The effect of a penalty term involving higher order derivatives on the distribution of phases in an elastic medium with a two-well elastic potential

M. Bildhauer ${ }^{1}$, M. Fuchs ${ }^{2, *, \dagger}$ and V. G. Osmolovskii ${ }^{3}$
${ }^{1}$ Universität des Saarlandes, Fachrichtung 6.1 Mathematik, Postach 1511 50, D-66041 Saarbrücken, Germany
${ }^{2}$ Universität des Saarlandes, Fachrichtung 6.1 Mathematik, Postach 1511 50, D-66041 Saarbrücken, Germany
${ }^{3}$ Mathematics \& Mechanics, Faculty, St. Petersburg State University, 198904 St. Petersburg, Russia

Communicated by H. D. Alber

SUMMARY

We consider the problem of minimizing

$$
I[u, \chi, h, \sigma]=\int_{\Omega}\left(\chi f_{h}^{+}(\varepsilon(u))+(1-\chi) f^{-}(\varepsilon(u))\right) \mathrm{d} x+\sigma\left(\int_{\Omega}|\Delta u|^{2} \mathrm{~d} x\right)^{p / 2}
$$

$0<p<1, h \in \mathbb{R}, \sigma>0$, among functions $u: \mathbb{R}^{d} \supset \Omega \rightarrow \mathbb{R}^{d}, u_{\mid \partial \Omega}=0$, and measurable characteristic functions $\chi: \Omega \rightarrow \mathbb{R}$. Here f_{h}^{+}, f^{-}, denote quadratic potentials defined on the space of all symmetric $d \times d$ matrices, h is the minimum energy of f_{h}^{+}and $\varepsilon(u)$ denotes the symmetric gradient of the displacement field. An equilibrium state $\hat{u}, \hat{\chi}$ of $I[\cdot, \cdot, h, \sigma]$ is termed one-phase if $\hat{\chi} \equiv 0$ or $\hat{\chi} \equiv 1$, two-phase otherwise. We investigate the way in which the distribution of phases is affected by the choice of the parameters h and σ. Copyright © 2002 John Wiley \& Sons, Ltd.

KEY WORDS: elastic materials; phase transition; equilibrium states; regularization

1. INTRODUCTION

We consider an elastic medium which can exist in two different phases. If the medium occupies a bounded region $\Omega \subset \mathbb{R}^{d}$ (assumed to be of class C^{2}), then the energy density of the first (second) phase is given by

$$
\begin{aligned}
f_{h}^{+}(\varepsilon(u)) & =\left\langle A^{+}\left(\varepsilon(u)-\xi^{+}\right), \varepsilon(u)-\xi^{+}\right\rangle+h \\
\left(f^{-}(\varepsilon(u))\right. & \left.=\left\langle A^{-}\left(\varepsilon(u)-\xi^{-}\right), \varepsilon(u)-\xi^{-}\right\rangle\right)
\end{aligned}
$$

[^0]where $u=\left(u^{1}, \ldots, u^{d}\right): \Omega \rightarrow \mathbb{R}^{d}$ is the field of displacements, $\varepsilon(u)=\frac{1}{2}\left(\partial_{i} u^{j}+\partial_{j} u^{i}\right)_{1 \leqslant i, j \leqslant d}$ denotes the corresponding strain tensor, and $A^{ \pm}: \mathbb{S}^{d} \rightarrow \mathbb{S}^{d}$ are linear, symmetric operators defined on the space \mathbb{S}^{d} of all symmetric $d \times d$ matrices having the meaning of the tensors of elastic moduli of the first and the second phase. Finally, $\xi^{ \pm} \in \mathbb{S}^{d}$ denote the stress-free strains of the i th phase, and we use the symbol $\langle\varepsilon, \tau\rangle:=\operatorname{tr}(\varepsilon \chi)$ for the scalar product in \mathbb{S}^{d}. Thus, the energy density of each phase is a quadratic function of the linear strain, where the energy density of the first phase depends in addition on the parameter $h \in \mathbb{R}$. Let us state the hypotheses imposed on the data: $A^{ \pm}$are assumed to be positive, i.e. for some number $v>0$ we have
\[

$$
\begin{equation*}
v|\varepsilon|^{2} \leqslant\left\langle A^{ \pm} \varepsilon, \varepsilon\right\rangle \leqslant v^{-1}|\varepsilon|^{2} \quad \text { for all } \varepsilon \in \mathbb{S}^{d} \tag{1}
\end{equation*}
$$

\]

hence, the parameter h measures the difference between the minima of f_{h}^{+}and f^{-}. As a second condition concerning the tensors of elastic moduli we require that for some number $\mu \in(0, v)$

$$
\begin{equation*}
\left.\left|\left\langle A^{+}-A^{-}\right) \varepsilon, \varepsilon\right\rangle|\leqslant \mu| \varepsilon\right|^{2} \quad \text { for all } \varepsilon \in \mathbb{S}^{d} \tag{2}
\end{equation*}
$$

is satisfied. Finally, we suppose that

$$
\begin{equation*}
A^{+} \xi^{+} \neq A^{-} \xi^{-} \tag{3}
\end{equation*}
$$

is valid. Clearly, (2) holds in case $A^{+}=A^{-}$for which (3) reduces to the condition $\xi^{+} \neq \xi^{-}$. If χ denotes the characteristic function of the set occupied by the first phase, then it is natural to take the functional

$$
\begin{equation*}
J[u, \chi, h]:=\int_{\Omega}\left(\chi f_{h}^{+}(\varepsilon(u))+(1-\chi) f^{-}(\varepsilon(u))\right) \mathrm{d} x \tag{4}
\end{equation*}
$$

as the total deformation energy of the medium and to define an equilibrium state of J as a minimizing pair ($\hat{u}, \hat{\chi}$) consisting of a deformation \hat{u} and a measurable characteristic function $\hat{\chi}$. Following standard convention, we say that the equilibrium state is one-phase if $\hat{\chi} \equiv 0$ or $\hat{\chi} \equiv 1$, two-phase otherwise. Let us consider displacement fields u vanishing on $\partial \Omega$. Then the domain of definition of the functional $J[\cdot, \cdot, h]$ is the space of all pairs (u, χ) with $u \in X:=\stackrel{\circ}{W}_{2}^{1}\left(\Omega ; \mathbb{R}^{d}\right)$ (equipped with the norm $\left.\|u\|_{X}:=\|\varepsilon(u)\|_{L^{2}\left(\Omega ; \mathbb{S}^{d}\right)}\right)$ and χ denoting an arbitrary measurable characteristic function $\Omega \rightarrow \mathbb{R}$. Unfortunately, the variational problem $J[\cdot, \cdot, h] \rightarrow$ min may fail to have solutions as it is shown by an example in Reference [1]. One way to overcome this difficulty is to introduce the quasiconvex envelope $\tilde{f_{h}}$ of the integrand $f_{h}:=\min \left\{f_{h}^{+}, f^{-}\right\} \leqslant \chi f_{h}^{+}+(1-\chi) f^{-}$(see Reference [2] for a definition) and to pass to the relaxed problem

$$
\int_{\Omega} \tilde{f_{h}}(\varepsilon(u)) \mathrm{d} x \rightarrow \min \quad \text { in } X
$$

(note that by Dacorogna's formula $u \equiv 0$ is a solution; non-trivial solutions were produced in Reference [3]), we refer the reader to References [2,4,5] for a more detailed outline of this approach and for further references. From the physical point of view (compare Reference [6]), it is also reasonable to consider a regularization of the functional J from (4), taking the area of the separating surface between the different phases into account, i.e. we replace J by the
energy

$$
\begin{equation*}
J[u, \chi, h, \sigma]=J[u, \chi, h]+\sigma \int_{\Omega}|\nabla \chi| \tag{5}
\end{equation*}
$$

where $\sigma>0$ denotes a parameter, and the characteristic function χ is required to be an element of the space $B V(\Omega)$ of all functions having bounded variation (see for example [7] for definitions). This model was investigated in References [8,3,9] establishing various existence results for the functional from (5), in particular, in Reference [9] we showed how the distribution of phases depends on the choices for the parameters h and σ.

