

Höhere Mathematik für Ingenieure IV a plus IV b, Blatt 3

Kein Bestandteil der Einzelvorlesung HMI IV a

Aufgabe 1. (5 Punkte) Betrachten Sie die Menge $C^0([a,b])$ der stetigen Funktionen $f: [a,b] \to \mathbb{R}$. Zeigen Sie, dass $C^0([a,b])$ (mit den bekannten Verknüpfungen) ein Vektorraum ist. Ist durch

$$||f||_{C^0} := \left[\int_a^b |f(x)|^2 \, \mathrm{d}x \right]^{\frac{1}{2}}$$

eine Norm auf $C^0([a,b])$ definiert? Wenn ja, ist der Raum vollständig? Geben Sie eine weitere Norm auf $C^0([a,b])$ an.

Aufgabe 2. (3+2 Punkte)

- i) Finden Sie eine Funktion $\Phi: \mathbb{R}^n \to \mathbb{R}^n$, die
 - (a) Kontraktion ist;
 - (b) Lipschitz-stetig und keine Kontraktion ist;
 - (c) nicht Lipschitz-stetig ist.
- ii) Betrachten Sie eine differenzierbare Funktion $f: \mathbb{R} \to \mathbb{R}$ mit $|f'(x)| \le L$ für alle $x \in \mathbb{R}$ und eine Konstante $L \in \mathbb{R}$. Ist f Lipschitz-stetig?

Aufgabe 3. (5 Punkte) Es sei $f(x) = x^2 - 3x + 2$. Finden Sie einen Startwert x_0 und ein Intervall \tilde{I} , sodass das modifizierte Newton-Verfahren nach Satz 29.2.1 konvergiert. Wie lautet die Nullstelle?

Aufgabe 4. (5 Punkte) Finden Sie zwei verschiedene Lösungen des Anfangswert-problems

 $y' = \sqrt{|y(x)|}$, y(2) = 1.

Zeigen Sie auch, dass die Lösungen tatsächlich überall differenzierbar sind und fertigen Sie eine Skizze an.

Abgabe. Bis Di., 11.05.2010, Briefkasten am Eingang des Hörsaalgebäudes E2.5, **Leerung 8.30**.

Die Übungsblätter finden Sie auch im Netz unter http://www.math.uni-sb.de/ag/fuchs/HMI4/hmi4.html