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Abstract. We consider integrandg: R™Y — R which are of lower (upper) growth rate > 2 (¢ > s) and which satisfy
an additional structural condition implying the convex hull property, i.e., if the boundary data of a minimiger— RY of
the energyfQ f(Vu) dz respect a closed convex st ¢ R”, then so does on the whole domain. We show partiaf-~-

regularity of bounded local minimizersdf< min{s + 2/3,sn/(n — 2)} and discuss cases in which the latter condition on the
exponents can be improved. Moreover, we give examples of integrands which fit into our category and to which the results of
Acerbi and Fusco [2] do not apply, in particular, we give some extensions to the subquadratic case.
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1. Introduction

As a model for our investigations we consider the anisotropic energy (in whictViu|? can also be
replaced by Vu|?)

I[u] = /Q 1+ [Vul> + (1+ \anulz)q/s]s/z dz (1.1)

defined on suitable classes of vectorial functiang? — R, wheres? denotes a bounded Lipschitz
domain inR™, n > 2, ands,q € R are fixed exponents such that for the moment 2 < ¢. We are
interested in the partial regularity properties of local minimizers of (1.1) but unfortunately we cannot
refer to the paper [2] of Acerbi and Fusco since our energy density does not decompose in the form
“(1 + |VulP)*/? + (1 + [9,u|?)??". More precisely, the subject of [2] are energy densitfeshich can

be written as

f(vu) = h(vu) + Z ha(aozu);

ael

wherel is a subset of {1,..,n} and h is an elliptic integrand of growth order The functionsh,, are
strictly convex and of growth ordey, (to be defined in terms dD?h,,), 2 < s < ¢, We refer the reader
to Theorem 2.3 and Proposition 4.1 of [2] for a detailed discussion.
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By elementary calculations (see Appendix A) it is easy to see that in our example the intg¢grand
satisfies

A1+ 12 0P < D2 p(2)U,U) < AL+ |212) P22 (12)
forall Z,U € R™N with constants < A\ < A < co. Moreover, f can be represented as

) =g(21),-..1Z0l), Z=(Z1,...,%n) € R, (1.3)
whereg is an increasing function of each argument.

Definition 1.1. Let f:R™V — [0, 00) denote a function of clas§? satisfying (1.2) with exponents
2<s<quce Ws{loc(Q;RN) is termed a local minimizer of the energfw] = [, f(Vw)dx if and
only if

@) [o f(Vu)dz < o0, V2 € 2 and
(0) Soptusy F(VU) A2 < fopyu_vy F(V0) dz, Yo € W (2, RY), Sptlu — v) € £2.

Since we are in the convex case (which follows from the first inequality in (1.2)), it is easy to show
that for boundary valuesg with the propertyJ[ug] < oo there exists a uniqué-minimizer in the class

ug + Vf/ﬁ(!); RY) (see Lemma 1.2 below) which under reasonable assumptions on the expoaedts
in fact is in the spacéV},,.(¢2; RY).

Let us briefly recall the partial regularity results which are known to be valid for ldaainimizersu
in case thajf satisfies condition (1.2).

(i) In [27] it is shown that there is an open subseg of 2 such that|2 — 2| = 0 and
u € C1(20; RY) provided we know

q< min{s+1,sn7_ll}. (1.4)

Note that in [27] the second inequality of (1.2) is not required, they work with the weaker up-
per boundf(§) < C(1 + [£|?) which is a consequence of (1.2). We remark that the restriction
q < sn/(n — 1) enters their arguments through the use of a lemma on Sobolev functions due to
Fonseca and Maly [15§; < s+ 1 is needed for establishing the Euler—Lagrange equation for local
minimizers (see [27, Section 2, Remark 1]).

(i) Also partial Ct“-regularity of local.J-minimizers has been established in the paper [6] in case
that (lety = 2 — s in condition (1.8) of [6])

g<s" T2 (1.5)

n

We remark that in [6] also subquadratic growth is considered and that the left-hand side of (1.2)
can be replaced by a weaker estimate but then (1.5) becomes more complicated. Condition (1.5)
is mainly used to prove that the gradient of a local minimizer actually belongs to the space
L (2, R™Y) for somet > ¢, during the blow-up procedure we just negd< sn/(n — 2) (if

n > 3), we refer to Section 4 of [6].
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Since min{s + 1,sn/(n — 1)} < s(n+ 2)/n, (1.5) is less restrictive than condition (1.4) of [27]. In
particular, ifn = 2, then (1.4) reads as< s + 1 and from (1.5) we gej < 2s (compare Remark 4.1).

The purpose of our note is to improve both results with the help of the additional requirement (1.3),
precisely:

Theorem 1.1. Let f:R™ — [0, o) denote aC%-integrand with(1.2) and(1.3), 2 < s < ¢ < oo, and
let u denote a locally bounded local minimizer in the sense of DefinttibnThenu is an element of the
spacelV 7 ,.(£2; RY) and also a function of class™*(2; R") for any0 < o < 1 on an open subset
29 of 2 with full Lebesgue measure provided we impose the bound

: 2 .
qg< mln{s + =,5 } if n >3, (1.6)

3 n-2
andq<%+s,ifn:2.

Remark 1.1.

(a) Clearly, at least for large, (1.6) is less restrictive than (1.5), so assumption (1.3) together with the
local boundedness of the minimizer allows more flexibility concerning the choicesafaiq. If n
is small, than [27,6] lead to better results. Let us briefly comment on an other case for which (1.6)
improves (1.5) by the way extending the theorems of [6,27]. If we che@®eording to

n_2<s<ﬁ
3 3’

then it is easy to show that

+2< i and n+2< +2
T3S 2 T, STy

which means that (1.6) reduces to the requirenqeﬂt% + s, and the latter inequality is weaker
than (1.5).

