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Abstract. Suppose that f : R
nN → R is a strictly convex energy density of linear growth,

f (Z) = g(|Z|2) if N > 1. If f satisfies an ellipticity condition of the form

D2f (Z)(Y, Y ) ≥ c(1 + |Z|2)−µ
2 |Y |2 , 1 < µ ≤ 3 ,

then, following [Bi3], there exists a unique (up to a constant) solution of the variational
problem∫

�

f (∇w) dx +
∫
∂�

f∞((u0 − w)⊗ ν) dHn−1 → min in W 1
1 (�; R

N) ,

provided that the given boundary data u0 ∈ W 1
1 (�; R

N) are additionally assumed to be of
class L∞(�; R

N). Moreover, if µ < 3, then the boundedness of u0 yields local C1,α-reg-
ularity (and uniqueness up to a constant) of generalized minimizers of the problem∫

�

f (∇w) dx → min in u0+
◦
W1

1(�; R
N) .

In our paper we show that the restriction u0 ∈ L∞(�; R
N) is superfluous in the two

dimensional case n = 2, hence we may prescribe boundary values from the energy class
W 1

1 (�; R
N) and still obtain the above results.

1. Introduction

In the following we always consider a bounded Lipschitz domain � ⊂ R
n and a

strictly convex energy density f : R
nN → [0,∞), which is of linear growth, i.e.

a|Z| − b ≤ f (Z) ≤ A|Z| + B for all Z ∈ R
nN (1)

holds with suitable constants a > 0,A > 0, b, B. Moreover, we fix some boundary
data u0 of the Sobolev classW 1

1 (�; R
N). Then we are interested in the variational

problem

J [w] :=
∫
�

f (∇w) dx → min in u0+
◦
W1

1(�; R
N) , (P)
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which in general fails to have solutions. For this reason we introduce the set

M =
{
u ∈ BV(�; R

N) : u is the L1-limit of some

J -minimizing sequence {uk} ⊂ u0+
◦
W1

1(�; R
N)
}

of generalized minimizers of problem (P), which, by [BF3] (compare also the
monograph [Gi] for the minimal surface case), coincides with the set of solutions
of the relaxed problem

K[w] =
∫
�

f (∇aw) dx+
∫
�

f∞
( ∇sw

|∇sw|
)

d|∇sw|+
∫
∂�

f∞((u0−w)⊗ ν) dHn−1

→ min in BV(�; R
N) , (P̂)

where ν is the outward unit normal to ∂�, f∞ is the recession function of f , and
∇aw and ∇sw denote the regular and the singular part of ∇w w.r.t. the Lebesgue
measure, respectively.

Our main concern is the study of the smoothness properties of generalized min-
imizers. To this purpose and in order to formulate what is known up to now, let us
precisely state our general

Assumption 1. The energy density f : R
nN → [0,∞) is supposed to satisfy the

following set of hypotheses: there exist positive constants ν1, ν2, ν3 and a real
number 1 < µ ≤ 3 such that for any Z ∈ R

nN

i) f ∈ C2(RnN);
ii) |∇f (Z)| ≤ ν1;

iii) for any Y ∈ R
nN we have

ν2(1 + |Z|2)−µ
2 |Y |2 ≤ D2f (Z)(Y, Y ) ≤ ν3(1 + |Z|2)− 1

2 |Y |2 .
Moreover, in the vector case N > 1 we assume that

f (Z) = g(|Z|2) (2)

for some function g: [0,∞) → [0,∞), which is of class C2.

Remark 1. From Assumption 1 we easily obtain the following structure conditions
(see [Bi2] or [Bi3] for a short proof).

i) There are real numbers ν4 > 0 and ν5 such that for any Z ∈ R
nN

∇f (Z) : Z ≥ ν4(1 + |Z|2) 1
2 − ν5 ,

where we use the symbol Y : Z to denote the standard scalar-product in R
nN .

ii) The integrand f is of linear growth in the sense that (1) holds.
iii) The energy density f satisfies a “balancing condition”: there is a positive num-

ber ν6 such that

|D2f (Z)||Z|2 ≤ ν6(1 + f (Z)) holds for any Z ∈ R
nN .
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The most prominent (scalar) example satisfying Assumption 1 with the limit
exponent µ = 3 is the minimal surface integrand f (Z) =

√
1 + |Z|2 admit-

ting only regular solutions (see, for instance, [Gi], [GMS] as well as the a priori
gradient estimates for solutions of non-uniformly elliptic equations due to La-
dyzhenskaya/Ural’tseva ([LU2]) and Simon ([Si])). These solutions are uniquely
determined up to a constant. It should be emphasized that on account of the geo-
metric structure of this example there is much better information in the minimal
surface case than supposed in Assumption 1 (see Remark 2.3 of [Bi3]).

Remark 2. For the sake of completeness we should also mention the theory of per-
fect plasticity as a second significant example with a linear growth energy density.
Here Assumption 1 of course no longer is valid, and we can only expect partial
regularity results, which are mainly due to Seregin (compare [Se1]–[Se4]). Note
that even in the two dimensional setting we just have some additional information
on the singular set (see [Se4]).

