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Abstract. We consider integrandsf : R
nN → R which are of lower (upper) growth rates � 2 (q > s) and which satisfy

an additional structural condition implying the convex hull property, i.e., if the boundary data of a minimizeru : Ω → R
N of

the energy
∫

Ω
f (∇u) dx respect a closed convex setK ⊂ R

N , then so doesu on the whole domain. We show partialC1,α-
regularity of bounded local minimizers ifq < min{s + 2/3,sn/(n − 2)} and discuss cases in which the latter condition on the
exponents can be improved. Moreover, we give examples of integrands which fit into our category and to which the results of
Acerbi and Fusco [2] do not apply, in particular, we give some extensions to the subquadratic case.

Keywords: regularity, minimizers, anisotropic growth

1. Introduction

As a model for our investigations we consider the anisotropic energy (in which 1+ |∇u|2 can also be
replaced by|∇u|2)

I[u] =
∫
Ω

[
1 + |∇u|2 +

(
1 + |∂nu|2

)q/s]s/2
dx (1.1)

defined on suitable classes of vectorial functionsu :Ω → R
N , whereΩ denotes a bounded Lipschitz

domain inR
n, n � 2, ands, q ∈ R are fixed exponents such that for the moment 2� s < q. We are

interested in the partial regularity properties of local minimizers of (1.1) but unfortunately we cannot
refer to the paper [2] of Acerbi and Fusco since our energy density does not decompose in the form
“(1 + |∇u|2)s/2 + (1 + |∂nu|2)q/2”. More precisely, the subject of [2] are energy densitiesf which can
be written as

f (∇u) = h(∇u) +
∑
α∈I

hα(∂αu),

whereI is a subset of {1,. . . ,n} and h is an elliptic integrand of growth orders. The functionshα are
strictly convex and of growth orderqα (to be defined in terms ofD2hα), 2 � s < qα, we refer the reader
to Theorem 2.3 and Proposition 4.1 of [2] for a detailed discussion.
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By elementary calculations (see Appendix A) it is easy to see that in our example the integrandf
satisfies

λ
(
1 + |Z|2

)(s−2)/2|U |2 � D2f (Z)(U ,U ) � Λ
(
1 + |Z|2

)(q−2)/2|U |2 (1.2)

for all Z,U ∈ R
nN with constants 0< λ < Λ < ∞. Moreover,f can be represented as

f (Z) = g
(
|Z1|, . . . , |Zn|

)
, Z = (Z1, . . . ,Zn) ∈ R

nN , (1.3)

whereg is an increasing function of each argument.

Definition 1.1. Let f : RnN → [0,∞) denote a function of classC2 satisfying (1.2) with exponents
2 � s < q. u ∈ W 1

s,loc(Ω; RN ) is termed a local minimizer of the energyJ [w] =
∫
Ω f (∇w) dx if and

only if

(a)
∫
Ω′ f (∇u) dx < ∞, ∀Ω′ � Ω and

(b)
∫

spt(u−v) f (∇u) dx �
∫

spt(u−v) f (∇v) dx, ∀v ∈ W 1
s,loc(Ω; RN ), spt(u− v) � Ω.

Since we are in the convex case (which follows from the first inequality in (1.2)), it is easy to show
that for boundary valuesu0 with the propertyJ [u0] < ∞ there exists a uniqueJ-minimizer in the class

u0 +
◦
W1

s(Ω; RN ) (see Lemma 1.2 below) which under reasonable assumptions on the exponentss andq
in fact is in the spaceW 1

q,loc(Ω; RN ).
Let us briefly recall the partial regularity results which are known to be valid for localJ-minimizersu

in case thatf satisfies condition (1.2).

(i) In [27] it is shown that there is an open subsetΩ0 of Ω such that|Ω − Ω0| = 0 and
u ∈ C1,α(Ω0; RN ) provided we know

q < min
{
s + 1,s

n

n− 1

}
. (1.4)

Note that in [27] the second inequality of (1.2) is not required, they work with the weaker up-
per boundf (ξ) � C(1 + |ξ|q) which is a consequence of (1.2). We remark that the restriction
q < sn/(n− 1) enters their arguments through the use of a lemma on Sobolev functions due to
Fonseca and Malý [15],q < s+1 is needed for establishing the Euler–Lagrange equation for local
minimizers (see [27, Section 2, Remark 1]).

(ii) Also partial C1,α-regularity of localJ-minimizers has been established in the paper [6] in case
that (letµ = 2− s in condition (1.8) of [6])

q < s
n + 2
n

. (1.5)

We remark that in [6] also subquadratic growth is considered and that the left-hand side of (1.2)
can be replaced by a weaker estimate but then (1.5) becomes more complicated. Condition (1.5)
is mainly used to prove that the gradient of a local minimizer actually belongs to the space
Lt

loc(Ω; RnN ) for somet > q, during the blow-up procedure we just needq < sn/(n− 2) (if
n � 3), we refer to Section 4 of [6].
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Since min{s + 1,sn/(n− 1)} � s(n + 2)/n, (1.5) is less restrictive than condition (1.4) of [27]. In
particular, ifn = 2, then (1.4) reads asq < s + 1 and from (1.5) we getq < 2s (compare Remark 4.1).

The purpose of our note is to improve both results with the help of the additional requirement (1.3),
precisely:

Theorem 1.1. Let f : RnN → [0,∞) denote aC2-integrand with(1.2) and (1.3), 2 � s < q < ∞, and
let u denote a locally bounded local minimizer in the sense of Definition1.1. Thenu is an element of the
spaceW 1

q,loc(Ω; RN ) and also a function of classC1,α(Ω0; RN ) for any0 < α < 1 on an open subset
Ω0 of Ω with full Lebesgue measure provided we impose the bound

q < min
{
s +

2
3

,s
n

n− 2

}
if n � 3, (1.6)

andq < 2
3 + s, if n = 2.

Remark 1.1.

(a) Clearly, at least for largen, (1.6) is less restrictive than (1.5), so assumption (1.3) together with the
local boundedness of the minimizer allows more flexibility concerning the choices fors andq. If n
is small, than [27,6] lead to better results. Let us briefly comment on an other case for which (1.6)
improves (1.5) by the way extending the theorems of [6,27]. If we chooses according to

n− 2
3

< s <
n

3
,

then it is easy to show that

s +
2
3

< s
n

n− 2
and s

n + 2
n

< s +
2
3

,

which means that (1.6) reduces to the requirementq < 2
3 + s, and the latter inequality is weaker

than (1.5).
(b) Condition (1.6) in the formq < sn/(n− 2) also occurs in the paper [21], where Marcellini con-

siders the scalar caseN = 1 and shows everywhere regularity of local minimizersu assuming
already thatu is in the spaceW 1

q,loc(Ω). In [22] Marcellini then uses (1.5) to get the existence of a
minimizer inW 1

q,loc(Ω).
(c) Let us look at the example

f (ξ1, . . . , ξn) = |ξ|2 +
(
1 + |ξn|2

)q/2
, ξ = (ξ1, . . . , ξn) ∈ R

nN ,

with q > 2. This integrand is covered by [2], and according to this result (n large)

q < 2 +
4

n− 3
(1.7)

