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Abstract. We investigate the smoothness properties of local solutions of the nonlinear Stokes
problem

−div {T (ε(v))}+∇π = g on Ω,

div v ≡ 0 on Ω,

where v: Ω → Rn is the velocity field, π: Ω → R denotes the pressure function, and g: Ω → Rn

represents a system of volume forces, Ω denoting an open subset of Rn. The tensor T is assumed
to be the gradient of some potential f acting on symmetric matrices. Our main hypothesis
imposed on f is the existence of exponents 1 < p ≤ q < ∞ such that

λ(1 + |ε|2)
p−2
2 |σ|2 ≤ D2f(ε)(σ, σ) ≤ Λ(1 + |ε|2)

q−2
2 |σ|2

holds with suitable constants λ, Λ > 0, i.e. the potential f is of anisotropic power growth. Under
natural assumptions on p and q we prove that velocity fields from the space W 1

p,loc(Ω; Rn) are of

class C1,α on an open subset of Ω with full measure. If n = 2, then the set of interior singularities
is empty.
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1. Introduction

Given a bounded Lipschitz domain Ω ⊂ Rn, n ≥ 2, and a system of volume forces
g: Ω → Rn together with a boundary function v0: ∂Ω → Rn, the Stokes problem
in the classical formulation reads as follows (see [La], p. 35): find a velocity field
v: Ω → Rn and a pressure function π: Ω → R such that the following system of
equations is satisfied
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


ν∆v = ∇π − g on Ω,
div v = 0 on Ω,
v = v0 on ∂Ω.

(1.1)

Here ν denotes the kinematic viscosity which is assumed to be constant. For a
detailed overview concerning the existence and regularity of solutions (even in the
case of unbounded domains) we refer to the monograph [La] of Ladyzhenskaya.
The velocity field v solving (1.1) is easily seen to be the solution of the minimization
problem

J [u] :=
∫

Ω

{
f(ε(u))− g · u}

dx → min in C, (1.2)

where C represents the class of all solenoidal vector fields with trace v0 on ∂Ω, and
where f denotes the quadratic potential f(ε) = |ε|2. (For simplicity we let ν = 1,
and ε(u) is the symmetric gradient of u: Ω → Rn.) A natural extension of problem
(1.2) arises when we consider more general convex potentials f which immediately
leads to corresponding nonlinear variants of equation (1.1). As a rule, the question
of existence of minimizers can be easily settled by working in appropriate energy
classes and by using Korn’s inequality but the question of regularity becomes much
more delicate: since we are in the nonlinear vector-valued setting, only partial
regularity results can be expected, if n ≥ 3. Before going into details, let us first
look at some examples.

Power growth potentials f fall into the class of models proposed by Ladyzhen-
skaya in [La], p. 192. Roughly speaking, we require f to satisfy

λ(1 + |ε|2) p−2
2 |σ|2 ≤ D2f(ε)(σ, σ) ≤ Λ(1 + |ε|2) p−2

2 |σ|2 (1.3)

with positive constants λ, Λ and with some exponent p > 1. Of course, (1.3)
is some kind of uniform ellipticity estimate which is required to be valid for all
symmetric (n × n)-matrices. A typical example is given by f(ε) = (1 + |ε|2)p/2,
and for this potential the solution v of (1.2) represents the stationary flow of a
“power-law fluid” with small velocity. Another example of this category arises if
we let (see e.g. [AM], [BAH])

f(ε) = µ∞|ε|2 + µ0(1 + |ε|2) p
2

with numbers µ0, µ∞ > 0 and p > 1.
In [Fu] and [FS1] the following results on the regularity of minimizing velocity

fields were established: let (1.3) hold with p ≥ 2 and consider the solution u of
(1.2) to be sought in the Sobolev-space W 1

p (Ω; Rn). Then, if n ≥ 3, there exists
an open subset Ω0 of Ω with full measure such that u ∈ C1,α(Ω0; Rn) for any
0 < α < 1, i.e. we have partial C1-regularity (compare [FS1], Chapter 3, Theorem
3.1.3 and 3.1.4). In the twodimensional case together with p = 2 (this includes
the Powell–Eyring model, see [PE]) the singular set is empty, we again refer to
[FS1], Chapter 3, Theorem 3.3.2. The case 1 < p < 2 was treated in [Re] (see
also [FR]): for n = 2 there are no singular points, in case n ≥ 3 with p ≥ 2− 4/n
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partial regularity holds. Recently, Kaplický, Málek and Stará ([KMS]) considered
the Dirichlet problem

(∇v)v − div {T (ε(v))}+∇π = g on Ω,
div v = 0 on Ω,

v = 0 at ∂Ω

for twodimensional domains Ω, where T is the gradient of some potential f with
(1.3) satisfying in addition the structural condition f(ε) = f̃(|ε|2). In case p ∈
(3/2,∞) they construct global C1,α-solutions up to the boundary, for p > 6/5
solutions with interior C1,α-regularity are obtained. It should be emphasized that
their paper covers the case of a non-vanishing convective term (∇v)v which makes
it necessary to impose a lower bound on the exponent p. From the physical point
of view their assumption that f is just a function of |ε| seems to be quite natural.

Potentials of logarithmic type are related to the Prandtl–Eyring fluid model:
we have (up to physical constants)

f(ε) =
∫ |ε|

0

ar sinh t dt

and the corresponding version of (1.3) reads as

λ(1 + |ε|)−1|σ|2 ≤ D2f(ε)(σ, σ) ≤ Λ|ε|−1 ln(1 + |ε|)|σ|2. (1.4)

The potential f is now of nearly linear growth which means that obviously there
exists no exponent p > 1 such that (1.3) is satisfied. In [FS2] we discussed the
existence of minimizers in certain Orlicz-type classes and proved partial C1,α-
regularity, if n = 3, as well as full regularity, if n = 2. Further extensions are
given in the paper [FO], Section 7. In connection with the twodimensional case we
should mention the related work of Frehse and Seregin ([FrS]) on plastic materials
with logarithmic hardening where they prove differentiability in case n = 2.

The purpose of our note is to introduce a third class of potentials allowing
different growth rates from above and below. More precisely, suppose that f ≥ 0
is of class C2 satisfying

λ(1 + |ε|2) p−2
2 |σ|2 ≤ D2f(ε)(σ, σ) ≤ Λ(1 + |ε|2) q−2

2 |σ|2 (1.5)

for exponents 1 < p ≤ q < ∞. (Note that the logarithmic potential is not of this
type since according to (1.4) we would have p = 1 and q = 1 + ρ (with any ρ > 0)
but p = 1 is excluded for obvious reasons.) A typical example for this anisotropic
behavior is given by

f(ε) = |ε|2 + (1 + |ε11|2)
q
2

with q > 2. Another example arises if we let f(ε) = |ε|2 + h(ε) where h satisfies
the estimate 0 ≤ D2h(ε)(σ, σ) ≤ Λ(1 + |ε|2)(q−2)/2|σ|2, i.e. we allow that D2h is
degenerated together with the upper growth rate q−2 for some q > 2. In standard
variational calculus the anisotropic situation modelled by (1.5) has been intensively
studied in recent years, we mention the papers [Ma], [PS], [AF], [BF1], [BF2] and
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[BF4], but also in the mathematical theory of non-Newtonian fluids anisotropic
growth seems to be of some interest, we refer to [MNRR], p. 193. Again we look
at the minimization problem (1.2), and it is an easy exercise to show the existence
of a unique J-minimizing map u provided we work in the class

C =
{

w ∈ v0+
◦

Wp
1(Ω; Rn) : div w = 0, J [w] < ∞

}
assuming in addition that v0 ∈ C. Our main result concerns the regularity of this
solution.

Main Theorem. Let (1.5) hold and suppose that the volume forces g are suffi-
ciently regular.

a) If q ≥ 2 and q < p(1 + 2/n), then partial C1-regularity holds.
b) Let q = 2 together with n = 2. Then the singular set is empty.

Let us add some

Remarks. i) In [BF1] we established this theorem in the framework of classical
variational calculus, and of course we here benefit from the general line of [BF1]
but the arguments given there have to be adjusted in a non-trivial way.

ii) In part a) the restriction q ≥ 2 is a technical one but not of principal nature.
In fact, the case q < 2 would at least require a separate proof of the blow-up lemma
given in Section 5, and even for the standard setting described in [BF1] this step
causes a lot of technical difficulties if q < 2.

Nevertheless it is possible to include the case q < 2 up to a certain extend: if
we have (1.5) with exponents 1 < p < q < 2, then (1.5) clearly is satisfied with q
replaced by q̄ = 2 which means that in case n = 3 partial regularity holds under
the additional assumption 2 < p(1 + 2/3). i.e. p > 6/5, whereas for n = 2 we have
full regularity without further restriction on p. Let us remark again that in the
isotropic case 1 < p = q < 2 together with n = 3 we always have partial regularity
since then p > 2− 4/n (see [Re], [FR]).

iii) Let us again look at the case 1 < p < q < 2 and define f(ε) = (1+ |ε|2)p/2 +
(1 + |ε11|2)q/2. In case n = 3 we see from Remark ii) that partial regularity holds
for p > 6/5, thus the whole scale p ∈ (1, 6/5) is excluded, which motivates the
study of the regularity theory in the subquadratic case 1 < p < q < 2 together
with the appropriate condition q < p(1 + 2/3). But even with this extension it
is not possible to get better results for the above example since f satisfies (1.5)
with new exponent q̄ = 2, and this choice is optimal, which again leads us to
the condition p > 6/5 excluding values of q and p close to 1. In [Bi] and [BF3]
an appropriate regularity theory in the variational setting was developed which
requires as main ingredient the bound q < 2 + p (for any dimension n) which is
clearly satisfied if 1 < p < q < 2, and it remains a challenging task to transfer this
result to anisotropic Stokes problems.
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iv) It would also be desirable to give a version of part b) for the superquadratic
case q > 2 together with the restriction q < 2p (compare [BF4]). As it stands, b)
implies full regularity for energy densities like f(ε) = (1 + |ε|2)p/2 + |ε11|2 with
p ∈ (1, 2]. More generally, we can consider f of the form f(ε) = (1+ |ε|2)p/2 +h(ε)
with h satisfying 0 ≤ D2h(ε)(σ, σ) ≤ Λ|σ|2 and exponent p in (1, 2].

v) Without further comment it is not clear that the minimizer u ∈ C is also
a solution of the corresponding Euler–Lagrange equation (“the anisotropic Stokes
system”), see Remark 2.2.

Our paper is organized as follows: in Section 2 we fix our notation and give
a precise formulation of our main theorem. Section 3 is a collection of results on
higher weak differentiability. In Section 4 we regularize our original variational
problem and prove Caccioppoli-type inequalities as well as uniform higher integra-
bility of the regularizing sequence. Using these preparations partial regularity is
established via blow-up in Section 5. The final Section 6 contains some comments
on the case n = 2.

2. Notation and results

Let S denote the space of all symmetric matrices of order n. We will use the
following notation

u · v = uivi, |u| = √
u · u,

u⊗ v = (uivj), u¯ v =
1
2
(u⊗ v + v ⊗ u)

for u = (ui), v = (vi) ∈ Rn,

ε : σ = εijσij , |ε| = √
ε : ε, σν = (σijνj) ∈ Rn

for ε, σ ∈ S, ν ∈ Rn. Here the convention of summation over repeated indices
running from 1 to n is adopted. Let Ω ⊂ Rn, n ≥ 2, denote an open set. For
functions u: Ω → Rn we let

ε(u) =
1
2
(
∂iu

j + ∂ju
i),

whenever this expression makes sense. For a definition of the standard Lebesgue

and Sobolev spaces like Lp
(loc)(...), W k

p(,loc)(...),
◦

Wp
k(...), etc., we refer to e.g. [Ad].