The discussion of µ-elliptic integrands satisfying Assumption 1 without an ad-
ditional geometric structure condition started in [BF2]. Here the one parameter
family

�µ(Z) :=
∫ |Z|

0

∫ s

0
(1 + t2)−

µ
2 dt ds , 1 < µ ≤ 3 ,

serves as a typical example. Note that in the case �µ=3 we exactly recover the
minimal surface integrand. For a detailed discussion of examples with the limit
exponent µ = 3 of ellipticity, which are not of minimal surface type, we refer to
[Bi2], [BF5] (for instance, we may consider integrands which are not depending
on |Z| but on dist(Z,C), where C denotes a suitable convex set).

However, smoothness of generalized minimizers was proved in [BF2] under
the quite restrictive assumption 1 < µ < 1 + 2/n. Even in two dimensions the
reasoning of [BF2] is limited to the case µ < 2.

The considerable improvement to ellipticity exponents 1 < µ ≤ 3 then was
given in [Bi2] and [Bi3] by imposing an additional L∞-bound on the data u0. Here
we observe that, on account of the counterexample given in [Bi2] and [BF5], we
do not expect to get an extension of Theorem 1 below to the case µ > 3.

Remark 3. Before we are going to discuss Theorem 1 below, we like to include
some short remarks on analogous results for functionals with (p, q)-growth con-
ditions. Here the energy density is supposed to be of superlinear growth satisfying
for some positive constants λ, � and for all Z, Y ∈ R

nN

λ(1 + |Z|2) p−2
2 |Y |2 ≤ D2f (Z)(Y, Y ) ≤ �(1 + |Z|2) q−2

2 |Y |2 , 1 < p ≤ q .

i) This ellipticity condition formally coincides with Assumption 1, iii), by letting
µ = 2 − p and q = 1.

ii) The first results on the smoothness of solutions for problems with (p, q)-growth
are due to Marcellini (see [Ma1], [Ma2] and a series of subsequent papers). His
assumptions on p and q are similar to the condition µ < 1 + 2/n.
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iii) Closely related is the paper [FM] of Fuchs and Mingione, where the authors
study energy densities with nearly linear growth conditions. Here the assump-
tion µ < 1 + 2/n was introduced (if we again formally let q = 1 in [FM]).

iv) The analogue toµ < 3 in the (p, q)-case reads as q < 2+p. This condition first
appeared in [ELM], where higher integrability up to a certain limit exponent is
proved in the superquadratic case.

v) For a discussion of full C1,α
loc -regularity in the case q < 2 + p and for a more

detailed overview on the known results we refer to [Bi2].

Let us turn our attention back to variational problems with linear growth. Here it is
known that we have

Theorem 1 ([Bi2], [Bi3]). Suppose that Assumption 1 holds in the limit caseµ = 3
and that we have in addition u0 ∈ L∞ ∩W 1

1 (�; R
N). Then there is a generalized

minimizer u∗ ∈ M such that

i) ∇su∗ = 0.
ii) For any �′ � � we have∫

�′
|∇u∗| ln(1 + |∇u∗|) dx < ∞ .

iii) u∗ is (up to a constant) the unique solution of the problem∫
�

f (∇w) dx +
∫
∂�

f∞
(
(u0 − w)⊗ ν

)
dHn−1 → min in W 1

1 (�; R
N) .

(P ′)

If ellipticity is slightly better, i.e. if µ < 3, then full regularity is obtained in
the sense of

Theorem 2 ([Bi2], [Bi3]). Suppose that Assumption 1 holds with µ < 3 and that
we again have u0 ∈ L∞ ∩ W 1

1 (�; R
N). In the vector-valued case we assume in

addition to (2) that there are real numbers β ∈ (0, 1], K > 0, such that for all Z,
Z̃ ∈ R

nN

|D2f (Z)−D2f (Z̃)| ≤ K|Z − Z̃|β . (3)

Then we have:

i) each generalized minimizer u ∈ M is an element of the space C1,α(�; R
N)

for any 0 < α < 1;
ii) for u, v ∈ M we have ∇u = ∇v, i.e. up to a constant uniqueness of generalized

minimizers holds true.

In the following we study the question whether at least in two dimensions the
assumption u0 ∈ L∞(�; R

n) can be dropped, i.e. we are going to discuss the Di-
richlet boundary value problem (P) with data u0 from the energy classW 1

1 (�; R
N).

In fact, it turns out that:
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Theorem 3. In the two dimensional case n = 2, Theorems 1 and 2 remain valid
without the requirement u0 ∈ L∞(�; R

N).

From now on we restrict our considerations to the two dimensional case n = 2
and proceed as follows: after introducing some suitable (and well known) regular-
ization, we will prove in Section 3 uniform local higher integrability in the limit
case µ = 3. Using this result, we complete the proof of Theorem 3 in Section 4 by
reducing the problem to the setting discussed in [Bi3].

