ϕ = ϑ|S. We have even Φ(A) = ϑ(A) for all

those A ∈ S• which fulfil Hp(A) ∈ (Tp)• for p ≧ some u ∈ I.
Proof. Let A ∈ S• with its u ∈ I as above, and fix M ⊂ S

nonvoid • with M ↓ A. There exists a nonvoid • subset K ⊂ I
such that ∩

p∈K
H−1p (Hp(M)) = M for all M ∈ M, which implies that

∩
p∈K

H−1p (Hp(A)) = A. We can assume as before that K is upward di-

rected. Thus {H−1p (Hp(A)) : p ∈ K} ↓ A. We can also assume that
the p ∈ K are ≧ u, so that Hp(A) ∈ (Tp)• ⊂ C((ψp)•) and hence

Ψp(Hp(A)) = Φ
(

H−1p (Hp(A))
)

<∞ with H−1p (Hp(A)) ∈ S⊤S•.
The infimum under u ≦ p ∈ I on the left side is = ϑ(A). On the
right side it is on the one hand ≧ Φ(A), and on the other hand ≦ the
infimum under p ∈ K which is Φ(A) from 1.5, so that it is = Φ(A). �

We have to realize that the above uniqueness assertion on the basis
of (UC•) does not refer to the weak solutions φ : S• → [0,∞[, but is
restricted to the solutions ϕ : S→ [0,∞[.

Example 4.15. The most natural example for the situation 4.1 is that
the Yp and X are Hausdorff topological spaces with Tp = Comp(Yp)
and S = Comp(X), and that the maps Hpq and Hp are continu-
ous. Then the ψp are Radon premeasures on the Yp such that ψp =

(ψq)•(H
−1
pq (·))|Tp and hence

→

HpqΨq = Ψp for p ≦ q. We are of course
in the case • = τ . The above 4.10 and its converse 4.7 combined with
4.3 and 4.5 then assert that condition (Π) is equivalent to C < ∞
plus the existence of at least one Radon premeasure ϕ : S → [0,∞[
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on X which fulfils ψp = ϕ•(H
−1
p (·))|Tp and hence

→

HpΦ = Ψp for all
p ∈ I. Furthermore 4.14 with 4.13 assert that ϕ is unique whenever
the product map (Hp)p∈I : X → Π

p∈I
Xp is injective, and that in this case

ϕ(S) = inf
p∈I

ψp(Hp(S)) for S ∈ Comp(X). These results, or at least the

last-mentioned case of uniqueness, are for instance in Kisyński [9] sec-
tion 3, Bourbaki [2] section 4.2, Schwartz [20] section I.10, and Fremlin
[5] 418M.

We turn to the final example announced above. The example cov-
ers both cases • = στ . We use on R the Lebesgue premeasure λ :
Comp(R)→ [0,∞[, and on the unit circle S = {s ∈ C : |s| = 1} the arc
length premeasure γ : Comp(S)→ [0,∞[ normalized to γ(S) = 1. The
connection is via the map H : R→ S defined to be H(x) = exp(2πix):
For each c ∈ R the restricted map H|[c, c+ 1] transforms the restricted
Lebesgue premeasure λ|[c, c+1] into γ in the direct image sense of 3.10
and 3.11, that is

γ(K) = λ
(

{x ∈ [c, c+ 1] : exp(2πix) ∈ K}
)

for K ∈ Comp(S).

We recall the well-known fact that γ is invariant under the maps hm :
S→ S defined to be hm(s) = sm for m ∈ N, that is γ(K) = γ(h−1m (K))
for K ∈ Comp(S).

Example 4.16. Let I = {p ∈ Z : p ≧ 0} with the usual total order ≦.
For p ∈ I let Yp = S with Tp = Comp(S) and ψp = γ. For p ≦ q in I

define Hpq : Yp ← Yq to be Hpq(s) = s2
q−p

. Then ψp = ψq(H
−1
pq (·))|Tp

as mentioned above. On the other side let X = R. For p ∈ I define
Hp : Yp ← X to be Hp(x) = exp(2−p2πix), so that Hp = Hpq ◦Hq for
p ≦ q in I. Note that the Hp are surjective.

For p ∈ I let Sp := H−1p (Tp) = H−1p

(

Comp(S)
)

, so that Sp is a
lattice in X = R with ∅, X ∈ Sp and Sp = (Sp)•. Sp consists of the
closed subsets of R which are periodic with period 2p. Thus Sp ⊂ Sq

for p ≦ q in I. Therefore S := ∪
p∈I

Sp is a lattice in X = R with

∅, X ∈ S. It is clear that (→)Hp(S) ⊂ Comp(S) = Tp, and obvious
that (←)H−1p (Tp) = Sp ⊂ S = S⊤S ⊂ S⊤S•. Thus the situation
fulfils 4.1, and we have C = 1. Moreover condition (Π) is fulfilled for
the trivial reasons that X ∈ S and Hp(X) = Yp. However, note that
S• is a more complicated formation.

For p ∈ I let as above ϕp : Sp → [0,∞[ be the inverse image of
ψp = γ under Hp. We also recall the content α : A→ [0,∞] which this
time fulfils

α⋆(A) = sup
p∈I

γ•
(

(Hp(A
′))′

)

for all A ⊂ X = R.
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We use this formula in order to prove that each bounded subset A ⊂ R

is in C(α⋆) and has α⋆(A) = 0. In view of α(X) = 1 it follows that the
content α⋆|C(α⋆) is not upward σ continuous.

For the proof fix a bounded subset A ⊂ R. We show that 1) α⋆(A) =
0 and 2) α⋆(A

′) = 1. Then 1.7.1) applied to ξ := α⋆ and T := {X}
asserts that A ∈ C(α⋆) and hence the full claim. 1) is obvious since
Hp(A

′) = S and hence (Hp(A
′))′ = ∅. 2) Fix c > 0 such that A ⊂

[−c, c] and hence

Hp(A) ⊂ Hp([−c, c]) = {exp(2πit) : |t| ≦ 2−pc}.
For the p ∈ I with 2−p2c < 1 it follows that

γ•
(

(Hp(A))′
)

≧ 1− γ
(

Hp([−c, c])
)

= 1− 2−p2c,

and hence α⋆(A
′) = 1 as claimed.

Now 4.9 asserts for each weak solution φ : S• → [0,∞[ that Φ =
φ⋆|C(φ⋆) is an extension of α⋆|C(α⋆). Therefore Φ is not upward σ
continuous as well. Thus 4.3 tells us that there are no solutions ϕ :
S→ [0,∞[. �

5. The Kolmogorov Type Theorem

In this section we consider the specialization of the above situation
4.1 which corresponds to the traditional situation named after Kol-
mogorov [10] chapter III section 4. For recent presentations we refer
to Bauer [1] section 35 and Stromberg [21] chapter 7. In the present
context the situation is as follows.