Assume that we are given a function f : S → [0,∞) of class C2 satisfying for
all ε, σ ∈ S

λ(1 + |ε|2) p−2
2 |σ|2 ≤ D2f(ε)(σ, σ) ≤ Λ(1 + |ε|2) q−2

2 |σ|2 (2.1)

with positive constants λ, Λ and with exponents 1 < p ≤ q < +∞. Let us define
the energy

J [u] =
∫

Ω

f(ε(u)) dx. (2.2)
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Note that (2.1) immediately implies the growth estimate

a|ε|p − b ≤ f(ε) ≤ A
(|ε|q + 1

)
for all ε ∈ S (2.3)

with constants a, A > 0, b ∈ R. Moreover, f is a convex function. In extension
of the Main Theorem from Section 1 we do not restrict ourselves to global J-
minimizers, we just look at the local situation which is quite natural since the
question of boundary regularity is beyond the scope of our investigations.

Definition 2.1. Let

K =
{

v ∈ W 1
p,loc(Ω; Rn) : div v = 0

}
.

A mapping u: Ω → Rn is termed a local J-minimizer subject to the constraint
div u = 0 if and only if u belongs to the class K and satisfies:

a)
∫

Ω′
f(ε(u)) dx < +∞ for all Ω′ b Ω;

b)
∫

Ω′
f(ε(u)) dx ≤

∫
Ω′

f(ε(v)) dx for all Ω′ b Ω

and for all v ∈ K s.t. spt (u− v) ⊂ Ω′.

We have

Theorem 2.1. Consider a local J-minimizer u where f is supposed to satisfy
(2.1).

a) If q ≥ 2 and q < p(1 + 2/n), then there is an open set Ω0 ⊂ Ω with
|Ω− Ω0| = 0 such that u ∈ C1,α(Ω0; Rn) for any 0 < α < 1.

b) Let n = 2 together with q = 2. Then Ω0 = Ω, i.e. full regularity holds.

Remark 2.1. For technical simplicity we included no volume forces g in the en-
ergy density defined in (2.2). But Theorem 2.1 easily extends to forces g located
in some appropriate Morrey space.

Remark 2.2. Since by definition a local minimizer is just of class W 1
p,loc(Ω; Rn)

and since by (2.1) Df(ε) can grow like |ε|q−1 it is again unclear if the Euler
equation holds. But we have the following intermediate regularity result (see
Lemma 4.4 and Corollary 4.2): let (2.1) hold with exponents 1 < p ≤ q < +∞,
q ≥ 2. Then, if q < p(1+2/n) (for any dimension n ≥ 2), local J-minimizers belong
to the space W 1

q,loc(Ω; Rn), and therefore solve the Euler-equation associated to
(2.2) in the weak sense.

3. Auxiliary results

Here we collect some material which might be well-known to experts but which is
hard to trace in the literature. Let s ≥ 2 and consider a function F : S → [0,∞)
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of class C2 satisfying the uniform estimate

a(1 + |ε|2) s−2
2 |σ|2 ≤ D2F (ε)(σ, σ) ≤ A(1 + |ε|2) s−2

2 |σ|2 (3.1)

for all ε, σ ∈ S with a, A > 0.

Lemma 3.1. Suppose that v ∈ W 1
s,loc(Ω̃; Rn) is a local minimizer of the energy

w 7→ ∫
Ω̃

F (ε(w)) dx subject to the constraint div w = 0, where Ω̃ denotes some
arbitrary open set in Rn. Then we have:

a) v ∈ W 2
2,loc(Ω̃; Rn);

b) (1 + |ε(v)|2)s/4 ∈ W 1
2,loc(Ω̃) together with

∇{
(1 + |ε(v)|2)s/4

}
=

s

2
(1 + |ε(v)|2) s

4−1|ε(v)|∇|ε(v)| ;
c) DF (ε(v)) ∈ W 1

s/(s−1),loc(Ω̃; S) and

∂k

{
DF (ε(v))

}
= D2F (ε(v))(∂kε(v), ·), k = 1, . . . , n.

Remark 3.1.
i) In the standard variational setting Lemma 3.1 is classical and can be found

in the works of Ladyzhenskaya and Ural’tseva, Campanato or Morrey.
ii) In [Re] there is a variant of Lemma 3.1 covering the case s < 2.
iii) In Lemma 3.1 the notation of a local minimizer is the same as introduced

in Section 2.

Proof of Lemma 3.1. We have∫
Ω̃

DF (ε(v)) : ε(ϕ) dx = 0 (3.2)

being valid for any ϕ ∈ W 1
s (Ω̃; Rn) with div ϕ = 0 and compact support in Ω̃. Let

us introduce the difference quotient of a function g in the kth direction through

∆hg(x) :=
1
h

{
g(x + hek)− g(x)

}
, h 6= 0.

Next fix a ball BR b Ω̃ and consider η ∈ C∞0 (BR) such that η ≡ 1 on Br, η ≡ 0
outside of Br′ , η ≥ 0 and |∇η| ≤ c/(r′ − r), where 0 < r < r′ < R. If we assume
|h| to be sufficiently small (depending on sptϕ), then (3.2) implies∫

Ω̃

{
DF (ε(v)(x + hek))−DF (ε(v)(x))

}
: ε(ϕ) dx = 0. (3.3)

Clearly g := h−1div (η2∆hv) is in the space Ls(Br′) together with
∫

Br′
g dx = 0,

thus we can use the results of [LS] or [Pi] (see also [Ga], III, Theorem 3.2) on the

existence of a function ψ ∈
◦

Ws
1(Br′ ; Rn) such that div ψ = g on Br′ , i.e.

div ψ =
1
h
∇η2 ·∆hv,
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together with
‖∇ψ‖Ls(Br′ ) ≤ c‖g‖Ls(Br′ ). (3.4)

Let us choose ϕ := h−1η2∆hv − ψ ∈
◦

Ws
1(Br′ ; Rn) in equation (3.3). We get∫

Br′
∆h

{
DF (ε(v))

}
: ε(∆hv)η2 dx

=
∫

Br′
∆h

{
DF (ε(v))

}
:
(
hε(ψ)−∇η2 ¯∆hv

)
dx. (3.5)

Let us write

∆h

{
DF (ε(v))

}
(x) =

1
h

∫ 1

0

d
dt

DF
(
ε(v)(x) + t[ε(v)(x + hek)− ε(v)(x)]

)
dt

=
∫ 1

0

D2F
(
ε(v) + thε(∆hv)

)
(ε(∆hv), ·) dt

and introduce the parameter-dependent bilinear form

Bx :=
∫ 1

0

D2F
(
ε(v)(x) + thε(∆hv)(x)

)
dt

acting on pairs of symmetric matrices. With this notation (3.5) takes the form∫
Br′

Bx(ε(∆hv), ε(∆hv))η2 dx =
∫

Br′
Bx(ε(∆hv), hε(ψ)−∇η2 ¯∆hv) dx. (3.6)

On the right-hand side we use the Cauchy–Schwarz inequality to get for any 0 <
δ < 1∣∣∣∣∣

∫
Br′

Bx(ε(∆hv),∇η2 ¯∆hv) dx

∣∣∣∣∣ ≤ δ

∫
Br′

Bx(ε(∆hv), ε(∆hv))η2 dx

+cδ−1

∫
Br′

Bx(∇η ¯∆hv,∇η ¯∆hv) dx

=: δI1 + cδ−1I2,

I2 ≤ c(r′ − r)−2

∫
Br′

∫ 1

0

(1 + |ε(v) + thε(∆hv)|2) s−2
2 |∆hv|2 dxdt =: M,

where we made use of the right-hand side of (3.1). We further have (0 < δ′ < 1)∣∣∣∣
∫

Br′
Bx(ε(∆hv), hε(ψ)) dx

∣∣∣∣∣
≤ δ′

∫
Br′

Bx(ε(∆hv), ε(∆hv)) dx + cδ′−1h2

∫
Br′

|Bx||ε(ψ)|2 dx.
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Let us choose δ = 1/2, thus δI1 can be absorbed on the left-hand side of (3.6),
and if we take δ′ = 1/4 we end up with∫

Br

Bx(ε(∆hv), ε(∆hv)) dx

≤ 1
2

∫
Br′

Bx(ε(∆hv), ε(∆hv)) dx + c

{
M + h2

∫
Br′

|Bx||ε(ψ)|2 dx

}
. (3.7)

Observe that (recall (3.4) and s ≥ 2)

h2

∫
Br′

|Bx||ε(ψ)|2 dx ≤ h2

(∫
Br′

|ε(ψ)|s dx

) 2
s
(∫

Br′
|Bx| s

s−2 dx

)1− 2
s

≤ c(r′ − r)−2

(∫
Br′

|∆hv|s dx

) 2
s
(∫

Br′
|Bx| s

s−2 dx

)1− 2
s

,

and by applying Hölder’s inequality also to the integral in M , we deduce from
(3.7) by letting

ω(r) :=
∫

Br

Bx(ε(∆hv), ε(∆hv)) dx

and recalling the definition of Bx:

ω(r) ≤ c

(r′ − r)2

(∫
Br′

|∆hv|s dx

) 2
s
(∫

Br′
(1 + |ε(v)|2 + |hε(∆hv)|2) s

2 dx

)1− 2
s

+
1
2
ω(r′). (3.8)

Since v is in the space W 1
s,loc(Ω̃; Rn) we have

‖∆hv‖Ls(Br′ ) ≤ ‖∇v‖Ls(BR+h)

and by using similar bounds for the second integral in (3.8), we find

ω(r) ≤ 1
2
ω(r′) + c(r′ − r)−2

(
1 +

∫
BR+h

|∇v|s dx

)
.

Thus we may apply Lemma 3.1, p. 161, of [Gi] with the result

ω(r) ≤ c(r′ − r)−2

(
1 +

∫
BR+h

|∇v|s dx

)
, 0 < r < r′ ≤ R. (3.9)

Now, on account of s ≥ 2, we have

ω(r) ≥ c|ε(∆hv)|2,
therefore (3.9) immediately implies (by quoting Korn’s inequality) part a) of
Lemma 3.1.
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By [Mo], Theorem 3.6.8 (b), we then have

ε(∆hv) h→0→ ε(∂kv) in L2
loc,

in particular we may assume also convergence a.e. at least for a subsequence. This
implies a.e.

0 ≤ Bx(ε(∆hv), ε(∆hv))

=
∫ 1

0

D2F
(
ε(v)(x) + t[ε(v)(x + hek)− ε(v)(x)]

)
(ε(∆hv)(x), ε(∆hv)(x)) dt

h→0→ D2F (ε(v)(x))(ε(∂kv)(x), ε(∂kv)(x)),

where we now take the sum w.r.t. k = 1, . . . , n. If we apply Fatou’s lemma and
use (3.9) with the choice r′ = R we find∫

Br

D2F (ε(v))(ε(∂kv), ε(∂kv)) dx ≤ c

(R− r)2

∫
BR

(1 + |∇v|s) dx (3.10)

for any r < R, in particular, the left-hand side of (3.10) is finite. We now claim

(1 + |ε(v)|2) s
4 ∈ W 1

2,loc(Ω̃). (3.11)

Let

θL(t) :=
{

θ(t), t ≤ L
(1 + L2)s/4, t ≥ L

}
, θ(t) := (1 + t2)

s
4 .

v ∈ W 2
2,loc(Ω̃; Rn) implies θL(|ε(v)|) ∈ W 1

1,loc(Ω̃) together with

|∇θL(|ε(v)|)| ≤ θ′L(|ε(v)|)|∇|ε(v)|| ≤ θ′(|ε(v)|)|∇|ε(v)||,
thus ∫

ω

|∇θL(|ε(v)|)|2 dx ≤ c

∫
ω

(1 + |ε(v)|2) s−2
2 |∇ε(v)|2 dx

for any subdomain ω b Ω̃, and (3.10) in combination with a covering argument
shows

sup
L>0

‖θL(|ε(v)|)‖W 1
2 (ω) < ∞,

hence
θL(|ε(v)|) ⇁: ϑ

weakly in W 1
2,loc(Ω̃) as L →∞. On the other hand

θL(|ε(v)|) → θ(|ε(v)|) a.e., L →∞,

thus ϑ = θ(|ε(v)|) which proves (3.11). Finally, it is immediate that

∇θL(|ε(v)|) = θ′L(|ε(v)|)∇|ε(v)| → θ′(|ε(v)|)∇|ε(v)|
a.e. as L →∞ which gives the required identity

∇θ(|ε(v)|) = θ′(|ε(v)|)∇|ε(v)|.
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Let us recall the formula

∆h

{
DF (ε(v))

}
(x)

=
∫ 1

0

D2F (ε(v)(x) + t[ε(v)(x + hek)− ε(v)(x)]
)
(ε(∆hv)(x), ·) dt.