is sufficient for partial regularity of local minimizersu ∈ W 1
2,loc(Ω; RN ). In this case (1.6) reads (n

large)q < 2+ 4/(n − 2), thus Acerbi and Fusco obtain better results even without the assumption
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u ∈ L∞
loc(Ω; RN ) (which is not so restrictive since in our examplef satisfies (1.3), compare the

discussion after Lemma 1.1).
(d) Let in extension of (1.1)

f (ξ) =
(

1 + |ξ|2 +
∑
α∈I

(
1 + |ξα|2

)qα/s
)s/2

,

whereI is a subset of {1,. . . ,n} and 2 � s < qα, α ∈ I. Then (1.3) holds and (1.2) is satisfied
with q = max{qα: α ∈ I}. Clearly the theorems of [2] cannot be applied, but we get partial
regularity under condition (1.6). The same is true for the energy

f (ξ) =
(
1 + |ξ|2

)s/2 +
∑
α∈I

hα
(
|ξα|

)
if we choosehα of the form (1+ t2)qα/2 but with infinitely many linear pieces so that ellipticity is
destroyed (see [8]) which means that forHα(ξα) = hα(|ξα|) we just have the estimate

0 � D2Hα(ξα)(Uα,Uα) � cα
(
1 + |ξα|2

)(q−2)/2|Uα|2.

Let us finally look at the integrand

f (ξ1, . . . , ξn) = Φ1(ξ1) + · · · + Φn(ξn), Φk(ξk) =
(
1 + |ξk|2

)qk/2
, ξk ∈ R

N ,

with exponentsqk � 2. In contrast to [2] an elliptic part involving “the whole gradient” is missing.
We have

D2f (ξ)(U ,U ) � c
n∑

k=1

(
1 + |ξk|2

)(qk−2)/2|Uk|2 � c|U |2,

D2f (ξ)(U ,U ) � c
(
1 + |ξ|2

)(q−2)/2|U |2,

whereq := max{qk: k = 1, . . . ,n}. Thus (1.2) holds for the choices = 2, and forn large
Theorem 1.1 implies that bounded local minima are partially regular ifqk < 2 + 4/(n − 2),
k = 1, . . . ,n.

(e) We do not touch the question of everywhere regularity in the vectorial case which besides an
appropriate ratio ofq ands also requires a structural condition of the formf (ξ) = G(|ξ|), we refer
to [23,5], where the interested reader will find further references.

In order to finish our discussion on the various choices for the exponentss andq and to include the
results of [6] we reformulate Theorem 1.1 in the following way.

Theorem 1.2. Suppose that all the hypotheses of Theorem1.1 are valid but with(1.6) being replaced by

q < 2s if n = 2, (1.6∗)

q < s
n

n− 2
and q < q0 := max

{
s +

2
3

,s
n + 2
n

}
if n � 3. (1.6∗∗)

Then partialC1,α-regularity holds for locally bounded local minimizersu.



M. Bildhauer and M. Fuchs / Partial regularity for a class of anisotropic variational integrals 297

In casen = 2 or n � 3 together withq0 = s(n + 2)/n we can drop the assumptionu ∈ L∞
loc(Ω; RN )

and also(1.3) is superfluous. Moreover, under the above assumptions,u is in the spaceW 1
q,loc(Ω; RN ).

Note that the last statement of Theorem 1.2 is a direct consequence of [6, Theorem 1.1] with the
choiceµ = 2− s. Note also that the requirementq < q0 is sufficient to show∇u ∈ Lq+ε

loc (Ω; RnN ) for
someε > 0 (see Theorem 3.1 below). With this information we get partialC1,α-regularity just assuming
q < sn/(n− 2). The local boundedness ofu and condition (1.3) do not enter the blow-up procedure.

Up to now we limited our discussion to the case 2� s < q in order to compare our results to the
ones of [2,27]. To our knowledge anisotropic power growth with leading exponentq < 2 only occurs
in [6]: with the choiceµ = 2− s in [6, Theorem 1.1] we see that condition (1.5) is sufficient for partial
regularity. But in fact we have a stronger result:

Theorem 1.3. The statements of Theorems1.1 and1.2 remain true if we consider arbitrary exponents
1 < s < q (provided the other hypotheses are valid).

Thus we can also include models like

f (ξ) =
(
1 + |ξ|2

)(1+ε)/2 + |ξn|2, ξ = (ξ1, . . . , ξn) ∈ R
nN ,

with appropriate choice ofε ∈ (0, 1) which are not covered by [2,27].
Next we discuss our assumption (1.3) by showing that it is a kind of natural hypothesis giving bound-

edness of minimizers. First of all we collect some consequences of (1.2).

Lemma 1.1. Letf : RnN → [0,∞) satisfy(1.2) with 2 � s < q. Then we have:

(i) f is strictly convex;
(ii) f (Z) � c1(|Z|q + 1);
(iii) |∇f (Z)| � c2(|Z|q−1 + 1);
(iv) ∇f (Z) : Z � c3|Z|s − c4;
(v) f (Z) � c5|Z|s − c6,

the estimates being valid for allZ ∈ R
nN . Hereci denote positive constants.

Proof. (i) Is a consequence of the first inequality in (1.2). (ii) Follows from the second part of (1.2).
(iii) Compare [10, Lemma 2.2, p. 156].

(iv) We have

∇f (Z) : Z =
∫ 1

0
D2f (tZ)(Z,Z) dt + ∇f (0) : Z,

and the lower bound in (1.2) gives the result.
(v) Convexity off implies

f (Z) � f

(
Z

2

)
+ ∇f

(
Z

2

)
:
Z

2
,

and the claim follows fromf � 0 together with (iv). �
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Lemma 1.2. Let u0 ∈ W 1
s (Ω; RN ) satisfyJ [u0] =

∫
Ω f (∇u0) dx < ∞, wheref � 0 is of classC2

with (1.2). Then the variational problem

J [u] → min in u0 +
◦
W1

s

(
Ω; RN)

(1.8)

has a unique solution.

Proof. Obviously inf{J [w]: w ∈ u0 +
◦
W1

s(Ω; RN )} < ∞, thus on account of Lemma 1.1(v), any

minimizing sequence {um} ⊂ u0 +
◦
W1

s(Ω; RN ) is uniformly bounded inW 1
s (Ω; RN ), henceum ⇁: u

in W 1
s (Ω; RN ). Convexity off together with De Giorgi’s theorem on lower semicontinuity proves that

u solves (1.8). Uniqueness follows from strict convexity off . �

Lemma 1.3 (Convex hull property). In addition to the hypotheses of Lemma1.2 assumeIm(u0) ⊂ K for
a compact convex setK ⊂ R

N . Then the solutionu of (1.8) also satisfiesIm(u) ⊂ K provided that(1.3)
holds.

Remark 1.2.

(a) From the paper [11] we deduce

sup
Ω

∣∣ui
∣∣ � sup

Ω

∣∣ui
0

∣∣, i = 1, . . . ,N ,

thusu ∈ L∞(Ω; RN ), if u0 is bounded. In case of (1.3) this is a trivial observation since we may
use comparison functions likev = (Φ(u1),u2, . . . ,uN ), wherem := supΩ |u1

0| and

Φ(t) =


m, t � m,
t, −m � t � m,
−m, t � −m.

