Universität des Saarlandes Fachrichtung 6.1 – Mathematik

Prof. Dr. Martin Fuchs Jan Müller, M.Sc.

Analysis 2 (SoSe 2017) 4. Übungsblatt

Aufgabe 1 (10P) Zeigen Sie, dass die Gammafunktion

$$\Gamma(x) = \int_{0}^{\infty} t^{x-1} e^{-t} \, \mathrm{d}t$$

auf dem offenen Intervall $(0, \infty)$ stetig differenzierbar ist indem Sie den Ansatz aus der Vorlesung verwenden und bestimmen Sie $\Gamma'(x)$. Begründen Sie alle Schritte sorgfältig!

Aufgabe 2 (2+4+4=10P) Die sog. Digammafunktion ψ ist für $x \in (0, \infty)$ definiert durch

$$\psi(x) := \frac{\mathrm{d}}{\mathrm{d}x} \ln (\Gamma(x)).$$

a) Zeigen Sie die folgende Funktionalgleichung:

$$\psi(x+1) = \psi(x) + \frac{1}{x}$$
 für alle $x \in (0, \infty)$.

Folgern Sie daraus für alle $n \in \mathbb{N}$ die Identität

$$\psi(n+1) = \psi(1) + H_n$$

wobei H_n die n-te harmonische Zahl, $H_n := \sum_{k=1}^n \frac{1}{k}$ bezeichnet.

b) Beweisen Sie, dass für alle $x \in (1, \infty)$ gilt:

$$\ln (\Gamma(x)) - \ln (\Gamma(x-1)) = \ln(x-1)$$
 und $\ln (\Gamma(x+1)) - \ln (\Gamma(x)) = \ln(x)$.

Folgern Sie daraus mit Hilfe des Mittelwertsatzes der Differentialrechnung die Abschätzung

$$\ln(x-1) \le \psi(x) \le \ln(x)$$
 für alle $x \in (1,\infty)$.

(*Hinweis:* Sie dürfen ohne Beweis verwenden, dass ψ auf $(0, \infty)$ monoton wächst.)

c) Folgern Sie aus Teil a) und b):

$$\psi(1) = \lim_{n \to \infty} \left(\ln(n+1) - H_n \right),\,$$

d.h. $-\psi(1)=-\Gamma'(1)$ ist die aus der Vorlesung bekannte Euler-Mascheroni Konstante $\gamma\approx 0,57721.$

Bitte wenden!

Aufgabe 3 (2+2+2+2=8P)

Prüfen Sie, welche der folgenden Abbildungen $d_i: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ eine Metrik auf \mathbb{R}^n definieren:

i)
$$d_1(\mathbf{x}, \mathbf{y}) := \sum_{i=1}^n |x_i - y_i|;$$
 ii) $d_2(\mathbf{x}, \mathbf{y}) := \max_{i=1,\dots,n} |x_i - y_i|;$ iii) $d_3(\mathbf{x}, \mathbf{y}) := d_1(\mathbf{x}, \mathbf{y})^2;$ iv) $d_4(\mathbf{x}, \mathbf{y}) := d_1(\mathbf{x}, \mathbf{y}) - d_2(\mathbf{x}, \mathbf{y}).$

iii)
$$d_3(\mathbf{x}, \mathbf{y}) := d_1(\mathbf{x}, \mathbf{y})^2;$$
 iv) $d_4(\mathbf{x}, \mathbf{y}) := d_1(\mathbf{x}, \mathbf{y}) - d_2(\mathbf{x}, \mathbf{y}).$

Aufgabe 4 (6+6=12P) Es sei $\mathbb{R}[x]$ der \mathbb{R} -Vektorraum aller Polynome in einer Variablen x mit reellen Koeffizienten, d.h.

$$\mathbb{R}[x] := \left\{ p(x) = \sum_{k=0}^{m} a_k x^k : a_0, ..., a_m \in \mathbb{R}, m \in \mathbb{N} \right\}$$

zusammen mit der üblichen punktweisen Addition bzw. skalaren Multiplikation von Funktionen.

a) Zeigen Sie, dass durch

$$||p(x)||_1 := \sum_{k=0}^m |a_k|$$
 und $||p(x)||_2 := \max_{x \in [0, \frac{1}{2}]} |p(x)|$

zwei Normen auf $\mathbb{R}[x]$ gegeben sind.

b) Zeigen Sie, dass die Folge $p_n(x) := \sum_{k=0}^n (-1)^k x^k$ unbeschränkt bezüglich $\|\cdot\|_1$, aber beschränkt bezüglich $\|\,\cdot\,\|_2$ ist. Folgern Sie, dass die beiden Normen nicht äquivalent sind.

Abgabe: Bis Donnerstag, den 18. Mai 12:00 Uhr in den Briefkästen neben Raum U.39 in Geb. E 2.5.