The arguments outlined after (3.9) show that for almost all x the above expression
converges to D2F (ε(v)(x))(∂kε(v)(x), ·) as h → 0, i.e.

∆h

{
DF (ε(v))

} h→0→ D2F (ε(v))(∂kε(v), ·) a.e. (3.12)

In order to continue we observe (according to the above formula)∣∣∆h

{
DF (ε(v))

}∣∣2
≤ Bx

(
ε(∆hv),∆h

{
DF (ε(v))

})
≤ (

Bx(ε(∆hv), ε(∆hv))
) 1

2
(
Bx

(
∆h

{
DF (ε(v))

}
,∆h

{
DF (ε(v))

})) 1
2

≤ (
Bx(ε(∆hv), ε(∆hv))

) 1
2
√
|Bx|

∣∣∆h

{
DF (ε(v))

}∣∣,
so that ∣∣∆h

{
DF (ε(v))

}∣∣ ≤ √
|Bx|

(
Bx(ε(∆hv), ε(∆hv))

) 1
2 ,

hence ∣∣∆h

{
DF (ε(v))

}∣∣ s
s−1 ≤ |Bx| 12 s

s−1
(
Bx(ε(∆hv), ε(∆hv))

) 1
2

s
s−1 .

On account of s ≥ 2 we have 1
2

s
s−1 ≤ 1. Let us assume that s > 2, the case

s = 2 follows by obvious simplifications. Then the right-hand side of the latter
inequality is bounded from above by

c
{
|Bx| s

s−2 + Bx(ε(∆hv), ε(∆hv))
}

.

By definition of Bx and the growth of D2F it is clear that |Bx|s/(s−2) is locally
of class L1 uniformly w.r.t. h, by (3.9) the same is true for Bx(ε(∆hv), ε(∆hv)),
therefore |∆h{DF (ε(v))}|s/(s−1) is uniformly bounded in L1

loc which proves that
DF (ε(v)) is of class W 1

s/(s−1),loc(Ω̃; S) (recall DF (ε(v)) ∈ Ls/(s−1)(Ω̃; S) on ac-
count of the growth properties of DF ). The formula for ∂k{DF (ε(v))} follows
from (3.12) since also ∆h{DF (ε(v))} → ∂k{DF (ε(v))} as h → 0 in L

s/(s−1)
loc (Ω̃; S)

(see [Mo], Theorem 3.6.8 (b)). ¤

4. Regularization, higher integrability of the gradient and a
Caccioppoli-type inequality

From now on we assume that we are in the situation of Theorem 2.1 a), i.e. u ∈ K
is a local J-minimizer with f satisfying (2.1), moreover, we have the bounds

q ≥ 2, q < p(1 + 2/n). (4.1)
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Let B2R = B2R(x0) denote a ball compactly contained in Ω and consider a se-
quence {um} of mollifications of u. We define

δm =
(
1 + m + ‖ε(um)‖2q

Lq(B2R)

)−1

together with
fm(ε) = f(ε) + δm(1 + |ε|2) q

2 , ε ∈ S.

Note that δm → 0 as m → ∞. Next, let vm denote the unique solution of the
minimization problem ∫

B2R

fm(ε(w)) dx → min

in the class um+
◦

Wq
1(B2R; Rn) subject to div w = 0. We observe that the in-

tegrands fm satisfy the hypotheses of Lemma 3.1 with s replaced by q. Further
properties of the sequence {vm} are collected in

Lemma 4.1. With the notation from above we have

i) sup
m
‖vm‖W 1

p (B2R) < ∞;

ii) vm ⇁ u in W 1
p (B2R; Rn) as m →∞;

iii) δm

∫
B2R

(1 + |ε(vm)|2) q
2 dx → 0 as m →∞;

iv)
∫

B2R

f(m)(ε(vm)) dx →
∫

B2R

f(ε(u)) dx as m →∞.

Proof. It is immediate that supm ‖ε(vm)‖Lp(B2R) < ∞, and from Korn’s inequality
(see e.g. [MM] or [Ko1], [Ko2], [Fi], [Fri], [St], [Ze]) we get

‖vm − um‖Lp(B2R) ≤ c‖ε(um)− ε(vm)‖Lp(B2R),

hence supm ‖vm‖Lp(B2R) < ∞. Applying Korn’s inequality in the form

‖∇vm‖Lp(B2R) ≤
{‖vm‖Lp(B2R) + ‖ε(vm)‖Lp(B2R)

}
(again compare the above references or [FS1], Lemma 3.0.1) we deduce i).

Minimality of vm and Jensen’s inequality give∫
B2R

f(ε(vm)) dx ≤
∫

B2R

fm(ε(vm)) dx ≤
∫

B2R

fm(ε(um)) dx

≤ δm

∫
B2R

(1 + |ε(um)|2) q
2 dx +

∫
B2R

f(ε(u)) dx + O(m), (4.2)

where O(m) → 0 as m →∞. By definition of δm we have

δm

∫
B2R

(1 + |ε(um)|2) q
2 dx → 0
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as m →∞, thus (4.2) implies

lim inf
m→∞

∫
B2R

f(ε(vm)) dx ≤
∫

B2R

f(ε(u)) dx. (4.3)

By i) we get the existence of ũ ∈ W 1
p (B2R; Rn) s.t. vm ⇁ ũ in W 1

p (B2R; Rn) at
least for a subsequence. (4.3) gives∫

B2R

f(ε(ũ)) dx ≤
∫

B2R

f(ε(u)) dx,

and since ũ ∈ u+
◦

Wp
1(B2R; Rn) together with div ũ = 0 we find ũ = u, thus ii)

holds. The remaining statements iii) and iv) follow from the chain of inequalities
(4.2). ¤

Lemma 4.2. Let hm := (1 + |ε(vm)|2)p/4. Then we have hm ∈ W 1
2,loc(B2R) to-

gether with

∇hm =
p

2
(1 + |ε(vm)|2) p

4−1|ε(vm)|∇|ε(vm)|.

In particular we have ε(vm) ∈ Lpχ
loc(B2R; S), where

χ =
{

n/(n− 2) if n ≥ 3,
any number if n = 2

Proof. Let us write

(1 + |ε(vm)|2) p
4 =

{
(1 + |ε(vm)|2) q

4

} p
q

.

Since t 7→ tp/q is Lipschitz on [1,∞) and since by Lemma 3.1 we know
(1 + |ε(vm)|2)q/4 ∈ W 1

2,loc(B2R) (together with the formula for the derivative)
we get the claim of Lemma 4.2. ¤

The next lemma contains a Caccioppoli-type inequality for the functions vm.

Lemma 4.3. For any (n × n)-matrix Q (not necessarily from the space S!) and
for any η ∈ C∞0 (B2R) we have the estimate∫

B2R

η2D2fm(ε(vm))(∂kε(vm), ∂kε(vm)) dx

≤ c‖∇η‖2L∞(B2R)

∫
spt∇η

Γ
q−2
2

m |∇vm −Q|2 dx, (4.4)

where Γm := 1 + |ε(vm)|2, and c denotes a positive constant independent of m
and R.
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Corollary 4.1. For any radii 0 < r < r′ such that Br′(x̄) b B2R we have∫
Br(x̄)

D2fm(ε(vm))(∂kε(vm), ∂kε(vm)) dx ≤ c(r′ − r)−2

∫
Br′ (x̄)

Γ
q
2
m dx. (4.5)

Proof of Corollary 4.1. From (4.4) we get by Hölder’s inequality∫
B2R

η2D2fm(ε(vm))(∂kε(vm), ∂kε(vm)) dx

≤ c‖∇η‖2L∞(B2R)

(∫
spt∇η

Γ
q
2
m dx

)1− 2
q
(∫

spt∇η

|∇vm −Q|q dx

) 2
q

.

Let us choose η ≡ 1 on Br(x̄), η ≡ 0 on B2R − Br′(x̄) and such that |∇η| ≤
c(r′ − r)−1. Consider a rigid motion γ = Bx + a such that (see [FS1], Lemma
3.0.3)

‖vm − γ‖Lq(Br′ (x̄)) ≤ c‖ε(vm)‖Lq(Br′ (x̄)).

Since ∇(vm − γ) = ∇vm −B, we infer from Korn’s inequality

‖∇vm −B‖Lq(Br′ (x̄)) ≤ c
{‖vm − γ‖Lq(Br′ (x̄)) + ‖ε(vm)‖Lq(Br′ (x̄))

}
≤ c‖ε(vm)‖Lq(Br′ (x̄)),

hence (4.5) follows by choosing Q = B. ¤

Proof of Lemma 4.3. Let σm := Dfm(ε(vm)) which by Lemma 3.1 is of class
W 1

q/(q−1),loc(B2R; S), moreover, the growth of Dfm implies σm ∈ Lq/(q−1)(B2R; S).
Therefore the mapping

Φ :
◦

Wq
1(B2R; Rn) 3 ϕ 7→

∫
B2R

σm : ε(ϕ) dx

belongs to the dual space
◦

Wq
1(B2R; Rn)∗. The Euler equation satisfied by vm shows

Φ(ϕ) = 0, if div ϕ = 0, thus by a well known reasoning (see, e.g. [Ga], p. 180,
Lemma 1.1, or [La], [LS]) there exists a pressure function pm ∈ Lq/(q−1)(B2R),∫

B2R
pm dx = 0, such that∫

B2R

σm : ε(ϕ) dx =
∫

B2R

pmdiv ϕdx (4.6)

for all ϕ ∈
◦

Wq
1(B2R; Rn), hence

∇pm = div σm,

which means pm ∈ W 1
q/(q−1),loc(B2R). Let us fix η ∈ C∞0 (B2R), 0 ≤ η ≤ 1, and

denote by ∆h the difference quotient in direction ek, k = 1, . . . , n. From (4.6) we
get∫

B2R

∆hσm : ε(η2∆h[vm −Qx]) dx =
∫

B2R

∆hpmdiv (η2∆h[vm −Qx]) dx. (4.7)
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Note, that at this stage we have to return to difference quotients again since we
only know σm ∈ W 1

q/(q−1),loc(B2R; S) together with ε(vm) ∈ W 1
2,loc(B2R; S) so that

integrability of ∂kσm : ε(∂kvm) is not immediate.
Observing ε(∆h[vm −Qx]) = ε(∆hvm) and div ∆h(vm −Qx) = 0 we get from

(4.7)∫
B2R

η2∆hσm : ε(∆hvm) dx =
∫

B2R

η2∆hσm : ε(∆h[vm −Qx]) dx

=
∫

B2R

∆hσm : ε(η2∆h[vm −Qx]) dx

−2
∫

B2R

∆hσm : (∇η ¯∆h[vm −Qx])η dx

=
∫

B2R

∆hpmdiv (η2∆h[vm −Qx]) dx

−2
∫

B2R

η∆hσm : (∇η ¯∆h[vm −Qx]) dx,

therefore∫
B2R

η2∆hσm : ε(∆hvm) dx = 2
∫

B2R

∆hpm∇η ·∆h(vm −Qx)η dx

−2
∫

B2R

η∆hσm : (∇η ¯∆h[vm−Qx]) dx. (4.8)

Let τm := σm − pm1. Since

∆hσm : (∇η ¯∆h[vm −Qx])
= ∆hτm : (∇η ¯∆h[vm −Qx]) + ∆hpm∇η ·∆h(vm −Qx),

(4.8) implies∫
B2R

η2∆hσm : ε(∆hvm) dx = −2
∫

B2R

η∆hτm : (∇η ¯∆h[vm −Qx]) dx. (4.9)

The calculations carried out in the proof of Lemma 3.1 show ∆hσm : ε(∆hvm) ≥ 0
and

∆hσm : ε(∆hvm) → ∂kσm : ε(∂kvm)
= D2fm(ε(vm))(∂kε(vm), ∂kε(vm))

pointwise a.e. as h → 0 (on account of the weak differentiability of σm and ε(vm)).
Thus the Lemma of Fatou implies (summation over k)∫

B2R

η2∂kσm : ε(∂kvm) dx ≤ lim inf
h→0

∫
B2R

η2∆hσm : ε(∆hvm) dx.