In the present note we regularize $J[u, \chi, h]$ by adding a penalty term involving higher order derivatives of the displacement field. In principal, this model was proposed by Kohn and Müller in References [10,11]. To be precise, suppose that a number $0<p<1$ is fixed, and for $\sigma>0$ let

$$
\begin{equation*}
I[u, \chi, h, \sigma]:=J[u, \chi, h]+\sigma\left(\int_{\Omega}|\Delta u|^{2} \mathrm{~d} x\right)^{p / 2} \tag{6}
\end{equation*}
$$

where now $u \in H:=W_{2}^{2}\left(\Omega ; \mathbb{R}^{d}\right) \cap X$ and (as in (4))

$$
\chi \in M:=\{\text { measurable characteristic functions } \Omega \rightarrow \mathbb{R}\}
$$

With a slight abuse of notation we sometimes only assume $\chi \in L^{\infty}(\Omega), 0 \leqslant \chi \leqslant 1$ a.e., equilibrium states of I however are always defined w.r.t. $H \times M$. Note, that on account of $\partial \Omega \in C^{2}$, the quantity

$$
\|u\|_{H}:=\|\Delta u\|_{L^{2}\left(\Omega ; \mathbb{R}^{d}\right)}
$$

introduces a norm on the space H being equivalent to the W_{2}^{2}-norm which is a consequence of the Calderon-Zygmund regularity results. Our main result now concerns the analysis of the effect of the parameters $h \in \mathbb{R}$ and $\sigma>0$ on the distribution of phases, we have

Theorem 1.1. Let (1)-(3) hold. Then, for each $h \in \mathbb{R}$ and all $\sigma>0$, the functional $I[\cdot, \cdot, h, \sigma]$ attains its minimum on the set $H \times M$. There are two bounded, continuous functions $h^{ \pm}(\sigma)$, $\sigma>0$, and a number $\sigma^{*}>0$ with the following properties:

$$
\begin{aligned}
& h^{+}(\sigma)>\hat{h} \quad \text { on }\left(0, \sigma^{*}\right), \quad h^{+}(\sigma) \equiv \hat{h} \quad \text { for } \sigma \geqslant \sigma^{*} \\
& h^{-}(\sigma)<\hat{h} \quad \text { on }\left(0, \sigma^{*}\right), \quad h^{-}(\sigma) \equiv \hat{h} \text { for } \sigma \geqslant \sigma^{*} \\
& \hat{h}:=\left\langle A^{-} \xi^{-}, \xi^{-}\right\rangle-\left\langle A^{+} \xi^{+}, \xi^{+}\right\rangle \\
& h^{+} \text {strictly decreases on }\left(0, \sigma^{*}\right), h^{-} \text {is strictly increasing on }\left(0, \sigma^{*}\right)
\end{aligned}
$$

The graphs of $h^{ \pm}$divide the half-plane of parameters $\sigma>0, h \in \mathbb{R}$, into three open regions

$$
\begin{aligned}
& A:=\left\{(\sigma, h): \sigma>0, h>h^{+}(\sigma)\right\} \\
& B:=\left\{(\sigma, h): 0<\sigma<\sigma^{*}, h^{-}(\sigma)<h<h^{+}(\sigma)\right\} \\
& C:=\left\{(\sigma, h): \sigma>0, h<h^{-}(\sigma)\right\}
\end{aligned}
$$

in which we have the following distribution of phases:
(i) for $(\sigma, h) \in A$ we only have the one-phase equilibrium $\hat{u} \equiv 0, \hat{\chi} \equiv 0$;
(ii) for $(\sigma, h) \in C$ only the one-phase equilibrium $\hat{u} \equiv 0, \hat{\chi} \equiv 1$ exists;
(iii) for $(\sigma, h) \in B$ only two-phase states of equilibria exist.

On the graphs of $h^{ \pm}$we have the following distribution of equilibrium states:
(iv) for $h=h^{+}(\sigma), 0<\sigma<\sigma^{*}$, we have the one-phase equilibrium state $\hat{u} \equiv 0, \hat{\chi} \equiv 0$ and at least one two-phase equilibrium;
(v) for $h=h^{-}(\sigma), 0<\sigma<\sigma^{*}$, we have the one-phase equilibrium state $\hat{u} \equiv 0, \hat{\chi} \equiv 1$ and at least one two-phase equilibrium;
(vi) for $h=\hat{h}, \sigma>\sigma^{*}$, the equilibrium states consist of the pairs $\hat{u} \equiv 0, \hat{\chi} \equiv$ any measurable characteristic function;
(vii) for $h=\hat{h}, \sigma=\sigma^{*}$, there exist the equilibrium states $\hat{u} \equiv 0, \hat{\chi} \equiv$ arbitary measurable characteristic function and at least one two-phase equilibrium state with $\hat{u} \not \equiv 0$.

Remark 1.2. (a) Except for the behaviour at $h=\hat{h}$ together with $\sigma \geqslant \sigma^{*}$ (see (vi) and (vii)) Theorem 1.1 corresponds in a qualitative sense to Theorem 2.1 in Reference [9]. Of course we do not claim that the functions $h^{ \pm}$as well as the numbers σ^{*} are the same in both cases.
(b) The different behaviour for the choice $h=\hat{h}, \sigma \geqslant \sigma^{*}$ originates from the fact that in this case the penalty term $\sigma\left(\int_{\Omega}|\Delta u|^{2} \mathrm{~d} x\right)^{p / 2}$ does not create a formation of phases.
(c) In Reference [3] the reader will find further comments on the above model, moreover, the choice $p<1$ is explained.

Concerning the regularity of solutions, we have the following.
Theorem 1.3. With the above notation let $(\hat{u}, \hat{\chi}) \in H \times M$ denote on equilibrium state of $I[\cdot, \cdot, h, \sigma], \sigma>0$. Then \hat{u} is of class $C^{2, \alpha}\left(\Omega ; \mathbb{R}^{d}\right)$ for any $0<\alpha<1$.

Remark 1.4. For $h \in \mathbb{R}, \sigma>0$ and $u \in H$ let (recall $f_{h}=\min \left\{f_{h}^{+}, f^{-}\right\}$)

$$
\tilde{I}[u, h, \sigma]=\int_{\Omega} f_{h}(\varepsilon(u)) \mathrm{d} x+\sigma\|\Delta u\|_{L^{2}\left(\Omega ; \mathbb{R}^{d}\right)}^{2}
$$

Clearly, the variational problem

$$
\tilde{I} \rightarrow \min \quad \text { on } H
$$

has at least one solution \hat{u} (compare also Lemma 2.2 and Theorem 2.3 below). For $u \in H$ let

$$
\chi_{u}:= \begin{cases}0 & \text { if } f_{h}^{+}(\varepsilon(u)) \geqslant f^{-}(\varepsilon(u)) \\ 1 & \text { otherwise. }\end{cases}
$$

Then we have

$$
I[u, \chi, h, \sigma] \geqslant \tilde{I}[u, h, \sigma] \geqslant \tilde{I}[\hat{u}, h, \sigma]=I\left[\hat{u}, \chi_{\hat{u}}, h, \sigma\right]
$$

for any $u \in H$ and any measurable characteristic function χ. Thus \hat{u} generates a minimizing pair $\left(\hat{u}, \chi_{\hat{u}}\right)$ of $I[\cdot, \cdot, h, \sigma]$. Conversely, consider an equilibrium state $(\breve{u}, \breve{\chi})$ of $I[\cdot, \cdot, h, \sigma]$. Observing (recall $\left.f_{h} \leqslant \breve{\chi} f_{h}^{+}+(1-\breve{\chi}) f^{-}\right)$

$$
\tilde{I}[\breve{u}, h, \sigma] \leqslant I[\breve{u}, \breve{\chi}, h, \sigma] \leqslant I\left[u, \chi_{u}, h, \sigma\right]=\tilde{I}[u, h, \sigma] \quad \text { for all } u \in H
$$

we deduce $\tilde{I}[\cdot, h, \sigma]$-minimality of \breve{u}. So there is a one-to-one correspondence between the minimizing deformation fields of both functionals. But the deformation field u alone does not serve the complete information, for example, in case $u \equiv 0$ there exist various possibilities for the distribution of phases as described in Theorem 1.1.

As an alternative to the model proposed in Theorem 1.1 we may associate to each $\tilde{I}[\cdot, h, \sigma]$ minimizing deformation field \hat{u} the function $\chi_{\hat{u}}$ and introduce the notion of one (two)-phase equilibrium states ($\hat{u}, \chi_{\hat{u}}$) as before. Then again we get the statements of Theorem 1.1 where in part (vi) and (vii) the phrase " $\hat{\chi}=$ any measurable characteristic function" has to be replaced by the requirement $\hat{\chi}=\chi_{0}$. Obviously the number of equilibrium states ($\hat{u}, \chi_{\hat{u}}$) generated by $\tilde{I}[\cdot, h, \sigma]$-minimizers \hat{u} is in general much smaller than the number of equilibria considered in the first model: if $\hat{\chi}$ is a measurable characteristic function satisfying

$$
\int_{\Omega} f_{h}(\varepsilon(\hat{u})) \mathrm{d} x=\int_{\Omega}\left(\hat{\chi} f_{h}^{+}(\varepsilon(\hat{u}))+(1-\hat{\chi}) f^{-}(\varepsilon(\hat{u}))\right) \mathrm{d} x
$$

then $(\hat{u}, \hat{\chi})$ is a minimizing pair for $I[\cdot, \cdot, h, \sigma]$. But since we are mainly interested in the qualitative behaviour of the distribution of phases depending on h and σ, we do not see any principal difference between both models except for the different behaviour at $h=\hat{h}, \sigma \geqslant \sigma^{*}$.