2. Regularization

We start with a well known regularization procedure. However, we focus on the
discussion of boundary data from the energy class W 1

1 (�; R
N), and, in contrast to

[Bi3], we now include a precise approximation argument w.r.t. the boundary data
as sketched, for instance, in [BF1]. To this purpose let us consider a sequence {um0 },
um0 ∈ C∞(�; R

N) such that

um0 → u0 in W 1
1 (�; R

N) as m → ∞ . (4)

We then denote by umδ , 0 < δ < 1, the unique solution of the variational problem

Jδ[w] := δ

2

∫
�

|∇w|2 dx + J [w] → min in um0 +
◦
W2

1(�; R
N) (Pm

δ )

and abbreviate fδ = δ
2 | · |2 + f . If δ = δ(m) is chosen sufficiently small (see the

proof of Lemma 1, i) and ii), for the precise conditions) and if we write for short
uδ = umδ(m), then the main properties of the regularization are summarized in the
following lemma.

Lemma 1. i) There is a real number c, independent of δ, such that

δ

∫
�

|∇uδ|2 dx ≤ c ,

∫
�

|∇uδ| ≤ c ;

ii) each L1-cluster point u∗ of the sequence {uδ} is a generalized minimizer in the
sense that u∗ ∈ M holds;

iii) uδ is of class W 2
2,loc ∩W 1

∞,loc(�; R
N);

iv) ∫
�

∇fδ(∇uδ) : ∇ϕ dx = 0 for all ϕ ∈ C∞
0 (�; R

N) ;

v) for γ = 1, 2 we have∫
�

D2fδ(∇uδ)(∂γ∇uδ,∇ϕ) dx = 0 for all ϕ ∈ C∞
0 (�; R

N) .
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Proof. ad i). The minimality of uδ implies Jδ[uδ] = Jδ(m)[umδ(m)] ≤ Jδ(m)[um0 ], and
if δ(m) is chosen sufficiently small, then

Jδ(m)[u
m
0 ] = δ(m)

2

∫
�

|∇um0 |2 dx +
∫
�

f (∇um0 ) dx ≤ 1

m
+
∫
�

f (∇um0 ) dx .

If we recall in addition the convergence (4) and the linear growth of f (see As-
sumption 1, ii)), i.e.∣∣∣∣
∫
�

(
f (∇um0 )− f (∇u0)

)
dx

∣∣∣∣ ≤ c

∫
�

|∇um0 − ∇u0| dx → 0 as m → ∞ ,

(5)

then the existence of a positive number c, independent of δ, is established such that
i) holds.

ad ii). As shown in [BF1], Lemma 3.1, (see also [Se3], Lemma 2, and [Bi2]
Remark II.1.8), we have for any fixed m ∈ N

J [umδ ] → inf
w∈um0 +

◦
W1

1(�;RN)
J [w] as δ → 0 ,

in particular it is possible to choose δ(m) sufficiently small such that for allm ∈ N

J [umδ(m)] ≤ inf
w∈um0 +

◦
W1

1(�;RN)
J [w] + 1

m
. (6)

We then fix ε > 0, and similar to (5) we can choosem0 ∈ N sufficiently large such
that for all m ≥ m0

|J [w]−J [w − um0 + u0]|≤c
∫
�

|∇um0 −∇u0| dx ≤ ε for all w∈W 1
1 (�; R

N) .

(7)

As an immediate consequence we see that∣∣∣∣ inf
w∈um0 +

◦
W1

1(�;RN)
J [w] − inf

w∈u0+
◦
W1

1(�;RN)
J [w]

∣∣∣∣ ≤ ε ,

whenever m ≥ m0. This, together with the choice of δ(m) (recall (6)), implies
(w.l.o.g. m−1 ≤ ε for all m ≥ m0)

J [umδ(m)] ≤ inf
w∈um0 +

◦
W1

1(�;RN)
J [w] + ε ≤ inf

w∈u0+
◦
W1

1(�;RN)
J [w] + 2ε (8)

for all m ≥ m0. Finally we let wmδ(m) = umδ(m) + u0 − um0 and by (7) and (8) the

sequence {wmδ(m)} is seen to be a J -minimizing sequence from u0+
◦
W1

1(�; R
N).

Since the sequences {wmδ(m)} and {umδ(m)} generate the same L1-cluster points, as-
sertion ii) is proved.
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ad iii)–v). iv) is the Euler equation for uδ which, in the scalar case, implies
iii) by Theorem 5.2, Chapter 4 of [LU1]. In the vector-valued setting, we refer to
[Uh] (compare [GM], Theorem 3.1) which, together with the standard difference
quotient technique, gives iii). Finally, on account of iii), the Euler equation iv) may
be differentiated with v) as a result. �

As a corollary of v) we obtain the following Caccioppoli-type inequality.