Let us look at the r. h. s. of (4.9): by Lemma 3.1 we know |ε(vm)|q/2 ∈
L

2n/(n−2)
loc (B2R) (suppose n ≥ 3), thus there exists some r > q such that |ε(vm)| ∈
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Lr
loc(B2R) (which is immediate for n = 2), and from vm ∈ W 1

q (B2R; Rn) we also
deduce |vm| ∈ Lr(B2R), hence vm ∈ W 1

r,loc(B2R; Rn) by Korn’s inequality. Finally,
we recall τm ∈ W 1

q/(q−1),loc(B2R; S) and use the estimate

η|∆hτm||∇η||∆h(vm −Qx)| ≤ c(η)
{|∆hτm|l1 + |∆h(vm −Qx)|l2}

with suitable exponents l1 < q/(q−1), l2 ∈ (q, r). Thus we have equi-integrability,
and since

∆hτm : (∇η ¯∆h[vm −Qx]) h→0→ ∂kτm : (∇η ¯ ∂k[vm −Qx]) a.e.,

we see by Vitali’s theorem that (4.9) turns into the estimate∫
B2R

η2∂kσm : ε(∂kvm) dx ≤ −2
∫

B2R

η∂kτm : (∇η ¯ ∂k[vm −Qx]) dx, (4.10)

in particular, the right-hand side is well defined.
Observing |∇τm| ≤ c|∇σm| and recalling Γm = 1 + |ε(vm)|2 we get∣∣∣∣∣

∫
B2R

η∂kτm : (∇η ¯ ∂k[vm −Qx]) dx

∣∣∣∣∣
≤

(∫
B2R

η2|∇τm|2Γ
2−q
2

m dx

) 1
2
(∫

B2R

|∇η|2Γ
q−2
2

m |∇vm −Q|2 dx

) 1
2

(4.11)

together with (recall the formula for ∂kσm given in Lemma 3.1 as well as (2.1))

Γ
2−q
2

m |∇τm|2 ≤ cΓ
2−q
2

m |∇σm|2 = cΓ
2−q
2

m ∂kσm : ∂kσm

= cΓ
2−q
2

m D2fm(ε(vm))(∂kε(vm), ∂kσm)

≤ cΓ
2−q
2

m

(
D2fm(ε(vm))(∂kε(vm), ∂kε(vm))

) 1
2
(
D2fm(ε(vm))(∂kσm, ∂kσm)

) 1
2

≤ cΓ
2−q
4

m

(
D2fm(ε(vm))(∂kε(vm), ∂kε(vm))

) 1
2 |∇σm|,

so that
|∇σm|Γ

2−q
4

m ≤ c
(
D2fm(ε(vm))(∂kε(vm), ∂kε(vm))

) 1
2 ,

and we get the same bound for |∇τm|Γ
2−q
4

m . Therefore we can replace (4.11) by

|r.h.s. of (4.10)| ≤ c

(∫
B2R

η2D2fm(ε(vm))(∂kε(vm), ∂kε(vm)) dx

) 1
2

·
( ∫

B2R

|∇η|2Γ
q−2
2

m |∇vm −Q|2 dx

) 1
2

. (4.12)

Returning to (4.10) and using Young’s inequality we have established (4.4). ¤

Using the corollary to Lemma 4.3 we next show uniform higher integrability of
the gradient.
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Lemma 4.4. There exists an exponent q̃ > q (if n = 2 we can take any q̃ < ∞)
such that for any ball Br(x̄) b B2R we have the estimate∫

Br(x̄)

(1 + |ε(vm)|2) q̃
2 dx ≤ const

(
n, p, q, r, x̄, R,

∫
B2R

f(ε(u)) dx

)
< ∞.

Before giving the proof of Lemma 4.4 let us draw a few conclusions.

Corollary 4.2. For any r < 2R we have

sup
m
‖vm‖W 1

q̃ (Br) < ∞, (4.13)

thus u belongs to the space W 1
q̃,loc(Ω; Rn).

Proof. Clearly (4.13) implies the second statement since we already know vm ⇁ u
in W 1

p (B2R; Rn). To prove (4.13) we observe that supm ‖vm‖W 1
p (B2R) < ∞ implies

sup
m
‖vm‖Lp1 (B2R) < ∞, (4.14)

where we define

p1 :=
{

q̃, if p ≥ n,
np/(n− p), if p < n.

In case p1 ≥ q̃ we may use Lemma 4.4, (4.14) and Korn’s inequality to get (4.13).
If p1 < q̃ holds, then (4.14) and Korn’s inequality show (again using Lemma 4.4)

sup
m
‖vm‖W 1

p1
(Br) < ∞.

Thus supm ‖vm‖Lp2 (Br) < ∞ for a suitable exponent p2, and after a finite number
of iterations we reach (4.13). ¤

Proof of Lemma 4.4. Let n ≥ 3, the necessary adjustments needed in case n = 2
can be found in [BF1]. We will mainly use (4.5), and since the integral on the
right-hand side of (4.5) is not supported on Br′(x̄)−Br(x̄) we have to change the
arguments presented in [BF1] for the standard variational case.

Let χ := n/(n−2), α := pχ and define as before Γm := 1+ |ε(vm)|2. From (4.1)
it follows that q < α. W.l.o.g. we may assume p < q. If p = q, then we replace p
in the following by a slightly smaller number p∗ such that still q < p∗(1 + 2/n).
Thus we may find θ ∈ (0, 1) such that

1
q

=
θ

p
+

1− θ

α
,

and it is easy to see that (4.1) is equivalent to
q

p
(1− θ) < 1. (4.15)
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Let Br(x̄) b B2R and consider 0 ≤ η ∈ C∞0 (B2R) with η ≡ 1 on Br(x̄). We have
the following estimates∫

Br(x̄)

Γ
α
2
m dx ≤

∫
B2R

(ηhm)2χ dx ≤ c

(∫
B2R

|∇(ηhm)|2 dx

)χ

≤ c

{∫
B2R

|∇η|2h2
m dx +

∫
B2R

η2|∇hm|2 dx

}χ

=: c{T1 + T2}χ,

where hm is taken from Lemma 4.2. Obviously

T1 ≤ c‖∇η‖2L∞(B2R)

∫
B2R

(1 + |ε(vm)|2) p
2 dx,

whereas
T2 ≤ c

∫
B2R

η2D2fm(ε(vm))(∂kε(vm), ∂kε(vm)) dx. (4.16)

Here we used the formula for ∇hm stated in Lemma 4.2 combined with the lower
bound for D2fm. We now specify η: if r′ > r is such that Br′(x̄) b BR, then we
let η ≡ 0 outside of B(r+r′)/2(x̄), hence |∇η| ≤ c/(r′ − r).

The right-hand side of (4.16) is bounded by

c

∫
B(r′+r)/2(x̄)

D2fm(ε(vm))(∂kε(vm), ∂kε(vm)) dx,

and on account of (4.5) this quantity is controlled by

c(r′ − r)−2

∫
Br′ (x̄)

Γ
q
2
m dx.

Thus we have shown(∫
Br(x̄)

Γ
α
2
m dx

) 1
χ

≤ c(r′ − r)−2

{∫
B2R

Γ
p
2
m dx +

∫
Br′ (x̄)

Γ
q
2
m dx

}
, (4.17)

the constant c being independent of the balls and m. Now we apply the interpo-
lation inequality for Lebesgue spaces, i.e.

‖
√

Γm‖Lq(Br′ (x̄)) ≤ ‖
√

Γm‖θ
Lp(Br′ (x̄))‖

√
Γm‖1−θ

Lα(Br′ (x̄))

and in conclusion∫
Br′ (x̄)

Γ
q
2
m dx ≤

(∫
Br′ (x̄)

Γ
p
2
m dx

)θ q
p
(∫

Br′ (x̄)

Γ
α
2
m dx

)(1−θ) q
α

. (4.18)

We have (1 − θ)q/α = (1 − θ)q/(pχ) < 1/χ by (4.15), so the right-hand side of
(4.18) is estimated by (0 < δ < 1)

cδ

(∫
Br′ (x̄)

Γ
α
2
m dx

) 1
χ

+ cδ−γ

(∫
Br′ (x̄)

Γ
p
2
m dx

)β
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for suitable exponents γ, β. Next we combine (4.17), (4.18) and the latter inequal-
ity to get (with the choice δ = δ′(r′ − r)2, δ′ ∈ (0, 1)):

(∫
Br(x̄)

Γ
α
2
m dx

) 1
χ

≤ c(r′ − r)−2

∫
B2R

Γ
p
2
m dx

+c(δ′)(r′ − r)−γ̃

(∫
B2R

Γ
p
2
m dx

)β

+ cδ′
(∫

Br′ (x̄)

Γ
α
2
m dx

) 1
χ

.

Here γ̃ denotes another positive exponent. If we let cδ′ = 1/2, then we obtain

(∫
Br(x̄)

Γ
α
2
m dx

) 1
χ

≤ 1
2

(∫
Br′ (x̄)

Γ
α
2
m dx

) 1
χ

+ c(r′ − r)−γ̃

(∫
B2R

Γ
p
2
m dx

)β

. (4.19)

This is exactly the situation of Lemma 3.1, p. 161, of [Gi], thus (4.19) implies the
growth estimate(∫

Br(x̄)

Γ
α
2
m dx

) 1
χ

≤ c(r′ − r)−γ̃

(∫
B2R

Γ
p
2
m dx

)β

,

for all 0 < r < r′, Br′(x̄) b B2R. Recalling α > q, the proof of Lemma 4.4
is complete, since by Lemma 4.1, iv), we know that for m À 1 the quantity
1 +

∫
B2R

f(ε(u)) dx is a bound for
∫

B2R
f(ε(vm)) dx, and by the growth of f it

follows that
∫

B2R
Γp/2

m dx can be bounded in terms of
∫

B2R
f(ε(vm)) dx. ¤

According to Lemma 4.2 and using the lower bound for D2f , we obtain from
(4.4) of Lemma 4.3 the inequality∫

B2R

η2|∇hm|2 dx ≤ c‖∇η‖2L∞(B2R)

∫
spt∇η

Γ
q−2
2

m |∇vm −Q|2 dx, (4.20)

and our purpose is to establish a limit version of (4.20). First we show

Lemma 4.5. Let h := (1 + |ε(u)|2)p/4. Then we have:

a) h ∈ W 1
2,loc(Ω);

b) hm ⇁ h in W 1
2,loc(B2R) as m →∞;

c) ε(vm) → ε(u) a.e. on B2R as m →∞.