Remark 1.5. At the end, let us briefly discuss some situations for which the non-uniqueness w.r.t. the function χ can be removed. Let $(\hat{u}, \hat{\chi})$ denote an equilibrium state of $I[u, \chi, h, \sigma]$ with $\hat{\chi}:=\chi_{\hat{u}}$. We introduce the sets

$$
\begin{aligned}
E^{+(-)} & :=\left[f_{h}^{+}(\varepsilon(\hat{u}))>(<) f^{-}(\varepsilon(\hat{u}))\right] \\
E^{0} & :=\left[f_{h}^{+}(\varepsilon(\hat{u}))=f^{-}(\varepsilon(\hat{u}))\right]
\end{aligned}
$$

and consider $\chi \in L^{\infty}(\Omega), 0 \leqslant \chi \leqslant 1$. Then

$$
\begin{equation*}
I[\hat{u}, \hat{\chi}, h, \sigma]=I[\hat{u}, \chi, h, \sigma] \tag{7}
\end{equation*}
$$

if and only if

$$
\int_{E^{+}}(\hat{\chi}-\chi)\left(f_{h}^{+}(\varepsilon(\hat{u}))-f^{-}(\varepsilon(\hat{u}))\right) \mathrm{d} x+\int_{E^{-}}(\hat{\chi}-\chi)\left(f_{h}^{+}(\varepsilon(\hat{u}))-f^{-}(\varepsilon(\hat{u}))\right) \mathrm{d} x=0
$$

Since $\hat{\chi}=\chi_{\hat{u}}=\left\{\begin{array}{ll}0 & \text { on } E^{+} \\ 1 & \text { on } E^{-}\end{array}\right.$, we see

$$
\begin{equation*}
\chi=\hat{\chi} \quad \text { on } E^{+} \cup E^{-} \tag{8}
\end{equation*}
$$

and the 'non-uniqueness' can be excluded for the case that E_{0} is a set of Lebesgue measure zero. In order to find a sufficient condition for $\left|E_{0}\right|=0$ let us assume that $\hat{u} \not \equiv 0$. Then $\|\Delta \hat{u}\|_{L^{2}\left(\Omega ; \mathbb{R}^{d}\right)}>0$ and for any $v \in H$ the expression $\|\Delta \hat{u}+t \Delta v\|_{L^{2}\left(\Omega ; \mathbb{R}^{d}\right)}>0$ is differentiable at $t=0$. For $\chi \in L^{\infty}(\Omega), 0 \leqslant \chi \leqslant 1$, with (8) and all $v \in H$ we have according to (7)

$$
\left.\frac{\mathrm{d}}{\mathrm{~d} t}\right|_{t=0} I[\hat{u}+t v, \chi, h, \sigma]=0, \quad \text { i.e. }
$$

$$
\begin{align*}
& 2 \int_{\Omega} \chi\left\langle A^{+}\left(\varepsilon(\hat{u})-\xi^{+}\right)-A^{-}\left(\varepsilon(\hat{u})-\xi^{-}\right), \varepsilon(v)\right\rangle \mathrm{d} x \\
& \quad+2 \int_{\Omega}\left\langle A^{-} \varepsilon(v), \varepsilon(\hat{u})-\xi^{-}\right\rangle \mathrm{d} x+p \sigma\left(\int_{\Omega}|\Delta \hat{u}|^{2}\right)^{p / 2-1} \int_{\Omega} \Delta \hat{u} \cdot \Delta v \mathrm{~d} x=0 \tag{9}
\end{align*}
$$

Let $\left|E_{0}\right|>0$. Then we use (9) with $\chi=0$ on E_{0} and with $\chi=\Phi$ on E_{0}, where $\Phi \in L^{\infty}\left(E_{0}\right)$, $0 \leqslant \Phi \leqslant 1$. Subtracting the results we get

$$
\int_{E_{0}} \Phi\left\langle A^{+}\left(\varepsilon(\hat{u})-\xi^{+}\right)-A^{-}\left(\varepsilon(\hat{u})-\xi^{-}\right), \varepsilon(v)\right\rangle \mathrm{d} x=0
$$

and since Φ can be chosen arbitrarily, this turns into

$$
\left\langle A^{+}\left(\varepsilon(\hat{u})-\xi^{+}\right)-A^{-}\left(\varepsilon(\hat{u})-\xi^{-}\right), \varepsilon(v)\right\rangle=0
$$

a.e. on E_{0}. Consider a Lebesgue point $x_{0} \in E_{0}$ of $\varepsilon(\hat{u})$ and let $v(x)=\eta(x) x_{k} E^{l}$ where $\eta \in C_{0}^{\infty}(\Omega)$, $\eta \equiv 1$ near x_{0}, and E^{l} is the l th standard unit-vector in \mathbb{R}^{d}. Then $\varepsilon(v)\left(x_{0}\right)=\left(\delta_{i k} \delta^{j l}\right)_{1 \leqslant i, j \leqslant d}$ and the above identity implies

$$
A^{+}\left(\varepsilon(\hat{u})-\xi^{+}\right)-A^{-}\left(\varepsilon(\hat{u})-\xi^{-}\right)=0
$$

on E_{0}, hence

$$
\left(A^{+}-A^{-}\right) \varepsilon(\hat{u})=A^{+} \xi^{+}-A^{-} \xi^{-}
$$

and we get a contradiction if we assume that

$$
\begin{equation*}
A^{+} \xi^{+}-A^{-} \xi^{-} \notin \operatorname{Im}\left(A^{+}-A^{-}\right) \tag{10}
\end{equation*}
$$

holds. For example we have (10) in case $A^{+}=A^{-}$together with $\xi^{+} \neq \xi^{-}$. Thus, the assumption $\hat{u} \not \equiv 0$ combined with (10) shows $\left|E_{0}\right|=0$ and we can associate to \hat{u} a unique function χ such that (7) is valid.

Our paper is organized as follows: in Section 2, we prove some existence and lower semicontinuity results concerning the functional I from (6). Section 3 contains a series of lemmata which are used in Section 4 and Section 5 to prove statements (i)-(vii) of Theorem 1.1. In the last section we prove Theorem 1.3.

2. SOME EXISTENCE RESULTS

From now on we assume that all the conditions stated in Section 1 are valid.
Lemma 2.1. Let $h \in \mathbb{R}, \sigma \geqslant 0$ be given. Then we have for any $(u, \chi) \in H \times M$

$$
\frac{v}{2}\|u\|_{X}^{2}+\sigma\|u\|_{H}^{p} \leqslant I[u, \chi, h, \sigma]+h|\Omega|+\frac{4+v^{2}}{v^{3}}\left(\left|\xi^{+}\right|^{2}+\left|\xi^{-}\right|^{2}\right)
$$

Proof. Assumption (1) implies

$$
\begin{aligned}
I[u, \chi, h, \sigma] \geqslant & v \int_{\Omega}|\varepsilon(u)|^{2} \mathrm{~d} x-|h||\Omega|+\sigma\|u\|_{H}^{p} \\
& -\frac{1}{v} \int_{\Omega}\left(\left|\xi^{+}\right|^{2}+\left|\xi^{-}\right|^{2}\right) \mathrm{d} x \\
& -2 \int_{\Omega}\left(\left|\left\langle A^{+} \varepsilon(u), \xi^{+}\right\rangle\right|+\left|\left\langle A^{-} \varepsilon(u), \xi^{-}\right\rangle\right|\right) \mathrm{d} x
\end{aligned}
$$

The lemma is proved by combining this inequality with

$$
\left|\left\langle A^{ \pm} \varepsilon, \tilde{\varepsilon}\right\rangle\right| \leqslant \sqrt{\left\langle A^{ \pm} \varepsilon, \varepsilon\right\rangle} \sqrt{\left\langle A^{ \pm} \tilde{\varepsilon}, \tilde{\varepsilon}\right\rangle} .
$$

Next we establish a lower semicontinuity result.
Lemma 2.2. Consider sequences $\left\{u_{n}\right\},\left\{\chi_{n}\right\},\left\{h_{n}\right\}$ and $\left\{\sigma_{n}\right\}, u_{n} \in H, \chi_{n} \in L^{\infty}(\Omega), 0 \leqslant \chi_{n} \leqslant 1$, $h_{n} \in \mathbb{R}, \sigma_{n} \geqslant 0$ such that $u_{n} \rightharpoondown u$ in $H, \chi_{n} \rightharpoondown \chi$ in $L^{2}(\Omega), h_{n} \rightarrow h$ and $\sigma_{n} \rightarrow \sigma$ as $n \rightarrow \infty$. Then we have

$$
I[u, \chi, h, \sigma] \leqslant \liminf _{n \rightarrow \infty} I\left[u_{n}, \chi_{n}, h_{n}, \sigma_{n}\right]
$$

Proof. The uniform L^{∞}-bound together with the weak L^{2}-convergence of the sequence $\left\{\chi_{n}\right\}$ yields

$$
\chi_{n} \xrightarrow{n \rightarrow \infty} \chi \text { in } L^{s}(\Omega) \text { for any } s<\infty, \quad 0 \leqslant \chi \leqslant 1 \text { a.e. }
$$

The weak H-convergence of the sequence $\left\{u_{n}\right\}$ gives in addition

$$
\varepsilon\left(u_{n}\right) \xrightarrow{n \rightarrow \infty} \varepsilon(u) \text { in } L^{r}\left(\Omega ; \mathbb{S}^{d}\right) \text { for some } r>2
$$

thus

$$
I\left[u_{n}, \chi_{n}, h_{n}, 0\right] \rightarrow I[u, \chi, h, 0] \quad \text { as } n \rightarrow \infty
$$