Then|∂αv| � |∂αu| and (1.3) impliesv = u.
(b) Lemma 1.3 motivates the study of locally bounded local minimizers in Theorem 1.1. It should

however be noted that our proof of Theorem 1.1 does not work if we just consider solutions of
classL∞

loc(Ω; RN ) and impose the growth condition (1.2). In the next sections Lemma 1.3 will be
an important tool.

Proof of Lemma 1.3. Let π : RN → K denote the projection ontoK which satisfies Lip(π) = 1. From
Lemma B.1 below we deduce|∂α(π ◦ u)| � |∂αu|, α = 1, . . . ,n, thus (v := π ◦ u)

g
(
|∂1v|, . . . , |∂nv|

)
� g

(
|∂1u|, . . . , |∂nu|

)
.

Sov is minimizing which impliesv = u. �

The rest of our paper is organized as follows: in Section 2 we discuss some (appropriate) local approx-
imation, Section 3 contains the proof of uniform higher integrability of these approximations under the
conditionq < s+ 2

3, and in Section 4 we use this result for obtaining Theorem 1.1 via a standard blow-up
procedure which works in caseq < sn/(n− 2), if n > 2. The subquadratic case is briefly considered
in Section 5. In Appendix A we discuss our example (1.1), in Appendix B we give a short proof of the
chain rule inequality needed for Lemma 1.3.
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2. Local approximation

We use a standard approximation procedure which in different situations also occurs in [18,12,13,25,
4,6,8]. From now on assume that all the assumptions of Theorem 1.1 are valid. Letr > q and define for
δ > 0

fδ(ξ) = δ
(
1 + |ξ|2

)r/2 + f (ξ), ξ ∈ R
nN .

Without loss of generality letB2R(0) � Ω and consider the mollificationuε of our localJ-minimizeru.

Let vε,δ ∈ uε +
◦
W1

r(B2R; RN ) denote the solution of

Jδ[w] :=
∫
B2R

fδ(∇w) dx → min in uε +
◦
W1

r

(
B2R; RN)

. (2.1)

According to [20, Theorem 5.1] (note that (5.3) of [20] holds on account ofr > q), we have∇vε,δ ∈
L∞

loc(B2R; RnN ), moreover (see, e.g., [9])∇vε,δ ∈ W 1
2,loc(B2R; RnN ). The stated initial regularity ofvε,δ

is crucial for our calculations in Section 3, therefore we cannot use the local regularization with exponent
q as we did in [6] (compare Remark 3.1). Anyhow, Lemma 2.1 below is also true forr = q. With the
choice

δ = δ(ε) =
1

1 + ε−1 + ‖∇uε‖2r
Lr(B2R,RnN )

we definevε = vε,δ(ε) andf̃ε = fδ(ε). The minimality ofvε implies∫
B2R

f (∇vε) dx �
∫
B2R

f̃ε(∇vε) dx �
∫
B2R

f̃ε(∇uε) dx

and from Jensen’s inequality we deduce∫
B2R

f (∇uε) dx �
∫
B2R+ε

f (∇u) dx.

Next we claim

δ(ε)
∫
B2R

(
1 + |∇uε|2

)r/2
dx � c(R)

√
ε (2.2)

with c(R) independent ofε. For the proof we observe that by definition ofδ(ε) the left-hand side of (2.2)
is dominated by

c(R)
1 + x

1 + x2 + ε−1 , x :=
∫
B2R

|∇uε|r dy.

Case 1:If x � 1/
√
ε, then

1 + x

1 + x2 + ε−1 � 1 + (
√
ε)−1

1 + x2 + ε−1 � 1 + (
√
ε)−1

1 + ε−1 =
ε +

√
ε

ε + 1
� ε +

√
ε � 2

√
ε.
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Case 2:Consider the casex � 1/
√
ε. Using 1+ x2 � 1

2(1 + x)2 we obtain

1 + x

1 + x2 + ε−1 � 1 + x

1 + x2 � 2
1 + x

� 2
x

� 2
√
ε,

and (2.2) is established.
Putting together the various estimates we get∫

B2R

f (∇vε) dx �
∫
B2R

f̃ε(∇vε) dx �
∫
B2R

f̃ε(∇uε) dx �
∫
B2R

f (∇u) dx + O(ε). (2.3)

From (2.3) and the growth off (see Lemma 1.1(v)) we deduce

∫
B2R

|∇vε|s dx � c

(
1 +

∫
B2R

f (∇u) dx
)

< ∞, (2.4)

and usingvε − uε ∈
◦
W1

s(B2R; RN ) together with uniform bounds on‖uε‖W 1
s (B2R), (2.4) implies

‖vε‖W 1
s (B2R) � const< ∞ (2.5)

independent ofε. Let ũ ∈ W 1
s (B2R) denote a weak limit of some subsequence of {vε} which exists

by (2.5). By De Giorgi’s theorem∫
B2R

f
(
∇ũ

)
dx � lim inf

ε→0

∫
B2R

f (∇vε) dx, (2.6)

thus
∫
B2R

f (∇ũ) dx �
∫
B2R

f (∇u) dx on account of (2.3). Thereforẽu is J-minimizing on u +
◦
W1

s(B2R; RN ), strict convexity implies̃u = u. Altogether we have:

Lemma 2.1. With the notation introduced above the following statements are valid:

(i) ‖vε‖W 1
s (B2R;RN ) � const< ∞;

(ii) vε ⇁
ε→0

u in W 1
s (B2R; RN );

(iii) supB2R
|vε| � supB2R+ε

|u| < ∞;

(iv) δ(ε)
∫
B2R

(1 + |∇vε|2)r/2 dx −→
ε→0

0;

(v)
∫
B2R

f (∇vε) dx −→
ε→0

∫
B2R

f (∇u) dx;

vi)
∫
B2R

f̃ε(∇vε) dx −→
ε→0

∫
B2R

f (∇u) dx.

Proof. (i) and (ii) are obvious, (iii) follows from the maximum-principle Lemma 1.3. Ad (v) and (vi):
we recallũ = u and get from (2.6)∫

B2R

f (∇u) dx � lim inf
ε→0

∫
B2R

f (∇vε) dx,
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whereas (2.3) implies

lim sup
ε→0

∫
B2R

f (∇vε) dx � lim sup
ε→0

∫
B2R

f̃ε(∇vε) dx �
∫
B2R

f (∇u) dx,

thus we have (v) and (vi). Subtracting (v) from (vi) we finally obtain (iv).�

3. Uniform local higher integrability of the solutions of the approximative problems

Keeping our notation from Section 2 we want to show that the solutionsvε of problem (2.1) (with the
choiceδ = δ(ε)) satisfy

sup
0<ε<1

∫
Bρ

|∇vε|t dx � c(ρ) < ∞, (3.1)

wheret is some exponent bigger thanq andρ denotes a radius less than 2R. In former papers (see,
e.g., [16,6,8] and the references quoted therein) we used the differentiated form of the Euler–Lagrange
equation associated to (2.1) together with a Caccioppoli-type inequality to show that some power of
|∇vε| belongs uniformly inε to the spaceW 1

2 (B2ρ), hence by Sobolev’s embedding theorem the uniform
local integrability of|∇vε| can be increased to a powert > q providedq < s(n + 2)/n is true.