Proof. As demonstrated in the proof of Corollary 4.1, (4.20) gives local bounds
on ‖∇hm‖L2 in terms of local bounds for the quantity ‖ε(vm)‖Lq , and the latter
bounds just have been established in Lemma 4.4. Therefore we find a function
h̃ ∈ W 1

2,loc(B2R) such that hm ⇁ h̃ in W 1
2,loc(B2R) and also hm → h̃ a.e. on B2R

at least for a subsequence. Suppose that c) is true. Then hm → h a.e., hence
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h̃ = h, thus we get b) for the whole sequence. For proving c) let us write∫
B2R

f(ε(vm)) dx−
∫

B2R

f(ε(u)) dx =
∫

B2R

Df(ε(u)) : (ε(vm)− ε(u)) dx (4.21)

+
∫

B2R

∫ 1

0

D2f(ε(u) + t[ε(vm)− ε(u)])(ε(vm)− ε(u), ε(vm)− ε(u))(1− t) dt dx.

Note that on account of u ∈ W 1
q,loc(Ω; Rn) and vm ∈ W 1

q (B2R; Rn) all quantities on

the right-hand side of (4.21) are well defined. Recall that vm ∈ um+
◦

Wq
1(B2R; Rn),

where um was a regularization of the function u, in particular we have

‖u− um‖W 1
q (Ω̃) → 0 for all Ω̃ b Ω. (4.22)

We have∫
B2R

Df(ε(u)) : (ε(vm)− ε(u)) dx =
∫

B2R

Df(ε(u)) : (ε(vm)− ε(um)) dx

+
∫

B2R

Df(ε(u)) : (ε(um)− ε(u)) dx ;

the first term on the right-hand side is 0 due to the Euler equation satisfied by u,
the second one vanishes as m →∞ on account of (4.22). By Lemma 4.1 the same
is true for the left-hand side of (4.21), thus∫

B2R

∫ 1

0

D2f(ε(u) + t[ε(vm)− ε(u)])(ε(vm)− ε(u), ε(vm)− ε(u))(1− t) dt dx → 0

as m → ∞. In case p ≥ 2 the lower bound for D2f immediately shows ε(vm) →
ε(u) a.e. on B2R. If p < 2, then we observe∫

B2R

∫ 1

0

D2f(. . . )(ε(vm)− ε(u), ε(vm)− ε(u))(1− t) dt dx

≥
∫

B2R

∫ 1

0

c(1 + |ε(u) + t[ε(vm)− ε(u)]|2) p−2
2 |ε(vm)− ε(u)|2(1− t) dt dx

≥
∫

B2R

c(1 + [|ε(u)|+ |ε(vm)|]2) p−2
2 |ε(vm)− ε(u)|2 dx.

Recall that hm(x) → h̃(x) for a.a. x ∈ B2R, which means that |ε(vm)| has a finite
limit almost everywhere. On the other hand, by the above estimate

(1 + [|ε(u)|+ |ε(vm)|]2) p−2
2 |ε(vm)− ε(u)|2 → 0 a.e.,

altogether we have established c). ¤

Lemma 4.6. Let h := (1 + |ε(u)|2)p/4. Then, for any (n × n)-matrix Q and for
all balls Br(x̄) ⊂ Br′(x̄) b B2R we have∫

Br(x̄)

|∇h|2 dx ≤ c(r′− r)−2

∫
Br′ (x̄)

Γ
q−2
2 |∇u−Q|2 dx, Γ := 1 + |ε(u)|2. (4.23)
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Remark 4.1. Since ∇u ∈ Lq
loc(Ω; Rn×n), we can deduce from (4.23) that∫

BtR

|∇h|2 dx ≤ c(1− t)−2R−2

∫
BR

Γ
q−2
2 |∇u−Q|2 dx (4.24)

being valid for any ball BR b Ω and all t ∈ (0, 1)

Proof of Lemma 4.6. From (4.20) it is immediate that∫
Br(x̄)

|∇hm|2 dx ≤ c(r′ − r)−2

∫
Br′ (x̄)

Γ
q−2
2

m |∇vm −Q|2 dx, (4.25)

and Lemma 4.5, b), shows that∫
Br(x̄)

|∇h|2 dx ≤ lim inf
m→∞

{
l.h.s. of (4.25)

}
.

Let us recall that (see (4.13))

sup
m

{‖vm‖W 1
q̃ (BT ) + ‖u‖W 1

q̃ (B2R)

}
< ∞ (4.26)

for each T < 2R. Korn’s inequality implies∫
Br′ (x̄)

|∇vm −∇u|p dx ≤ c

{∫
Br′ (x̄)

|vm − u|p dx +
∫

Br′ (x̄)

|ε(vm)− ε(u)|p dx

}

=: c{I1 + I2},
I1 → 0 as m → ∞ by Lemma 4.1, ii), and the same is true for I2. To see the
convergence of I2 we note ε(vm) → ε(u) a.e., thus |ε(vm)−ε(u)|p → 0 a.e., whereas
by (4.26) |ε(vm) − ε(u)|p ⇁: ϑ weakly in L

q̃/p
loc (B2R), thus ϑ = 0 and therefore

limm→∞
∫

Br′ (x̄)
|ε(vm)− ε(u)|p dx = 0. This implies

∫
Br′ (x̄)

|∇vm −∇u|p dx → 0,
m →∞, in particular we may assume

∇vm → ∇u a.e. on Br′(x̄). (4.27)

Finally it is clear that

Γ
q−2
2

m |∇vm −Q|2 ≤ c(Q)[|∇vm|q + 1],

hence Γ(q−2)/2
m |∇vm −Q|2 (by (4.26)) is bounded in Lq̃/q(Br′(x̄)), so that

Γ
q−2
2

m |∇vm −Q|2 ⇁: ϑ̃ in Lq̃/q(Br′(x̄)).

But by (4.27) ϑ̃ = Γ(q−2)/2|∇u−Q|2 and we obtain

lim
m→∞

∫
Br′ (x̄)

Γ
q−2
2

m |∇vm −Q|2 dx =
∫

Br′ (x̄)

Γ
q−2
2 |∇u−Q|2 dx,

so that (4.23) is established. ¤
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5. Partial regularity via blow-up

In this section we adjust the well-known blow-up arguments (implying partial reg-
ularity for vector-valued problems in standard variational calculus) to the situation
studied here. We like to mention that the blow-up technique was originated by
Evans and Gariepy ([EG]) and that similar techniques were used earlier in the
setting of Geometric Measure Theory.

So, assume that we are in the situation of Theorem 2.1, a), and define the
excess of u w.r.t. a ball Br(x) b Ω

E(u,Br(x)) :=
∫
−

Br(x)

|ε(u)− (ε(u))x,r|2 dz +
∫
−

Br(x)

|ε(u)− (ε(u))x,r|q dz,

(. . . )x,r and
∫−

Br(x)
. . . denoting mean values. Recall that on account of Corollary

4.2 E(u,Br(x)) is well defined.
We will make use of a Campanato-type estimate, which can be traced in [GM1],

a proof is also given in [FS1], Lemma 3.0.5, v).

Lemma 5.1. Consider a matrix A ∈ S such that |A| ≤ L. Let w ∈ W 1
2 (B1; Rn),

div w = 0, satisfy ∫
B1

D2f(A)(ε(w), ε(ϕ)) dz = 0

for all ϕ ∈
◦

W2
1(B1; Rn), div ϕ = 0. Then there is a constant C∗ = C(n, p, q, L)

such that ∫
−
Bτ

|ε(w)− (ε(w))τ |2 dz ≤ C∗τ2

∫
−
B1

|ε(w)− (ε(w))1|2 dz

for any τ ∈ (0, 1).

Remark 5.1. The constant C∗ – according to [FS1], Lemma 3.0.5, v) – depends
on the ellipticity constants of the form D2f(A). Since

λ(1 + |A|2) p−2
2 |ε|2 ≤ D2f(A)(ε, ε) ≤ Λ(1 + |A|2) q−2

2 |ε|2

we deduce in case p ≥ 2

λ|ε|2 ≤ D2f(A)(ε, ε) ≤ Λ(1 + L2)
q−2
2 |ε|2,

whereas for p < 2 we get

λ(1 + L2)
p−2
2 |ε|2 ≤ D2f(A)(ε, ε) ≤ Λ(1 + L2)

q−2
2 |ε|2,

thus C∗ is independent of the particular matrix A.
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Lemma 5.2. (Blow-Up Lemma) Given L > 0 we let C∗ := 2C∗. Then, for any
τ ∈ (0, 1/4), there exists a number ε = ε(L, τ) with the following property: if for
some ball Br(x) b Ω we have

|(ε(u))x,r| ≤ L, E(x, r) := E(u,Br(x)) < ε,

then
E(x, τr) ≤ C∗τ2E(x, r).

By iterating this result we obtain:

Corollary 5.1. Let

Ω0 :=
{
x ∈ Ω : sup

r>0
|(ε(u))x,r| < ∞ and lim inf

r↓0
E(x, r) = 0

}
.

Then Ω0 is an open set of full Lebesgue measure and ε(u) is of class C0,α on Ω0

for any 0 < α < 1.

From this we immediately obtain Theorem 2.1, a): let ω b Ω0 denote an open
set and observe ε(u) ∈ C0,α(ω). Fix ϕ ∈ C1

0 (ω), div ϕ = 0; then for |h| ¿ 1 we
get ∫

ω

∆h

{
DF (ε(u))

}
: ε(ϕ) dx = 0. (5.1)

Recall

∆h

{
DF (ε(u))

}
=

∫ 1

0

D2f(ε(u) + thε(∆hu))(ε(∆hu), ·) (5.2)

and observe that on account of the regularity of ε(u) we may repeat the arguments
of the proof of Lemma 3.1 (replace s by q there) with the result that ε(∆hu) is
locally bounded in L2(ω; S). In fact, this follows from the corresponding version
of (3.9) where now ω(r) is seen to be an upper bound for |ε(∆hu)|2 by observing
that D2f(ξ) is evaluated on a bounded set of matrices ξ. Thus u ∈ W 2

2,loc(ω; Rn)
and from (5.2) we get

∆h

{
Df(ε(u))

} h→0→ D2f(ε(u))(ε(∂ku), ·) in L2
loc(ω; S),

since obviously∫ 1

0

D2f(ε(u) + thε(∆hu)) dt
h→0→ D2f(ε(u)) in L∞loc(ω; S).

Altogether we obtain the limit version of (5.1), i.e.∫
ω

D2f(ε(u))(ε(∂ku), ε(ϕ)) dx = 0 (5.3)

for all ϕ ∈ C1
0 (ω; Rn), div ϕ = 0, and any k = 1, . . . , n. (5.3) can be seen as

an elliptic system with continuous matrix D2f(ε(u)) for the function ∂ku, thus
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Theorem 1.1 of [GM1] implies ∂ku ∈ C0,α(ω), which gives the claim of Theorem
2.1, a).