Moreover, again by weak convergence of the sequence $\left\{u_{n}\right\}$,

$$
\|u\|_{H}^{p} \leqslant \liminf _{n \rightarrow \infty}\left\|u_{n}\right\|_{H}^{p}
$$

i.e. we get the estimate

$$
\begin{aligned}
I[u, \chi, h, \sigma] & =I[u, \chi, h, 0]+\sigma\|u\|_{H}^{p} \leqslant \liminf _{n \rightarrow \infty} I\left[u_{n}, \chi_{n}, h_{n}, 0\right]+\liminf _{n \rightarrow \infty}\left(\sigma_{n}\left\|u_{n}\right\|_{H}^{p}\right) \\
& \leqslant \liminf _{n \rightarrow \infty}\left(I\left[u_{n}, \chi_{n}, h_{n}, 0\right]+\sigma_{n}\left\|u_{n}\right\|_{H}^{p}\right)=\liminf _{n \rightarrow \infty} I\left[u_{n}, \chi_{n}, h_{n}, \sigma_{n}\right]
\end{aligned}
$$

As a consequence we obtain the following existence theorem

Theorem 2.3. The functional $I[\cdot, \cdot, h, \sigma], h \in \mathbb{R}, \sigma>0$, attains its minimum on the set $H \times M$.
Proof. Lemma 2.1 immediately gives

$$
\gamma:=\inf _{(u, \gamma) \in H \times M} I[u, \chi, h, \sigma]>-\infty
$$

and we may consider a minimizing sequence $\left(u_{n}, \chi_{n}\right)$ s.t. (again recall Lemma 2.1)

$$
u_{n} \rightharpoondown: \hat{u} \text { in } H, \quad \chi_{n} \rightharpoondown: \tilde{\chi} \text { in } L^{2}(\Omega) \quad \text { as } n \rightarrow \infty
$$

We do not know that $\tilde{\chi}$ is an element of M, however $0 \leqslant \tilde{\chi} \leqslant 1$ and, by Lemma 2.2,

$$
\begin{equation*}
I[\hat{u}, \tilde{\chi}, h, \sigma] \leqslant \liminf _{n \rightarrow \infty} I\left[u_{n}, \chi_{n}, h, \sigma\right] \tag{11}
\end{equation*}
$$

Therefore, if $\hat{\chi}$ is defined via

$$
\hat{\chi}:= \begin{cases}0 & \text { on the set }\left[f_{h}^{+}(\varepsilon(\hat{u})) \geqslant f^{-}(\varepsilon(\hat{u}))\right] \\ 1 & \text { on the } \operatorname{set}\left[f_{h}^{+}(\varepsilon(\hat{u}))<f^{-}(\varepsilon(\hat{u}))\right]\end{cases}
$$

and if we observe (11) together with

$$
\begin{aligned}
\tilde{\chi} f_{h}^{+}(\varepsilon(\hat{u}))+(1-\tilde{\chi}) f^{-}(\varepsilon(\hat{u})) & =\tilde{\chi}\left(f_{h}^{+}(\varepsilon(\hat{u}))-f^{-}(\varepsilon(\hat{u}))\right)+f^{-}(\varepsilon(\hat{u})) \\
& \geqslant \hat{\chi}\left(f_{h}^{+}(\varepsilon(\hat{u}))-f^{-}(\varepsilon(\hat{u}))\right)+f^{-}(\varepsilon(\hat{u}))
\end{aligned}
$$

$(\hat{u}, \hat{\chi}) \in H \times M$ is seen to be an equilibrium state of I.
Next, consider the energies of one-phase deformations, i.e. we let

$$
\begin{aligned}
I^{+}[u, h, \sigma] & :=I[u, 1, h, \sigma]=\int_{\Omega} f_{h}^{+}(\varepsilon(u)) \mathrm{d} x+\sigma\|u\|_{H}^{p} \\
I^{-}[u, \sigma] & :=I[u, 0, h, \sigma]=\int_{\Omega} f^{-}(\varepsilon(u)) \mathrm{d} x+\sigma\|u\|_{H}^{p}, \quad u \in H
\end{aligned}
$$

Lemma 2.4. On H the functionals $I^{ \pm}$attain their unique minima at $u^{ \pm} \equiv 0$.
Proof. For any $u \in H$ we have

$$
\begin{aligned}
I^{+}[u, h, \sigma] & =\int_{\Omega}\left[\left\langle A^{+}\left(\varepsilon(u)-\xi^{+}\right), \varepsilon(u)-\xi^{+}\right\rangle+h\right] \mathrm{d} x+\sigma\|u\|_{H}^{p} \\
& =\int_{\Omega}\left\langle A^{+} \varepsilon(u), \varepsilon(u)\right\rangle \mathrm{d} x+|\Omega|\left\langle A^{+} \xi^{+}, \xi^{+}\right\rangle+h|\Omega|+\sigma\|u\|_{H}^{p} \\
& \geqslant|\Omega|\left\langle A^{+} \xi^{+}, \xi^{+}\right\rangle+h|\Omega|
\end{aligned}
$$

where equality holds if and only if $u \equiv 0$. An analogous inequality is true for I^{-}and the lemma is proved.

We finish this section by introducing the quantity $I_{0}(h):=\min \left\{I^{+}[0, h, \sigma], I^{-}[0, \sigma]\right\}$, i.e.

$$
\begin{aligned}
I_{0}(h) & = \begin{cases}|\Omega|\left(\left\langle A^{+} \xi^{+}, \xi^{+}\right\rangle+h\right), & h \leqslant \hat{h} \\
|\Omega|\left\langle A^{-} \xi^{-}, \xi^{-}\right\rangle, & h \geqslant \hat{h}\end{cases} \\
\hat{h} & :=\left\langle A^{-} \xi^{-}, \xi^{-}\right\rangle-\left\langle A^{+} \xi^{+}, \xi^{+}\right\rangle
\end{aligned}
$$

which measures the dependence of the energy of one-phase equilibria on the parameter h.

3. AUXILIARY RESULTS

In this section we prove (under the hypotheses stated in Section 1) a series of auxiliary results which are needed in Section 4 to show Theorem 1.1. We start with two lemmata estimating the X-norm of equilibrium states.

Lemma 3.1. Consider an equilibrium state $(\hat{u}, \hat{\chi})$ of $I[\cdot, \cdot, h, \sigma]$. Then

$$
\begin{equation*}
\sigma\|\hat{u}\|_{H}^{p}+(v-\mu)\|\hat{u}\|_{X}^{2} \leqslant 2\left|A^{-} \xi^{-}-A^{+} \xi^{+}\right| \sqrt{|\Omega|}\|\hat{u}\|_{X} \tag{12}
\end{equation*}
$$

holds true, in particular, there is a constant R, not depending on h, σ, such that

$$
\begin{equation*}
\|\hat{u}\|_{X}=\|\varepsilon(\hat{u})\|_{L^{2}\left(\Omega ; \mathbb{S}^{d}\right)} \leqslant R \tag{13}
\end{equation*}
$$

Proof. The minimizing property yields $I[\hat{u}, \hat{\chi}, h, \sigma] \leqslant I[0, \hat{\chi}, h, \sigma]$, i.e.

$$
\begin{aligned}
& \sigma\|\hat{u}\|_{H}^{p}+\int_{\Omega} \hat{\chi}\left\langle\left(A^{+}-A^{-}\right) \varepsilon(\hat{u}), \varepsilon(\hat{u})\right\rangle \mathrm{d} x+\int_{\Omega}\left\langle A^{-} \varepsilon(\hat{u}), \varepsilon(\hat{u})\right\rangle \mathrm{d} x \\
& \quad+2 \int_{\Omega} \hat{\chi}\left\langle\varepsilon(\hat{u}), A^{-} \xi^{-}-A^{+} \xi^{+}\right\rangle \mathrm{d} x \leqslant 0
\end{aligned}
$$

thus the assertions follow from (1) to (3).
Lemma 3.2. There is a real number $\delta>0$ such that we have for any equilibrium state $(\hat{u}, \hat{\chi})$ of $I[\cdot, \cdot, h, \sigma], \hat{u} \not \equiv 0$,

$$
\begin{equation*}
\|\hat{u}\|_{X}^{1-p} \geqslant \delta \sigma \tag{14}
\end{equation*}
$$

Proof. From the Calderon-Zygmund regularity results (compare, for example Reference [12], Theorems 9.14 and 9.15), we deduce the existence of a positive number $\kappa=\kappa(\Omega, d)$ such that

$$
\|\hat{u}\|_{X}=\|\varepsilon(\hat{u})\|_{L^{2}\left(\Omega ; \mathbb{S}^{d}\right)} \leqslant\|\hat{u}\|_{W_{2}^{2}\left(\Omega ; \mathbb{R}^{d}\right)} \leqslant \kappa\|\Delta \hat{u}\|_{L^{2}\left(\Omega ; \mathbb{R}^{d}\right)}=\kappa\|\hat{u}\|_{H}
$$

(12) gives

$$
\sigma\|\hat{u}\|_{H}^{p} \leqslant 2\left|A^{+} \xi^{+}-A^{-} \xi^{-}\right| \sqrt{|\Omega|}\|\hat{u}\|_{X} \leqslant 2\left|A^{+} \xi^{+}-A^{-} \xi^{-}\right| \sqrt{|\Omega|}\|\hat{u}\|_{X}^{1-p} \kappa^{p}\|\hat{u}\|_{H}^{p}
$$

implying Lemma 3.2 since

$$
\|\hat{u}\|_{X}^{1-p} \geqslant \sigma \frac{1}{2\left|A^{+} \xi^{+}-A^{-} \xi^{-}\right| \sqrt{|\Omega|} \kappa^{p}}=: \sigma \delta
$$

In the next lemma we investigate the relation between one-phase equilibrium states and the vanishing of the associated deformation field.