Here we show (3.1) by assuming thatq < s + 2/3 which for s < n/3 is less restrictive thanq <
s(n + 2)/n. The main idea (originating in [4]) is that due to the uniform local boundedness of|vε| (see
Lemma 2.1(iii)) we may use test vectors of the formη2vε(1+ |∇vε|2)α/2 in the Euler–Lagrange equation
for (2.1), whereα is some number� 0, η denoting a cut-off function with sptη ⊂ B2R, and estimate
|vε| just by a constant. The result will be a uniform bound of the form (3.1). More precisely, we have:

Theorem 3.1. Let the assumptions of Theorem1.1 hold with(1.6) replaced by

q < max
{
s
n + 2
n

,s +
2
3

}
. (3.2)

Then(3.1) is true for somet > q, in particular we have∇u ∈ Lt
loc(Ω; RnN ).

Proof. Without loss of generality we may assume thats(n + 2)/n � s+2/3, otherwise the claim follows
from [6, Lemma 3.4] (note that the arguments from [6] also work for the approximation considered here
or replace our sequence {vε} by the sequence {vε} from [6] by the way leading to the same result that
∇u is in Lt

loc(Ω; RnN )). We also like to remark that in the cases(2 + n)/n � s + 2/3 the statement of
Theorem 3.1 remains true if we drop our assumptionu ∈ L∞

loc(Ω; RN ), also the structure condition (1.3)
can be removed (see again [6]).

Let α � 0, η ∈ C∞
0 (B2R), 0 � η � 1, Γε = 1 + |∇vε|2 and recall∇vε ∈ L∞

loc ∩ W 1
2,loc(Ω; RnN ) as

well as

‖vε‖L∞(B2R) � c(R) < ∞. (3.3)
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In what followsc always denotes a positive constant independent ofε whose value may change from line
to line. Moreover, we writeδ = δ(ε) for the parameter defined in Section 2. From∫

B2R

∇f̃ε(∇vε) : ∇
(
η2Γα/2

ε vε
)

dx = 0

we deduce∫
B2R

∇f̃ε(∇vε) : ∇vεΓ
α/2
ε η2 dx

= −
∫
B2R

∇f̃ε(∇vε) : 2η∇η ⊗ vεΓ
α/2
ε dx−

∫
B2R

∇f̃ε(∇vε) : η2 vε ⊗∇
(
Γα/2
ε

)
dx

=: −A−B. (3.4)

By Lemma 1.1(iv), we see

left-hand side of (3.4)� c

∫
B2R

Γ (s+α)/2
ε η2 dx + cδ

∫
B2R

η2Γ (r+α)/2
ε dx− c

∫
B2R

η2Γα/2
ε dx

− cδ

∫
B2R

η2Γ (r−2+α)/2
ε dx. (3.5)

We have by Lemma 1.1(iii)

|−A|
(3.3)
� c

∫
B2R

∣∣∇f̃ε(∇vε)
∣∣η|∇η|Γα/2

ε dx

� c

∫
B2R

|∇vε|q−1Γα/2
ε η|∇η|dx + c

∫
B2R

η|∇η|Γα/2
ε dx

+ cδ

∫
B2R

Γα/2
ε

(
1 + |∇vε|2

)(r−2)/2|∇vε|η|∇η|dx

� c

∫
B2R

Γ (q−1+α)/2η|∇η|dx + cδ

∫
B2R

Γ (r−1+α)/2
ε η|∇η|dx

= c

∫
B2R

Γ (s+α)/4
ε η|∇η|Γ (q−1+α)/2−(s+α)/4

ε dx

+ cδ

∫
B2R

Γ (r+α)/4
ε η|∇η|Γ (r−1+α)/2−(r+α)/4

ε dx,

and by applying Young’s inequality to the last two integrals and by absorbing terms on the right-hand
side of (3.5) we arrive at∫

B2R

η2Γ (s+α)/2
ε dx + δ

∫
B2R

η2Γ (r+α)/2
ε dx

� c

∫
B2R

η2Γα/2
ε dx + cδ

∫
B2R

η2Γ (r−2+α)/2
ε dx + c

∫
B2R

|∇η|2Γ q−1+α−(s+α)/2
ε dx

+ cδ

∫
B2R

|∇η|2Γ r−1+α−(r+α)/2
ε dx + c|−B|. (3.6)
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Let us discuss|−B|: using |∇(Γα/2
ε )| � cΓ

α/2−1/2
ε |∇2vε|, Lemma 1.1(iii), and (3.3) we find (sum-

mation with respect toµ = 1, . . . ,n)

|−B| � c

∫
B2R

Γ (q+α−2)/2
ε η2|∇2vε|dx + cδ

∫
B2R

Γ (r+α−2)/2
ε η2∣∣∇2vε

∣∣ dx =: T1 + T2,

T1 = c

∫
B2R

Γ (s−2)/4
ε

∣∣∇2vε
∣∣Γ (q+α−2)/2−(s−2)/4

ε η2 dx

(1.2)
� c

∫
B2R

D2f (∇vε)(∂µ∇vε,∂µ∇vε)η
2 dx + c

∫
B2R

η2Γ q+α−1−s/2
ε dx,

T2 = cδ

∫
B2R

Γ (r−2)/4
ε

∣∣∇2vε
∣∣Γ (r+α−2)/2−(r−2)/4

ε η2 dx

� cδ

∫
B2R

Γ (r−2)/2
ε

∣∣∇2vε
∣∣2η2 dx + cδ

∫
B2R

Γ r/2+α−1
ε η2 dx,

hence

|−B|� c

∫
B2R

D2f̃ε(∇vε)(∂µ∇vε,∂µ∇vε)η
2 dx

+ c

∫
B2R

η2Γ q+α−1−s/2
ε dx + cδ

∫
B2R

Γ r/2+α−1
ε η2 dx. (3.7)

From Lemma 3.1 below we get

∫
B2R

η2D2f̃ε(∇vε)(∂µ∇vε,∂µ∇vε) dx � c‖∇η‖2
L∞(B2R)

∫
spt∇η

∣∣D2f̃ε(∇vε)
∣∣|∇vε|2 dx

� c‖∇η‖2
L∞(B2R)

∫
spt∇η

(
Γ q/2
ε + δΓ r/2

ε

)
dx.