(b) Condition (1.6) in the forng < sn/(n — 2) also occurs in the paper [21], where Marcellini con-
siders the scalar cagé = 1 and shows everywhere regularity of local minimizerassuming
already that: is in the spacéV(hoc(Q). In [22] Marcellini then uses (1.5) to get the existence of a
minimizer inW7,.(£2).

(c) Letus look at the example

flen &) = [EP + 1+ 182 €= (&,....&) e RV,

with ¢ > 2. This integrand is covered by [2], and according to this resuihige)
4
q<2+—— .7
n

is sufficient for partial regularity of local minimizetse Wi|oc(9; RM). In this case (1.6) reads (
large)q < 2+ 4/(n — 2), thus Acerbi and Fusco obtain better results even without the assumption
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u € LS (£2; RY) (which is not so restrictive since in our examplesatisfies (1.3), compare the
discussion after Lemma 1.1).
(d) Letin extension of (1.1)

s/2

£©) = (1+ €2+ (1+ \salz)q“/s) :

acl

wherel is a subset of {1,..,n} and 2 < s < qa, @ € I. Then (1.3) holds and (1.2) is satisfied
with ¢ = max{q.: a € I}. Clearly the theorems of [2] cannot be applied, but we get partial
regularity under condition (1.6). The same is true for the energy

FE) = @+ 16272+ 37 ha(l€a))

acl

if we chooseh,, of the form (1+ t2)?=/2 but with infinitely many linear pieces so that ellipticity is
destroyed (see [8]) which means that f65(£,) = ha(|€o|) We just have the estimate

-2)/2
0 < D?Ho(€a)(Ua, Ua) < ca(L+ (€D 23U, 2.

Let us finally look at the integrand

FE- ) = Pr() + - + D), Br(&) = (L+ &)™, & e RY,
with exponents;;, > 2. In contrast to [2] an elliptic part involving “the whole gradient” is missing.
We have

D2F(EU,U) > Z 1+ &) 22102 = U,

D2f(£)(U,U)<c( + (€[22,

whereq := max{qx: £k = 1,...,n}. Thus (1.2) holds for the choice = 2, and forn large
Theorem 1.1 implies that bounded local minima are partially regulgg ik 2 + 4/(n — 2),
k=1,...,n

(e) We do not touch the question of everywhere regularity in the vectorial case which besides an
appropriate ratio of ands also requires a structural condition of the fofiff) = G(|£|), we refer
to [23,5], where the interested reader will find further references.

In order to finish our discussion on the various choices for the exporeand ¢ and to include the
results of [6] we reformulate Theorem 1.1 in the following way.

Theorem 1.2. Suppose that all the hypotheses of Theotelare valid but with(1.6) being replaced by

g<2s ifn=2, (16%)

2 2) .
qg<s n and ¢ < go ;= max s+—,sn+ ifn>3. 1.6™*
3
n — n

Then partialC*-regularity holds for locally bounded local minimizeus
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In casen = 2 or n > 3together withgo = s(n + 2)/n we can drop the assumptiane L%(2; RY)

and also(1.3) is superfluous. Moreover, under the above assumptioissin the spacé/V(i,oc(Q; RM).

Note that the last statement of Theorem 1.2 is a direct consequence of [6, Theorem 1.1] with the
choiceps = 2 — s. Note also that the requirement< qq is sufficient to showvu € L (2; R™Y) for
somes > 0 (see Theorem 3.1 below). With this information we get pa€itaf-regularity just assuming
g < sn/(n — 2). The local boundedness @fand condition (1.3) do not enter the blow-up procedure.

Up to now we limited our discussion to the case2s < ¢ in order to compare our results to the
ones of [2,27]. To our knowledge anisotropic power growth with leading expanent2 only occurs
in [6]: with the choiceu = 2 — s in [6, Theorem 1.1] we see that condition (1.5) is sufficient for partial

regularity. But in fact we have a stronger result:

Theorem 1.3. The statements of Theorerh4 and 1.2 remain true if we consider arbitrary exponents
1 < s < ¢ (provided the other hypotheses are valid

Thus we can also include models like

O =0+ D116, 2 = (6. &) R,

with appropriate choice af € (0, 1) which are not covered by [2,27].
Next we discuss our assumption (1.3) by showing that it is a kind of natural hypothesis giving bound-
edness of minimizers. First of all we collect some consequences of (1.2).

Lemma 1.1. Let f:R™™ — [0, 00) satisfy(1.2) with 2 < s < ¢. Then we have

(i) fis strictly convex

(i) £(2) < (2|7 + 1);
(i) [VF(2) < c2|Z| 1+ 1);
(IV) Vf(Z) A Cg‘Z‘S — Ca4;
) f(Z) > cs|Z|° — cs,

the estimates being valid for af ¢ R"". Herec; denote positive constants.

Proof. (i) Is a consequence of the first inequality in (1.2). (ii) Follows from the second part of (1.2).
(iif) Compare [10, Lemma 2.2, p. 156].
(iv) We have

VHZ): Z = /01 D2f(tZ)(Z, Z)dt + V £(0) : 7,

and the lower bound in (1.2) gives the result.
(v) Convexity of f implies

122 1(3)+v1(3): 5

and the claim follows frony > 0 together with (iv). O
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Lemmal.2. Letug € W(2;RY) satisfy.J[ug] = [, f(Vug)dz < oo, wheref > 0is of classC?
with (1.2). Then the variational problem

Jlu] — min i uo + WA(2;RY) (1.8)
has a unique solution.