Lemma 3.3. Consider an equilibrium state $(\hat{u}, \hat{\chi})$ of $I[\cdot, \cdot, h, \sigma]$. Then
(a) if ($\hat{u}, \hat{\chi}$) is one-phase, i.e. $\hat{\chi} \equiv 0$ or $\hat{\chi} \equiv 1$, then $\hat{u} \equiv 0$;
(b) if $h \neq \hat{h}$ and if $\hat{u} \equiv 0$, then ($\hat{u}, \hat{\chi}$) is a one-phase equilibrium;
(c) if $h=\hat{h}$ and if $\hat{u} \equiv 0$, then any $\chi \in M$ provides an equilibrium state $(0, \chi)$.

Proof. Assume that $\hat{\chi} \equiv 1(\hat{\chi} \equiv 0)$, thus $I[\cdot, \hat{\chi}, h, \sigma]=I^{+}[\cdot, h, \sigma]\left(=I^{-}[\cdot, \sigma]\right)$, hence by Lemma $2.4 \hat{u} \equiv 0$ and (a) is verified. Next observe that for any $\chi \in M$

$$
\begin{aligned}
I[0, \chi, h, \sigma] & =\left[\left\langle A^{+} \xi^{+}, \xi^{+}\right\rangle-\left\langle A^{-} \xi^{-}, \xi^{-}\right\rangle+h\right] \int_{\Omega} \chi \mathrm{d} x+|\Omega|\left\langle A^{-} \xi^{-}, \xi^{-}\right\rangle \\
& =(h-\hat{h}) \int_{\Omega} \chi \mathrm{d} x+|\Omega|\left\langle A^{-} \xi^{-}, \xi^{-}\right\rangle
\end{aligned}
$$

In the case $h>\hat{h}$, it is seen that

$$
I[0, \chi, h, \sigma] \geqslant|\Omega|\left\langle A^{-} \xi^{-}, \xi^{-}\right\rangle
$$

and equality is true if and only if $\chi \equiv 0$. This proves part (b) for $h>\hat{h}$, the case $h<\hat{h}$ is treated in the same manner. Finally $h=\hat{h}$ implies $I[0, \chi, h, \sigma]=|\Omega|\left\langle A^{-} \xi^{-}, \xi^{-}\right\rangle$for any $\chi \in M$, thus we have (c).

As a next step, we ensure that the existence of one-phase (two-phase) equilibria depends continuously on h and σ.

Lemma 3.4. Given two sequences $\left\{h_{n}\right\},\left\{\sigma_{n}\right\}$ assume that $h_{n} \rightarrow h_{0}$ and $\sigma_{n} \rightarrow \sigma_{0}>0$ as $n \rightarrow \infty$. As usual denote by ($\hat{u}_{n}, \hat{\chi}_{n}$), ($\hat{u}_{0}, \hat{\chi}_{0}$) equilibrium states of $I\left[\cdot, \cdot, h_{n}, \sigma_{n}\right]$ and $I\left[\cdot, \cdot, h_{0}, \sigma_{0}\right]$, respectively.
(a) If $\hat{u}_{n} \equiv 0\left(\hat{u}_{n} \not \equiv 0\right)$ at least for a subsequence, then there exists an equilibrium state $\left(\hat{u}_{0}, \hat{\chi}_{0}\right)$ satisfying $\hat{u}_{0} \equiv 0\left(\hat{u}_{0} \not \equiv 0\right)$.
(b) If $\hat{\chi}_{n} \equiv 0\left(\hat{\chi}_{n} \equiv 1\right)$ for a subsequence, then $I\left[\cdot, \cdot, h_{0}, \sigma_{0}\right]$ admits an equilibrium state satisfying $\hat{u}_{0} \equiv 0, \hat{\chi}_{0} \equiv 0\left(\hat{\chi}_{0} \equiv 1\right)$.
(c) If $h_{0} \neq \hat{h}$ and if $0 \not \equiv \hat{\chi}_{n} \not \equiv 1$, again at least for a subsequence, then there is a solution with $0 \not \equiv \hat{\chi}_{0} \not \equiv 1$.

Proof. From Lemma 2.1 we deduce

$$
\begin{aligned}
\frac{v}{2}\left\|\hat{u}_{n}\right\|_{X}^{2}+\sigma_{n}\left\|\hat{u}_{n}\right\|_{H}^{p} & \leqslant I\left[\hat{u}_{n}, \hat{\chi}_{n}, h_{n}, \sigma_{n}\right]+h_{n}|\Omega|+\frac{4+v^{2}}{v^{3}}\left(\left|\xi^{+}\right|^{2}+\left|\xi^{-}\right|^{2}\right) \\
& \leqslant I\left[0,0, h_{n}, \sigma_{n}\right]+h_{n}|\Omega|+\frac{4+v^{2}}{v^{3}}\left(\left|\xi^{+}\right|^{2}+\left|\xi^{-}\right|^{2}\right)
\end{aligned}
$$

hence (recall that $\sigma_{0}>0$) there is a real number $c>0$ such that $\left\|\hat{u}_{n}\right\|_{H} \leqslant c<+\infty$. Passing to a subsequence (not relabelled) we may assume that

$$
\hat{u}_{n} \rightharpoondown: \hat{u}_{0} \text { in } H \quad \text { as } n \rightarrow \infty
$$

Sobolev's embedding theorem then gives the existence of a real number $r>1$ such that

$$
\hat{u}_{n} \rightarrow \hat{u}_{0} \text { in } W_{2 r}^{1}\left(\Omega ; \mathbb{R}^{d}\right) \text { as } n \rightarrow \infty
$$

Moreover, we may assume (again passing to a subsequence if necessary) that

$$
\hat{\chi}_{n} \xrightarrow{n \rightarrow \infty}: \tilde{\chi}_{0} \text { in } L^{2}(\Omega), \quad 0 \leqslant \tilde{\chi}_{0} \leqslant 1 \quad \text { a.e. }
$$

and applying Lemma 2.2 we see for all $(u, \chi) \in H \times M$

$$
I\left[\hat{u}_{0}, \tilde{\chi}_{0}, h_{0}, \sigma_{0}\right] \leqslant \liminf _{n \rightarrow \infty} I\left[\hat{u}_{n}, \hat{\chi}_{n}, h_{n}, \sigma_{n}\right] \leqslant \liminf _{n \rightarrow \infty} I\left[u, \chi, h_{n}, \sigma_{n}\right]=I\left[u, \chi, h_{0}, \sigma_{0}\right]
$$

As done in the proof of Theorem 2.3 (compare also Remark 1.4 and Remark 1.5), we may replace $\tilde{\chi}_{0}$ by a characteristic function $\hat{\chi}_{0} \in M$, which provides an admissible minimizer ($\hat{u}_{0}, \hat{\chi}_{0}$) of $I\left[\cdot, \cdot, h_{0}, \sigma_{0}\right]$.
ad (a) If $\hat{u}_{n}=0$ for a subsequence, then by the above arguments we clearly may take $\hat{u}_{0} \equiv 0$. If $\hat{u}_{n} \not \equiv 0$ for a subsequence, Lemma 3.2 gives $\left\|\hat{u}_{n}\right\|_{X}^{1-p} \geqslant \delta \sigma_{n}$, hence strong convergence in $W_{2 r}^{1}\left(\Omega ; \mathbb{R}^{d}\right)$ proves $\left\|\hat{u}_{0}\right\|_{X}^{1-p} \geqslant \delta \sigma_{0}$, i.e. $\hat{u}_{0} \neq 0$.
ad (b) The case $\hat{\chi}_{n} \equiv 0$ for a subsequence shows (with the above notation) $\tilde{\chi}_{0} \equiv 0$ and ($\hat{u}_{0}, 0$) is seen to be minimizing. The first assertion of Lemma 3.3 ensures the statement $\hat{u}_{0} \equiv 0$. The case $\hat{\chi}_{n} \equiv 1$ is covered by the same arguments.
ad (c) We may assume that $h_{n} \neq \hat{h}$ for all n sufficiently large. Moreover, by Lemma 3.3 (b) we then observe that $\hat{u}_{n} \not \equiv 0$, in conclusion Lemma 3.2 gives $\left\|\hat{u}_{n}\right\|_{X}^{1-p} \geqslant \delta \sigma_{n}$ and therefore the limit \hat{u}_{0} does not vanish. The claim now follows from Lemma 3.3a).