Let T be an infinite index set, and let I consist of the nonvoid finite
subsets of T . On I one defines the order ≦ to be the inclusion ⊂, so
that I under ≦ is upward directed.

For each t ∈ T let Yt be a nonvoid set. For p ∈ I one forms Yp :=
Π
t∈p
Yt. For each pair p ≦ q in I let Hpq : Yp ← Yq be the canonical

projection. The Hpq are surjective and fulfil Hpr = Hpq◦Hqr for p ≦ q ≦
r in I. Next one forms X := Π

t∈T
Yt. For each p ∈ I let Hp : Yp ← X be

the canonical projection. The Hp are surjective and fulfil Hp = Hpq◦Hq

for p ≦ q in I. In particular for t ∈ T the H{t} =: Ht are the canonical
projections Ht : Yt ← X.

Then for each t ∈ T let Tt be a lattice in Yt with ∅, Yt ∈ Tt and
hence Tt⊤Tt = Tt, and with {b} ∈ Tt for all b ∈ Yt. We assume Tt to
be • compact. For p ∈ I one forms

Tp := {Π
t∈p
Tt : Tt ∈ Tt for t ∈ p}⋆,

that is Tp = ( ⊓
t∈p

Tt)
⋆ in the sense of [13] section 2 (note that M⋆ is

defined to consist of the unions of the nonvoid finite subsets of M).
Thus Tp is a lattice in Yp with ∅, Yp ∈ Tp and hence Tp⊤Tp = Tp, and
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with {b} ∈ Tp for all b ∈ Yp. From well-known facts [13] 2.5-2.6 one
knows that Tp is • compact. In particular T{t} = Tt for t ∈ T . For
p ≦ q in I we have

(←) H−1pq (Tp) ⊂ Tq and hence (⇐) H−1pq ((Tp)•) ⊂ (Tq)•,
(→)Hpq(Tq) = Tp and hence (⇒) Hpq((Tq)•) ⊂ (Tp)• from 3.12.

Next one forms

S := { Π
t∈T

Tt : Tt ∈ Tt for all t ∈ T and Tt = Yt for almost all t ∈ T}⋆,

where as usual almost all means all aside from a finite number, that is
S = (×

t∈T
Tt)

⋆ in the sense of [13] section 2. Thus S is a lattice in X

with ∅, X ∈ S and hence S⊤S = S, and as before S is • compact.
For p ∈ I we have

(←) H−1p (Tp) ⊂ S and hence (⇐) H−1p ((Tp)•) ⊂ S•,
(→) Hp(S) = Tp and hence (⇒) Hp(S•) ⊂ (Tp)• from 3.12.

At last note that for each S ∈ S there exists p ∈ I such thatH−1p (Hp(S)) =
S.

Thus we have a)A) in assumption 4.1. The present form of part b)
will be the assumption in the theorem which follows.

Theorem 5.1. Let (ψp)p∈I be a family of inner • premeasures ψp :
Tp → [0,∞[ with Ψp = (ψp)•|C((ψp)•). For p ≦ q in I assume that

ψp

(

Π
t∈p
Tt
)

= ψq

(

Π
t∈q
Tt
)

for Tt ∈ Tt ∀t ∈ p and Tt = Yt ∀t ∈ q \ p.

Then there exists a unique inner • premeasure ϕ : S → [0,∞[ with

Φ = ϕ•|C(ϕ•) such that for all p ∈ I
ψp( Π

t∈p
Tt) = ϕ( Π

t∈T
Tt) for Tt ∈ Tt ∀t ∈ p and Tt = Yt ∀t ∈ T \ p.

We have

ϕ(S) = min
p∈I

Ψp(Hp(S)) for S ∈ S, and even

Φ(A) = inf
p∈I

Ψp(Hp(A)) for A ∈ S•.

Furthermore we have (ψp)• = ϕ•(H
−1(·)) and

→

HpΦ = Ψp for all p ∈ I.
Proof. i) We claim that ψp = ψq(H

−1
pq (·))|Tp for p ≦ q in I. In fact,

for an A ∈ Tp of the form A = Π
t∈p
Tt with Tt ∈ Tt ∀t ∈ p this relation

coincides with the assumption. For a finite union of such particular
A ∈ Tp it then follows from the folklore formula MI 2.5.1) applied
to the set functions ψp and ψq(H

−1
pq (·))|Tp. Thus we have part b) in

assumption 4.1 and hence all of 4.1.
ii) Condition (Π) is satisfied for the trivial reasons that X ∈ S and

Hp(X) = Yp. Since S is • compact we conclude from 4.10 and 4.3 that
there exists at least one solution ϕ : S→ [0,∞[. The equivalence with
the respective formulation in the theorem is seen as in i) above. Next
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4.14 can be applied, because as noted above we have (UC⋆) and hence
(UC•). In case S ∈ S we can write min instead of inf, because for
p ≦ q in I with H−1p (Hp(S)) = S we have H−1pq (Hp(S)) = Hq(S) and

hence Ψp(Hp(S)) = Ψq

(

H−1pq (Hp(S))
)

= Ψq(Hq(S)). At last the two
final assertions are contained in 4.5. �

It is a matter of routine to liberate the situation from the assumption
that Yt ∈ Tt for all t ∈ T . This will be done in the sequel. We have to
supplement the situation as follows.

For each t ∈ T let Kt be a lattice in Yt with ∅ ∈ Kt, and with {b} ∈ Kt

for all b ∈ Yt. We assume Kt to be • compact. Then Tt := Kt∪{Yt} is a
lattice in Yt as it has been before; in particular note that • compactness

carries over from Kt to Tt. For p ∈ I one forms

Kp := {Π
t∈p
Kt : Kt ∈ Kt for t ∈ p}⋆,

that is Kp = ( ⊓
t∈p

Kt)
⋆ in the sense of [13] section 2. Thus Kp is a lattice

in Yp with ∅ ∈ Kp, and with {b} ∈ Kp for all b ∈ Yp, and as before
Kp is • compact. In particular K{t} = Kt for t ∈ T . We also retain
the lattice Tp in Yp. The basic relations between the two lattices are
Kp ⊂ Tp ⊂ Kp⊤Kp. At last we retain the lattice S in X, with no
companion this time.

For the sequel we need another little remark.

Remark 5.2. 1) Let ϑ : S → [0,∞[ on a lattice S be isotone and
downward • continuous. Then ϑ• = ϑ⋆ on S⊤S.

2) For some p ∈ I let ϑ : Kp → [0,∞[ be isotone with ϑ(∅) = 0 and
downward • continuous. For each system of Tt ∈ Tt ∀t ∈ p then

ϑ•
(

Π
t∈p
Tt
)

= sup{ϑ
(

Π
t∈p
Kt

)

: Kt ∈ Kt with Kt ⊂ Tt ∀t ∈ p}.