We now come to the

Proof of Lemma 5.2. To argue by contradiction, assume that L > 0 is fixed and
that for some τ ∈ (0, 1/4) there exists a sequence of balls Brm

(xm) b Ω such that

|(ε(u))xm,rm
| ≤ L, E(xm, rm) =: λ2

m
m→∞→ 0 (5.4)

and
E(xm, τrm) > C∗τ2λ2

m. (5.5)

(Of course we could also replace u by a sequence of local minimizers in order
to get the statements independent of the particular local minimizer.) We let
Am := (ε(u))xm,rm

and

um(z) :=
1

λmrm

[
u(xm + rmz)− rmAmz − γm(z)

]
, |z| < 1,

where γm is a rigid motion such that∫
B1

|um|2 dz ≤ c

∫
B1

|ε(um)|2 dz. (5.6)

Writing γm(z) = Bmz + am with Bm skew-symmetric and am ∈ Rn we have

∇um(z) =
1

λm

[∇u(xm + rmz)−Am − 1
rm

Bm

]
,

ε(um)(z) =
1

λm

[
ε(u)(xm + rmz)−Am

]
,

and (5.4) implies ∫
−
B1

|ε(um)|2 dz + λq−2
m

∫
−
B1

|ε(um)|q dz = 1. (5.7)

By (5.6), (5.7) we see

sup
m

{‖um‖L2(B1) + ‖ε(um)‖L2(B1)

}
< ∞,

and Korn’s inequality gives boundedness of {um} in W 1
2 (B1; Rn), thus we may

assume (for a subsequence)

um ⇁: û in W 1
2 (B1; Rn) (5.8)

for a function û from this space which satisfies div û = 0 (note that um is a
solenoidal field). Clearly (5.8) gives

λm∇um → 0 in L2(B1; Rn×n) and a.e. (5.9)
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By (5.7) λ
1−2/q
m ε(um) is bounded in Lq(B1; S), thus weakly convergent towards a

tensor field ε̄. By (5.8) ε(um) ⇁ ε(û) in L2(B1; S), thus

λ
1− 2

q
m ε(um) m→∞

⇁ 0 in Lq(B1; S), if q > 2. (5.10)

From (5.5) we deduce after scaling∫
−
Bτ

|ε(um)− (ε(um))τ |2 dz + λq−2
m

∫
−
Bτ

|ε(um)− (ε(um))τ |q dz > C∗τ2. (5.11)

Finally (compare (5.4)), we have (for some subsequence)

Am
m→∞→: A ∈ S, |A| ≤ L. (5.12)

We claim
λ

1− 2
q

m ∇um
m→∞
⇁ 0 in Lq(B1; Rn×n), if q > 2 (5.13)

together with ∫
B1

λq−2
m |um|q dz

m→∞→ 0, if q > 2. (5.14)

To see this we use the interpolation inequality Lemma 3.0.2 of [FS1], being valid
on account of um ∈ W 1

q (B1; Rn):

‖um‖Lq(B1) ≤ c
{‖um‖L2(B1) + ‖ε(um)‖Lq(B1). (5.15)

Korn’s inequality then implies

‖∇um‖Lq(B1) ≤ c
{‖um‖Lq(B1) + ‖ε(um)‖Lq(B1)

} ≤ c
{
1 + ‖ε(um)‖Lq(B1)

}
on account of supm ‖um‖L2(B1) < ∞. This shows

λq−2
m

∫
B1

|∇um|q dz ≤ c

{
1 + λq−2

m

∫
B1

|ε(um)|q dz

}

and by (5.7) we get boundedness of λq−2
m

∫
B1
|∇um|q dx. Now the same reasoning

leading to (5.10) (using (5.8) again) implies (5.13). For (5.14) we observe (recalling
(5.15))

λq−2
m

∫
B1

|um|q dz ≤ c

{
1 + λq−2

m

∫
B1

|ε(um)|q dz

}
,

thus ūm := λ
1−2/q
m um is bounded in W 1

q (B1; Rn), and we may assume ūm ⇁: ū
in W 1

q (B1; Rn), ūm → ū in Lq(B1; Rn). Let q > 2. Then ūm → ū in L2(B1; Rn),
hence ū = 0 on account of (5.8).

After these preparations we now show that the limit û from (5.8) satisfies a
nice equation, i.e. we claim
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Proposition 5.1. We have∫
B1

D2f(A)(ε(û), ε(ϕ)) dz = 0

being valid for all ϕ ∈ C1
0 (B1; Rn), ϕ being solenoidal.

Proof of Proposition 5.1. We have∫
Brm (xm)

Df(ε(u)) : ε(ψ) dx = 0 for all ψ ∈ C1
0 (Brm

(xm); Rn), div ψ = 0,

thus after scaling∫
B1

Df(λmε(um) + Am) : ε(ϕ) dz = 0 for all ϕ ∈ C1
0 (B1; Rn), div ϕ = 0.

We rewrite this in the form

λ−1
m

∫
B1

[
Df(λmε(um) + Am)−Df(Am)

]
: ε(ϕ) dz = 0

and observe
λ−1

m

[
Df(λmε(um) + Am)−Df(Am)

]
=

∫ 1

0

D2f(Am + tλmε(um))(ε(um), ·) dt

to obtain ∫
B1

D2f(Am)(ε(um), ε(ϕ)) dz (5.16)

= −
∫

B1

{ ∫ 1

0

D2f(Am + tλmε(um))(ε(um), ε(ϕ)) dt

−D2f(Am)(ε(um), ε(ϕ))

}
dz.

By (5.6) and (5.8) we see

l.h.s. of (5.16) m→∞→
∫

B1

D2f(A)(ε(û), ε(ϕ)) dz. (5.17)

Given δ > 0 we use (5.9) and Egoroff’s theorem to find a subset M of B1 such
that Ln(M) < δ and

λm∇um
m→∞→ 0 uniformly on B1 −M .

Since ε(um) is bounded in L2(B1; S), we deduce∫
B1−M

{∫ 1

0

D2f(Am+tλmε(um))(ε(um), ε(ϕ)) dt−D2f(Am)(ε(um), ε(ϕ))

}
dz

m→∞→ 0,
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in particular there exists mδ such that∣∣∣∣∣
∫

B1−M

{∫ 1

0

. . .

}
dz

∣∣∣∣∣ ≤ δ for all m ≥ mδ. (5.18)

On M we argue as follows:∣∣∣∣∣
∫

M

{∫ 1

0

. . .

}
dz

∣∣∣∣∣ ≤
∫

M

∫ 1

0

|D2f(Am + tλmε(um))||ε(um)||ε(ϕ)|dt dz

+sup
m
|D2f(Am)|‖ε(ϕ)‖L∞(B1)

∫
M

|ε(um)|dz

=: I + II,

II ≤ sup
m
|D2f(Am)|‖ε(ϕ)‖L∞(B1)Ln(M)

1
2 ‖ε(um)‖L2(B1) ≤ c(ϕ)

√
δ,

I ≤ c

∫
M

∫ 1

0

(1 + |Am + tλmε(um)|2) q−2
2 |ε(ϕ)||ε(um)|dt dz

≤ c(ϕ)

{ ∫
M

|ε(um)|dz +
∫

M

λq−2
m |ε(um)|q−1 dz

}

≤ c(ϕ)

{√
δ ‖ε(um)‖L2(B1) + λq−2

m

∫
M

|ε(um)|q−1 dz

}
,

where in case q = 2 the quantity I is seen to be bounded by
√

δ ‖ε(um)‖L2(B1). If
q > 2, then we estimate (recalling (5.7)

λq−2
m

∫
M

|ε(um)|q−1 dz ≤ δλq−2
m

∫
B1

|ε(um)|q dz + λq−2
m c(δ)Ln(M)

≤ cδ + c(δ)λq−2
m .

For m ≥ m̃δ we obtain c(δ)λq−2
m ≤ δ, thus I + II ≤ c

√
δ (w.l.o.g. δ < 1) for all

m ≥ m̃δ. Taking into account (5.18), we see that the r.h.s. of (5.16) vanishes as
m →∞. This together with (5.17) proves Proposition 5.1. ¤

By Proposition 5.1 we may apply Lemma 5.1 to the function û with the result∫
−
Bτ

|ε(û)− (ε(û))τ |2 dz ≤ C∗τ2

∫
−
B1

|ε(û)− (ε(û))1|2 dz. (5.19)

From (ε(um))1 = 0 and ε(um) ⇁ ε(û) in L2(B1, S) (see (5.8)) we find (ε(û))1 = 0
and therefore∫

−
B1

|ε(û)− (ε(û))1|2 dz =
∫
−
B1

|ε(û)|2 dz ≤ lim inf
m→∞

∫
−
B1

|ε(um)|2 dz ≤ 1,
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where the last inequality is due to (5.7). Suppose that we can show ε(um) → ε(û)
strongly in L2

loc(B1; S). Then we get from (5.19)

lim
m→∞

∫
−
Bτ

|ε(um)− (ε(um))τ |2 dz ≤ C∗τ2,

and if in addition for q > 2 we can also establish (compare (5.10)) λ
1−2/q
m ε(um) → 0

strongly in Lq
loc(B1; S), then the latter inequality implies

lim
m→∞

{ ∫
−
Bτ

|ε(um)− (ε(um))τ |2 dz + λq−2
m

∫
−
Bτ

|ε(um)− (ε(um))τ |q dz

}
≤ C∗τ2

contradicting (5.11) on account of C∗ = 2C∗.
We therefore have to show

Proposition 5.2. The weak convergences as stated in (5.8) and (5.10) can be
improved to local strong convergence, i.e. we have as m →∞

i) ε(um) → ε(û) in L2
loc(B1; S);

ii) λ
1− 2

q
m ε(um) → 0 in Lq

loc(B1; S), if q > 2.

Proof of Proposition 5.2. We start with the proof of the following identity (wm :=
um − û)

lim
m→∞

∫
Bρ

∫ 1

0

(1+ |Am +λmε(û)+tλmε(wm)|2) p−2
2 |ε(wm)|2(1−t) dt dz = 0 (5.20)

for any 0 < ρ < 1. Let ϕ ∈ C1
0 (B1) be non-negative with ϕ ≡ 1 on Bρ and ϕ ≡ 0

on B1−Br, where ρ < r < 1, and consider a sequence ϕm ∈
◦

Wq
1(Br; Rn) such that

div ϕm = div (um + ϕ[û− um])

together with
‖∇ϕm‖Lq(Br) ≤ c‖∇ϕ · (û− um)‖Lq(Br).