The volume of the phases depends in a monotonic manner on the parameter h, more precisely

Lemma 3.5. Denote by ($\hat{u}_{i}, \hat{\chi}_{i}$) equilibrium states of $I\left[\cdot, \cdot, h_{i}, \sigma\right], i=1,2$. Then we have

$$
\left(h_{1}-h_{2}\right)\left(\left\|\hat{\chi}_{1}\right\|_{L^{1}(\Omega)}-\left\|\hat{\chi}_{2}\right\|_{L^{1}(\Omega)}\right) \leqslant 0
$$

Proof. The proof is an immediate consequence of

$$
\begin{aligned}
& I\left[\hat{u}_{1}, \hat{\chi}_{1}, h_{1}, \sigma\right] \leqslant I\left[\hat{u}_{2}, \hat{\chi}_{2}, h_{1}, \sigma\right] \\
& I\left[\hat{u}_{2}, \hat{\chi}_{2}, h_{2}, \sigma\right] \leqslant I\left[\hat{u}_{1}, \hat{\chi}_{1}, h_{2}, \sigma\right]
\end{aligned}
$$

Remark 3.6. If there exists an equilibrium state ($\hat{u}_{0}, \hat{\chi}_{0}$) of $I\left[\cdot, \cdot, h_{0}, \sigma\right]$ satisfying $\hat{\chi}_{0} \equiv$ $0\left(\hat{\chi}_{0} \equiv 1\right)$, then by Lemma 3.5 for $h>h_{0}\left(h<h_{0}\right)$ any equilibrium state $(\hat{u}, \hat{\chi})$ of $I[\cdot, \cdot, h, \sigma]$ is one-phase, i.e. $\hat{\chi} \equiv 0(\hat{\chi} \equiv 1)$.

If we want two-phase equilibria to exist, then we have to restrict the admissible values for the parameters h and σ. A precise formulation is given in the next two lemmata.

Lemma 3.7. There is a real number $h_{0}>0$ with the following property: for any $h>h_{0}$ ($h<-$ h_{0}), for all $\sigma>0$ and for any equilibrium state $(\hat{u}, \hat{\chi})$ of $I[\cdot, \cdot, h, \sigma]$ we have $\hat{u} \equiv 0$ and $\hat{\chi} \equiv 0$ ($\hat{\chi} \equiv 1$).

Proof. The idea is to find a real number $h_{0}>0$ such that for any $\sigma>0$ and for any $(u, \chi) \in H \times M$

$$
\begin{equation*}
I\left[u, \chi, h_{0}, \sigma\right] \geqslant I\left[0,0, h_{0}, \sigma\right] \tag{15}
\end{equation*}
$$

Once (15) is established, $(0,0)$ is seen to be an equilibrium state of $I\left[\cdot, \cdot, h_{0}, \sigma\right]$ and the first assertion follows from Remark 3.6. The case $h<-h_{0}$ is treated in the same manner, where we have to increase h_{0} if necessary. Thus, it remains to show (15) which is equivalent to

$$
\begin{gather*}
\int_{\Omega} \chi\left[\left\langle\left(A^{+}-A^{-}\right) \varepsilon(u), \varepsilon(u)\right\rangle-2\left\langle A^{+} \xi^{+}-A^{-} \xi^{-}, \varepsilon(u)\right\rangle+\left\langle A^{+} \xi^{+}, \xi^{+}\right\rangle\right. \\
\left.-\left\langle A^{-} \xi^{-}, \xi^{-}\right\rangle+h_{0}\right] \mathrm{d} x+\int_{\Omega}\left\langle A^{-} \varepsilon(u), \varepsilon(u)\right\rangle \mathrm{d} x+\sigma\|u\|_{H}^{p} \geqslant 0 \tag{16}
\end{gather*}
$$

We may estimate $(0<\lambda<1)$

$$
\begin{aligned}
& \left\langle A^{-} \varepsilon(u), \varepsilon(u)\right\rangle+\chi\left\langle\left(A^{+}-A^{-}\right) \varepsilon(u), \varepsilon(u)\right\rangle \\
& \quad \geqslant\left\langle A^{-} \varepsilon(u), \varepsilon(u)\right\rangle-\left|\left\langle\left(A^{+}-A^{-}\right) \varepsilon(u), \varepsilon(u)\right\rangle\right|, 2\left|\left\langle A^{ \pm} \xi^{ \pm}, \varepsilon(u)\right\rangle\right| \\
& \quad \leqslant \lambda\left\langle A^{ \pm} \varepsilon(u), \varepsilon(u)\right\rangle+\frac{1}{\lambda}\left\langle A^{ \pm} \xi^{ \pm}, \xi^{ \pm}\right\rangle
\end{aligned}
$$

thus (16) is implied by

$$
\begin{align*}
& \int_{\Omega}\left[\left\langle A^{-} \varepsilon(u), \varepsilon(u)\right\rangle-\left|\left\langle\left(A^{+}-A^{-}\right) \varepsilon(u), \varepsilon(u)\right\rangle\right|-\lambda\left\langle\left(A^{+}+A^{-}\right) \varepsilon(u), \varepsilon(u)\right\rangle\right] \mathrm{d} x \\
& +\int_{\Omega} \chi\left[h_{0}+\left(1-\frac{1}{\lambda}\right)\left\langle A^{+} \xi^{+}, \xi^{+}\right\rangle-\left(\frac{1}{\lambda}+1\right)\left\langle A^{-} \xi^{-}, \xi^{-}\right\rangle\right] \mathrm{d} x \geqslant 0 \tag{17}
\end{align*}
$$

By (1) and (2) the first integral on the left-hand side of (17) is greater than or equal to

$$
\left(v-\mu-2 \lambda v^{-1}\right)\|u\|_{X}^{2}
$$

hence positive if we choose λ sufficiently small. Decreasing λ, if necessary, we finally let

$$
h_{0}:=\left(1+\frac{1}{\lambda}\right)\left\langle A^{-} \xi^{-}, \xi^{-}\right\rangle-\left(1-\frac{1}{\lambda}\right)\left\langle A^{+} \xi^{+}, \xi^{+}\right\rangle>0
$$

With this choice (17), hence (16), holds and in conclusion the lemma is valid.
Except for $h \neq \hat{h}$ the existence of two-phase equilibria requires also the boundedness of σ :

Lemma 3.8. There exists a real number $\sigma_{0}>0$ with the following property: for any $\sigma>\sigma_{0}$ and for any $h \in \mathbb{R}$ the functional $I[\cdot, \cdot, h, \sigma]$ admits only equilibria ($\hat{u}, \hat{\chi}$) satisfying $\hat{u} \equiv 0$.

Proof. Recalling (12) and (13) one gets

$$
\begin{array}{ll}
& \sigma\|\hat{u}\|_{H}^{p} \leqslant 2\left|A^{+} \xi^{+}-A^{-} \xi^{-} \| \Omega\right|^{1 / 2} R \\
\text { i.e. } \quad \sigma\|\hat{u}\|_{X}^{p} \leqslant 2\left|A^{+} \xi^{+}-A^{-} \xi^{-} \| \Omega\right|^{1 / 2} R \kappa^{p}
\end{array}
$$

hence we may estimate

$$
\sigma^{(1-p) / p}\|\hat{u}\|_{X}^{1-p} \leqslant R^{\prime}:=\left(2\left|A^{+} \xi^{+}-A^{-} \xi^{-} \| \Omega\right|^{1 / 2} R \kappa^{p}\right)^{(1-p) / p}
$$

If $\hat{u} \not \equiv 0$ is supposed, then (14) gives

$$
\sigma^{(1-p) / p} \delta \sigma \leqslant R^{\prime} \Leftrightarrow \sigma \leqslant\left(R^{\prime} / \delta\right)^{p}
$$

thus the lemma is proved by letting $\sigma_{0}:=\left(R^{\prime} / \delta\right)^{p}$.
As a last auxiliary result on the distribution of phases, a sufficient condition for the existence of two phase equilibria is given.

Lemma 3.9. If $\sigma>0$ is sufficiently small, then $I[\cdot, \cdot, \hat{h}, \sigma]$ admits only equilibria ($\hat{u}, \hat{\chi}$) satisfying $\hat{u} \not \equiv 0$.

Proof. Suppose by contradiction that there is a sequence $\left\{\sigma_{n}\right\}$ of positive real numbers, $\sigma_{n} \downarrow 0$ as $n \rightarrow \infty$, such that $I\left[\cdot, \cdot, \hat{h}, \sigma_{n}\right]$ admits a one-phase equilibrium state, i.e., $\hat{\chi}_{n} \equiv 0$ or $\hat{\chi}_{n} \equiv 1$ and, by Lemma 3.3, $\hat{u}_{n} \equiv 0$. Minimality implies for any $(u, \chi) \in H \times M$

$$
I\left[u, \chi, \hat{h}, \sigma_{n}\right] \geqslant I\left[0, \hat{\chi}_{n}, \hat{h}, \sigma_{n}\right]=|\Omega|\left\langle A^{-} \xi^{-}, \xi^{-}\right\rangle
$$

Using the definition of \hat{h} this can be rewritten as

$$
\begin{aligned}
& \int_{\Omega} \chi\left[\left\langle\left(A^{+}-A^{-}\right) \varepsilon(u), \varepsilon(u)\right\rangle-2\left\langle\varepsilon(u), A^{+} \xi^{+}-A^{-} \xi^{-}\right\rangle\right] \mathrm{d} x+\int_{\Omega}\left\langle A^{-} \varepsilon(u), \varepsilon(u)\right\rangle \mathrm{d} x \\
& \quad+\sigma_{n}\|u\|_{H}^{p} \geqslant 0 \quad \text { for any }(u, \chi) \in H \times M
\end{aligned}
$$

If we replace u by $\sigma_{n} u$, divide through σ_{n} and pass to the limit $n \rightarrow \infty$, we get

$$
-\int_{\Omega} \chi\left\langle\varepsilon(u), A^{+} \xi^{+}-A^{-} \xi^{-}\right\rangle \mathrm{d} x \geqslant 0 \quad \text { for any }(u, \chi) \in H \times M
$$