Proof. Obviously inf{J[w]: w € ug + V?/i(Q;RN)} < oo, thus on account of Lemma 1.1(v), any

minimizing sequencew,,} C uo -+ W(12; RY) is uniformly bounded ifv2(12; RN), hencew,, —: u
in W1(2;RN). Convexity of f together with De Giorgi’s theorem on lower semicontinuity proves that
u solves (1.8). Uniqueness follows from strict convexityfof O

Lemma 1.3 (Convex hull property) In addition to the hypotheses of Leminaassumém(ug) C K for
a compact convex sé& ¢ RY. Then the solutiom of (1.8) also satisfiesm(u) C K provided thai(1.3)
holds.

Remark 1.2.
(a) From the paper [11] we deduce

Suﬂui‘ gsuﬁué‘, 1=1,...,N,
(% (%

thusu € L>°(02; RY), if ug is bounded. In case of (1.3) this is a trivial observation since we may
use comparison functions like= (¢(ul),u?, ..., uN), wherem := sup,|ud| and

m, t>m,
() =< t, —-m<t<m,
-m, t< —m.

Then|d,v| < |0,u| and (1.3) implies) = w.

(b) Lemma 1.3 motivates the study of locally bounded local minimizers in Theorem 1.1. It should
however be noted that our proof of Theorem 1.1 does not work if we just consider solutions of
classL2 (£2; RY) and impose the growth condition (1.2). In the next sections Lemma 1.3 will be
an important tool.

Proof of Lemma 1.3. Let7:RY — K denote the projection ontd” which satisfies Lipf) = 1. From
Lemma B.1 below we dedud@,(r o u)| < [dqu|,a = 1,...,n,thus ¢ :=mo u)

g(]91v], ..., [0,v]) < g(|91ul, ..., |0nul).
Sow is minimizing which impliesy = u. O

The rest of our paper is organized as follows: in Section 2 we discuss some (appropriate) local approx-
imation, Section 3 contains the proof of uniform higher integrability of these approximations under the
conditiong < s+ % and in Section 4 we use this result for obtaining Theorem 1.1 via a standard blow-up
procedure which works in cage< sn/(n — 2), if n > 2. The subquadratic case is briefly considered
in Section 5. In Appendix A we discuss our example (1.1), in Appendix B we give a short proof of the
chain rule inequality needed for Lemma 1.3.
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2. Local approximation

We use a standard approximation procedure which in different situations also occurs in [18,12,13,25,
4,6,8]. From now on assume that all the assumptions of Theorem 1.1 are valid>Le¢tnd define for
0>0

5 =81+ EP)° + f(6), ¢ eR™.

Without loss of generality leB»z(0) € {2 and consider the mollification. of our localJ-minimizer .
Letv. 5 € u- + W(Bagr; RY) denote the solution of

r/2

Jg[w]::/B f5(Vw)de — min inue + WA (Bam RY). 2.1)

According to [20, Theorem 5.1] (note that (5.3) of [20] holds on account of ¢), we haveVu, s €
Lis.(B2r; R™), moreover (see, e.g., [v: s € W3 o(B2r; R™Y). The stated initial regularity af. 5

is crucial for our calculations in Section 3, therefore we cannot use the local regularization with exponent
g as we did in [6] (compare Remark 3.1). Anyhow, Lemma 2.1 below is also true forg. With the

choice

1

0=9 —
O = T veE

(B2r R™N)

we definev. = v 5 andfv8 = f5(e)- The minimality ofv. implies

AL /B (Ve < /B  L(Vu)de

and from Jensen’s inequality we deduce

/ J(Vu.)dr < / f(Vu)dz.
Bar Borye
Next we claim

06 [ @+ V2% de < o(R)Ve 2.2)

with ¢(R) independent of. For the proof we observe that by definitionig#) the left-hand side of (2.2)
is dominated by

1+
R)———, = Vu:|" dy.
Rzt BZR‘ uel" dy

Case 1If x < 1/4/¢, then

-1 -1
1+z < 1+ (Ve) <1+(\/§) :5+\/gga+\/5<2\/5.

1422461 T 1422417 1461 e+1
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Case 2:Consider the case > 1/,/z. Using 1+ z? > 1(1+ z)? we obtain

1+ 2 1+ 2 2 2
g < X
1422461 71422 " 142 =z

< 2V,

and (2.2) is established.
Putting together the various estimates we get

F(Vo.)dr < /B FA(Vo.) dr < /B Fo(Vu)dz < /B F(Vu)dz + O(). 2.3)

Bar

From (2.3) and the growth ¢f (see Lemma 1.1(v)) we deduce
/. [Voe|® dz < c(l—|— / f(Vuw) dx) < 00, (2.4)
Bor Bor

and usingu. — u, € V([J/i(BZR; RY) together with uniform bounds afe |z, gy (2.4) implies
[vellwis,r) < cONst< oo (2.5)

independent of. Letu € W2(Byr) denote a weak limit of some subsequence @f fwhich exists
by (2.5). By De Giorgi's theorem

/ f(va)dxglimigf' £(Vv.) dr, 2.6)
Bar e

Br

thus [, f(Vu)dz < [p, f(Vu)dz on account of (2.3). Thereforé is J-minimizing onu +

I/(ID/;F(BZR; RY), strict convexity impliesi = . Altogether we have:

Lemma 2.1. With the notation introduced above the following statements are:valid
() [[v=llwis,mryy < CONSL< o0;
(i) ve — win W Bag, RY);
E—

(iii) supg,, [v:| < supg,,, |u] <oo;

(IV) 5(5) fBzR(l + |Vv€|2)r/2 dx _o) 0:
£—

W) Jp,p, f(V) Ao — [, f(Vu)

Vi) [, Fo(Voe) de — [, f(Vu)da.