Corollary 1. If {uδ} denotes the regularization introduced above, then there are
positive numbers c1, c2, such that for any η ∈ C∞

0 (�), 0 ≤ η ≤ 1, and for any δ
as above∫

�

D2fδ(∇uδ)(∂γ∇uδ, ∂γ∇uδ)η2 dx ≤ c1

∫
�

|D2fδ(∇uδ)||∇uδ|2|∇η|2 dx

≤ c2 max
�

|∇η|2 . (9)

Here and in the following we always take the sum w.r.t. repeated Greek indices
γ = 1, 2 and w.r.t. repeated Latin indices i = 1, . . . , N .

Proof. From iii) of Lemma 1 and a standard density argument we see that for
γ = 1, 2 the choice ϕ = η2∂γ uδ is admissible in the differentiated form v), Lem-
ma 1, of the Euler equation. Using Young’s inequality, the left-hand inequality of
(9) is immediate. The uniform bound on the right-hand side of (9) follows from
Remark 1, iii). �

3. Local higher integrability in the limit case

Here we are going to establish uniform local higher integrability of the sequence
{∇uδ} in the limit case µ = 3.

Let us, for a moment, concentrate on the scalar case N = 1. Then we have the
following assertion.

Lemma 2. Suppose that Assumption 1 holds in the two dimensional scalar case
n = 2, N = 1, and let {uδ} denote the regularization introduced above. Moreover,
fix a ball Br(x0) satisfying B2r (x0) � �. Then there is a positive number c = c(r),
independent of δ, such that for any η ∈ C∞

0 (B2r (x0)), 0 ≤ η ≤ 1,∫
B2r (x0)

(1 + |∇uδ|2) 1
2 |uδ − (uδ)2r |2η2 dx

+ δ
∫
B2r (x0)

|∇uδ|2|uδ − (uδ)2r |2η2 dx ≤ c .

Here (uδ)2r denotes the mean value of uδ on B2r (x0).

Remark 4. i) Following the proof of Theorem 4 below, it becomes obvious that
this estimate is exactly the one which is needed to reach the limit case µ = 3.

ii) Inequality (10) given below is the main reason why the results in two dimensions
are better than the ones stated in [Bi3] for arbitrary dimensions.
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Proof of Lemma 2. Note that in the two dimensional case n = 2 we have by Sobo-
lev-Poincarè’s inequality(∫

B2r (x0)

|uδ − (uδ)2r |2 dx

) 1
2

≤ c1

∫
B2r (x0)

|∇uδ| dx ≤ c2 (10)

for some positive constants c1, c2, which are not depending on δ (recall Lemma
1, i)). Moreover, as a result of Lemma 1, iii), and a standard density argument,
ϕ = (uδ − (uδ)2r )

3η2, η ∈ C∞
0 (B2r (x0)), 0 ≤ η ≤ 1, is seen to be admissible in

the Euler equation iv) of Lemma 1, thus we obtain

3
∫
B2r (x0)

∇f (∇uδ) · ∇uδ|uδ − (uδ)2r |2η2 dx

+ 3δ
∫
B2r (x0)

|∇uδ|2|uδ − (uδ)2r |2η2 dx

= −2
∫
B2r (x0)

∇fδ(∇uδ) · ∇ηη(uδ − (uδ)2r )
3 dx .

From this equality we arrive at (recalling Remark 1, i), (10) and the boundedness
of |∇f |) ∫

B2r (x0)

(1 + |∇uδ|2) 1
2 |uδ − (uδ)2r |2η2 dx

+ δ
∫
B2r (x0)

|∇uδ|2|uδ − (uδ)2r |2η2 dx

≤ c(1 + I1 + I2) , (11)

where the constant c again is not depending on δ, and I1, I2 are given by

I1 =
∫
B2r (x0)

|uδ − (uδ)2r |3η|∇η| dx ,

I2 = δ

∫
B2r (x0)

|∇uδ||uδ − (uδ)2r |3η|∇η| dx .

Estimating I1 we observe that (using (10), Hölder’s inequality, Sobolev-Poincarè’s
inequality and Young’s inequality for some sufficiently small number ε > 0)

I1 ≤
(∫

B2r (x0)

|uδ − (uδ)2r |4η2 dx

) 1
2
(∫

B2r (x0)

|uδ − (uδ)2r |2|∇η|2 dx

) 1
2

≤ c

∫
B2r (x0)

∣∣∇(|uδ − (uδ)2r |2η)
∣∣ dx

≤ c

(
1 +

∫
B2r (x0)

|uδ − (uδ)2r ||∇uδ|η dx

)

≤ c

(
1 +

∫
B2r (x0)

{
ε|uδ − (uδ)2r |2(1 + |∇uδ|2) 1

2 η2

+ε−1(1 + |∇uδ|2) 1
2

}
dx

)
. (12)
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Here again c denotes some positive local constant which is not depending on δ.
Note that the “ε”-part on the right-hand side of (12) can be absorbed (for ε > 0
sufficiently small) on the left-hand side of (11), whereas the remaining integral is
uniformly bounded w.r.t. δ.