In fact, equality is true since we may consider $-u$ instead of u. Let $\gamma=A^{-} \xi^{-}-A^{+} \xi^{+}$, fix $x_{0} \in \Omega$ and consider $\rho>0$ such that $B_{2 \rho}\left(x_{0}\right) \Subset \Omega$. Finally we choose $\chi=\mathbf{1}_{B_{\rho}\left(x_{0}\right)}, \varphi \in C_{0}^{\infty}(\Omega), \varphi \equiv 1$ on $B_{2 \rho}\left(x_{0}\right)$ and let $v_{k}(x)=e \varphi(x) x_{k}$ with $1 \leqslant k \leqslant d, e \in \mathbb{R}^{d}$. This choice implies on $B_{2 \rho}\left(x_{0}\right)$

$$
\varepsilon\left(v_{k}\right)=\frac{1}{2}\left(e^{i} \delta_{j k}+e^{j} \delta_{i k}\right)_{1 \leqslant i, j \leqslant d}
$$

hence we get

$$
0=\int_{\Omega} \chi \mathrm{d} x \frac{1}{2}\left(\gamma_{i j} e^{i} \delta_{j k}+\gamma_{i, j} e^{j} \delta_{i k}\right)=\left|B_{\rho}\left(x_{0}\right)\right|(\gamma e)_{k}
$$

This gives the contradiction $\gamma=0$ and the lemma is proved.
We finish this section with the following.
Lemma 3.10. For any $h \in \mathbb{R}$ and for any real number $\sigma>0$ we let

$$
I_{1}(\sigma, h):=\inf _{(u, \chi) \in H \times M} I[u, \chi, h, \sigma]
$$

Then $I_{1}(\sigma, h)$ is a concave function, in particular, $I_{1}(\sigma, h)$ is continuous.
Proof. Note that for h and σ as above $I_{1}(\sigma, h)$ is well defined. Moreover, for any fixed $(u, \chi) \in H \times M$ the mapping $(h, \sigma) \mapsto I[u, \chi, h, \sigma]$ is a linear function in h and σ, hence concave. Since the infimum of a family of concave functions again in concave, the lemma is seen to be valid.

4. PROOF OF THEOREM 1.1, (i)-(iii)

Step 1: (Definition of the set B). Note that by construction we have

$$
\begin{equation*}
I_{1}(\sigma, h) \leqslant I_{0}(h) \quad \text { for any } h \in \mathbb{R}, \sigma>0 \tag{18}
\end{equation*}
$$

Inequality (18) leads to the definition

$$
B:=\left\{(\sigma, h) \in \mathbb{R}^{+} \times \mathbb{R}: I_{1}(\sigma, h)<I_{0}(h)\right\}
$$

and we observe that

$$
\left(\sigma_{0}, h_{0}\right) \in B \Leftrightarrow I\left[\cdot, \cdot, h_{0}, \sigma_{0}\right] \quad \text { admits only two-phase equilibria }(\hat{u}, \hat{\chi})
$$

By Lemma 3.9, B is known to be non-empty, moreover, B is seen to be open on account of $B=\left(I_{0}-I_{1}\right)^{-1}(0, \infty)$ and the continuity of I_{0}, I_{1}. Finally, Lemma 3.7 and Lemma 3.8 prove B to be bounded. Given $\sigma_{0}>0$ let

$$
L\left(\sigma_{0}\right):=\left\{h \in \mathbb{R}: \quad\left(\sigma_{0}, h\right) \in B\right\}
$$

Lemma 4.1. Either we have $L\left(\sigma_{0}\right)=\emptyset$ or there exist two uniquely defined real numbers $h^{ \pm}\left(\sigma_{0}\right), h^{-}\left(\sigma_{0}\right)<\hat{h}<h^{+}\left(\sigma_{0}\right)$, such that

$$
L\left(\sigma_{0}\right)=\left(h^{-}\left(\sigma_{0}\right), h^{+}\left(\sigma_{0}\right)\right)
$$

Proof. Suppose that $L\left(\sigma_{0}\right) \neq \emptyset$, i.e. there exists a real number $h \in \mathbb{R}$ such that $\left(\sigma_{0}, h\right) \in B$. Since B is open $L\left(\sigma_{0}\right)$ is also open, thus

$$
L\left(\sigma_{0}\right)=\bigcup_{n=1}^{N} I_{n}, \quad N \in \mathbb{N} \cup\{\infty\}
$$

where $I_{n} \neq \emptyset$ denote some open, bounded, mutually disjoint intervals. If we fix one of these intervals $I_{n}=(\alpha, \beta)$, then α, β do not belong to $L\left(\sigma_{0}\right)$, hence $\left(\sigma_{0}, \alpha\right),\left(\sigma_{0}, \beta\right) \notin B$. This proves

$$
\begin{equation*}
I_{1}\left(\sigma_{0}, \alpha\right)=I_{0}(\alpha), \quad I_{1}\left(\sigma_{0}, \beta\right)=I_{0}(\beta), \quad I_{1}\left(\sigma_{0}, h\right)<I_{0}(h) \tag{19}
\end{equation*}
$$

for any $h \in(\alpha, \beta)$. Now we claim that $\alpha<\hat{h}<\beta$, which clearly gives the lemma. Suppose by contradiction that $\alpha \geqslant \hat{h}$. From $I_{1}\left(\sigma_{0}, \alpha\right)=I_{0}(\alpha)$ we see the existence of at least one one-phase equilibrium at $\left(\sigma_{0}, \alpha\right)$. The assumption $\alpha \geqslant \hat{h}$ gives

$$
I_{0}(\alpha)=|\Omega|\left\langle A^{-} \xi^{-}, \xi^{-}\right\rangle=I\left[0,0, \alpha, \sigma_{0}\right]
$$

hence the one-phase equilibrium with $\hat{u} \equiv 0, \hat{\chi} \equiv 0$ exists for $\left(\sigma_{0}, \alpha\right)$. One the other hand, Remark 3.6 then proves that for $h>\alpha$, only one-phase equilibria with $\hat{\chi} \equiv 0$ exist which contradicts (19) and the lemma is proved since analogous arguments show the second inequality $\hat{h}<\beta$.

Step 2: (Definition of the functions $h^{ \pm}(\sigma)$). Following Lemma 4.1 we define for any $\sigma>0$ satisfying $L(\sigma) \neq \emptyset$

$$
h^{+}(\sigma):=\sup L(\sigma), \quad h^{-}(\sigma):=\inf L(\sigma)
$$

If $L(\sigma)=\emptyset$ then we let

$$
h^{+}(\sigma):=h^{-}(\sigma):=\hat{h}
$$

Step 3: (Definition of the sets A and C). The sets A and C are defined via

$$
\begin{aligned}
& A:=\left\{(\sigma, h): \sigma>0, h>h^{+}(\sigma)\right\} \\
& C:=\left\{(\sigma, h): \sigma>0, h<h^{-}(\sigma)\right\}
\end{aligned}
$$

and we claim that for $(\sigma, h) \in A \quad((\sigma, h) \in C)$ the functional $I[\cdot \cdot, \cdot h, \sigma]$ admits only one-phase equilibria ($\hat{u}, \hat{\chi}$) with $\hat{u} \equiv 0$ and $\hat{\chi} \equiv 0(\hat{\chi} \equiv 1)$. To verify our claim we assume $(\sigma, h) \in A$, hence $h>h^{+}(\sigma) \geqslant \hat{h}$. Recalling (19) we have $I_{1}\left(\sigma, h^{+}(\sigma)\right)=I_{0}\left(h^{+}(\sigma)\right)$ and by Remark $3.6 I[\cdot, \cdot, h, \sigma]$ admits only a one-phase equilibrium which on account of $h>\hat{h}$ is of type $\hat{\chi} \equiv 0$. The case $(\sigma, h) \in C$ is treated in the same way, and the claim is proved. Now let

$$
A^{\prime}:=\left\{(\sigma, h): \sigma>0, h \geqslant \hat{h}, I_{1}(\sigma, h)=I_{0}(h)=\left\langle A^{-} \xi^{-}, \xi^{-}\right\rangle|\Omega|\right\}
$$

It is easily seen that

$$
A^{\prime}=A \cup \operatorname{graph} h^{+}
$$

In fact, if $(\sigma, h) \in A^{\prime}$, then we either have $h>h^{+}(\sigma)$ or $h=h^{+}(\sigma)$ since $h<h^{+}(\sigma)$ would imply two-phase equilibria which are excluded by the definition of A^{\prime}. Thus the inclusion ' \subset ' is proved. The other inclusion follows from Lemma 3.4(b). In a similar way we define

$$
\begin{aligned}
& C^{\prime}=\left\{(\sigma, h): \sigma>0, h \leqslant \hat{h}, I_{1}(\sigma, h)=I_{0}(h)=\left(\left\langle A^{+} \xi^{+}, \xi^{+}\right\rangle+h\right)|\Omega|\right\} \\
& C^{\prime}=C \cup \operatorname{graph} h^{-}
\end{aligned}
$$