Proof. (i) and (ii) are obvious, (iii) follows from the maximum-principle Lemma 1.3. Ad (v) and (vi):
we recallz = u and get from (2.6)

/BZR J(Vu)dz < limint /B I,
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whereas (2.3) implies

limsup [ F(Vo)de <limsup [ Fi(Vu.)de < / F(Vu)de,
Bar

e—0 Bogr e—0 Bogr

thus we have (v) and (vi). Subtracting (v) from (vi) we finally obtain (iv}2

3. Uniform local higher integrability of the solutions of the approximative problems

Keeping our notation from Section 2 we want to show that the solutioé problem (2.1) (with the
choiced = d(¢)) satisfy

sup |Vo.|'dz < c(p) < oo, (3.1)
0<e<1/ By

wheret is some exponent bigger thanand p denotes a radius less thai2In former papers (see,
e.g., [16,6,8] and the references quoted therein) we used the differentiated form of the Euler-Lagrange
equation associated to (2.1) together with a Caccioppoli-type inequality to show that some power of
|Vou.| belongs uniformly ire to the spacéV%(sz), hence by Sobolev’'s embedding theorem the uniform
local integrability of| Vu.| can be increased to a power ¢ providedg < s(n + 2)/n is true.

Here we show (3.1) by assuming that< s + 2/3 which fors < n/3 is less restrictive than <
s(n + 2)/n. The main idea (originating in [4]) is that due to the uniform local boundedneBs |dEee
Lemma 2.1(iii)) we may use test vectors of the fayfw. (1+ |Vv.[?)?/2 in the Euler—Lagrange equation
for (2.1), wherex is some numbel: 0, n denoting a cut-off function with spt C B»g, and estimate
|ve| just by a constant. The result will be a uniform bound of the form (3.1). More precisely, we have:

Theorem 3.1. Let the assumptions of Theordm hold with (1.6) replaced by

2 2
q<max{sn;l|_ ,3+§}. (3.2)

Then(3.1) is true for some > ¢, in particular we haveVu € Lf (£2; R™Y).
Proof. Without loss of generality we may assume that + 2)/n < s+2/3, otherwise the claim follows
from [6, Lemma 3.4] (note that the arguments from [6] also work for the approximation considered here
or replace our sequence.{ by the sequence.} from [6] by the way leading to the same result that
Vuis in Li,.(£2; R™V)). We also like to remark that in the cas@ + n)/n > s + 2/3 the statement of
Theorem 3.1 remains true if we drop our assumption L%.(£2; RY), also the structure condition (1.3)
can be removed (see again [6]).

Leta > 0,n € Cg(B2r), 0< 1 < 1, I = 1+ |Vu|? and recallVu, € Lig N Wy, (2; R™Y) as
well as

[Ve] oo (Bom) < e(R) < o0 (3.3)
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In what followsc always denotes a positive constant independentdfose value may change from line
to line. Moreover, we writé = §(c) for the parameter defined in Section 2. From

| VE(V0): VR do =0
Bar
we deduce
/ Vﬁ(va) : VUEFEO‘/ZUZ dz
Bor

=— Vi(Vue) 1 20V @ v.I? da — V (Vo) i nfv. @ V(I2/?) do
Bor Bar

= —A-B. (3.4)

By Lemma 1.1(iv), we see

left-hand side of (3.4} c/ re+e)/2p2dy 4 05/ It 2dy —c [ Ao de
Bog Bor

Bxr

—co nZFE(T*ZJFO‘)/Z dx. (3.5)

Bar

We have by Lemma 1.1(iii)
3) r /2
A< e [ VTl Valre 2 da
2R

< c/ \wayqflrg/znyvm dz +c/
Bar

B>

0| VT2 d
R
e [ TR (Ve )T | V| o
2R

<ec a1/, gy dx—l—cé/B rr=1/2p 7y da
2R

Br

— . / [+a)/Ap | Tla—1e)/2=(s+a)/4 g
Bar
+C5/ T+ 7 P10/ 2= +a)/4 .
Bar

and by applying Young's inequality to the last two integrals and by absorbing terms on the right-hand
side of (3.5) we arrive at

/ PIEH2 4y 4 6 PIo+/2
Bar Bar

< c/ n?Ie2de + 05/ n?rr=2+e)/2 gy 4 c/ |V 2ra—tHo—(s+e)/2 gy
Bar Bar

Bar

+e / VRt t+e)/2 g, 4ol B, (3.6)
Bar
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Let us discuss—B|: using\V(Fé“/z)\ < ch‘/z_l/Z]VZva\, Lemma 1.1(iii), and (3.3) we find (sum-
mation with respectta = 1,...,n)

|-B| < c/ Fs(q+°‘72)/2772|V2v€| dr + 06/ FE(T+°‘72)/2772|V22}5‘ dzx =: 11 + 15,
Bar Bar
T — C/ [=2/4 72y, | [la+e=2/2—(s=2/4 2 4
Bar

12
<c sz(Vva)(aMva, aMVUa)nz dr + ¢ pPrate=1-s/2q;
Bar Bop

T, = 05/ [=2/4y2y, | [(r+a-2/2-(-2/42 g,
Bar

< ¢ Fa(r_z)/zlvzvglznz dz + 05/ rr/Fre=tp2 qp,
Bop Bzr

hence
-B|<c / D2F.(V0.)(0, V02, 8, V)i da
Byr

+c nPrate=1=s/2qz 4 ¢5 rr/Fre=ty2 g, (3.7)
Bop Bzr

From Lemma 3.1 below we get

n2D2f€(Vu6)(aMVv€, 0, Vu:)dz < cHVnH%oo(BZR) /Sptv ]sz;(VvE)\ Ve |? dz:
n

Bor
<Vl [ (T2 451212 da
sptVn
Now we use (3.7) and the latter estimate to rewrite (3.6) in the following form:
L+ 1= / nzfé8+o‘)/2 dr + 6 nZFér+a)/2 (0
Bor

