Frauen in der Mathematik WS 2014/2015

Lektion 9

Universität des Saarlandes

8. Januar 2015

Emmy Noether (1882-1935)

um 1800

Enstehung des Berufs des Mathematiklehrers (für Männer) an Höheren Schulen.

Abschluss: Staatsexamen (oder Promotion).

Höhere Schulen (für Jungen) waren damals: (Humanistisches) Gymnasium, Realgymnasium, Oberrealschule.

Dort gibt es wissenschaftlich fundierten Mathematikunterricht.

um 1900

Für Mädchen gibt es an den Höheren Mädschenschulen keinen mathematisch-naturwissenschaftlichen Unterricht.

• 1893/94

Einzelne Ausländerinnen studieren erstmals in Göttingen Mathematik, sie haben den sog. Hörerinnen-Status, d.h. sie müssen für jede besuchte Lehrveranstaltung den jeweiligen Dozenten um Teilnahmeerlaubnis fragen.

1894

Preußen: "Ordnung der Wissenschaftlichen Prüfung der Lehrerinnen (Oberlehrerinnenprüfung) "

Bereits vorher: Angehende Lehrerinnen (für Volksschulen, mittlere oder höhere Mädchenschulen) studierten in der Seminarklasse des Oberlyzeums.

Jetzt dürften Lehrerinnen mit mehrjähriger Berufspraxis an der Universität studieren.

Abschluss: Oberlehrerinnenprüfung (nicht Staatsexamen).

Sie können damit Oberlehrerin oder Direktorin an einer höheren Mädchenschule werden

- 1900 Immatrikulation von Frauen an badischen Universitäten generell erlaubt.
- 1903 Immatrikulation von Frauen an bayrischen Universitäten generell erlaubt.

1908

Immatrikulation von Frauen an preußischen Universitäten generell erlaubt.

Preußen führt (als ersten land in Deutschland) den mathematisch-naturwissenschaftlichen Unterricht an Mädchenschulen ein. Es werden - wie für Jungen - auch für Mädchen die Schultypen Gymnasium, Realgymnasium, Oberrealschule eingeführt. Ein Abschluss dort ermöglicht den Zugang zur Universität.

Frauen mit bestandener Lehrerinnenprüfung in der Seminarklasse werden zum Universitätsstudium zugelassen ("vierter Weg").

• 1909

Immatrikulation von Frauen an meklenburgischen Universitäten, und damit in ganz Deutschland generell erlaubt.

Emmy Noether

- 23. März 1882 in Erlangen geboren
- Vater: Prof. Dr. Max Noether (1844-1921), Mathematikprofessor in Erlangen (ab 1888 ordentlicher Professor)
 Mutter: Ida Noether, geb. Kaufmann

 drei jügere Brüder; einer von ihnen, Fritz, wird ebenfalls Mathematikprofessor

Emmy Noether

- Mathematikstudium in Erlangen und Göttingen
- 1907 Promotion in Erlangen
- wissenschaftliche Arbeit zunächst in Erlangen, ab 1915 in Göttingen
- 1919 Habilitation Emmy Noether war die erste Frau, die in Mathematik habilitierte
- 1922 Verleihung des Titels "ausserordentlicher Professor"
- Erfolgreiche Forschungs- und Lehrtätigkeit; Entwicklung der Konzepte der modernen Algebra.
 - E. Noether ist die Begründerin der modernen Algebra, wie wir sie heute kennen
- 1933 Emigration in die USA, T\u00e4tigkeit am Bryn Mawr College
- 1935 Tod

Emmy Noethers mathematische Ausbildung

• 1889-97 Besuch der Höheren Töchterschule Erlangen

- 1900 nach privater Vorbereitung: Staatsprüfung für Lehrerinnen der französischen und englischen Sprache an bayerischen Mädchenschulen
- 1900-03 Gasthörerin an der Uni Erlangen (als eine von zwei Frauen unter 1000 Studierenden),
 Fächer: Mathematik, Romanistik, Geschichte.

Emmy Noethers mathematische Ausbildung

- 1903 Abitur als Externe am Realgymnasium Nürnberg
- 1903-04 Studium der Mathematik in Göttingen bei Hilbert, Klein, Minkowski, Blumenthal, Schwarzschild

D. Hilbert (1862-1943)

F. Klein (1849-1925)

H. Minkowski (1864-1909)

O. Blumenthal (1876-1944)

K. Schwarzschild (1873-1916)

Rückkehr nach Erlangen wegen Erkrankung

ab 1904 Studium der Mathematik in Erlangen

Emmy Noethers mathematische Ausbildung

1907 Abschluss des Studiums mit der Promotion

Dissertation: "Über die Bildung des Formensystems der ternären biquadratischen Form" (Invariantentheorie)

Betreurer: Paul Gordan (1837-1912)

Emmy Noether sagt später über ihre Dissertation: "Formelgestrüpp", "Rechnerei", "Mist"