Proof. 1) We fix A ∈ S⊤S and have to prove ϑ•(A) ≦ ϑ⋆(A).
Let S ∈ S• with S ⊂ A, and M ⊂ S nonvoid • with M ↓ S. For
M ∈ M then M ∩ A ∈ S and S ⊂ M ∩ A ⊂ A. It follows that
ϑ•(S) ≦ ϑ•(M ∩ A) = ϑ(M ∩ A) ≦ ϑ⋆(A), and hence ϑ•(A) ≦ ϑ⋆(A).

2) It is obvious that ≧. To see ≦ let A ∈ Kp with A ⊂ Π
t∈p
Tt. Then

there exist Kt ∈ Kt ∀t ∈ p with A ⊂ Π
t∈p
Kt ⊂ Π

t∈p
Tt. In case A 6= ∅ it

follows that Kt ⊂ Tt for all t ∈ p and hence ϑ(A) ≦ ϑ
(

Π
t∈p
Kt

)

≦ the

second member. In view of 1) the assertion follows. �

After this the above theorem attains the form which follows.

Theorem 5.3. Let (ϕp)p∈I be a family of inner • premeasures ϕp :
Kp → [0,∞[ with Φp = (ϕp)•|C((ϕp)•) < ∞. For p ≦ q in I assume

that

ϕp

(

Π
t∈p
Kt

)

= sup{ϕq

(

Π
t∈q
Kt

)

: Kt ∈ Kt ∀t ∈ q \ p} for Kt ∈ Kt ∀t ∈ p,
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which after 5.2.2) is equivalent to

(◦) ϕp

(

Π
t∈p
Kt

)

= (ϕq)•
(

Π
t∈q
Kt

)

for Kt ∈ Kt ∀t ∈ p and Kt = Yt ∀t ∈
q \ p.
Then there exists a unique inner • premeasure ϕ : S → [0,∞[ with

Φ = ϕ•|C(ϕ•) such that for all p ∈ I
ϕp( Π

t∈p
Kt) = ϕ( Π

t∈T
Kt) for Kt ∈ Kt ∀t ∈ p and Kt = Yt ∀t ∈ T \ p,

and Φp(Yp) = ϕ(X). We have

ϕ(S) = min
p∈I

Φp(Hp(S)) for S ∈ S, and even

Φ(A) = inf
p∈I

Φp(Hp(A)) for A ∈ S•.

Furthermore we have (ϕp)• = ϕ•(H
−1
p (·)) and

→

HpΦ = Φp for all p ∈ I.
For the purpose of reduction to 5.1 we conclude for fixed p ∈ I from

1.6 applied to ϕp : Kp → [0,∞[ and Tp and from the above 5.2.1) that
ψp := (ϕp)•|Tp = (ϕp)⋆|Tp is an inner • premeasure ψp : Tp → [0,∞[
which fulfils (ψp)• = (ϕp)•. In particular Ψp = (ψp)•|C((ψp)•) is = Φp.

Proof. i) For p ∈ I we see from 5.2.2) that

ψp

(

Π
t∈p
Tt
)

= sup{ϕp

(

Π
t∈p
Kt

)

: Kt ∈ Kt with Kt ⊂ Tt ∀t ∈ p} for Tt ∈ Tt ∀t ∈ p.

ii) We claim that the inner • premeasures ψp for p ∈ I fulfil the
assumption in 5.1. In fact, let p ≦ q in I, and fix Tt ∈ Tt for t ∈ p and
Tt = Yt for t ∈ q \ p. For each system of Kt ∈ Kt with Kt ⊂ Tt ∀t ∈ p
we have by assumption

ϕp

(

Π
t∈p
Kt

)

= sup{ϕq

(

Π
t∈q
Kt

)

: Kt ∈ Kt ∀t ∈ q \ p}.

We form on either side the supremum over all these systems (Kt)t∈p.
Then i) asserts that this supremum is

= ψp

(

Π
t∈p
Tt
)

on the left, and = ψq

(

Π
t∈q
Tt
)

on the right .

Thus we obtain the present assertion.
iii) After this theorem 5.1 asserts that there exists a unique inner •

premeasure ϕ : S → [0,∞[ with Φ = ϕ•|C(ϕ•) which is as formulated
at that place. It is clear from the above that the former properties

ψp( Π
t∈p
Tt) = ϕ( Π

t∈T
Tt) for Tt ∈ Tt ∀t ∈ p and Tt = Yt ∀t ∈ T \ p,

asserted for all p ∈ I, are equivalent to the present ones for the ϕp and
Φp, for all p ∈ I as well. The further assertions persist. �

Theorem 5.4. The assertion of 5.3 defines a one-to-one correspon-

dence between the families (ϕp)p∈I of inner • premeasures ϕp : Kp →
[0,∞[ with Φp = (ϕp)•|C((ϕp)•) < ∞ which fulfil (◦) for all p ≦ q in

I, and
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the inner • premeasures ϕ : S→ [0,∞[ with ϕ(X) <∞ such that

ϕ•(H
−1
p (·)) : P(Yp)→ [0,∞[ is inner regular (Kp)• for each p ∈ I.

In view of the main result in the final section we define these partic-
ular ϕ : S→ [0,∞[ with ϕ(X) = 1 to be the Wiener • premeasures for
the present situation, that is for the family (Kt)t∈T with S, and their
Φ = ϕ•|C(ϕ•) to be the respective Wiener measures. The fundamental
case will be • = τ .

Proof. Define ∆ to consist of all families (ϕp)p∈I as described above,
and Σ to consist of all ϕ : S→ [0,∞[ as described above.

1) By 5.3 each (ϕp)p∈I in ∆ produces an inner • premeasure ϕ : S→
[0,∞[ which in view of (ϕp)• = ϕ•(H

−1
p (·)) for p ∈ I is a member of Σ.

2) Let ϕ : S→ [0,∞[ be a member of Σ. For the first two steps we
fix p ∈ I. 2.i) From 3.10 applied to Hp : X → Yp with S and Tp, for
which the assumptions (⇒)(⇐) are fulfilled after the initial part of this
section, and to ϕ, we obtain an inner • premeasure ψp : Tp → [0,∞[
such that (ψp)• = ϕ•(H

−1
p (·)) < ∞. 2.ii) Then from 1.6 applied to

ψp : Tp → [0,∞[ and to Kp ⊂ Tp we obtain an inner • premeasure
ϕp : Kp → [0,∞[ such that (ϕp)• = (ψp)• = ϕ•(H

−1
p (·)) <∞.

2.iii) We claim that the family (ϕp)p∈I fulfils (◦) for all p ≦ q in I,
and hence is a member of ∆. In fact, for Kt ∈ Kt for all t ∈ p and
Kt = Yt for all t ∈ q \ p we have H−1q ( Π

t∈q
Kt) = H−1p ( Π

t∈p
Kt) and hence

(ϕq)•
(

Π
t∈q
Kt

)

= (ϕp)•
(

Π
t∈p
Kt

)

= ϕp

(

Π
t∈p
Kt

)

.