Bar

< c/ 7721”50‘/2 dr + cHVanZ,O / F§_1+a_(5+a)/2 dz + c/ nZFg+O‘_1_S/2 dz
Bogr sptVn B

2R

+ | VIR / 1920z 45 [ PI0-2re/2 4,
sptVn

Bar

+ céHVano/ Fg/2_1+0‘/2 dx + 05/ Fg/z‘m_lnz dx—l—céHVano/ Fg/z dz
sptVn Bogr sptVn

=) K. (3.8)
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It is immediate thati(s is bounded byi7. Obviously K1 < 711 + ¢(7, R) for anyr > 0, and the first
term on the right-hand side can be absorbed intd.et us assume < 2. ThenKg < Kg and

K7 <cerlp + ¢, R)

on account o%(r +20—-2) < %(r + ). Choosingr small enough, we may absotbl, into 1. Next we
choose a balB; ,(z0) € Bzr and taken = 1 on B;(xo) such that) = 0 on Bor — By ,(x0) together
with |Vn| < ¢/p. Finally, we like to controlK, in terms of K4 which is possible if

s+a<q

2 2

qg—1+a—
i.e., we have to require at this stage
a<2+s—q (3.9)

(implying o« < 2 on account 0§ < ¢). Returning to (3.8) and exploiting the latter considerations we get

/' r+a2d, 4 5 ' i)/ gy
Bt(zo) Bt(zo)
< o(R) [1 + / rat2e=2=5)/2d 4 ,=2 / Y24 + 6p—2 / rr/? dw] ,
Bty p(z0) Tt p(z0) T, p(z0)
Ty p(0) = Biyp(wo) — Bi(wo). (3.10)

Letag = 0,411 = —q—l—s—l—l—l—%ak. Since our assumption on the ratiogadinds impliesqg < s+ 1, we
seeay, > Ofork > 1. Itis easy to check that;, < a1, moreover (3.9) is satisfied for the sequenge
We haven, = limg_ o ar = 2+2(—g+s), and if we want to have+ o, > ¢ we need our hypothesis
q<s+ %

Next we fixq* € (q,s + a) and calculatet € N such thatoy, + s > ¢*. Given radiit, p and a
centerzo we apply (3.10) withh = oy, andp replaced by /k and get

/ rite/2dy 4 5 rir+an/2 gy
Bt(zo) Bt(zo)

F§S+ak71)/2dx+p—2/
T, /1o

Fq/zdx+5p_2/
Tt,p/k(mo)

< (k. R) [1 +/ /2 dx}
B

t+p/k(T0)

In the next step we use (3.10) withreplaced byt + p/k and p replaced byp/k and for the choice
o = oy_1. The final result is after iteration

/ FE(erak)/Z dz + 6 Fe(rJrak)/Z dz
Bt(zo) By (o)

2 dg + 5p_2/

/2 dx] . (3.11)
Tt,p (o)

< ok, R) [1 +/ /2 de + p_z/
B

t+p(0) Tt.p(x0)
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In the last two integrals we may use Hdélder’s inequality to get

pfz/ Feq/z dx < ¢(R) {p” + [stan)/2 dx} ,
Tt,p($0)

Tt,p($0)

pfz/ F;“/Z dz < ¢(R) |:p; + (rtow)/2 dm]
Tt,p($0)

Tt,p($0)

with suitable positive exponems ~. By Lemma 2.1 the quantityBHp(m) I"$/2dz is bounded by a local
constanic(R), therefore, filling the hole in (3.11) (add

c(k, R) < / reren2ge y 5 [ pleren/2 da:>
Bt (xo)

Bt(zo)

on both sides) implies (for somg > 0)

/ rite/2dy 4 5 rir+an/2 gy
Bt(zo) Bt (zo)

<ck,R)[1+p P +6 [/B reten/2g, 4§ ror+ar)/2 gy

t+p(T0) B+ p(wo)

with © < 1 not depending oa. From [19, Lemma 3.1, p. 161] we gaB{ = Br(0))

/ rtan/2 gy 4 5/ ror+en/2 4z < o(k, R)[1+ R, (3.12)
BR BR

where the local constant(k, R) involves positive powers of? and the bounds for 5@R+g|u|,
fBZRf(VU) dz. Recalling the choice af we have shown (3.1) for the exponent ¢*.
Note that our calculations just required> ¢, no further restriction om is needed. Having estab-

lished (3.1) we geVu € L{ (Bar;R™) since Vo, —: W in LL (Bar; R™Y) but on account of

Lemma 2.1(ii) we must havll’ = Vu. O
During the proof of Theorem 3.1 we made use of

Lemma3.1. There is a real numbet > 0 such that for allp € C&(BZR), 0 < n <1, and for all
Q € R™Y we have

/ 12D? (V)0 V., 9, Vo) dz < ¢| V|2, / |D?f.(Vv2)||Voe — Q[? da. (3.13)
Bar sptVn

Proof. Here we just need to know thgit> 0 is C? with 0 < D?f(Q) < A(1 + |Q|?)@2/2 for some
g > 2. Then, iff. is our regularization with exponent> ¢, v, is still of CIaSSWc}o,Iocﬂ W22,|oc(BzR; RN)
(see [20]) and we may differentiate the Euler equatiorvfowith the result

/ D2f-(V0)(0, V0., V) di = O
Bar
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for any ¢ with compact support. If we lep = 772%(1)6 — Qx), then (3.13) follows with elementary
calculations. O

Remark 3.1. In contrast to our arguments from above the proof of Lemma 3.1 in [6] requires much more
work which is caused by the regularization with exponent ¢q. On the other hand, higher integrability
of Vu is established in [6] under stronger hypotheses and with a completely different argument working
in caser = ¢ once having proved Lemma 3.1 of [6]. Of course we could also choose some exponent
r > q in [6] trivializing Lemma 3.1. But then we have to take care of additioit#rms occurring in
the proof of [6, Lemma 3.4] which can be handled under the assumption(n + 2)/n. Recalling that
in [6] we require for the anisotropic cage= 2 — s, ¢ < 2 — pu + s2/n, it is immediate that we can
choose an admissible exponent (q, s(n + 2)/n).