Emmy Noethers berufliche Laufbahn

- 1907-1915 private wissenschaftliche Arbeit in Erlangen, keine Anstellung
- Unterstützung ihres Vaters und der Professoren Erhard Schmidt (1876-1959) und Ernst Fischer (1875-1954) bei der Lehrtätigkeit Auf Anregung Fischers beschäftigungs mit der abstrakten Algebra
- 1909 Mitglied der Deutschen Mathematiker-Vereinigung (DMV); als erste Frau Vortragende auf einer DMV-Tagung
- 1915 Wechsel nach Göttingen auf Einladung von Klein und Hilbert, um über Invariantentheorie in Verbindung mit Relativitätstheorie zu arbeiten.
 - Unbezahlte Forschungs- und Lehrtätigkeit

Emmy Noethers berufliche Laufbahn

- 1915 Antrag auf Habilitation (auf Anregung von Klein und Hilbert); heftige Kontroversen, das Ministerium verbietet die Eröffnung des Verfahres aus rechtlichen Gründen
- 1919 Neue Gesetze der Weimarer Republik erlauben Frauen die Habilitation

Emmy Noether wird habilitiert;

kann daraufhin erste Vorlesung unter ihrem eigenen Namen halten (Analytische Geometrie)

- 1921 wichtige Publikation "Idealtheorie in Ringbereichen"
- 1922 Titel "außerordentliche Professor"

Emmy Noethers berufliche Laufbahn

• 1923 erster vergüteter Lehrauftrag.

Vorher hatte sie kein eigenes Einkommen, lebte von der Unterstützung ihrer Familie, und geriet mit dem Tod des Vaters 1921 in finanzielle Schwierigkeiten

Ehrungen Emmy Noethers

- 1932 Verleihung des Ackermann-Teubner-Gedächtnispreises an Emmy Noether und Emil Artin (1898-1962)
- 1932 Emmy Noether hält einen Hauptvortrag auf dem Internationalen Mathematikerkongress in Zürich.

Damit ist sie die erste Frau, die einen solchen Vortrag halten darf

Diskriminierungen Emmy Noethers

als Frau

- Sie erhielt niemals eine besoldete Professur. Ihre jüngerer Bruder Fritz dagegen wurde bereits 1921 ordentlicher Professor;
 - auch viele von Noethers Schülern erhielten in den zwanziger oder dreißiger Jahren Professuren
- Sie wurde nicht zum Mitglied der Göttinger Gesellschaft der Wissenschaften gewählt
- Sie wurde nicht offizielles Redaktionsmitglied der Mathematischen Annalen, obwohl sie T\u00e4tigkeiten einer Redakteurin aus\u00fcbte

als Jüdin

- Am 25. April 1933 wird Emmy Noether aus rassischen Gründen beurlaubt, Grundlage ist das "Gesetz zur Wiederherstellung des Berufsbeamtentums"
- 2 Am 2. September 1933 wird ihr die Lehrbefugnis entzogen

Emmy Noether in der Emigration

- 1933 erhält Noether Einladungen als Gastprofessorin nach Oxford und ans Bryn Mawr Frauencollege (USA).
 - Sie entscheidet sich für Bryn Mawr. Dort ist sie vor allem mit der Ausbildung von Studentinnen auf Grundstudiumsniveau beschäftigt
- ab 1934 hält sie nebenher Vorlesungen am Institute for Advanced Study in Princenton, wo u.a. auch Albert Einstein (1879-1955) und Hermann Weyl (1885-1955) arbeiten.

Auch in den USA erhält Emmy Noether keine Festanstellung

Emmy Noethers Werk

Emmy Noether gilt als die bedeutendste Mathematikerin aller Zeiten und als eine wichtigsten Personen in der Mathematik des 20. Jahrhunderts.

Zitate zur Bedeutung Emmy Noethers

- "mother of modern algebra" (Irving Kaplansky)
- "abstract algebra ... starts with Emmy Noether's 1921 paper *Ideal theory in Rings* " (Saunders MacLane)

Emmy Noethers Arbeitsgebiete:

- Inveriantentheorie (1907-1919)
- kommutative Algebra (1920-1929)
- nichtkommutative Algebra und Darstellungstheorie (1927-1933)
- Anwendungen nichtkommutativer Algebra auf kommutative Algebra (1932-1935)

Emmy Noether publizierte 44 Arbeiten. Sie führte 18 Personen zur Promotion, darunter zwei Frauen.

Noethers Ideen und Methoden wurden u.a. populär durch B.L. van der Waenders Buch *Moderne Algebra* (1930/31).