3) It remains to prove that the two maps (ϕp)p∈I 7→ ϕ obtained in
1) and ϕ 7→ (ϕp)p∈I obtained in 2) are invers to each other. 3.i) For
the composition (ϕp)p∈I 7→ ϕ 7→ (ϕ̃p)p∈I we see from 1) and 2.ii) that
(ϕp)• = ϕ•(H

−1
p (·)) = (ϕ̃p)• and hence ϕp = ϕ̃p for p ∈ I. 3.ii) For the

composition ϕ 7→ (ϕp)p∈I 7→ ϕ̃ we see from 2.ii) and 1) that

ϕ•(H
−1
p (·)) = (ϕp)• = ϕ̃•(H

−1
p (·)) on P(Yp) for p ∈ I.

Now each S ∈ S is of the form S = A × Π
t∈T\p

Yt = H−1p (A) for some

p ∈ I and A ⊂ Yp. It follows that ϕ = ϕ̃. �

We conclude with an important specialization and the comparison
with the traditional counterpart of the present development.

Example 5.5. The most natural example is that Yt for t ∈ T is a Haus-
dorff topological space with Kt = Comp(Yt). We equip Yp for p ∈ I
with the product topology. We are then led to assume that • = τ ,
because one has (Kp)τ = Comp(Yp) from MI 21.3.2) and [13] 2.4.2).
We recall from 1.4 the one-to-one correspondence between the inner τ
premeasures ϕp : Kp → [0,∞[ and the Radon premeasures φp on Yp
via (ϕp)τ = (φp)τ . Thus 5.3 and 5.4 produce a one-to-one correspon-

dence between the families (φp)p∈I of Radon premeasures φp on Yp with
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Φp(Yp) = 1 which fulfil (◦) for all p ≦ q in I, and the Wiener τ pre-

measures ϕ : S→ [0,∞[ for the present situation. We emphasize that
this result reaches beyond topological measure theory, because S does
not appear as a set system which comes from some Hausdorff topology

on X. We also note that the final assertion
→

HpΦ = Φp in 5.3 implies
that

R ∈ Bor(Yp) ⊂ C((ϕp)τ ) =⇒ R×
(

Π
t∈T\p

Yt
)

= H−1p (R) ∈ C(ϕτ ) for p ∈ I.

After this we turn to the traditional situation cited at the outset of
the section. Here one considers T with I and the Yt for t ∈ T with the
Yp for p ∈ I and X as before. Then one assumes a family of σ algebras
Bt in Yt for t ∈ T and forms their usual product σ algebras Bp in Yp
and

A = Aσ
(

{ Π
t∈T
Bt : Bt ∈ Bt ∀t ∈ T and Bt = Yt for almost all t ∈ T}

)

in X.

We recall that for T uncountable the formation A appears to be too
small, because its members A ∈ A are of countable type in the sense
that A = R × Π

t∈T\C
Yt for some nonvoid countable C ⊂ T and some

R ⊂ Π
t∈C

Yt. In this frame the desired counterpart of the above 5.3 would

read as follows: If (θp)p∈I is a family of probability measures θp on Bp

which for p ≦ q in I fulfils

θp
(

Π
t∈p
Bt) = θq

(

Π
t∈q
Bt

)

for Bt ∈ Bt ∀t ∈ p and Bt = Yt ∀t ∈ q \ p,

then there exists a unique probability measure θ on A such that for

p ∈ I
θp
(

Π
t∈p
Bt

)

= θ
(

Π
t∈T
Bt

)

for Bt ∈ Bt ∀t ∈ p and Bt = Yt ∀t ∈ T \ p.

However, this statement is not true as it stands. But it is true in
the special case that the Yt for t ∈ T are Polish topological spaces with
Bt = Bor(Yt). The finite product spaces Yp are then Polish as well with
Bp = Bor(Yp). This fact and the further well-known particularities of
the Polish spaces show that the present special case is an immediate
outcome of the situation considered in 5.5 above: In fact, in view of
the inner extension theorem 1.1 the families (θp)p∈I of the present kind
are in one-to-one correspondence with the families (ϕp)p∈I and (φp)p∈I
in 5.5. Thus from (θp)p∈I the result in 5.5 produces the Wiener τ
premeasure ϕ : S→ [0,∞[ with its Wiener measure Φ = ϕτ |C(ϕτ ). Its
domain C(ϕτ ) has been seen to contain the present A, and we obtain
the measure θ as the restriction of Φ to A.

But the fundamental point is that θ can be a rather poor restriction
of Φ, in that its domain A can be much smaller than the comprehensive
C(ϕτ ) and refuse even the most important requirements. In fact, it can
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happen that some subset E ⊂ X of utmost importance turns out to be
thick with respect to θ, that is

θ⋆(E) := inf{θ(A) : A ∈ A with A ⊃ E} = 1, but has θ⋆(E) = 0,

so that E cannot be a member of A, whereas in our new approach
one has E ∈ C(ϕτ ) with Φ(E) = 1, so that Φ lives on E. The most
prominent example will be the topic of the final section.

If in such situation one wants to pass to a probability measure on E,
then in the traditional frame one has to form the so-called contraction

θE := θ⋆|A ⊓ E of θ onto E, that is a formation defined on a domain
A⊓E which is in essence outside the former A. In contrast, in the new
frame one can form the restriction Φ|E of Φ to the domain C(ϕτ )⊓E =
{A ∈ C(ϕτ ) : A ⊂ E} which is contained in the former domain C(ϕτ ),
and one has the pleasant properties listed in 1.10.

The final section below will be under a more special assumption,
which is the usual one in probabilistic context. For T with I as before
one assumes that Yt = Y for t ∈ T , so that Yp = Y p for p ∈ I
and X = Y T . In the traditional frame one then assumes Bt = B
for t ∈ T , so that Bp = Aσ(Bp) with the usual product set system
Bp = B× · · · ×B and A as before. In the present new situation we
assume Kt = K for t ∈ T , so that Kp = (Kp)⋆ and S as before. Of
course the most important special case is that Y is a Polish topological
space with B = Bor(Y ) and K = Comp(Y ).

6. The true Wiener Measure

We assume the situation described at the end of the last section with
T = [0,∞[ and Y = R with B = Bor(R) and K = Comp(R), so that
X = R

T = R
[0,∞[ with A and S as before. Thus the members of X

are the one-dimensional paths x = (xt)t∈T : T = [0,∞[→ R. We also
assume that • = τ .

We fix a family (ϕp)p∈I of inner τ premeasures ϕp : Kp → [0,∞[
with Φp(R

p) = 1 which fulfil (◦) for all p ≦ q in I, and its Wiener
τ premeasure ϕ : S → [0,∞[ and Wiener measure Φ = ϕτ |C(ϕτ ).