If we requiref to satisfy (1.2), then the left-hand side of (3.13) gives an upper bound for

/ PIVh2dz, he = (14 Vo)
Byr

and if we take) = 0, then (3.13) implies
| Ve <Vl [ (122 o1 d.
Bogr sptVn

If we are in the situation of Theorem 3.1 we see from (3.12) that the right-hand side of the latter estimate
is bounded by a local consta#(tR), thus

he —:h in W3 odB2r) ase — 0

for some functior. from this space.
The next lemma can be found for instance in [17,5,6].

Lemma3.2. We haveh = (1 + |Vu/|?)*/* as well as
Vv, — Vu a.e.onBgrase — 0.

Proof. Asin[17, Lemma 4.1] or [5, Proposition 111.4.3] we show that
1
/ / D?f(Vu + t(Vve — Vu)) (Vve — Vau, Vv, — Vu)(1 —t)dtdr — 0 ass — 0. (3.14)
BrJo

With (3.14), ellipticity impliesVv. — Vu a.e., in particularh. — (1+ |Vu|?)*/4 a.e., so that we have
the formula for the limit functiorh. O

Finally, we state a limit version of Lemma 3.1.
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Lemma 3.3. With the notation introduced above we have
| wAvhEar <ol [ |D?H(Tw)|Va - QP ds (3.15)
Bar sptvn

for anyn € C3(B2r), 0 < n < 1,and allQ € R™.

Proof. We can follow [6, Lemma 3.6], we just have to check (see [6, formula (3.8)]) that in our case

lim inf |D?f.(Vv.)| |V — Q2 dz < liminf / |D?f(Vv.)||Vo: — Q? da.
0 Jsptvy e—=0 Jsptvy

£—
But since
~ r—2)/2
|D2F.(V0.)|[Vve — Q2 < [D2F(V0.) || Vo — Q%+ ¢d(e) (1 + [Vue ) 22|V, — QP2

the claim follows from our former observation th&k) fBR, Fs’"/z dr — O for any radiusR’ < 2R.
The rest of the proof is exactly the same as in Lemma 3.6 for [6], in particular we also make use of the
fact that by (3.12)Vv.|? is uniformly bounded inLi™(B2g) for somer > 0 (compare (3.12) where

loc
obviously the radiug? can be replaced by any numh@t < 2R). O

Remark 3.2. Note thatu is a continuous function provided that= 2 orn = 3. In the two-dimensional
case this is a consequence of Theorem 3.1. In general, we observe @leoc(ﬁ) implies Vu €

Lﬁﬁ/(”_z)((); R"™V) by Sobolev’'s embedding theorem, and continuity:ddllows if s > n — 2.

4. Blow-up and partial regularity

Let the assumptions of Theorem 1.1 holdBif(z) is a ball in{2, we introduce the excess of our local
minimizerwv with respect to this ball

E(x,r) = ]Z |Vu — (Vu)m,r|2dy + ][ |Vu — (Vu);m|qdy
By(x) By (x)

which on account of Theorem 3.1 is well-defined. Hére ) and ()., denote the mean values of the
corresponding quantities. As usual partigi®-regularity follows from

Lemmad4.l. Fix a numberL > 0. Then there is a constait, (L) such that for ever) < = < % there
is ane = (L, 7) satisfying if B,.(x) C Br(zo) for some fixed balBg(zo) € {2 and if we have

|(Vu)er| < L, E(z,r) <e(L,7),
then
E(z,mr) < Co(L)T?E(z, 7).

Here the ballBg(xo) can be replaced by any subdomditi € (2, and the restrictionB,.(z) C 2 is
needed in order to apply our local estimate from TheoBn
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We argue by contradiction: assume tiiat> O is fixed and that for some € (0,%1) there are balls
B, (xm) C Bgr(zo) such that

’(vu)xm,rm‘ <L, E(wmarm) =. )‘7277, —0
but
E(xp, mrm) > C*TZ)\fn

with C, to be determined later. With,, = (u)4,, .., Am = (VW)s,, r,, WE let

Um(2) = [w(@m + rmz) — am —rmAmz],  |z] < L.

AmTm

From our assumptions we get

][yvumyzdz 4 A2 ][yvumyqdz 1,
Bl Bl

][|Vum ~ (Vum)os P dz + A22 7[ Vitm — (Vim)os | dz > Cy72, 4.1)
B, B,

and after passing to subsequences we find
A, — A in RnN,
U, —- U in W3 (B, RY),
AV, — 0 in L2(By;R™V) and a.e.,
A 20, — 0 in LI(By R™V).

(4.2)

Following [14] or [6, Proposition 4.2] (and [5, Proposition 111.4.7]) we see thattisfies
/ D2f(A)(Vi, V) de = 0 Yy € Ci (B RY)
B:

and since this linear system is elliptic, we have the Campanato inequality

][Wa — (Va)y, [P de < C*r2 (4.3)
B

for some absolute constafit. LetC, = 2C*. Clearly (4.3) is in contradiction to (4.1) if we can improve
the convergences stated in (4.2) to

{ YV, — Vi in L2 .(B1; R™Y), 4.4)

M 9y, — 0 in L (B R,

loc
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The first statement in (4.4) follows from Proposition 4.3 in [6], “case 2, ;. = 2 — s”, for the second
one we follow Proposition 4.5(ii) from [6], where the cgse= 2 — s < 0 is the relevant one. With

s/4

Uy = )‘n_ml[(l"i‘ | Am + )‘mvumlz) - (1+ ‘Am‘2)8/4]

(compare formula (4.18) in [6]) Lemma 3.3 implies
SUR|Zin 2,y < €lp) < 00 (4.5)

for any p < 1, thus we can follow the arguments presented in [6] after (4.20) to see that in case
n > 3 (4.5) implies (4.4) provided@s < 2n/(n—2), i.e.,q < sn/(n—2). If n = 2, no further
restriction is needed. O

We finish this section by adding some comments on the two-dimensional case.