Now we use (3.7) and the latter estimate to rewrite (3.6) in the following form:

I1 + I2 :=
∫
B2R

η2Γ (s+α)/2
ε dx + δ

∫
B2R

η2Γ (r+α)/2
ε dx

� c

∫
B2R

η2Γα/2
ε dx + c‖∇η‖2

∞

∫
spt∇η

Γ q−1+α−(s+α)/2
ε dx + c

∫
B2R

η2Γ q+α−1−s/2
ε dx

+ c‖∇η‖2
∞

∫
spt∇η

Γ q/2
ε dx + cδ

∫
B2R

η2Γ (r−2+α)/2
ε dx

+ cδ‖∇η‖2
∞

∫
spt∇η

Γ r/2−1+α/2
ε dx + cδ

∫
B2R

Γ r/2+α−1
ε η2 dx+ cδ‖∇η‖2

∞

∫
spt∇η

Γ r/2
ε dx

=:
8∑

i=1

Ki. (3.8)
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It is immediate thatK5 is bounded byK7. ObviouslyK1 � τI1 + c(τ ,R) for anyτ > 0, and the first
term on the right-hand side can be absorbed intoI1. Let us assumeα < 2. ThenK6 � K8 and

K7 � cτI2 + c(τ ,R)

on account of12(r+2α−2) < 1
2(r+α). Choosingτ small enough, we may absorbcτI2 into I2. Next we

choose a ballBt+ρ(x0) � B2R and takeη ≡ 1 onBt(x0) such thatη ≡ 0 onB2R − Bt+ρ(x0) together
with |∇η| � c/ρ. Finally, we like to controlK2 in terms ofK4 which is possible if

q − 1 + α− s + α

2
� q

2
,

i.e., we have to require at this stage

α � 2 + s− q (3.9)

(implying α < 2 on account ofs < q). Returning to (3.8) and exploiting the latter considerations we get∫
Bt(x0)

Γ (s+α)/2
ε dx + δ

∫
Bt(x0)

Γ (r+α)/2
ε dx

� c(R)
[
1 +

∫
Bt+ρ(x0)

Γ (2q+2α−2−s)/2
ε dx + ρ−2

∫
Tt,ρ(x0)

Γ q/2
ε dx + δρ−2

∫
Tt,ρ(x0)

Γ r/2
ε dx

]
,

Tt,ρ(x0) = Bt+ρ(x0) −Bt(x0). (3.10)

Letα0 = 0,αk+1 = −q+s+1+ 1
2αk. Since our assumption on the ratio ofq ands impliesq < s+1, we

seeαk > 0 for k � 1. It is easy to check thatαk < αk+1, moreover (3.9) is satisfied for the sequenceαk.
We haveα∞ := limk→∞ αk = 2+2(−q+s), and if we want to haves+α∞ > q we need our hypothesis
q < s + 2

3.
Next we fix q∗ ∈ (q,s + α∞) and calculatek ∈ N such thatαk + s � q∗. Given radiit, ρ and a

centerx0 we apply (3.10) withα = αk andρ replaced byρ/k and get∫
Bt(x0)

Γ (s+αk)/2
ε dx + δ

∫
Bt(x0)

Γ (r+αk)/2
ε dx

� c(k,R)
[
1 +

∫
Bt+ρ/k(x0)

Γ
(s+αk−1)/2
ε dx + ρ−2

∫
T

t,ρ/k(x0)

Γ q/2 dx + δρ−2
∫
Tt,ρ/k(x0)

Γ r/2
ε dx

]
.

In the next step we use (3.10) witht replaced byt + ρ/k andρ replaced byρ/k and for the choice
α = αk−1. The final result is after iteration∫

Bt(x0)
Γ (s+αk)/2
ε dx + δ

∫
Bt(x0)

Γ (r+αk)/2
ε dx

� c(k,R)
[
1 +

∫
Bt+ρ(x0)

Γ s/2
ε dx + ρ−2

∫
Tt,ρ(x0)

Γ q/2 dx + δρ−2
∫
Tt,ρ(x0)

Γ r/2
ε dx

]
. (3.11)
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In the last two integrals we may use Hölder’s inequality to get

ρ−2
∫
Tt,ρ(x0)

Γ q/2
ε dx � c(R)

[
ρ−γ +

∫
Tt,ρ(x0)

Γ (s+αk)/2 dx
]
,

ρ−2
∫
Tt,ρ(x0)

Γ r/2
ε dx � c(R)

[
ρ−γ̃ +

∫
Tt,ρ(x0)

Γ (r+αk)/2 dx
]

with suitable positive exponentsγ, γ̃. By Lemma 2.1 the quantity
∫
Bt+ρ(x0) Γ

s/2 dx is bounded by a local
constantc(R), therefore, filling the hole in (3.11) (add

c(k,R)
(∫

Bt(x0)
Γ (s+αk)/2
ε dx + δ

∫
Bt(x0)

Γ (r+αk)/2
ε dx

)
on both sides) implies (for someβ > 0)∫

Bt(x0)
Γ (s+αk)/2
ε dx + δ

∫
Bt(x0)

Γ (r+αk)/2
ε dx

� c(k,R)
[
1 + ρ−β]

+ Θ

[∫
Bt+ρ(x0)

Γ (s+αk)/2
ε dx + δ

∫
Bt+ρ(x0)

Γ (r+αk)/2
ε dx

]

with Θ < 1 not depending onε. From [19, Lemma 3.1, p. 161] we get (BR = BR(0))∫
BR

Γ (s+αk)/2
ε dx + δ

∫
BR

Γ (r+αk)/2
ε dx � c(k,R)

[
1 + R−β]

, (3.12)

where the local constantc(k,R) involves positive powers ofR and the bounds for supB2R+ε
|u|,∫

B2R
f (∇u) dx. Recalling the choice ofk we have shown (3.1) for the exponentt = q∗.

Note that our calculations just requiredr > q, no further restriction onr is needed. Having estab-
lished (3.1) we get∇u ∈ Lq∗

loc(B2R; RnN ) since∇vε ⇁: W in Lq∗

loc(B2R; RnN ) but on account of
Lemma 2.1(ii) we must haveW = ∇u. �

During the proof of Theorem 3.1 we made use of

Lemma 3.1. There is a real numberc > 0 such that for allη ∈ C1
0(B2R), 0 � η � 1, and for all

Q ∈ R
nN we have∫
B2R

η2D2f̃ε(∇vε)(∂µ∇vε,∂µ∇vε) dx � c‖∇η‖2
∞

∫
spt∇η

∣∣D2f̃ε(∇vε)
∣∣|∇vε −Q|2 dx. (3.13)

Proof. Here we just need to know thatf � 0 is C2 with 0 � D2f (Q) � Λ(1 + |Q|2)(q−2)/2 for some
q � 2. Then, iff̃ε is our regularization with exponentr > q,vε is still of classW 1

∞,loc∩W 2
2,loc(B2R; RN )

(see [20]) and we may differentiate the Euler equation forvε with the result∫
B2R

D2f̃ε(∇vε)(∂µ∇vε,∇ϕ) dx = 0
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for any ϕ with compact support. If we letϕ = η2∂µ(vε − Qx), then (3.13) follows with elementary
calculations. �

Remark 3.1. In contrast to our arguments from above the proof of Lemma 3.1 in [6] requires much more
work which is caused by the regularization with exponentr = q. On the other hand, higher integrability
of ∇u is established in [6] under stronger hypotheses and with a completely different argument working
in caser = q once having proved Lemma 3.1 of [6]. Of course we could also choose some exponent
r > q in [6] trivializing Lemma 3.1. But then we have to take care of additionalδ-terms occurring in
the proof of [6, Lemma 3.4] which can be handled under the assumptionr < s(n + 2)/n. Recalling that
in [6] we require for the anisotropic caseµ = 2 − s, q < 2 − µ + s2/n, it is immediate that we can
choose an admissible exponentr ∈ (q,s(n + 2)/n).