We recall that
→

HpΦ = Φp implies that the projection Hp : X → R
p

is measurable with respect to C(ϕτ ) and C((ϕp)τ ) ⊃ Bor(Rp). The
present main theorem then reads as follows.

Theorem 6.1. Assume that there are real numbers α, β > 0 and c > 0
such that the projections Ht : X → R ∀t ∈ T fulfil

∫

|Hs −Ht|αdΦ ≦ c|s− t|1+β for all s, t ∈ T.
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Fix 0 < γ ≦ 1 with γ < β/α, and define for real M > 0 the function

class

E(γ,M) := {x ∈ X :|x0| ≦M and

|xu − xv| ≦M2(u∨v)(1−γ)|u− v|γ ∀u, v ∈ T}.

Then E(γ,M) ∈ Sτ and hence E(γ) := ∪
M>0

E(γ,M) ∈ (Sτ )σ ⊂ C(ϕτ )

with

Φ(E(γ)) = lim
M↑∞

Φ(E(γ,M)) = 1.

The assumption in 6.1 is the usual one in the theorem on the exis-
tence of so-called continuous modifications, like for instance in Bauer
[1] 39.3. But the assertion is a drastic improvement: The traditional
result in terms of the measure θ on A is θ⋆(C(T,R)) = 1, and of course
θ⋆(C(T,R)) = 0, and one obtains via contraction the traditional Wiener
measure θC(T,R) := θ⋆|(A⊓C(T,R)). In sharp contrast, the present sit-
uation concludes from E(γ) ⊂ C(T,R) that the subspace C(T,R) is a
member of C(ϕτ ) with Φ(C(T,R)) = 1. Also note the occurrence of the
small subsystem Sτ of C(ϕτ ), which after all is the most basic system of
measurable sets, and the almost global character of the Hölder classes
E(γ,M), connected with the particular bound of increase at infinity

contained in their definition.

The technical problems with the proof will be finished off with the
lemma below. It is modelled after the standard procedure, like for
instance in the proof of Stromberg [21] 8.2. We present the details both
for the sake of completeness and because we need some peculiarities.
We retain the assumption of 6.1. For fixed 0 < γ ≦ 1 with γ < β/α we
form

δ :=
1

2
(β − αγ) > 0 and λ :=

2 + δ

2 + 2δ
, so that 0 < λ < 1,

b :=
2γ + 1

2γ − 1
> 0 and B := b

( 2

1− λ
)1−γ

.

Let D ⊂ T consist of the dyadic rationals ≧ 0. Moreover let

D(n) := {t ∈ D : 2nt ∈ Z and t ≦ n} and

E(n) := {(s, t) ∈ D(n)× D(n) : 0 < t− s ≦ 2−nλ} for n ∈ N.

Thus card(E(n)) ≦ n22n−nλ. Then define

An := ∩
(s,t)∈E(n)

[|Hs −Ht| ≦ |s− t|γ] ∈ C(ϕτ ) for n ∈ N,

A :=
∞
∪

m=1

∞
∩

n=m
An ∈ C(ϕτ ).

The lemma in question reads as follows.
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Lemma 6.2. i) Φ(A) = 1. ii) Fix x = (xt)t∈T ∈ A, and choose m ∈ N

such that x ∈
∞
∩

n=m
An and m ≧ 1+λ

1−λ
. Then

|xu − xv| ≦ B2mλ(1−γ)2(u∨v)(1−γ)|u− v|γ for u, v ∈ D.

Proof of 6.2. i) For n ∈ N and (s, t) ∈ E(n) we have

Φ
(

[|Hs −Ht| > |s− t|γ]
)

≦

∫

( |Hs −Ht|
|s− t|γ

)α

dΦ

≦ c|s− t|1+β−αγ = c|s− t|1+2δ ≦ c2−nλ(1+2δ),

and hence Φ(A′n) ≦ cn22n−nλ−nλ(1+2δ) = cn22n(1−λ−λδ) = cn2−nδ, be-
cause one computes that 1 − λ − λδ = −δ/2. It follows for m ∈ N

that

A′ ⊂
∞
∪

n=m
A′n and hence Φ(A′) ≦

∞

Σ
n=m

cn2−nδ.

Thus Φ(A′) = 0 or Φ(A) = 1.
ii) The proof of this part is more involved. ii.0) First note for n ≧ m

that x ∈ An and hence |xs − xt| ≦ |s− t|γ for all (s, t) ∈ E(n).
ii.1) We fix 0 < a < ∞ and put M := m + [a], with [a] the integer

part of a. Thus M ∈ N with M ≧ m and M ≧ a. Then we fix
u, v ∈ D with 0 ≦ u, v ≦ a and 0 < v − u ≦ 2−Mλ. We claim that
|xu − xv| ≦ b|u− v|γ.

ii.1.1) There is a unique n ∈ N with n ≧ M and 2−(n+1)λ < v − u ≦

2−nλ, and then there are unique integers i and j with i− 1 < 2nu ≦ i
and j ≦ 2nv < j + 1. We have i ≧ 0, and

j − i+ 2 > 2n(v − u) > 2n−(n+1)λ = 2n(1−λ)−λ ≧ 2 implies that j > i.

ii.1.2) We put s = i2−n and t = j2−n. Then 0 ≦ u ≦ s < t ≦ v ≦

a ≦ M ≦ n and 0 < t− s ≦ v − u ≦ 2−nλ. Hence (s, t) ∈ E(n). From
ii.0) therefore |xs − xt| ≦ |s− t|γ.

ii.1.3) Next we estimate |xu − xs|. We have s − 2−n < u ≦ s or
0 ≦ s− u < 2−n and s− u ∈ D. Thus

s− u =
n+p

Σ
k=n+1

εk2−k with p ∈ N and εk ∈ {0, 1}.

We put s(0) := s and

s(l) := s−
n+l

Σ
k=n+1

εk2−k for 1 ≦ l ≦ p,

so that s = s(0) ≧ s(1) ≧ · · · ≧ s(p) = u. For 0 ≦ l ≦ p we have
2n+ls(l) ∈ Z and 0 ≦ s(l) ≦ s ≦ n ≦ n + l, that is s(l) ∈ D(n + l).
Moreover s(l− 1)− s(l) = εn+l2

−(n+l), so that either s(l− 1)− s(l) = 0
or 0 < s(l − 1) − s(l) = 2−(n+l) < 2−(n+l)λ and hence (s(l), s(l − 1)) ∈
E(n + l). In view of ii.0) we have in both cases |xs(l) − xs(l−1)| ≦
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|s(l)− s(l − 1)|γ ≦ 2−(n+l)γ. It follows that

|xu − xs| ≦
p

Σ
l=1

2−(n+l)γ <
2−nγ

2γ − 1
.