Proposition 4.1. Letn = 2 and consider an integrand: RZY — [0, co) of classC? just satisfying(1.2)
with exponent? < s < g such thaly < 2s. Consider a local minimizex W;,OC(Q;RN). Then there is

an open subse®y of £2, whose complement is of Hausdorff-dimension zero, suchtia®(£29; RYV)
forany0 < a < 1.

Remark 4.1. For the definition of the Hausdorff-dimension we refer to [3]. In fact we haye- (2 but
the proof requires different arguments which are presented in the paper [7].

Proof. According to Theorem 1.2 partial regularity holds in our situation, and, by Lemma 4.1, ajgoint
belongs taf’g if and only if

limsup|(Vu)z,r| < oo and E(zo,r) — 0.

r—0

We recall inequality (3.13) from Lemma 3.1 in which we chog@se- 0. Using (1.2) we deduce

/ n?(1+ |V2}€|2)(8_2)/2|V2v€ |2 dz
Bar

< c||vm|§o{/ 5E) (1 + |w5|2)7"/2dx+/ ‘sz(va)HVveFdx},
sptVn sptVn
and by Lemma 2.1 together with olif-estimates from Theorem 3.1 we see
/ n?(1+ \va\z)(sfz)/zyvzvgyzdx < ¢(n) < oo,
Bor

ands > 2 implies a uniform local bound fo¥?v, in L?. Lemma 2.1(ii), immediately gives <

W2 0 B2r; RY), and sinceBzr was arbitrary, we have € W2,,(£2; RY). Finally, we recalln = 2

and apply the Sobolev—Poincaré inequality to see B{at,r) — 0 asr — 0 for any pointx € f2.

Thusz € (2 is a singular point if and only if limsyp,q|(Vu),»| = oo. But according to [19, IV,
Theorem 2.1] these points form a subset of Hausdorff-dimension zé&ro.
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5. Thesubquadratic case

Up to now our considerations covered the casg 2 < ¢, next we analyze the situation for arbitrary
exponents 1< s < ¢ and sketch the necessary adjustments which actually reduce to some formal
remarks. First of all we observe that Lemma 1.1(iv), is also true for exporenid, 2). By Lemma 2.1
of [1] we obtain the upper bound Lemma 1.1(ii), for exponents 2. Neither the definition of local
minimizers nor the results of Lemmas 1.2 and 1.3 are affected by the choicearfdy.

Ad Section 2. If ¢ > 2 and 1< s < ¢, thenfs is defined as before with any exponent ¢. Again we
have

Ves € Wiioe(2,R™Y) N Ly (5.1)

If ¢ < 2, then we may choose= 2 still getting (5.1) on account of [20, Theorem 5.1] (with the choice
m = 2). Clearly, Lemma 2.1 does not depend on the choices &mdg.

Ad Section 3. Due to (5.1) we still have the identity

Vi (Vo) : V(nzfao‘/zva) dzr =0, Va >0,
Bor

and with the same calculations as before we obtain Theorem 3.1. Lemma 3.1 requires no changes, and
for Lemmas 3.2 and 3.3 we can either quote the proofs of Proposition 3.5 and Lemma 3.6 of [6] with
u:= 2 — s or —for a more detailed exposition — the proofs of [5, Proposition 111.4.3 and Lemma I11.4.4]
(letting u = 2 — s). Again the information(e) [, IT%dy — 0 ase — 0 is needed which is contained

in Lemma 2.1.

Ad Section 4. The corresponding version of Lemma 3.1 can be found in [6, Lemma 4.1] where in case
q < 2 the excess functioR'(z, r) takes a form different to the one considered here. Anyhow, the general
situation 1< s < ¢ is completely discussed in [6, Section 4] leading to the conditiensn /(n — 2), if

n > 3, which is sufficient for the blow-up procedure.

Appendix A

Let f(£1,...,&) = (L + |€]% 4 h(€1))*/? with h(&1) = (1 + |€1]2)9/° for exponents X s < q. We
have

DAV, U) = 5[1+ €2+ hen)] ™ {2JU 2 + D*h(&a)(Un, U)}
%3;22[' 17226 U + V(G - UL (A1)

and since the second term on the right-hand side of (A.1}i§, we deduce on account of
D?h(&1)(Ug, Uy) > 0 the estimate

SURL+ [P 22 < D2 FoW,v). (A.2)
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In (A.2) we cannot replaces(— 2)/2 by a larger exponent which is seen by choosjng= U; = 0
in (A.1) and by considering large values [gf. In this special caseD?f(¢)| can be controlled from
above and from below bj¢|*~2. In order to obtain an upper bound b7 f(€)(U, U) we observe

s—1/2 s—1
VhE)] < e+ |aP)"* 2 DPhE)] < 1+ G
wherec denotes various positive constants depending on the different parameters. From (A.1) we deduce:
s1(s—2)/2 s—
D2F©) < e[+ [eP + 1+ 1)) P21+ 1+ |aP)
+ ol IRl + (1 )T (A3)
Sinces > 2, the first term on the right-hand side of (A.3) is bounded from above by
s)(s—2)/2 s—1 —2)/2
C(1+ ‘5’2)((]/ )I{ )/ (1+ K,Z)Q/ _ C(l—l— ’6‘2)@ )/

which has the desired growth.
Next we discuss the second term by first observing

L1272+ (L4 [P 2 < o 1221 6 + (L + [P =t cap.
Case 1:In the cases/2 > 2 we have

s)(s/2—-2 2q/s5—1 —-2)/2
o < e(1+ g TITER (L4 g2 < (14 gR)2

Case 2:f s/2 < 2 then let us first assume in addition that
(@) 1+ ¢ < @+ [t
Dropping 1+ |£|?in a, we get