If we requiref to satisfy (1.2), then the left-hand side of (3.13) gives an upper bound for

∫
B2R

η2|∇hε|2 dx, hε =
(
1 + |∇vε|2

)s/4
,

and if we takeQ = 0, then (3.13) implies

∫
B2R

η2|∇hε|2 dx � c‖∇η‖2
∞

∫
spt∇η

(
Γ q/2
ε + δΓ r/2

ε

)
dx.

If we are in the situation of Theorem 3.1 we see from (3.12) that the right-hand side of the latter estimate
is bounded by a local constantc(R), thus

hε ⇁: h in W 1
2,loc(B2R) asε → 0

for some functionh from this space.
The next lemma can be found for instance in [17,5,6].

Lemma 3.2. We haveh = (1 + |∇u|2)s/4 as well as

∇vε → ∇u a.e. onBR asε → 0.

Proof. As in [17, Lemma 4.1] or [5, Proposition III.4.3] we show that

∫
BR

∫ 1

0
D2f

(
∇u + t(∇vε −∇u)

)(
∇vε −∇u,∇vε −∇u

)
(1− t) dt dx → 0 asε → 0. (3.14)

With (3.14), ellipticity implies∇vε → ∇u a.e., in particular,hε → (1 + |∇u|2)s/4 a.e., so that we have
the formula for the limit functionh. �

Finally, we state a limit version of Lemma 3.1.
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Lemma 3.3. With the notation introduced above we have∫
B2R

η2|∇h|2 dx � c‖∇η‖2
∞

∫
spt∇η

∣∣D2f (∇u)
∣∣|∇u−Q|2 dx (3.15)

for anyη ∈ C1
0(B2R), 0 � η � 1, and allQ ∈ R

nN .

Proof. We can follow [6, Lemma 3.6], we just have to check (see [6, formula (3.8)]) that in our case

lim inf
ε→0

∫
spt∇η

∣∣D2f̃ε(∇vε)
∣∣|∇vε −Q|2 dx � lim inf

ε→0

∫
spt∇η

∣∣D2f (∇vε)
∣∣|∇vε −Q|2 dx.

But since∣∣D2f̃ε(∇vε)
∣∣|∇vε −Q|2 �

∣∣D2f (∇vε)
∣∣|∇vε −Q|2 + cδ(ε)

(
1 + |∇vε|2

)(r−2)/2|∇vε −Q|2,

the claim follows from our former observation thatδ(ε)
∫
BR′ Γ

r/2
ε dx → 0 for any radiusR′ < 2R.

The rest of the proof is exactly the same as in Lemma 3.6 for [6], in particular we also make use of the
fact that by (3.12)|∇vε|q is uniformly bounded inL1+τ

loc (B2R) for someτ > 0 (compare (3.12) where
obviously the radiusR can be replaced by any numberR′ < 2R). �

Remark 3.2. Note thatu is a continuous function provided thatn = 2 orn = 3. In the two-dimensional
case this is a consequence of Theorem 3.1. In general, we observe thath ∈ W 1

2,loc(Ω) implies∇u ∈
L
sn/(n−2)
loc (Ω; RnN ) by Sobolev’s embedding theorem, and continuity ofu follows if s > n− 2.

4. Blow-up and partial regularity

Let the assumptions of Theorem 1.1 hold. IfBr(x) is a ball inΩ, we introduce the excess of our local
minimizeru with respect to this ball

E(x, r) =
∫
−

Br(x)

∣∣∇u− (∇u)x,r
∣∣2 dy +

∫
−

Br(x)

∣∣∇u− (∇u)x,r
∣∣q dy

which on account of Theorem 3.1 is well-defined. Here
∫
−Br(x) and (·)x,r denote the mean values of the

corresponding quantities. As usual partialC1,α-regularity follows from

Lemma 4.1. Fix a numberL > 0. Then there is a constantC∗(L) such that for every0 < τ < 1
4 there

is anε = ε(L, τ ) satisfying: if Br(x) ⊂ BR(x0) for some fixed ballBR(x0) � Ω and if we have∣∣(∇u)x,r
∣∣ � L, E(x, r) � ε(L, τ ),

then

E(x, τr) � C∗(L)τ2E(x, r).

Here the ballBR(x0) can be replaced by any subdomainΩ′ � Ω, and the restrictionBr(x) ⊂ Ω′ is
needed in order to apply our local estimate from Theorem3.1.
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We argue by contradiction: assume thatL > 0 is fixed and that for someτ ∈ (0, 1
4) there are balls

Brm(xm) ⊂ BR(x0) such that∣∣(∇u)xm,rm

∣∣ � L, E(xm, rm) =: λ2
m → 0

but

E(xm, τrm) > C∗τ
2λ2

m

with C∗ to be determined later. Witham = (u)xm,rm, Am = (∇u)xm,rm we let

um(z) =
1

λmrm

[
u(xm + rmz) − am − rmAmz

]
, |z| < 1.

From our assumptions we get∫
−
B1

|∇um|2 dz + λq−2
m

∫
−
B1

|∇um|q dz = 1,

∫
−
Bτ

∣∣∇um − (∇um)0,τ
∣∣2 dz + λq−2

m

∫
−
Bτ

∣∣∇um − (∇um)0,τ
∣∣q dz > C∗τ

2, (4.1)

and after passing to subsequences we find
Am →: A in R

nN ,
um ⇁: û in W 1

2

(
B1; RN

)
,

λm∇um → 0 in L2(B1; RnN
)

and a.e.,

λ
1−2/q
m ∇um ⇁ 0 in Lq

(
B1; RnN

)
.

(4.2)

Following [14] or [6, Proposition 4.2] (and [5, Proposition III.4.7]) we see thatû satisfies∫
B1

D2f (A)
(
∇û,∇ϕ

)
dx = 0 ∀ϕ ∈ C1

0
(
B1; RN)

and since this linear system is elliptic, we have the Campanato inequality∫
−
Bτ

∣∣∇û−
(
∇û

)
0,τ

∣∣2 dx � C∗τ2 (4.3)

for some absolute constantC∗. LetC∗ = 2C∗. Clearly (4.3) is in contradiction to (4.1) if we can improve
the convergences stated in (4.2) to{

∇um → ∇û in L2
loc

(
B1; RnN

)
,

λ
1−2/q
m ∇um → 0 in Lq

loc

(
B1; RnN

)
.

(4.4)
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The first statement in (4.4) follows from Proposition 4.3 in [6], “caseq � 2, µ = 2− s”, for the second
one we follow Proposition 4.5(ii) from [6], where the caseµ = 2− s � 0 is the relevant one. With

Ψm = λ−1
m

[(
1 + |Am + λm∇um|2

)s/4 −
(
1 + |Am|2

)s/4]
(compare formula (4.18) in [6]) Lemma 3.3 implies

sup
m

‖Ψm‖W 1
2 (Bρ) � c(ρ) < ∞ (4.5)

for any ρ < 1, thus we can follow the arguments presented in [6] after (4.20) to see that in case
n � 3 (4.5) implies (4.4) provided 2q/s < 2n/(n− 2), i.e., q < sn/(n− 2). If n = 2, no further
restriction is needed.�

We finish this section by adding some comments on the two-dimensional case.