Minimality of u gives (by scaling)∫
Br

f(Am + λmε(um)) dz ≤
∫

Br

f(Am + λmε(um + ϕ[û− um]− ϕm)) dz. (5.21)

Let us write (by Taylor expansion)∫
Br

∫ 1

0

(1− t)ϕD2f(Am + λmε(û) + tλmε(wm))(ε(wm), ε(wm)) dt dz

= λ−2
m

∫
Br

ϕ
{
f(Am + λmε(um))− f(Am + λmε(û)

}
dz

−λ−1
m

∫
Br

ϕDf(Am + λmε(û)) : ε(wm) dz. (5.22)
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The first integral on the right-hand side of (5.22) can be rewritten as (using (5.21))∫
Br

f(Am + λmε(um)) dz

−
∫

Br

[
(1− ϕ)f(Am + λmε(um)) + ϕf(Am + λmε(û))

]
dz

≤
∫

Br

f(Am + λmε(um + ϕ[û− um]− ϕm)) dz

−
∫

Br

f(Am + λm[(1− ϕ)ε(um) + ϕε(û)]) dz,

where we also used the convexity of f . We obtain

r.h.s. of (5.22) ≤ λ−2
m

{ ∫
Br

f(Am + λmε(um + ϕ[û− um]− ϕm)) dz

−
∫

Br

f(Am + λm[(1− ϕ)ε(um) + ϕε(û)]) dz

}

−λ−1
m

∫
Br

ϕDf(Am + λmε(û)) : ε(wm) dz

=: λ−2
m {I1 − I2} − λ−1

m I3. (5.23)

Let εm := Am + λm((1− ϕ)ε(um) + ϕε(û)). Then

λ−2
m {I1−I2} = λ−2

m

{∫
Br

f(εm+λm((û−um)¯∇ϕ−ε(ϕm))) dz−
∫

Br

f(εm) dz

}

= λ−1
m

∫
Br

Df(εm) : {(û− um)¯∇ϕ− ε(ϕm)}dz

+
∫

Br

∫ 1

0

D2f(εm + tλm[(û− um)¯∇ϕ− ε(ϕm)])

(∇ϕ¯ [û− um]− ε(ϕm),∇ϕ¯ [û− um]− ε(ϕm))(1− t) dt dz

=: λ−1
m I4 + I5,

and for I5 we obtain due to the growth of D2f :

I5 ≤ c

∫
Br

(
1 + |εm|2 + λ2

m|û− um|2|∇ϕ|2 + λ2
m|ε(ϕm)|2) q−2

2

·(|∇ϕ|2|û− um|2 + |ε(ϕm)|2) dz

≤ c

∫
Br

(
1 + |εm|q−2 + λq−2

m |û− um|q−2|∇ϕ|q−2 + λq−2
m |ε(ϕm)|q−2

)
·(|∇ϕ|2|û− um|2 + |ε(ϕm)|2) dz
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= c

{∫
Br

(|∇ϕ|2|û− um|2 + |ε(ϕm)|2) dz +
∫

Br

λq−2
m |∇ϕ|q|û− um|q dz

+
∫

Br

|ε(ϕm)|2λq−2
m |û− um|q−2|∇ϕ|q−2 dz

+
∫

Br

|∇ϕ|2|û− um|2|εm|q−2 dz +
∫

Br

|εm|q−2|ε(ϕm)|2 dz

+λq−2
m

∫
Br

|ε(ϕm)|q−2|∇ϕ|2|û− um|2 dz + λq−2
m

∫
Br

|ε(ϕm)|q dz

}

=: c{K1 + · · ·+ K7}.
Let us recall ∫

Br

|∇ϕm|q dz ≤ c

∫
Br

|∇ϕ|q|um − û|q dz,

and according to Lemma 3.0.4 of [FS1] this estimate also holds with q = 2. This
together with (5.8) shows

K1 → 0 as m →∞.

If q > 2, we deduce from (5.14) and û ∈ L∞loc(B1; Rn) that

K2 → 0 as m →∞,

which is obvious for q = 2. For K3 we again let q > 2 and get

K3 ≤ λq−2
m

{ ∫
B1

|û− um|q|∇ϕ|q dz

}1− 2
q
{∫

B1

|ε(ϕm)|q dz

} 2
q

,

thus by (5.14) K3 → 0 as m →∞. The same reasoning applies to K6 and K7. By
definition

|εm| ≤ c
(
1 + λm|ε(um)|+ λmϕ|ε(um − û)|), i.e.

|εm|q−2 ≤ c
(
1 + λq−2

m |ε(um)|q−2 + λq−2
m ϕq−2|ε(um − û)|q−2

)
,

and we obtain

K4 ≤ c

{∫
B1

|∇ϕ|2|û− um|2 dz + λq−2
m

∫
B1

|∇ϕ|2|ε(um)|q−2|û− um|2 dz

+λq−2
m

∫
B1

|∇ϕ|2ϕq−2|ε(um − û)|q−2|û− um|2 dz

}
.

From this estimate it follows that K4 → 0 as m → ∞, since for example in case
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q > 2

λq−2
m

∫
B1

|∇ϕ|2ϕq−2|ε(um − û)|q−2|û− um|2 dz

≤ c(ϕ)λq−2
m

{∫
B1∩spt ϕ

|ε(um − û)|q dz

}1− 2
q
{∫

B1∩spt ϕ

|um − û|q dz

} 2
q

.

Then we can use (5.14) and the Lq-boundedness of λ
1−2/q
m ε(um) (see (5.7)). We

leave the discussion of K5 to the reader.
Putting together our estimates and going back to (5.23) we have shown that

r.h.s. of (5.22) ≤ λ−1
m [I4 − I3] + O(m), (5.24)

where O(m) → 0 as m →∞. Let us look at λ−1
m [I4 − I3]:

λ−1
m [I4 − I3] = λ−1

m

{∫
Br

Df(εm) : [(û− um)¯∇ϕ− ε(ϕm)] dz

−
∫

Br

ϕDf(Am + λmε(û)) : ε(wm) dz

}

= λ−1
m

{∫
Br

{
Df(εm)−Df(Am + λmε(û))

}
: (û− um)¯∇ϕdz

−
∫

Br

Df(Am + λmε(û)) : ε(ϕwm) dz −
∫

Br

Df(εm) : ε(ϕm) dz

}

= λ−1
m

{∫
Br

[Df(εm)−Df(Am + λmε(û))] : (û− um)¯∇ϕdz

−
∫

Br

[Df(εm)−Df(Am + λmε(û))] : ε(ϕm) dz

−
∫

Br

Df(Am + λmε(û)) : (ε(ϕm) + ε(ϕwm))dz

}

=: λ−1
m {J1 − J2 − J3},

|J1| = λm

∣∣∣∣∣
∫

Br

∫ 1

0

D2f(Am + λmε(û) + tλm(1− ϕ)ε(um − û))

(ε(um)− ε(û), (û− um)¯∇ϕ)(1− ϕ) dt dz

∣∣∣∣∣,
|J2| = λm

∣∣∣∣∣
∫

Br

∫ 1

0

D2f(. . . )(ε(um)− ε(û), ε(ϕm))(1− ϕ) dt dz

∣∣∣∣∣,
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and similar to the previous discussion of I5 we see

1
λm

J1,2 → 0, as m →∞.

(Here we also use ε(û) ∈ L∞loc(B1; S), thus ε(û) is bounded on Br(0).) Since ϕm

and ϕwm are of class
◦

Wq
1(Br; Rn), we clearly have∫

Br

Df(Am) : (ε(ϕm) + ε(ϕwm)) dz = 0,

therefore

λ−1
m |J3| = λ−1

m

∣∣∣∣∣
∫

Br

(Df(Am + λmε(û))−Df(Am)) : (ε(ϕm) + ε(ϕwm)) dz

∣∣∣∣∣
=

∣∣∣∣∣
∫

Br

∫ 1

0

D2f(Am + tλmε(û))(ε(û), ε(ϕm) + ε(ϕwm) dt dz

∣∣∣∣∣,
and as usual ε(û) ∈ L∞(Br; S) together with the known convergences implies
λ−1

m |J3| → 0 as m →∞. Remembering (5.24) we have finally established that the
right-hand side of (5.22) is dominated by a quantity which vanishes as m → ∞,
thus

0 = lim
m→∞

∫
Br

∫ 1

0

(1− t)ϕD2f(Am + λmε(û) + tλmε(wm))(ε(wm), ε(wm)) dt dz.

Now the lower bound for D2f immediately gives (5.20).
The proof of Proposition 5.2 splits into two cases.
Case 1. Let p ≥ 2. Then (5.20) obviously implies i) of Proposition 5.2. We

further have

Am + λmε(û) + tλmε(wm) = tam + (1− t)bm,

am := Am + λmε(û) + λmε(wm), bm = Am + λmε(û),

thus (analogous to [GM2], inequality (2.2))∫ 1

0

(1 + |tam + (1− t)bm|2)
p−2
2 dt ≥ c(1 + |am|2 + |bm− am|2)

p−2
2 ≥ c|bm− am|p−2,

and we get from (5.20)∫
Bρ

λp−2
m |ε(wm)|p dz → 0 as m →∞. (5.25)

Let

ψm := λ−1
m

[
(1 + |Am + λmε(um)|2) p

4 − (1 + |Am|2)
p
4
]
.
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By Lemma 4.5 we know ψm ∈ W 1
2 (B1), and we get∫

Bρ

|∇ψm|2 dz = λ−2
m r2−n

m

∫
Bρrm (xm)

|∇h|2 dx

≤ c(ρ)r−n
m λ−2

m

∫
Brm (xm)

(1 + |ε(u)|2) q−2
2 |∇u−Q|2 dx.

For the last estimate we used inequality (4.24), h being defined in Lemma 4.5, and
Q representing any matrix from Rn×n. If we choose Q = Am + r−1

m Bm (recall the
definition of um) and observe

∇u(xm + rmz) = λm∇um(z) + Am +
1

rm
Bm,

we obtain∫
Bρ

|∇ψm|2 dz ≤ c(ρ)
∫

B1

(1 + |Am + λmε(um)|2) q−2
2 |∇um|2 dz, (5.26)

and this inequality also holds if 1 < p < 2. Writing θ(ε) = (1 + |ε|2)p/4 we get

|ψm| = λ−1
m

∣∣∣∣∣
∫ 1

0

d
dt

θ(Am + tλmε(um)) dt

∣∣∣∣∣
=

∣∣∣∣∣
∫ 1

0

ε(um) : ∇θ(Am + tλmε(um)) dt

∣∣∣∣∣
≤ c

∫ 1

0

|ε(um)|(1 + |Am + tλmε(um)|2) p−2
4 dt

≤ c
{|ε(um)|+ λ

p−2
2

m |ε(um)| p
2
}
,

and (5.25) together with (5.8) implies (since wm = um − û and û ∈ C∞(Bρ; Rn))∫
Bρ

|ψm|2 dz ≤ c(ρ). (5.27)

If we look at the right-hand side of (5.26), then by (5.8) and (5.13) we see that
also ∫

Bρ

|∇ψm|2 dz ≤ c(ρ). (5.28)

Again it should be noted that (5.28) is valid also in case 1 < p < 2.
Now we proceed as follows assuming q > 2: consider a number M À 1 and let

Um := Um(M,ρ) :=
{
z ∈ Bρ : λm|ε(um)| ≤ M

}
.
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Then∫
Um

λq−2
m |ε(um)|q dz ≤ c

{∫
Um

λq−2
m |ε(wm)|q dz +

∫
Um

λq−2
m |ε(û)|q dz

}

≤ c

{∫
Um

λq−2
m (|ε(um)|q−2 + |ε(û)|q−2)|ε(wm)|2 dz

+
∫

Um

λq−2
m |ε(û)|q dz

}
(5.29)

and the right-hand side of (5.29) vanishes as m → ∞ by definition of Um and on
account of ε(wm) → 0 in L2(Bρ; S).

On the other hand, if we choose M large enough, then on Bρ − Um we get

ψm ≥ cλ−1
m λ

p
2
m|ε(um)| p

2 , i.e.

λ
q−2+ 2−p

p q
m ψ

2q
p

m ≥ cλq−2
m |ε(um)|q.

By (4.1) we have q < p(1+2/n), thus 2q/p < 2n/(n−2), and by (5.27) and (5.28)
we get

sup
m

∫
Bρ

ψ
2q
p

m dz < ∞.

Moreover, for proving ii) of Proposition 5.2, we may assume p < q, since for p = q
the assertion ii) is contained in (5.25). But, if p < q, then q − 2 + q(2− p)/p > 0,
and the above estimate shows

lim
m→∞

∫
Bρ−Um

λq−2
m |ε(um)|q dz = 0,

hence
lim

m→∞

∫
Bρ

λq−2
m |ε(um)|q dz = 0.