«a g (1+ ‘61‘2)@/5)(3/272), /8 < C(1+ ‘61‘2)2(]/371’

hence
aff < e(1+ |aP) "> < e(1+1¢P) 2,

Next let
(b) 1+ €7 > (1 + [¢H2/s—2.
Dropping (1+ |£1]2)9/% in o, we get

a< (1+]E3)7*2

For 6 we use our assumption (b) and get

B <1+ 1€,
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thus
2\s/2—1 2\ (g—2)/2
o < e+ [6P)F T < (1 1)

Altogether we obtain inequality (1.2) for the above example. It should be noted that the exponent
(¢ — 2)/2 occurring on the right-hand side is optimal.

Remark A.1. With similar arguments we can show the validity of (1.2) for the first example from

Remark 1.1(d). Moreover, it is an easy exercise to check (1.2) if we modify the first example in Re-
mark 1.1(d) by letting

s/2
16 = (15\2 LY+ \gawz)q‘*“)

acl

for some index set # I C {1, ...,n}and exponents X s < qq, ¢ := max{q,: a € I}.

Appendix B
Here we give a proof of

LemmaB.1. Letv € WX(£2; RY) for somel < t < oo and consider a Lipschitz functigh: RY — RF,
Thend o v is in the spacdV}(12; R*) together with

194(® 0 v)| < Lip(®)[d,v

, a=1,...,n. (B.1)
Remark B.1. In the paper [24] the following weaker version of (B.1) is established (assutming)
V(@ o v)| < VELIp(®)| V], (B.2)
but (B.2) does not imply the statement of Lemma 1.3.
Proof of LemmaB.1. From [26, Theorem 3.1.9] we géto v € W1(£2; R¥) and
00(P 0 v) = DP(v)(04v) (B.3)

for anyv € W(£2; RY) provided the Lipschitz function is in addition of clag$. From (B.3) we deduce
the estimate

V(@0 0)| < || D] V0. (B.4)
Clearly (B.4) is weaker than (B.1) singéd||, is of ordery/k Lip(®).
Let us first consider the case> 1. Givenv € W(£2; RY) we also suppose thdtis aC? Lipschitz

function and choose a sequengg € C>°(2; R") such that

U — v INWE(2;RY) and a.e. o2.
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We have (1< a < n)

0ald 0 1)) = M 7 (B (v + 1)) — B (v1n(a)),
thus

00(® 0 1)| < Lip() 00 (8.5)
From (B.4) or (B.5) we deduce

sug| V(@ o Um)HLt(Q) < 00,
m

and
|2(v)| < Lip(D) [vm| + |2(0)|
gives

SUF“@ o vaLt(Q) < 00,
m

thus ¢ > 1) ¢ o v,,, —: w in W}(£2; R*) at least for a subsequence. Passing to a further subsequence we
seedov,, — w a.e.on(?, thusw = ®ov. ConsiderB,.(z) C {2 and observe tha¥ (P ov,,) — V(P o)
in LY(£2; R™*) implies

/ 10a(® 0 v)| de < liminf 10(® 0 vy)| dz
Br(2) Br(2)

m—00

(B.5)
< Lip(a) lim inf / 10t dz = Lip(d) / 10| de,
m—00 JB,(z) B (2)

therefore

][ 104(® 0 v)| dz < Lip(®) ][ 1000 dz,

Br(2) Br(2)

and we have (B.1) in cage> 1 and® € C* N Lip (RY; R).
Next we assume that is merely Lipschitz. I, is a mollification of®, we have

Lip(®.) < Lip(®), &. — @ uniformly
ase — 0, moreover, o v — & o v in L!(£2; R¥) and a.e. The case considered before implies

|aa(¢a o U)| < Lip(22)[0qv], (B.6)
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thus ¢ > 1) @. ov — @ o vin W($2; R*). Semicontinuity of the norm gives as before

o (B6) . . .
][ |06(2 o v)| dz < Ilmlgf 7[ |04(P: 0v)|dz < lim |51f Lip(®.) ][ |0qv] dz.
Br(2) : Br(2) : Br(2)

Summing up Lemma B.1 is established in casel. For completeness lete Wi(2; RY) and consider
a Lipschitz functiond : RN — R, Letw,, € C>(2;RY) such thatv,,, — v in W(£2;RY) and a.e.
Clearly®(v,,) — ®(v) in L1(2; R¥) and a.e., thud(v) € BV(£2; R¥) and

yV(gzsov)\(Q)gnminf/ V(@ 0 )| dee < Lip(&) lim /\va\dx:Lip(sﬁ)/ Vo de.
m—oo [ m—oo ) 2

Observe that i we used (B.1) for the sequence,{} which is in any spacéV}(£2;R"), ¢t > 1. By the
same reasoning we get for any bAll(z) C (2

V(@0 0)|(B.(2) <liminf [ |V(® o vm)|dz < Lip(®) lim
By (2) m=oo

m—00

|V, | dz
Br(2)

T

:Lip(@)/B ,veldr

Applying the Besicovitch derivation theorem (see [3, Theorem 2.22, p. 54]; choes&Vd(v), i =
|Vu| - L") we deduceV (P o v) € L1(£2;R™) and|V(® o v)| < Lip(#)|Vo|. This is Lemma B.1 in the
limit caset = 1 provided we replac® by 9,, in the above calculations.O
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