ii.1.4) The same idea furnishes |xv − xt| ≦ 2−nγ/(2γ − 1).
ii.1.5) From ii.1.2)3)4) and ii.1.1) we obtain

|xu − xv| < |u− v|γ +
2 2−nγ

2γ − 1
<

(

1 +
2 2−nγ+(n+1)λγ

2γ − 1

)

|u− v|γ,

which in view of (n + 1)λ− n = −n(1− λ) + λ ≦ −m(1− λ) + λ < 0
is < b|u− v|γ. This proves ii.1).

ii.2) After these preparations we prove assertion ii). We fix u, v ∈ D

with u < v =: a, and put M := m + [a] as in ii.1). In view of ii.1)
we can assume that a > 2−Mλ. Then there is a unique r ∈ N with
2r−1 < a2Mλ ≦ 2r. The points u(l) := u + l2−r(v − u) ∀0 ≦ l ≦ 2r

are ∈ D with u = u(0) < u(1) < · · · < u(2r) = v and fulfil 0 <
u(l)− u(l − 1) = 2−r(v − u) ≦ 2−ra ≦ 2−Mλ for 1 ≦ l ≦ 2r. Thus ii.1)
asserts that

|xu(l) − xu(l−1)| ≦ b|u(l)− u(l − 1)|γ = b2−rγ|u− v|γ for 1 ≦ l ≦ 2r,

and hence |xu − xv| ≦ b2r(1−γ)|u− v|γ. Now

2r < 2a2Mλ ≦ 2a2mλ2aλ ≦
2

1− λ2a(1−λ)2mλ2aλ =
2

1− λ2mλ2a,

because z ≦ 2z for z ≧ 0. It follows that |xu − xv| ≦ B2mλ(1−γ)2a(1−γ)

|u− v|γ, which in view of a = u ∨ v is the assertion ii). �

Proof of 6.1. As before let 0 < γ ≦ 1 with γ < β/α. For M > 0 and
0 ∈ U ⊂ T = [0,∞[ we form the function sets

E(γ,M,U) := {x ∈ X : |x0| ≦M and

|xu − xv| ≦M2(u∨v)(1−γ)|u− v|γ ∀u, v ∈ U},
so that E(γ,M) = E(γ,M, T ). We collect their relevant properties.

1) E(γ,M,U) is increasing in M and decreasing in U . Moreover

E(γ,M,U) = ∩
p∈I,0∈p⊂U

E(γ,M, p).

2) E(γ,M,U) ∈ Sτ . In fact, in view of 1) it suffices to prove
E(γ,M, p) ∈ Sτ for 0 ∈ p ∈ I. We have

E(γ,M, p) = {z = (zt)t∈p ∈ R
p : |z0| ≦M and

|zu − zv| ≦M2(u∨v)(1−γ)|u− v|γ ∀u, v ∈ p} × R
T\p.

The first factor is a closed subset of Rp, and bounded since |zu− z0| ≦
M2u(1−γ)uγ ∀u ∈ p, and hence compact, that is in Comp(Rp) = (Kp)τ .
Thus the product set E(γ,M, p) is in Sτ .

3) Assume that U is dense in T . Then

Φ(E(γ,M,U ∪ p)) = Φ(E(γ,M,U)) for p ∈ I.
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In fact, it suffices to prove Φ(E(γ,M,U ∪ {t})) = Φ(E(γ,M,U)) for
t ∈ T \ U . To this end we use

∫

|Hs −Ht|αdΦ ≦ c|s− t|1+β for all s ∈ T.

We fix a sequence (s(l))l≧1 in U with
∞

Σ
l=1
|s(l) − t|1+β < ∞. Then

there exists a subset R ∈ C(ϕτ ) with Φ(R) = 1 such that Hs(l) →
Ht pointwise on R, that is xs(l) → xt for all x ∈ R. Since for x ∈
E(γ,M,U) we have

|xs − xs(l)| ≦M2(s∨s(l))(1−γ)|s− s(l)|γ for s ∈ U,
it follows for x ∈ E(γ,M,U) ∩R that

|xs − xt| ≦M2(s∨t)(1−γ)|s− t|γ for s ∈ U.
Therefore E(γ,M,U)∩R ⊂ E(γ,M,U ∪{t}), and hence the assertion.

4) Assume that U is dense in T . Then for each x ∈ E(γ,M,U) there
exists y ∈ E(γ,M, T ) such that xt = yt for all t ∈ U . In fact, it is
obvious that

y = (yt)t∈T : yt = lim
s∈U,s→t

xs for t ∈ T

exists and is as required.
5) Assume that U is dense in T . Then

E(γ,M,U ∪ p) ⊂ H−1p

(

Hp(E(γ,M, T ))
)

for all p ∈ I.
This is an obvious consequence of 4).

We come to the decisive point. i) From theorem 5.3 and 2) we obtain

Φ(E(γ,M, T )) = inf
p∈I

Φp

(

Hp(E(γ,M, T ))
)

.

¿From 5)3) we see that

Φp(Hp(E(γ,M, T )) = ϕτ

(

H−1p

(

Hp(E(γ,M, T ))
))

≧ Φ
(

E(γ,M,D ∪ p)
)

= Φ(E(γ,M,D)),

so that Φ(E(γ,M, T )) ≧ Φ(E(γ,M,D)). ¿From 1) it follows that
Φ(E(γ,M, T )) = Φ(E(γ,M,D)).

ii) We see from 6.2.ii) that each x ∈ A is contained in E(γ,M,D) for
some M > 0, that is

A ⊂ ∪
M>0

E(γ,M,D) =
∞
∪

n=1
E(γ, n,D) ∈ (Sτ )σ ⊂ C(ϕτ ).

Thus 6.2.1) implies that Φ( ∪
M>0

E(γ,M,D)) = lim
M↑∞

Φ(E(γ,M,D)) = 1.

From i)ii) we obtain the assertion of theorem 6.1. �

Consequence 6.3. Fix as above 0 < γ ≦ 1 with γ < β/α, and define

U := {U ∈ Sτ : U ⊂ E(γ,M) for some M > 0}. Then ϕτ is inner

regular U.
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Proof. Fix A ⊂ X and c < ϕτ (A), and then S ∈ Sτ with S ⊂ A
and c < ϕτ (S). From 6.1 we obtain ϕτ (E(γ,M)) > 1− (ϕτ (S)− c) for
some M > 0. Then U := S ∩ E(γ,M) ∈ Sτ fulfils

1 + ϕτ (U) ≧ ϕτ (S ∪ (E(γ,M)) + ϕτ (S ∩ (E(γ,M))

= ϕτ (S) + ϕτ (E(γ,M)) > 1 + c,

and hence is as required. �

We add one more consequence with respect to topologies. One has
on X = R

T the product topology P, and on C(T,R) its restriction
P|C(T,R) and the topology Q of uniform convergence on the compact
subsets of T = [0,∞[, which is Polish. For these topologies we obtain
what follows.

Proposition 6.4. 1) Φ is maximal Radon with respect to P. 2) The

restriction Φ|C(T,R) is maximal Radon with respect to P|C(T,R) and

to Q.