To find an estimate for I2, we recall the uniform bound for δ
∫
�

|∇uδ|2 dx. In
fact, it can be easily seen that this quantity converges to zero if δ → 0 (see [BF1]),
but here we merely need i) of Lemma 1. As a consequence, we have with local
constants and for ε > 0 sufficiently small

I2 ≤ cδ

(∫
B2r (x0)

|∇uδ|2 dx

) 1
2
(∫

B2r (x0)

|uδ − (uδ)2r |6η2 dx

) 1
2

≤ cδ
1
2

∫
B2r (x0)

∣∣∇(|uδ − (uδ)2r |3η)
∣∣ dx

≤ cδ
1
2

(∫
B2r (x0)

|uδ − (uδ)2r |2|∇uδ|η dx +
∫
B2r (x0)

|uδ − (uδ)2r |3 dx

)

≤ cδ
1
2

(∫
B2r (x0)

(
εδ

1
2 |uδ − (uδ)2r |2|∇uδ|2η2 + ε−1δ−

1
2 |uδ − (uδ)2r |2

)
dx

+
∫
B2r (x0)

|uδ − (uδ)2r |3 dx

)

=: c
3∑
i=1

I i2 . (13)

Now I 1
2 can be absorbed on the left-hand side of (11), whereas the second integral

I 2
2 is uniformly bounded w.r.t. δ. I 3

2 is estimated with the help of (10), Hölder’s and
Sobolev-Poincarè’s inequality

I 3
2 = δ

1
2

∫
B2r (x0)

|uδ − (uδ)2r |3 dx

≤ δ
1
2

(∫
B2r (x0)

|uδ − (uδ)2r |4 dx

) 1
2
(∫

B2r (x0)

|uδ − (uδ)2r |2 dx

) 1
2

≤ cδ
1
2

∫
B2r (x0)

∣∣∇|uδ − (uδ)2r |2
∣∣ dx

≤ cδ
1
2

(∫
B2r (x0)

|∇uδ|2 dx

) 1
2
(∫

B2r (x0)

|uδ − (uδ)2r |2 dx

) 1
2

≤ c . (14)

If we recall that the ε-terms occurring on the right-hand side of (12) and (13) can
be absorbed on the left-hand side of (11), then Lemma 2 follows from the uniform
estimates for the remaining terms on the right-hand side of (12), (13) and (14),
respectively. �
Remark 5. Going through the proof of Lemma 2 we see that the assertion is not
depending on the exponent µ of ellipticity.
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Instead of the assumption u0 ∈ L∞(�) used [Bi3], Lemma 2 now is the main
tool yielding uniform local higher integrability of |∇uδ| in the scalar case.

Theorem 4. Consider the two dimensional scalar case n = 2, N = 1, together
with the general Assumption 1. If B2r (x0) � �, then there exists a local constant
c, independent of δ, such that the regularizing sequence {uδ} satisfies

∫
Br(x0)

(1 + |∇uδ|2) 1
2 ln(1 + |∇uδ|2) dx ≤ c .

Proof. We let ωδ = ln(1 + |∇uδ|2) and choose ϕ = (uδ − (uδ)2r )ωδη
2, η ∈

C∞
0 (B2r (x0)), 0 ≤ η ≤ 1, η ≡ 1 onBr(x0). Again ϕ is easily seen to be admissible

in the Euler equation iv), Lemma 1, and we obtain

∫
B2r (x0)

∇f (∇uδ) · ∇uδωδη2 dx + δ

∫
B2r (x0)

|∇uδ|2ωδη2 dx

= −
∫
B2r (x0)

∇f (∇uδ) · ∇ωδ(uδ − (uδ)2r )η
2 dx

−2
∫
B2r (x0)

∇f (∇uδ) · ∇ηη(uδ − (uδ)2r )ωδ dx

−δ
∫
B2r (x0)

∇uδ · ∇ωδ(uδ − (uδ)2r )η
2 dx

−2δ
∫
B2r (x0)

∇uδ · ∇ηη(uδ − (uδ)2r )ωδ dx

=:
4∑
i=1

Ii .

Similar to the proof of Lemma 2, a lower bound for the first integral on the left-hand
side is given by Remark 1, i), thus

∫
B2r (x0)

(1 + |∇uδ|2) 1
2ωδη

2 dx + δ

∫
B2r (x0)

|∇uδ|2ωδη2 dx

≤ c

(∫
B2r (x0)

ωδη
2 dx +

4∑
i=1

|Ii |
)
. (15)

Clearly
∫
B2r (x0)

ωδη
2 dx is uniformly bounded w.r.t. δ, and in order to find an esti-

mate for I1 we observe

|∇ωδ|2 ≤ 4

1 + |∇uδ|2 |∇2uδ|2 .