Proposition 4.1. Letn = 2 and consider an integrandf : R2N → [0,∞) of classC2 just satisfying(1.2)
with exponents2 � s < q such thatq < 2s. Consider a local minimizeru ∈ W 1

s,loc(Ω; RN ). Then there is
an open subsetΩ0 ofΩ, whose complement is of Hausdorff-dimension zero, such thatu ∈ C1,α(Ω0; RN )
for any0 < α < 1.

Remark 4.1. For the definition of the Hausdorff-dimension we refer to [3]. In fact we haveΩ0 = Ω but
the proof requires different arguments which are presented in the paper [7].

Proof. According to Theorem 1.2 partial regularity holds in our situation, and, by Lemma 4.1, a pointx0

belongs toΩ0 if and only if

lim sup
r→0

∣∣(∇u)x0,r
∣∣ < ∞ and E(x0, r) −→

r→0
0.

We recall inequality (3.13) from Lemma 3.1 in which we chooseQ = 0. Using (1.2) we deduce∫
B2R

η2(1 + |∇vε|2
)(s−2)/2∣∣∇2vε

∣∣2 dx

� c‖∇η‖2
∞

{∫
spt∇η

δ(ε)
(
1 + |∇vε|2

)r/2
dx +

∫
spt∇η

∣∣D2f (∇vε)
∣∣|∇vε|2 dx

}
,

and by Lemma 2.1 together with ourLq-estimates from Theorem 3.1 we see∫
B2R

η2(1 + |∇vε|2
)(s−2)/2∣∣∇2vε

∣∣2 dx � c(η) < ∞,

and s � 2 implies a uniform local bound for∇2vε in L2. Lemma 2.1(ii), immediately givesu ∈
W 2

2,loc(B2R; RN ), and sinceB2R was arbitrary, we haveu ∈ W 2
2,loc(Ω; RN ). Finally, we recalln = 2

and apply the Sobolev–Poincaré inequality to see thatE(x, r) → 0 asr → 0 for any pointx ∈ Ω.
Thusx ∈ Ω is a singular point if and only if lim supr→0 |(∇u)x,r| = ∞. But according to [19, IV,
Theorem 2.1] these points form a subset of Hausdorff-dimension zero.�
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5. The subquadratic case

Up to now our considerations covered the case 2� s < q, next we analyze the situation for arbitrary
exponents 1< s < q and sketch the necessary adjustments which actually reduce to some formal
remarks. First of all we observe that Lemma 1.1(iv), is also true for exponentss ∈ (1, 2). By Lemma 2.1
of [1] we obtain the upper bound Lemma 1.1(ii), for exponentsq < 2. Neither the definition of local
minimizers nor the results of Lemmas 1.2 and 1.3 are affected by the choices fors andq.

Ad Section 2. If q � 2 and 1< s < q, thenfδ is defined as before with any exponentr > q. Again we
have

∇vε,δ ∈ W 1
2,loc

(
Ω; RnN)

∩ L∞
loc. (5.1)

If q < 2, then we may chooser = 2 still getting (5.1) on account of [20, Theorem 5.1] (with the choice
m = 2). Clearly, Lemma 2.1 does not depend on the choices fors andq.

Ad Section 3. Due to (5.1) we still have the identity∫
B2R

∇f̃ε(∇vε) : ∇
(
η2Γα/2

ε vε
)

dx = 0, ∀α � 0,

and with the same calculations as before we obtain Theorem 3.1. Lemma 3.1 requires no changes, and
for Lemmas 3.2 and 3.3 we can either quote the proofs of Proposition 3.5 and Lemma 3.6 of [6] with
µ := 2− s or – for a more detailed exposition – the proofs of [5, Proposition III.4.3 and Lemma III.4.4]
(lettingµ = 2− s). Again the informationδ(ε)

∫
BR

Γ
r/2
ε dx → 0 asε → 0 is needed which is contained

in Lemma 2.1.

Ad Section 4. The corresponding version of Lemma 3.1 can be found in [6, Lemma 4.1] where in case
q < 2 the excess functionE(x, r) takes a form different to the one considered here. Anyhow, the general
situation 1< s < q is completely discussed in [6, Section 4] leading to the conditionq < sn/(n− 2), if
n � 3, which is sufficient for the blow-up procedure.

Appendix A

Let f (ξ1, . . . , ξn) = (1 + |ξ|2 + h(ξ1))s/2 with h(ξ1) = (1 + |ξ1|2)q/s for exponents 2� s < q. We
have

D2f (ξ)(U ,U ) =
s

2

[
1 + |ξ|2 + h(ξ1)

](s−2)/2{
2|U |2 + D2h(ξ1)(U1,U1)

}
+

s

2
s− 2

2
[. . .]s/2−2{2ξ : U + ∇h(ξ1) · U1

}2
, (A.1)

and since the second term on the right-hand side of (A.1) is� 0, we deduce on account of
D2h(ξ1)(U1,U1) � 0 the estimate

s|U |2
(
1 + |ξ|2

)(s−2)/2 � D2f (ξ)(U ,U ). (A.2)



M. Bildhauer and M. Fuchs / Partial regularity for a class of anisotropic variational integrals 311

In (A.2) we cannot replace (s− 2)/2 by a larger exponent which is seen by choosingξ1 = U1 = 0
in (A.1) and by considering large values of|ξ|. In this special case|D2f (ξ)| can be controlled from
above and from below by|ξ|s−2. In order to obtain an upper bound forD2f (ξ)(U ,U ) we observe

∣∣∇h(ξ1)
∣∣ � c

(
1 + |ξ1|2

)q/s−1/2
,

∣∣D2h(ξ1)
∣∣ � c

(
1 + |ξ1|2

)q/s−1
,

wherec denotes various positive constants depending on the different parameters. From (A.1) we deduce:

∣∣D2f (ξ)
∣∣ � c

[
1 + |ξ|2 +

(
1 + |ξ1|2

)q/s](s−2)/2{
1 +

(
1 + |ξ1|2

)q/s−1}
+ c[. . .]s/2−2{|ξ| + (

1 + |ξ1|2
)q/s−1/2}2

. (A.3)

Sinces � 2, the first term on the right-hand side of (A.3) is bounded from above by

c
(
1 + |ξ|2

)(q/s)(s−2)/2(
1 + |ξ|2

)q/s−1 = c
(
1 + |ξ|2

)(q−2)/2

which has the desired growth.
Next we discuss the second term by first observing

[. . .]s/2−2{|ξ| + (
1 + |ξ1|2

)q/s−1/2}2 � c[. . .]s/2−2{1 + |ξ|2 +
(
1 + |ξ1|2

)2q/s−1} =: cαβ.

Case 1:In the cases/2 � 2 we have

αβ � c
(
1 + |ξ|2

)(q/s)(s/2−2)(
1 + |ξ|2

)2q/s−1 = c
(
1 + |ξ|2

)(q−2)/2
.

Case 2:If s/2 < 2 then let us first assume in addition that

(a) 1+ |ξ|2 � (1 + |ξ1|2)2q/s−1.

Dropping 1+ |ξ|2 in α, we get

α �
(
1 + |ξ1|2

)(q/s)(s/2−2)
, β � c

(
1 + |ξ1|2

)2q/s−1
,

hence

αβ � c
(
1 + |ξ1|2

)q/2−1 � c
(
1 + |ξ|2

)(q−2)/2
.