Die Algebra zur Zeit Emmy Noethers

- Vorherrschende Forschungsgebiete der Mathematik im 19. Jahrhundert waren Analysis und Geometrie.
- Die Algebra war wenig abstrakt, sondern vielmehr konkret, über den reellen bzw. komplexen Zahlen.
- Bekannte Vertreter: Carl. F. Gauß, Evariste Galois, Camille Jordan, Leopold Kroneker

C.F.Gauß (1777-1855)

E. Galois (1811-1832)

C. Jordan (1838-1922)

L. Kroneker (1823-1891)

Die Algebra zur Zeit Emmy Noethers

Emmy Noether Zugang zur Algebra dagegen war abstrakt, axiomatisch, begrifflich.

Vorläufer waren:

- Arthur Cayley (1821-1895), Georg Frobenius (1849-1917): Gruppentheorie
- Richard Dedekind (1831-1916): Verbandstheorie
- Heinrich Weber (1842-1913), Ernst Steinitz (1871-1928): Körpertheorie
- Leonard Dickson (1874-1954), Joseph Wedderburn (1882-1948): hyperkomplexe Systeme

Emmy Noethers Beitrag zur kommutativen Algebra

- Wichtigste Arbeiten:
 - 1921 Idealtheorie in Ringbereichen
 - 1927 Abstrakter Aufbau der Idealtheorie in algebraischen Zahl- und Funktionenkörpern
- Ursprünge:
 - Algebraische Geometrie: Polynomringe, Nullstellengebilde von Polynomen
 - Algebraische Zahlentheorie: Unterringe algebraischer Zahlkörper

Emmy Noethers Beitrag zur kommutativen Algebra

- Emmy Noether abstrahierte hiervon und gab in der Arbeit von 1921 erstmals eine völlig allgemeine Definition der Begriffe Ring, Ideal, Primideal, irreduzibles Ideal, . . .
- Außerdem formulierte und studierte sie in dieser Arbeit (1921) die aufsteigende Kettenbedingung für Ideale.
 - Ringe, die diese Bedingung erfüllen, heißen heute *noethersche* Ringe.
- In der Arbeit von 1927 finden sie u.a. die heute zum Standard gehörenden Homomorphie- und Isomorphiesätze für Ringe.

Emmy Noethers Beitrag zur Invariantentheorie

Gauß, Disquisitiones arithmeticae 1801:
 Invarianten binärer quadratischer Formen

$$f(x,y) = ax^2 + bxy + cy^2$$

wie z.B. die Diskriminante $b^2 - 4ac$.

 Cayley, Sylvester~1850: Theorie der Invarianten f
ür Formen vom Grad m in n Variablen.

Ziel: Berechnung aller Invarianten für gegebene m, n.

 Emmy Noethers Dissertation 1907: Berechnung aller 331 Invarianten für ternäre biquadratische Formen (d.h. m = 4, n = 3).

Emmy Noethers Beitrag zur Invariantentheorie

- Hilbert 1888: neuer Ansatz, die Invarianten als Polynome aufzufassen, und im Polynomring zu argumentieren.
- Emmy Noether lernte Hilberts Ansatz durch E. Fischer in Erlangen kennen
- Verwendung in der theoretischen Physik findet Noethers Theorem von 1915:

 $Physik: \hspace{1cm} Symmetries \"{a}tze \hspace{1cm} \longleftrightarrow \hspace{1cm} Erhaltungss \"{a}tze$

Mathematik: Gruppenoperationen ↔ Invarianten

Emmy Noethers Beitrag zur Nichtkommutativen Algebra und Darstellungstheorie

Hyperkomplexe Systeme: (heute: assoziative Algebren)

- Verallgemeinerung der komplexen Zahlen; nicht notwendige kommutative Ringe, die R umfassen.
 - 1848 Hamilton: Quaternion H, nichtkommutativer K\u00f6rper, 4-dimensional \u00fcber R
 - 1907 Wedderburn: Klassifikationssatz für endlichdimensionale hyperkomplexe Systeme über beliebigen Körpern

Darstellungstheorie von Gruppen:

- Burnside, Frobenius~1890:
 - lineare Darstellung der Gruppe G
- Homomorphismus von G in einen Matrizenring
- = "Beschreibung durch Matrizen"

Emmy Noethers Beitrag zur Nichtkommutativen Algebra und Darstellungstheorie

Zusammenhang zwischen beiden Gebieten:

- Noether 1929: "Hyperkomplexe Größen und Darstellungstheorie"
 lineare Darstellung → Modul über der Gruppenalgebra
- Da die Gruppenalgebra ein hyperkomlexes System ist, kann man die zugehörige Theorie verwenden, wenn man Darstellungen studiert.

Quellen:

A. Blank
 Folien zu Emmy Noether
 http://www.math.uni-hamburg.de/home/blunck/frauen

Emmy Noether aus Wikipedia, der freien Enzyklopädie http://de.wikipedia.org/wiki/Emmy_Noether

Die Entdeckungen großer Forscher - Emmy Noether https://www.youtube.com/watch?v=OmEEjlXy7bw