This, together with Lemma 2, implies (again we make use of the fact that |∇f | is
bounded)
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|I1| ≤ c

∫
B2r (x0)

|uδ − (uδ)2r ||∇ωδ|η2 dx

≤ c

(∫
B2r (x0)

(1 + |∇uδ|2) 1
2 |uδ − (uδ)2r |2η2 dx

) 1
2

·
(∫

B2r (x0)

(1 + |∇uδ|2)− 1
2 |∇ωδ|2η2 dx

) 1
2

≤ c

(∫
B2r (x0)

(1 + |∇uδ|2)− 3
2 |∇2uδ|2η2 dx

) 1
2

.

Here the right-hand side is bounded through the Caccioppoli-type inequality (9) of
Corollary 1. Note that we exactly reach the limit case µ = 3. Next,

|I2| ≤ c

∫
B2r (x0)

(|uδ − (uδ)2r |2 + η2|∇η|2ω2
δ

)
dx ≤ c

is immediately verified,

|I3| ≤ cδ

∫
B2r (x0)

(|∇uδ|2|uδ − (uδ)2r |2η2 + |∇ωδ|2η2) dx

≤ c

(
1 + δ

∫
B2r (x0)

(1 + |∇uδ|2)−1|∇2uδ|2η2 dx

)
≤ c

again follows from Lemma 2 and Corollary 1. Thus, together with

|I4| ≤ cδ

∫
B2r (x0)

(|∇uδ|2|uδ − (uδ)2r |2η2 + |∇η|2ω2
δ

)
dx ≤ c ,

the Theorem is proved recalling (15) and since the constants occurring above are
not depending on δ. �

Let us turn our attention to the vectorial setting N > 1.

Theorem 5. Theorem 4 extends to the two dimensional vector-valued case n = 2,
N > 1.

Proof. The theorem is established once the following claims are verified (we keep
the notation introduced above)

i) ϕ = |uδ − (uδ)2r |2(uδ − (uδ)2r )η
2 is admissible in the Euler equation iv) of

Lemma 1 (this test-function is used to prove Lemma 2).
ii) This choice of ϕ implies (11).

iii) ϕ = (uδ − (uδ)2r )ωδη
2 also is admissible (this is necessary to follow the

arguments given in the proof of Theorem 4).
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If i)–iii) are verified, then the remaining arguments given in the proofs of Lemma
2 and Theorem 4 can be carried over to the vectorial setting without any changes.

ad i) & iii). We already have noted (see Lemma 1, iii)) that uδ is of class
W 2

2,loc ∩W 1
∞,loc(�; R

N). This immediately gives i) and iii).

ad ii). Here we first observe that the representation f (Z) = g(|Z|2) implies

∇f (0) = 0 .

In particular we have

∇f (Z) : Z =
∫ 1

0
D2f (θZ)(Z,Z) dθ ≥ 0 ,

thus, with the notation fδ(Z) = gδ
(|Z|2),

g′
δ(|Z|2) ≥ 0 for any Z ∈ R

2N . (16)

We next let ψ = |uδ − (uδ)2r |2(uδ − (uδ)2r ), and with the help of (16) we
obtain a.e.

∇fδ(∇uδ) : ∇ψ = 2g′
δ(|∇uδ|2)∇uδ : ∇ψ

= 2g′
δ(|∇uδ|2)

[
∂αu

i
δ∂αu

i
δ|uδ − (uδ)2r |2

+(∂αuiδ(uiδ − (uδ)
i
2r )
)
2
(
∂αu

j
δ (u

j
δ − (uδ)

j
2r

)]
≥ 2g′

δ(|∇uδ|2)∂αuiδ∂αuiδ|uδ − (uδ)2r |2
= ∇fδ(∇uδ) : ∇uδ|uδ − (uδ)2r |2 .

Of course this implies (11) exactly in the same way as above, and Theorem 5 is
proved. �

Before we are going to discuss the case µ < 3, let us complete the

Proof of Theorem 3 in the case µ = 3. We fix the regularization {uδ} as introduced
above. Then, if n = 2, Theorem 4 and Theorem 5, respectively, together with the
de la Vallèe Poussin criterion yield a subsequence (which is not relabelled) such
that uδ ⇁: u∗ in W 1

1,loc(�; R
N) (recall that Lemma 1, ii), gives u∗ ∈ M). Lower

semicontinuity w.r.t. weakW 1
1 -convergence then proves the assertions i) and ii) as

stated in Theorem 1, where we now (in contrast to [Bi3]) merely have to assume
that u0 ∈ W 1

1 (�; R
N). The last claim is a consequence of the following Lemma

given in [BF3] (compare [Bi2]). �
Lemma 3. Suppose that the variational integrand f : R

nN → [0,∞) is strictly
convex, of linear growth, i.e.

a|Z| − b ≤ f (Z) ≤ A|Z| + B
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with some positive constants a > 0,A > 0, b,B, and satisfies f (0) = 0. Moreover,
we assume that there exists

u∗ ∈ M′ :=
{
u ∈ M : u ∈ W 1

1,loc(�; R
N)
}

= M ∩W 1
1 (�; R

N) .