Case 2. Let 1 < p < 2. Using the boundedness of {Am} together with the
boundedness of λmε(û) on Bρ, the integral in (5.20) is easily seen to be bounded
from below by c(a + λ2

m|ε(wm)|2)(p−2)/2|ε(wm)|2, where a > 0 is a suitable con-
stant, so that by (5.20)∫

Bρ

(a + λ2
m|ε(wm)|2) p−2

2 |ε(wm)|2 dz → 0

as m →∞, thus ∫
Um

|ε(wm)|2 dz → 0 as m →∞. (5.30)

As remarked earlier (5.28) extends to the case p < 2, and (5.27) follows since

|ψm| ≤ c

∫ 1

0

|ε(um)|(1 + |Am + tλmε(um)|2) p−2
4 dt ≤ c|ε(um)|.
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For M large we have

|ψm| 4p λ
2(2−p)

p
m ≥ |ε(um)|2 on Bρ − Um,

and 2(2−p)/p > 0 together with 4/p ≤ 2n/(n−2) (for the latter inequality observe
2 ≤ q < p(1+2/n), thus p > 2n/(n+2) and therefore 4/p < 4(n+2)/2n = 2+4/n;
thus 4/p < 2n/(n− 2) follows from 2 + 4/n < 2n/(n− 2)) implies∫

Bρ−Um

|ε(um)|2 dz → 0 as m →∞,

hence ∫
Bρ−Um

|ε(wm)|2 dz → 0 as m →∞. (5.31)

For (5.31) we have to discuss
∫

Bρ−Um
|ε(û)|2 dz, which means by the local bound-

edness of ε(û) that we have to show Ln(Bρ − Um) → 0. But

Ln(Bρ − Um) ≤
∫

Bρ

1
M

λm|ε(um)|dz
m→∞→ 0

by (5.9). Combining (5.30) and (5.31) Proposition 5.2, i), is shown for the case
1 < p < 2.

Next let us assume q > 2. Then, for proving Proposition 5.2, ii), we may
exactly follow the lines after (5.28): as remarked before, |ψm| ≤ c|ε(um)| holds
if 1 < p < 2, thus (5.27) and (5.28) are available, the calculation in (5.29) does
not involve p, and the estimate of λq−2

m |ε(um)|q on Bρ − Um remains valid. This
completes the proof of Proposition 5.2. ¤

Now, by the comments given after the proof of Proposition 5.1, we get the
desired contradiction, the blow-up lemma is established, and Theorem 2.1, a), is
proved. ¤

6. The case n = 2: proof of Theorem 2.1, b)

We here use a technique due to Frehse and Seregin (see [FrS]) which has also been
applied in [FO], [FS2], [FR] and [BF4]. From now on assume that we are in the
situation of Theorem 2.1, b). Using the notation and the results from Section 4
we recall inequality (4.10)∫

B2R(x0)

η2∂kσm : ε(∂kvm) dx ≤ −2
∫

B2R(x0)

η∂kτm : (∇η¯∂k[vm−Qx]) dx (6.1)

being valid for any η ∈ C1
0 (B2R(x0)) and for arbitrary matrices Q ∈ R2×2. Let

Hm :=
(
D2fm(ε(vm))(∂kε(vm), ∂kε(vm))

) 1
2 .
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In (4.5) we showed Hm ∈ L2
loc(B2R(x0)), and if we combine (4.5) with Lemma 4.4,

it follows that ∫
Br(x0)

H2
m dx ≤ c(r) < ∞ for all r < 2R. (6.2)

Let B2r(x̄) b B2R(x0) and consider η ∈ C1
0 (B2r(x̄)), η ≡ 1 on Br(x̄), |∇η| ≤ c/r.

The gradient of η is supported on Tr(x̄) = B2r(x̄)−Br(x̄), thus we get from (6.1)

∫
Br(x̄)

H2
m dx ≤ cr−1

(∫
Tr(x̄)

|∇τm|2 dx

) 1
2
(∫

Tr(x̄)

|∇vm −Q|2 dx

) 1
2

. (6.3)

For the left-hand side we used the identity

∂kσm : ε(∂kvm) = H2
m.

Next observe
|∇τm|2 ≤ c|∇σm|2 ≤ cH2

m,

where the second inequality has been proved before formula (4.12) (note that we
use q = 2 here). Let us specify Q: we define Bm :=

∫−
Tr(x̄)

ε(vm) dx and let
ṽm := vm −Bmx. Next we choose a rigid motion γm according to

‖ṽm − γm‖L2(Tr(x̄)) ≤ c‖ε(ṽm)‖L2(Tr(x̄)).

Then Korn’s inequality implies

‖∇(ṽm − γm)‖L2(Tr(x̄)) ≤ c‖ε(ṽm)‖L2(Tr(x̄)),

thus
‖∇vm − (∇γm + Bm)‖L2(Tr(x̄)) ≤ c‖ε(vm)−Bm‖L2(Tr(x̄)).

We therefore choose Q = Bm +∇γm in (6.3) to get

∫
Br(x̄)

H2
m dx ≤ c

r

(∫
Tr(x̄)

H2
m dx

) 1
2
(∫

Tr(x̄)

|ε(vm)−Bm|2 dx

) 1
2

. (6.4)

We know vm ∈ W 2
2,loc(B2R(x0)) (apply Lemma 3.1, a), for the case s = 2), thus

we can use Sobolev–Poincaré’s inequality to estimate(∫
Tr(x̄)

|ε(vm)−Bm|2 dx

) 1
2

≤ c

∫
Tr(x̄)

|∇ε(vm)|dx.

By Lemma 4.2 the function hm = (1+ |ε(vm)|2)p/4 is in the space W 1
2,loc(B2R(x0)),

and we clearly have
|∇ε(vm)| ≤ chmHm,

since hmHm ≥ chm|∇ε(vm)|(1 + |ε(vm)|2)(p−2)/4 by the ellipticity of D2f . Going
back to (6.4), we obtain

∫
Br(x̄)

H2
m dx ≤ c

r

(∫
Tr(x̄)

H2
m dx

) 1
2 ∫

Tr(x̄)

hmHm dx. (6.5)
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Let us also recall that (see (4.20))∫
Bρ(x0)

|∇hm|2 dx ≤ c(ρ) < ∞ for all ρ < 2R. (6.6)

Combining (6.5) with (6.2) and (6.6) we find using Lemma 4.1 of [FrS]: if ω b
B2R(x0) is a fixed subdomain and if t is some number > 1, then there is a constant
K depending on t, ω and the local bounds from (6.2) and (6.6) such that∫

Br(x̄)

H2
m dx ≤ K| ln r|−t for all Br(x̄) ⊂ ω,

hence ∫
Br(x̄)

|∇σm|2 dx ≤ K| ln r|−t for all Br(x̄) ⊂ ω,

and if we choose t > 2, the version of the Dirichlet-growth theorem given in [Fre],
p. 287, shows that σm is continuous with modulus of continuity not depending
on m. Therefore there exists a continuous function σ̃ such that σm → σ̃ locally
uniform. In Lemma 4.5 we showed ε(vm) → ε(u) a.e. , thus σ̃ = σ := Df(ε(u)).
But Df is a homeomorphism S → S and so we deduce continuity of ε(u). In this
case the partial regularity criterion holds at each point, hence u ∈ C1,α(Ω; R2). ¤

Let us now look at the case q > 2. Clearly, (6.1) holds and we have

|∇τm|Γ
2−q
4

m ≤ cHm

(compare the calculations after (4.11)). If we use Hölder’s inequality on the right-
hand side of (6.1), we get

∫
Br(x̄)

H2
m dx ≤ c

r

(∫
Tr(x̄)

H2
m dx

) 1
2
(∫

Tr(x̄)

Γ
q−2
2

m |∇vm −Q|2 dx

) 1
2

,

but we did not succeed in applying the arguments of [BF4] to the second term on
the right-hand side of the above inequality. This would be possible if we could
replace ∇vm by the symmetric derivative ε(vm).

References

[AF] E. Acerbi and N. Fusco, Partial regularity under anisotropic (p, q) growth conditions,
J. Diff. Equ. 107 no. 1 (1994), 46–67.

[Ad] R. A. Adams, Sobolev spaces, Academic Press, New York–San Francisco–London, 1975.

[AM] G. Astarita and G. Marrucci, Principles of non-Newtonian fluid mechanics,
McGraw-Hill, London, 1974.

[Bi] M. Bildhauer, Convex variational problems with linear, nearly linear and/or
anisotropic growth conditions, Habilitationsschrift, Saarland University, 2001.



Vol. 5 (2003) Variants of the Stokes Problem: the Case of Anisotropic Potentials 401

[BF1] M. Bildhauer and M. Fuchs, Partial regularity for variational integrals with (s, µ, q)-
growth, Calc. Var. 13 (2001), 537–560.

[BF2] M. Bildhauer and M. Fuchs, Partial regularity for a class of anisotropic variational
integrals with convex hull property, Asymp. Anal. 32 (2002), 293–315.

[BF3] M. Bildhauer and M. Fuchs, Elliptic variational problems with nonstandard growth,
to appear in: International Mathematical Series, Vol. 1, Nonlinear problems in mathe-
matical physics and related topics I, in honor of Prof. O. A. Ladyzhenskaya. By Tamara
Rozhkovskaya, Novosibirsk, Russia, March 2002 (in Russian). English translation by
Kluwer/Plenum Publishers, June 2002 (in English).

[BF4] M. Bildhauer and M. Fuchs, Twodimensional anisotropic variational problems, to
appear in Calc. Var.

[BAH] R. Bird, R. Armstrong and O. Hassager, Dynamics of polymeric liquids, Vol. 1
Fluid mechanics, John Wiley, Second Edition, 1987.

[EG] L. C. Evans and R. Gariepy, Blowup, compactness and partial regularity in the
calculus of variations, Indiana Univ. Math. J. 36 (1987), 361–371.

[Fi] G. Fichera, Existence theorems in elasticity, and unilateral constraints in elasticity,
in: Handbuch der Physik VI a, 347–424, Springer, Berlin, 1972.

[Fre] J. Frehse, Two dimensional variational problems with thin obstacles, Math. Z. 143
(1975), 279–288.

[FrS] J. Frehse and G. Seregin, Regularity for solutions of variational problems in the
deformation theory of plasticity with logarithmic hardening, Proc. St. Petersburg Math.
Soc. 5 (1998), 184–222 (in Russian). English translation: Transl. Amer. Math. Soc. II
193 (1999), 127–152.

[Fri] K. O. Friedrichs, On the boundary value problem of the theory of elasticity and
Korn’s inequality, Ann. Math. 48 (1947), 441–471.

[Fu] M. Fuchs, On quasi-static non-Newtonian fluids with power law, Math. Meth. Appl.
Sciences 19 (1996), 1225–1231.

[FO] M. Fuchs and V. Osmolovski, Variational integrals on Orlicz–Sobolev spaces, Z. Anal.
Anw. 17 (1998), 393–415.

[FR] M. Fuchs and J. Reuling, A modification of the blowup technique for variational
integrals with subquadratic growth, J. Math. Anal. Appl. 210 (1997), 484–498.

[FS1] M. Fuchs and G. Seregin, Variational methods for problems from plasticity theory
and for generalized Newtonian fluids, Lecture Notes in Mathematics 1749, Springer,
Berlin–Heidelberg, 2000.

[FS2] M. Fuchs and G. Seregin, Variational methods for fluids of Prandtl–Eyring type and
plastic materials with logarithmic hardening, Math. Meth. Appl. Sciences 22 (1999),
317–351.

[Ga] G. Galdi, An introduction to the mathematical theory of the Navier–Stokes equations,
vol. 1. Springer Tracts in Natural Philosophy vol. 38, Springer, New York, 1994.

[Gi] M. Giaquinta, Multiple integrals in the calculus of variations and nonlinear elliptic
systems, Ann. Math. Studies 105, Princeton University Press, Princeton 1983.

[GM1] M. Giaquinta and G. Modica, Nonlinear systems of the type of the stationary Navier–
Stokes system, J. Reine Angew. Math. 330 (1982), 173–214.

[GM2] M. Giaquinta and G. Modica, Remarks on the regularity of the minimizers of certain
degenerate functionals, Manus. Math. 57 (1986), 55–99.
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