Next let

(b) 1+ |ξ|2 � (1 + |ξ|2)2q/s−1.

Dropping (1+ |ξ1|2)q/s in α, we get

α �
(
1 + |ξ|2

)s/2−2
.

Forβ we use our assumption (b) and get

β � c
(
1 + |ξ|2

)
,
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thus

αβ � c
(
1 + |ξ|2

)s/2−1 � c
(
1 + |ξ|2

)(q−2)/2
.

Altogether we obtain inequality (1.2) for the above example. It should be noted that the exponent
(q − 2)/2 occurring on the right-hand side is optimal.

Remark A.1. With similar arguments we can show the validity of (1.2) for the first example from
Remark 1.1(d). Moreover, it is an easy exercise to check (1.2) if we modify the first example in Re-
mark 1.1(d) by letting

f (ξ) =
(
|ξ|2 +

∑
α∈I

(
1 + |ξα|2

)qα/s
)s/2

for some index set∅ �= I ⊂ {1, . . . ,n} and exponents 2� s < qα, q := max{qα: α ∈ I}.

Appendix B

Here we give a proof of

Lemma B.1. Letv ∈ W 1
t (Ω; RN ) for some1 � t < ∞ and consider a Lipschitz functionΦ : RN → R

k.
ThenΦ ◦ v is in the spaceW 1

t (Ω; Rk) together with∣∣∂α(Φ ◦ v)
∣∣ � Lip(Φ)

∣∣∂αv
∣∣, α = 1, . . . ,n. (B.1)

Remark B.1. In the paper [24] the following weaker version of (B.1) is established (assumingt > 1)∣∣∇(Φ ◦ v)
∣∣ �

√
k Lip(Φ)|∇v|, (B.2)

but (B.2) does not imply the statement of Lemma 1.3.

Proof of Lemma B.1. From [26, Theorem 3.1.9] we getΦ ◦ v ∈ W 1
t (Ω; Rk) and

∂α(Φ ◦ v) = DΦ(v)(∂αv) (B.3)

for anyv ∈ W 1
t (Ω; RN ) provided the Lipschitz function is in addition of classC1. From (B.3) we deduce

the estimate∣∣∇(Φ ◦ v)
∣∣ � ‖DΦ‖∞|∇v|. (B.4)

Clearly (B.4) is weaker than (B.1) since‖DΦ‖∞ is of order
√
k Lip(Φ).

Let us first consider the caset > 1. Givenv ∈ W 1
t (Ω; RN ) we also suppose thatΦ is aC1 Lipschitz

function and choose a sequencevm ∈ C∞(Ω; RN ) such that

vm → v in W 1
t

(
Ω; RN)

and a.e. onΩ.
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We have (1� α � n)

∂α(Φ ◦ vm)(x) = lim
t→0

1
t

(
Φ

(
vm(x + teα)

)
− Φ

(
vm(x)

))
,

thus ∣∣∂α(Φ ◦ vm)
∣∣ � Lip(Φ)|∂αvm|. (B.5)

From (B.4) or (B.5) we deduce

sup
m

∥∥∇(Φ ◦ vm)
∥∥
Lt(Ω) < ∞,

and ∣∣Φ(vm)
∣∣ � Lip(Φ) |vm| +

∣∣Φ(0)
∣∣

gives

sup
m

‖Φ ◦ vm‖Lt(Ω) < ∞,

thus (t > 1) Φ ◦ vm ⇁: w in W 1
t (Ω; Rk) at least for a subsequence. Passing to a further subsequence we

seeΦ◦vm → w a.e. onΩ, thusw = Φ◦v. ConsiderBr(z) ⊂ Ω and observe that∇(Φ◦vm) ⇁ ∇(Φ◦v)
in Lt(Ω; Rnk) implies∫

Br(z)

∣∣∂α(Φ ◦ v)
∣∣ dx � lim inf

m→∞

∫
Br(z)

∣∣∂α(Φ ◦ vm)
∣∣ dx

(B.5)
� Lip(Φ) lim inf

m→∞

∫
Br(z)

∣∣∂αvm
∣∣ dx = Lip(Φ)

∫
Br(z)

∣∣∂αv
∣∣ dx,

therefore∫
−

Br(z)

∣∣∂α(Φ ◦ v)
∣∣ dx � Lip(Φ)

∫
−

Br(z)

|∂αv|dx,

and we have (B.1) in caset > 1 andΦ ∈ C1 ∩ Lip (RN ; Rk).
Next we assume thatΦ is merely Lipschitz. IfΦε is a mollification ofΦ, we have

Lip(Φε) � Lip(Φ), Φε → Φ uniformly

asε → 0, moreoverΦε ◦ v → Φ ◦ v in Lt(Ω; Rk) and a.e. The case considered before implies∣∣∂α(Φε ◦ v)
∣∣ � Lip(Φε)|∂αv|, (B.6)
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thus (t > 1) Φε ◦ v ⇁ Φ ◦ v in W 1
t (Ω; Rk). Semicontinuity of the norm gives as before

∫
−

Br(z)

∣∣∂α(Φ ◦ v)
∣∣ dx � lim inf

ε→0

∫
−

Br(z)

∣∣∂α(Φε ◦ v)
∣∣ dx

(B.6)
� lim inf

ε→0
Lip(Φε)

∫
−

Br(z)

|∂αv|dx.

Summing up Lemma B.1 is established in caset > 1. For completeness letv ∈ W 1
1 (Ω; RN ) and consider

a Lipschitz functionΦ : RN → R
k. Let vm ∈ C∞(Ω; RN ) such thatvm → v in W 1

1 (Ω; RN ) and a.e.
ClearlyΦ(vm) → Φ(v) in L1(Ω; Rk) and a.e., thusΦ(v) ∈ BV(Ω; Rk) and

∣∣∇(Φ ◦ v)
∣∣(Ω) � lim inf

m→∞

∫
Ω

∣∣∇(Φ ◦ vm)
∣∣ dx

∗
� Lip(Φ) lim

m→∞

∫
Ω
|∇vm|dx = Lip(Φ)

∫
Ω
|∇v|dx.

Observe that in∗ we used (B.1) for the sequence {vm} which is in any spaceW 1
t (Ω; RN ), t > 1. By the

same reasoning we get for any ballBr(z) ⊂ Ω

∣∣∇(Φ ◦ v)
∣∣(Br(z)

)
� lim inf

m→∞

∫
Br(z)

∣∣∇(Φ ◦ vm)
∣∣ dx � Lip(Φ) lim

m→∞

∫
Br(z)

|∇vm|dx

= Lip(Φ)
∫
Br(z)

|∇v|dx.

Applying the Besicovitch derivation theorem (see [3, Theorem 2.22, p. 54]; chooseν = ∇Φ(v), µ =
|∇v| · Ln) we deduce∇(Φ ◦ v) ∈ L1(Ω; Rnk) and|∇(Φ ◦ v)| � Lip(Φ)|∇v|. This is Lemma B.1 in the
limit caset = 1 provided we replace∇ by ∂α in the above calculations.�
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