Then we have

i) The elements of M′ are solutions of problem (P ′) and vice versa.
ii) The set M′ is uniquely determined up to constants.

Proof. Recalling the fact that M coincides with the set of solutions of the varia-
tional problem (P̂), we shortly sketch the proof for the sake of completeness.

ad i). Fix u∗ ∈ M′. On account of the K-minimizing property of u∗ and since
∇su∗ ≡ 0, the representation of K clearly implies that u∗ ∈ M′ is a solution of
(P ′).

Conversely, consider a solution v∗ of problem (P ′) and a J -minimizing se-

quence {um} from u0+
◦
W1

1(�; R
N). The minimality of v∗ gives

K[v∗] =
∫
�

f (∇v∗) dx +
∫
∂�

f∞((u0 − v∗)⊗ ν) dHn−1 ≤
∫
�

f (∇um) dx ,

and i) follows from inf{J [w] : w ∈ u0+
◦
W1

1(�; R
N)} = inf{K[w] : w ∈

BV (�; R
N)} and the above mentioned identification of solutions.

ad ii). To prove uniqueness up to a constant, we just observe that f∞ is convex,
whereas f is strictly convex. This immediately gives ∇u∗ = ∇u∗∗ a.e. for any two
generalized minimizers u∗, u∗∗ ∈ M′, hence the lemma is proved. �

4. The Case µ < 3

Proof of Theorem 3 in the case µ < 3. We proceed in three steps:
we first fix a L1-cluster point u∗ ∈ M of the regularizing sequence {uδ} and

use the higher integrability established in the last section to define a suitable lo-
cal auxiliary variational problem. Here we find uniform local gradient estimates
according to Theorem 6.1 of [Bi3].

Next, the auxiliary solutions are modified and extended to the whole domain
�. We obtain a sequence {wm}, where it turns out that the L1-cluster points w∗ are
generalized minimizers of the original problem, hence elements of the set M.

Finally, the duality relation holds a.e. both for u∗ and for w∗, which completes
the proof of Theorem 3.

Step 1. From now on suppose that Assumption 1 holds with n = 2 and µ < 3. We
fix a L1-cluster point u∗ of the regularizing sequence {uδ} (introduced in Section
2), and recall that u∗ is already known to be of class W 1

1 (�; R
N). We fix x0 ∈ �
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and write with a slight abuse of notation u∗(r, θ) = u∗(x0 + reiθ ). Moreover, let
us assume that B2R0(x0) � � and observe that∫ R0

0

∫ 2π

0

∣∣∣∣∂u∗

∂θ

∣∣∣∣ dθ dr ≤
∫ R0

0

∫ 2π

0
|∇u∗| dθ r dr ≤ c < ∞ .

Hence there exists a radius R0/2 ≤ R ≤ R0 such that∫ 2π

0

∣∣∣∣∂u∗(R, θ)
∂θ

∣∣∣∣ dθ ≤ c < ∞ . (17)

Next, we pass to a smooth sequence {um}, um ∈ C∞(�; R
N), with the property

um → u∗ in W 1
1 (�; R

N) as m → ∞ , (18)

hence it is possible to estimate∫ R0

0
hm(r) dr :=

∫ R0

0

∫ 2π

0

∣∣∣∣∂(um − u∗)
∂θ

∣∣∣∣ dθ dr

≤
∫ R0

0

∫ 2π

0
|∇(um − u∗)| dθ r dr

m→∞→ 0 .

Thus, hm(r) → 0 in L1((0, R0)) as m → ∞, and we may assume in addition to
(17) that R is chosen to satisfy∫ 2π

0

∣∣∣∣∂um(R, θ)∂θ

∣∣∣∣ dθ ≤ c < ∞ , (19)

where the constant c does not depend on m. As a consequence of (19) it is finally
established: there is a radius R ∈ (R0/2, R0) and real numberK > 0 such that for
all m ∈ N ∣∣um|∂BR(x0)

∣∣ ≤ K , (20)

and we have found suitable boundary data to consider the variational problem

Jδ[w,BR(x0)] :=
∫
BR(x0)

f (∇w) dx + δ

2

∫
BR(x0)

|∇w|2 dx

→ min in um+
◦
W2

1(BR(x0); R
N) . (Pm

δ )

If δ = δ(m) is chosen sufficiently small (analogous arguments are given in Section
2) and if we denote by vm the unique solution of problem (Pm

δ ), then

Jδ(m)[vm,BR(x0)] ≤ Jδ(m)[um,BR(x0)] ≤ c (21)

follows with a constant c not depending of m. Moreover, by (20), we find (citing
for example the maximum principle given in [DLM] or the convex hull property
shown in [BF4])

‖vm‖L∞(BR(x0);RN) ≤ K . (22)
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At this point we observe that the a priori gradient estimates established in Theorem
6.1 of [Bi3] only depend on the data and the constants occurring on the right-hand
side of (21) and (22), respectively. As a result, a real number c > 0, independent
of m, is found such that

‖∇vm‖L∞(BR/2(x0);R2N) ≤ c . (23)

Step 2. Given u∗, um and vm as above we choose η ∈ C∞(BR(x0)), η ≡ 1 on
BR(x0)− B3R/4(x0), η ≡ 0 on BR/2(x0), and let w1

m: BR(x0) → R
N ,

w1
m := vm + η(u∗ − um) , hence w1

m|∂BR(x0)
= u∗

|∂BR(x0)
.