Proof. We write C(T,R) =: E for short. i) For U as defined in 6.3
we claim that

i.1) U ⊂ Comp(P) ⊂ Sτ ⊂ Cl(P),
i.2) U ⊂ Comp(Q) ⊂ Comp(P|E) = {P ∈ Comp(P) : P ⊂ E},

where in i.2) U is viewed as a set system in E. In fact, in i.1) the
third ⊂ is obvious, and the second ⊂ follows from [13] 2.4.2). In i.2)
the = is obvious, and the second ⊂ holds true since Q is finer than
P|E. As to the first ⊂ in i.2), the classical Ascoli theorem asserts that
E(γ,M) ∈ Comp(Q) for M > 0. In view of U ⊂ E(γ,M) for some
M > 0 it remains to show that U is closed in Q. But the third ⊂ in
i.1) asserts that U is closed in P, that is in P|E, and hence in Q. This
also proves the first ⊂ in i.1).

ii) We see from 1.4 that φ := ϕτ |Sτ is an inner τ premeasure φ :
Sτ → [0,∞[ which fulfils φτ = ϕτ and hence Φ = φτ |C(φτ ).

iii) To prove 1) we combine 1.6 applied to φ : Sτ → [0,∞[ and to
Comp(P) with i.1). It follows via 6.3 that ϑ := φ|Comp(P) is an inner
τ premeasure ϑ : Comp(P) → [0,∞[ which fulfils ϑτ = φτ and hence
Φ = ϑτ |C(ϑτ ).

iv) To prove 2) we first invoke 1.10 for φ : Sτ → [0,∞[ and E.
Let T = Sτ ⊓ E = Tτ ⊂ C(φτ ) with T◦ as before, and note that
Comp(P|E) ⊂ T◦ from i). Then 1.10.1) asserts that ψ = φτ |T is an
inner τ premeasure ψ : T → [0,∞[ with ψτ = φτ , and 1.10.2) asserts
that ψ◦ as before is an inner τ premeasure ψ◦ : T◦ → [0,∞[ with
(ψ◦)τ = ψτ |P(E) = φτ |P(E) and Φ|E = (ψ◦)τ |C((ψ◦)τ ). After this we
combine 1.6 applied to ψ◦ : T◦ → [0,∞[ and to both Comp(P|E) and
Comp(Q) with i.2) plus the above Comp(P|E) ⊂ T◦. It follows via
6.3 that both ϑ := ψ◦|Comp(P|E) and ϑ := ψ◦|Comp(Q) are inner τ
premeasures which fulfil ϑτ = (ψ◦)τ and hence Φ|E = ϑτ |C(ϑτ ). �.
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The remainder of the section wants to establish the explicit con-
nection with the usual Wiener measure situation. What follows are
standard procedures, but to be transferred into the world of inner pre-
measures. We want to note that in the sequel we shall have ϕ0 = ϕ{0} =
the Dirac premeasure δ0|K for 0 ∈ R. Therefore N := H−10 ({0}) =
{x ∈ X : x0 = 0} ∈ S has Φ(N) = ϕτ (H−10 ({0})) = (ϕ0)τ ({0}) = 1.

We start to recall the notion of convolution, for the sake of fun for
Radon premeasures ϕ, ψ : R = Comp(X) → [0,∞[ on a Hausdorff
topological space X which is a group under a continuous operation
G : (u, v) 7→ uv (this is less than a topological group [7] (4.20)). From
MI 21.9 = [15] 6.4 we obtain the product inner τ premeasure ϕ × ψ :
(R×R)⋆ → [0,∞[, with ((R×R)⋆)τ = Comp(X×X) from MI 21.3.2).
Now the map G : X ×X → X with the lattices (R×R)⋆ and R fulfils
conditions (⇒)(⇐) in 3.10 for • = τ . We assume that ϕτ (X), ψτ (X) <
∞ and hence (ϕ × ψ)τ (X × X) = ϕτ (X)ψτ (X) < ∞. Then 3.10

furnishes the image Radon premeasure χ =
→

G(ϕ× ψ) : R→ [0,∞[ on
X. It fulfils χτ = (ϕ× ψ)τ (G−1(·)). We call χ = ϕ ⋆ ψ the convolution

of ϕ and ψ.

After this we fix a family (γt)t∈T of Radon premeasures γt : K =
Comp(R) → [0,∞[ on R with Γt = (γt)τ |C((γt)τ ) such that Γt(R) = 1
and γ0 = δ0|K, which under convolution fulfils γs ⋆ γt = γs+t for all
s, t ∈ T . We form for p ∈ I, written p = {t(1), · · · , t(n)} with 0 =:
t(0) ≦ t(1) < · · · < t(n), after [13] 1.5 the p-fold product inner τ
premeasure

γp :=
n

Π
l=1

γt(l)−t(l−1) : Kp = (Kp)⋆ → [0,∞[ with Γp = (γp)τ |C((γp)τ ),

so that Γp(R
p) = 1. Then define Gp : Rp → R

p to be the partial-sum
map

Gp : u = (u1, · · · , un) 7→ Gp(u) = (v1, · · · , vn) with vl =
l

Σ
k=1

uk for 1 ≦ l ≦ n.

The map Gp is homeomorphic and hence fulfils, with the lattice Kp on
both sides, conditions (⇒)(⇐) in 3.10. Thus 3.10 furnishes the image

inner τ premeasure ϕp =
→

Gpγp : Kp → [0,∞[ with Φp = (ϕp)τ |C((ϕp)τ ).
It fulfils (ϕp)τ = (γp)τ (G−1p (·)) and hence Φp(R

p) = 1. We claim that
the family of these ϕp for p ∈ I is appropriate for the application of
theorem 6.1.

Proposition 6.5. The family (ϕp)p∈I fulfils condition (◦) of theorem

5.3. Moreover its Wiener τ premeasure ϕ : S → [0,∞[ with Φ =
ϕτ |C(ϕτ ) fulfils for s ≧ 0 and t > 0 the relation

ϕτ

(

[Hs+t −Hs ∈ B]
)

= (γt)τ (B) for all B ⊂ R.

Hence in particular
∫

|Hs+t −Hs|αdΦ =
∫

|v|αdΓt(v) for α > 0.
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Proof. 1) We recall for p ≦ q in I the canonical projection Hpq :
R

q → R
p. It is continuous and hence fulfils, with the lattices Kq and

Kp, conditions (⇒)(⇐) in 3.10.The desired (◦) is equivalent to ϕp =

(ϕq)τ (H−1pq (·))|Kp or ϕp =
→

Hpqϕq, which once more is seen via MI 2.5.1).

