Universität des Saarlandes Fachrichtung – Mathematik

Prof. Dr. Martin Fuchs Jan Müller, M.Sc.

Analysis 2 (SoSe 2017) 10. Übungsblatt

Aufgabe 1 (3+3+2=8P)

a) Zeigen Sie, dass die Funktion $y(t) = \frac{1}{1-t}$ die einzige Lösung des Anfangswertproblems

$$y'(t) = y(t)^2, \quad y(0) = 1$$

auf dem Intervall $(-\infty, 1)$ ist.

b) Bestimmen Sie in Abhängigkeit von $y_0 \in \mathbb{R}$ die maximale Lösung des Anfangswertproblems

$$y'(t) = y(t)^2$$
, $y(0) = y_0$.

c) Zeigen Sie, dass die Funktion $F: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$, $F(t,y) = \sqrt[3]{y^2}$ in keiner Umgebung von (0,0) einer Lipschitz-Bedingung bezüglich der y-Variablen genügt.

Aufgabe 2 (10P)

Das Lemma von Gronwall besagt: Sei $I \subset \mathbb{R}$ ein Intervall und $g: I \to \mathbb{R}$ eine stetige Funktion. Es gebe $t_0 \in I$ und $A, B \geq 0$ sodass

$$g(t) \le A \cdot \left| \int_{t_0}^t g(s) \, \mathrm{d}s \right| + B$$
 für alle $t \in I$.

Dann gilt: $g(t) \leq Be^{A|t-t_0|}$.

Es sei nun $F: \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n$ eine stetige Funktion mit globaler Lipschitz-Bedingung bezüglich der \mathbb{R}^n -Variable und

$$|F(t, \mathbf{y})| \le c \cdot |\mathbf{y}|$$
 für ein $c \ge 0$.

Zeigen Sie, dass dann das Anfangswertproblem

$$\mathbf{y}'(t) = F(t, \mathbf{y}(t)), \quad \mathbf{y}(t_0) = \mathbf{y}_0$$

für jede Wahl $(t_0, \mathbf{y}_0) \in \mathbb{R} \times \mathbb{R}^n$ eine eindeutige, auf ganz \mathbb{R} definierte Lösung $\mathbf{y} : \mathbb{R} \to \mathbb{R}^n$ besitzt.

Bitte wenden!

Aufgabe 3 (10P)

Es seien $\kappa:[0,1]\to(0,\infty)$ und $\tau:[0,1]\to\mathbb{R}$ differenzierbare Funktionen. Schreiben Sie die Frenetschen Formeln

$$\begin{cases} \dot{\mathbf{t}}(s) = \kappa(s)\mathbf{n}(s) \\ \dot{\mathbf{n}}(s)) = -\tau(s)\mathbf{b}(s) - \kappa(s)\mathbf{t}(s) \\ \dot{\mathbf{b}}(s) = \tau(s)\mathbf{n}(s) \end{cases}$$

als Differentialgleichung $\dot{\mathbf{y}}(s) = F(s, \mathbf{y}(s))$ mit $\mathbf{y} : [0, 1] \to \mathbb{R}^9$ und $F : \mathbb{R} \times \mathbb{R}^9 \to \mathbb{R}^9$. Zeigen Sie, dass F auf $I \times \mathbb{R}^n$ einer globalen Lipschitz-Bedingung bezüglich der \mathbf{y} -Variablen genügt.

Aufgabe 4 (3+4+5=12P)

- a) Es sei $(X, \|\cdot\|)$ ein normierter \mathbb{R} -Vektorraum und $(x_k)_{k\in\mathbb{N}_0}$ eine Folge in X. Zeigen Sie: Ist X vollständig, so impliziert die Konvergenz der Reihe $\sum_{k=0}^{\infty} \|x_k\|$ die Konvergenz der Reihe $\sum_{k=0}^{\infty} x_k$.
- b) Wir versehen den Raum $\mathbb{R}^{n\times n}$ der reellen $n\times n$ -Matrizen mit der sog. Operatornorm

$$||A|| := \sup_{x \neq 0} \frac{|Ax|}{|x|}.$$

Zeigen Sie, dass die Reihe $e^A:=\sum_{k=0}^\infty \frac{A^k}{k!}$ für jede Wahl von $A\in\mathbb{R}^{n\times n}$ konvergiert (Hierbei bezeichnet A^k das k-fache Matrixprodukt $A\cdot\ldots\cdot A,\ A^0:=\mathrm{Id}$).

c) Wir betrachten die Funktion $\mathbb{R} \ni t \mapsto e^{tA}$. Zeigen Sie:

$$\lim_{h \to 0} \frac{e^{(t+h)A} - e^{tA}}{h} = A \cdot e^{tA}.$$

(*Hinweis*: Betrachten Sie die einzelnen Komponenten der Matrix $e^{tA} = (a_{ij}(t))_{i,j=1}^n$).

Abgabe: Bis Donnerstag, den 29. Juni 12:00 Uhr in den Briefkästen neben Raum U.39 in Geb. E 2.5.