We then claim thatw1
m provides a J|BR(x0)-minimizing sequence w.r.t. the boundary

data u∗
|BR(x0)

: in fact, (18) implies as m → ∞∣∣∣∣
∫
BR(x0)

(
f (∇um)− f (∇u∗)

)
dx

∣∣∣∣ ≤ c

∫
BR(x0)

|∇um − ∇u∗| dx → 0 ,

and if we decrease δ (if necessary), then we obtain from the minimality of vm∫
BR(x0)

f (∇vm) dx ≤ Jδ(m)[vm,BR(x0)] ≤ Jδ(m)[um,BR(x0)]

m→∞→
∫
BR(x0)

f (∇u∗) dx . (24)

Moreover, we have∣∣∣∣
∫
BR(x0)

(
f (∇w1

m)− f (∇vm)
)

dx

∣∣∣∣ ≤ c

∫
BR(x0)

∣∣∇(η(u∗ − um))
∣∣ dx

m→∞→ 0 ,

which, together with (24) and the minimality of u∗ (recall that u∗ ∈ W 1
1 (�; R

N)

is a local J -minimizer) implies∫
BR(x0)

f (∇w1
m) dx

m→∞→
∫
BR(x0)

f (∇u∗) dx , (25)

i.e. the assertion is proved.
Next we claim that the sequence {w1

m} can be extended to a J -minimizing

sequence from u0+
◦
W1

1(�; R
N).

To this purpose we recall that, according to the previous sections, there exists

a J -minimizing sequence from u0+
◦
W1

1(�; R
N), which we now denote by {u′

k},
such that we even have u′

k ⇁ u∗ in W 1
1,loc(�; R

N) as k → ∞. With [BF1], Lem-
ma 7.1 on local comparison functions, we find a J -minimizing sequence {u′′

k} from

u0+
◦
W1

1(�; R
N) such that for any k ∈ N and for a suitable ball BR′(x0), R < R′,

the identity

u′′
k |BR′ (x0)

≡ u∗
|BR′ (x0)

, in particular u′′
k |∂BR(x0)

≡ u∗
|∂BR(x0)

,
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holds true. On the other hand, for all m ∈ N we also have w1
m|∂BR(x0)

≡ u∗
|∂BR(x0)

,

hence, on account of (25), it is possible to extend the sequence {w1
m} to a J -min-

imizing sequence {wm} from u0+
◦
W1

1(�; R
N). Summarizing these remarks, it is

proved in the second step that L1-cluster pointsw∗ of the extended sequence {wm}
are generalized minimizers in the sense that w∗ ∈ M.

Step 3. Finally we recall that partial regularity for u∗ follows from [AG] (compare
[BF1] and [Bi2]), i.e. there is an open set �0 ⊂ � of full Lebesgue measure,
|�−�0| = 0, such that

u∗ ∈ C1,α(�0; R
N) .

As a consequence, the duality relation

σ = ∇f (∇u∗) in �0

is derived in [BF1]. Here σ denotes the solution of the dual variational problem
(see [ET] for precise definitions and a detailed discussion). Let us just note that
σ is uniquely determined (see [Bi1]) and that on the open set �0 it is admissible
to perform the variation of σ as described in [BF2], Lemma 5.1 (compare [Se4]
for an earlier discussion of this minimax inequality). As a result, any generalized
minimizer v∗ ∈ M is also seen to satisfy

σ = ∇f (∇v∗) in �0 .

Since w∗ ∈ M was proved in Step 2, we obtain

∇w∗ = ∇u∗ a.e.

On the other hand, recall that

wm|BR/2(x0) = w1
m|BR/2(x0)

= vm|BR/2(x0) ,

hence the a priori estimate (23) yields

‖∇u∗‖L∞(BR/2(x0);R2N) ≤ c .

Note that we really have local Lipschitz continuity of u∗, since u∗ ∈ W 1
1 (�; R

N),
in particular ∇su∗ ≡ 0, was already shown in the last section.

Once we have established local a priori gradient estimates, local C1,α-regular-
ity follows in a standard way (see [GT] for the scalar case and [GM], [MS] in the
vector-valued setting, some details are given in [Bi2]). Note that in the vector case
N > 1 condition (3) is chosen in accordance to [GM]. To complete the proof of
Theorem 3 in the case µ < 3, we finally observe that uniqueness up to a constant
follows with the help of the above mentioned variation of σ (details are given in
[BF2] and [Se4]). �
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