Besides Hpq we consider the map Gpq = G−1p ◦ Hpq ◦ Gq : Rq → R
p,

which likewise is continuous and hence fulfils, with the lattices Kq and

Kp, conditions (⇒)(⇐) in 3.10. We note that ϕp =
→

Hpqϕq is equivalent

to γp =
→

Gpqγq: In fact, in view of Gp ◦Gpq = Hpq ◦Gq we have

(γp)τ (A) = (γq)τ (G−1pq (A)) ∀A ⊂ R
p

⇔ (γp)τ (G−1p (B)) = (γq)τ (G−1pq (G−1p (B))) = (γq)τ (G−1q (H−1pq (B))) ∀B ⊂ R
p

⇔ (ϕp)τ (B) = (ϕq)τ (H−1pq (B)) ∀B ⊂ R
p.

It is clear from the form of (◦) that it suffices to prove the equivalent
conditions in the special case q = p ∪ {s} with s ∈ T \ p. In 2) below

we shall do this for γp =
→

Gpqγq.
2) Thus let p = {t(1), · · · , t(n)} with 0 = t(0) ≦ t(1) < · · · < t(n)

and q = p ∪ {s} with s ∈ T \ p as before. There are the three cases

(L) t(0) ≦ s < t(1),

(M) t(l − 1) < s < t(l) for some 2 ≦ l ≦ n,

(R) t(n) < s.

We first want to obtain an explicit formula for Gpq. To this end we
write v ∈ R

q and an associate u ∈ R
p in the three cases (L)(M)(R) in

the forms

v = (a, b, v2, · · ·, vn) u = (a+ b, v2, · · ·, vn),

v = (v1, · · ·, vl−1, a, b, vl+1, · · ·, vn) u = (v1, · · ·, vl−1, a+ b, vl+1, · · ·, vn),

v = (v1, · · ·, vn, x) u = (v1, · · ·, vn).

Then one notes that Hpq(Gq(v)) = Gp(u) and hence Gpq(v) = u. It
follows for A = A1 × · · · × An ⊂ R

p that

G−1pq (A) = G−1(A1)× A2 × · · · × An,

G−1pq (A) = A1 × · · · × Al−1 ×G−1(Al)× Al+1 × · · · × An,

G−1pq (A) = A1 × · · · × An × R,

where G : R × R → R denotes the addition G(a, b) = a + b. Next we
note that in the three cases (L)(M)(R)

γq = γs−t(0) × γt(1)−s ×
n

Π
k=2

γt(k)−t(k−1),

γq =
l−1

Π
k=1

γt(k)−t(k−1) × γs−t(l−1) × γt(l)−s ×
n

Π
k=l+1

γt(k)−t(k−1),

γq =
n

Π
k=1

γt(k)−t(k−1) × γs−t(n).
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We know from [13] 1.2 that this product formation is associative. Thus
[13] 1.3 implies for A = A1 × · · · × An ⊂ R

p that

(γq)τ (G−1pq (A)) = (γs−t(0)×γt(1)−s)τ (G−1(A1))×
n

Π
k=2

(γt(k)−t(k−1))τ (Ak),

(γq)τ (G−1pq (A)) =
l−1

Π
k=1

(γt(k)−t(k−1))τ (Ak)× (γs−t(l−1) × γt(l)−s))τ (G−1(Al))×

×
n

Π
k=l+1

(γt(k)−t(k−1))τ (Ak),

(γq)τ (G−1pq (A)) =
n

Π
k=1

(γt(k)−t(k−1))τ (Ak)× (γs−t(n))τ (R),

which in view of

(γs−t(l−1)×γt(l)−s)τ (G−1(Al)) = (γs−t(l−1)⋆γt(l)−s)τ (Al) = (γt(l)−t(l−1))τ (Al)

in (L)(M) and (γs−t(n))τ (R) = 1 in (R) boils down to

(γq)τ (G−1pq (A)) =
n

Π
k=1

(γt(k)−t(k−1))τ (Ak) = (γp)τ (A).

The result holds true in particular for A ∈ Kp, and hence for A ∈
(Kp)⋆ = Kp, once more in view of MI 2.5.1). Thus we have γp =

→

Gpqγq
as claimed.

3) We turn to the final assertions in 6.5. Let s ≧ 0 and t > 0. For
B ⊂ R we have

[Hs+t −Hs ∈ B] = {x ∈ X : xs+t − xs ∈ B}
= H−1{s,s+t}

(

{(u, v) ∈ R
{s,s+t} : v − u ∈ B}

)

= H−1{s,s+t}

(

G{s,s+t}(R× B)
)

,

and hence

ϕτ

(

[Hs+t −Hs ∈ B]
)

= (ϕ{s,s+t})τ
(

G{s,s+t}(R× B)
)

= (γ{s,s+t})τ (R× B) = (γs)τ (R)(γt)τ (B) = (γt)τ (B).

For α > 0 it follows via the Choquet integral
∫

|Hs+t −Hs|αdΦ =

∫ →∞

0←

Φ
(

[|Hs+t −Hs|α ≧ z]
)

dz

=

∫ →∞

0←

Γt

(

{v ∈ R : |v|α ≧ z}
)

dz =

∫

|v|αdΓt(v).

This completes the proof of 6.5. �

At last we specialize the family (γt)t∈T to the Brownian convolution
semigroup of the Gaussian premeasures

γt : γt(K) =
1√
2πt

∫

K

e−x
2/2tdx for K ∈ K = Comp(R) when t > 0,

and γ0 = δ0|K. In this case one computes for α > 0 and t > 0 that
∫

|v|αdΓt(v) = tα/2M(α) with M(α) =
21+α/2

√
π

∫ →∞

0←

xαe−x
2

dx.
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It follows that the assumption in 6.1 is fulfilled for α > 2 with 1 + β =
α/2. Thus we obtain the assertion of 6.1 for the exponents 0 < γ < 1/2.
The measure Φ = ϕτ |C(ϕτ ) which satisfies all this is what we call the
true Wiener measure.

We conclude with a few further remarks on the traditional Wiener
measure θC(T,R) := θ⋆|(A ⊓ C(T,R)). 1) Instead of C(T,R) one often
considers the smaller C◦(T,R) = {x ∈ C(T,R) : x0 = 0}. In the
present context we have C◦(T,R) = C(T,R) ∩ N , where N ∈ S with
Φ(N) = 1 has been defined above, and one could proceed alike.

2) The traditional Wiener measure has the domain A ⊓ C(T,R).
In connection with the topologies P|C(T,R) and Q on C(T,R) and
with 6.4 we recall that this domain is = Bor(C(T,R)) for both these
topologies [1] 38.6. In connection with the Radon properties 6.4 we
also refer to Fremlin [5] 454-455.

3) At last Kisyński [9] section 3 follows an alternative but not un-
related route, in that he uses his Prokhorov type theorem mentioned
in 4.15 for the direct construction of the traditional Wiener measure
on C([0, T ],R) (to appear in corrected and augmented form). Kisyński
refers to Itô-McKean [8] as a predecessor.

References

[1] H.Bauer, Wahrscheinlichkeitstheorie. 4th ed. de Gruyter 1991, English trans-
lation 1996.
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