Lemma 4.2. A^{\prime} and C^{\prime} are convex sets.
Proof. Fix two points $\left(\sigma_{i}, h_{i}\right) \in A^{\prime}, i=1,2$, a real number $0 \leqslant \tau \leqslant 1$, and let $\sigma_{\tau}:=\tau \sigma_{1}+(1-$ $\tau) \sigma_{2}, h_{\tau}:=\tau h_{1}+(1-\tau) h_{2}$. Since $\sigma_{1}, \sigma_{2}>0$ and since $h_{1}, h_{2} \geqslant \hat{h}$ the assertions $\sigma_{\tau}>0$ and $h_{\tau} \geqslant \hat{h}$ are trivial, it remains to show

$$
I_{1}\left(\sigma_{\tau}, h_{\tau}\right)=I_{0}\left(h_{\tau}\right)=|\Omega|\left\langle A^{-} \xi^{-}, \xi^{-}\right\rangle
$$

However, these equalities are known to be true for σ_{i}, h_{i} and since in addition I_{1} is concave (see Lemma 3.10), we obtain

$$
\begin{aligned}
I_{1}\left(\sigma_{\tau}, h_{\tau}\right) & \geqslant \tau I_{1}\left(\sigma_{1}, h_{1}\right)+(1-\tau) I_{1}\left(\sigma_{2}, h_{2}\right) \\
& =\tau I_{0}\left(h_{1}\right)+(1-\tau) I_{0}\left(h_{2}\right)=|\Omega|\left\langle A^{-} \xi^{-}, \xi^{-}\right\rangle
\end{aligned}
$$

On the other hand, $I_{1}(\sigma, h) \leqslant I_{0}(h)$ holds for any $h \in \mathbb{R}, \sigma>0$. This together with $h_{\tau} \geqslant \hat{h}$ gives

$$
I_{1}\left(\sigma_{\tau}, h_{\tau}\right) \leqslant I_{0}\left(h_{\tau}\right)=|\Omega|\left\langle A^{-} \xi^{-}, \xi^{-}\right\rangle
$$

This proves that the convexity of A^{\prime}, C^{\prime} is handled with analogous arguments.
Step 4: (Properties of the functions $h^{ \pm}(\sigma)$).
Lemma 4.3. The functions $h^{ \pm}$are bounded and depend continuously on $\sigma>0$. Moreover, $h^{+}(\sigma)$ is convex on $(0, \infty)$, whereas $h^{-}(\sigma)$ is concave on $(0, \infty)$.

Proof. In Step 1, it was shown that B is bounded, hence with Lemma 4.1 the functions $h^{ \pm}$are seen to be uniformly bounded on $(0, \infty)$. Thus we only have to prove that $h^{+}\left(h^{-}\right)$is convex (concave) which will imply continuity. Now fix $\sigma_{1}, \sigma_{2}>0,0 \leqslant \tau \leqslant 1$, and observe that $\left(\sigma_{i}, h^{+}\left(\sigma_{i}\right)\right) \in A^{\prime}, i=1,2$. In fact, $h^{+}\left(\sigma_{i}\right) \geqslant \hat{h}$ is proved in Lemma 4.1, and the existence of a one-phase equilibrium of type $\hat{\chi} \equiv 0$ follows from Lemma 3.4(b). Convexity of A^{\prime} then yields

$$
\underbrace{\left(\tau \sigma_{1}+(1-\tau) \sigma_{2}\right.}_{\tilde{\sigma}}, \underbrace{\left.\tau h^{+}\left(\sigma_{1}\right)+(1-\tau) h^{+}\left(\sigma_{2}\right)\right)}_{=: \tilde{h}} \in A^{\prime}
$$

Since $(\tilde{\sigma}, \tilde{h}) \in A^{\prime}$ immediately gives (compare Step 3.) $\tilde{h} \geqslant h^{+}(\tilde{\sigma})$, we have proved the convexity of h^{+}:

$$
\tau h^{+}\left(\sigma_{1}\right)+(1-\tau) h^{+}\left(\sigma_{2}\right)=\tilde{h} \geqslant h^{+}(\tilde{\sigma})=h^{+}\left(\tau \sigma_{1}+(1-\tau) \sigma_{2}\right)
$$

Using the same arguments h^{-}is seen to be concave and the lemma is verified.
Lemma 4.4. There is a real number $\sigma^{*}>0$ such that h^{+}is strictly decreasing on $\left(0, \sigma^{*}\right)$, whereas h^{-}is strictly increasing on this interval. On $\left(\sigma^{*}, \infty\right)$ both h^{+}and h^{-}are equal to \hat{h}.

Proof. By Lemma 3.9 we know that $h^{-}(\sigma)<\hat{h}<h^{+}(\sigma)$ if $\sigma \ll 1$ is sufficiently small. On the other hand, $\sigma \gg 1$ implies according to Lemma $3.8 h^{-}(\sigma)=\hat{h}=h^{+}(\sigma)$. Hence, we may define

$$
\sigma_{+}^{*}:=\inf \left\{\sigma>0: h^{+}=\hat{h} \text { on }(\sigma, \infty)\right\}
$$

Now assume by contradiction that h^{+}is not strictly decreasing on $\left(0, \sigma_{+}^{*}\right)$, i.e. for some positive numbers $0<\sigma_{1}<\sigma_{2}<\sigma_{+}^{*}$ we have $h^{+}\left(\sigma_{1}\right) \leqslant h^{+}\left(\sigma_{2}\right)$. Together with this assumption, convexity of h^{+}gives for any $\sigma>\sigma_{2}$.

$$
\frac{h^{+}(\sigma)-h^{+}\left(\sigma_{2}\right)}{\sigma-\sigma_{2}} \geqslant \frac{h^{+}\left(\sigma_{2}\right)-h^{+}\left(\sigma_{1}\right)}{\sigma_{2}-\sigma_{1}} \geqslant 0
$$

Since $\sigma_{2}<\sigma_{+}^{*}$ implies $h^{+}\left(\sigma_{2}\right)>\hat{h}$, we obtain the contradiction $h^{+}(\sigma) \geqslant h^{+}\left(\sigma_{2}\right)>\hat{h}$ for any $\sigma>\sigma_{2}$. Up to now, it is proved that h^{+}is strictly decreasing on ($0, \sigma_{+}^{*}$). Analogous considerations prove the existence of a real number $\sigma_{-}^{*} \in(0, \infty)$ such that $h^{-} \equiv \hat{h}$ for $\sigma \geqslant \sigma_{-}^{*}$ and such that h^{-}is strictly increasing on $\left(0, \sigma_{-}^{*}\right)$. It remains to verify $\sigma_{+}^{*}=\sigma_{-}^{*}$: to this purpose observe that by Lemma $4.1 h^{-}(\sigma) \neq h^{+}(\sigma)$ implies $\hat{h} \in\left(h^{-}(\sigma), h^{+}(\sigma)\right)$. If we assume that $\sigma_{-}^{*}<\sigma_{+}^{*}$, then we may find $\sigma \in\left(\sigma_{-}^{*}, \sigma_{+}^{*}\right)$ such that $\left(h^{-}(\sigma), h^{+}(\sigma)\right) \neq \emptyset$ and such that $h^{-}(\sigma)=\hat{h}$. This gives the contradiction $\hat{h} \notin\left(h^{-}(\sigma), h^{+}(\sigma)\right)$. Again the case $\sigma_{-}^{*}>\sigma_{+}^{*}$ is excluded with the same arguments, and the proof of Lemma 4.4 is complete.

5. EQUILIBRIUM STATES OF $I[\cdot, \cdot, h, \sigma]$ FOR POINTS (σ, h) ON THE GRAPHS OF $h^{ \pm}$

In this section we prove (iv)-(vii) of Theorem 1.1.
ad (iv). Consider the case $0<\sigma<\sigma^{*}$ and $h=h^{+}(\sigma)$. Letting $\sigma_{n} \equiv \sigma$ and by considering a sequence $\left\{h_{n}\right\}$ satisfying $h_{n} \uparrow h$ as $n \rightarrow \infty$ we may assume $\left(\sigma_{n}, h_{n}\right) \in B$ for n sufficiently large, hence there exists a sequence of two-phase equilibria ($\hat{u}_{n}, \hat{\chi}_{n}$) of $I\left[\cdot, \cdot, h_{n}, \sigma_{n}\right]$. Since $\lim _{n \rightarrow \infty}$ $h_{n}=h=h^{+}(\sigma)>\hat{h}$, Lemma 3.4(b) is applicable and $I\left[\cdot, \cdot, h^{+}(\sigma), \sigma\right]$ is seen to admit a twophase equilibrium. On the other hand, now letting $\sigma_{n} \equiv \sigma$ and considering a sequence $\left\{h_{n}\right\}, h_{n} \downarrow h$ as $n \rightarrow \infty$, we have $\left(\sigma_{n}, h_{n}\right) \in A$ and the same reasoning proves the existence of a one-phase equilibrium, which on account of Remark 3.6 can only be of type $\hat{\chi} \equiv 0$.
ad (v). We can apply the same arguments as used for (iv) with obvious modifications.
ad (vi). For $h=\hat{h}$ and $\sigma>\sigma^{*}$ we again apply Lemma 3.4 to find $(\hat{u}, \hat{\chi}), \hat{u} \equiv 0$, as an equilibrium state of $I[\cdot, \cdot, \hat{h}, \sigma]$. Here, Lemma 3.3(c) shows any characteristic function $\hat{\chi}$ to be admissible. Equilibrium states satisfying $\hat{u} \not \equiv 0$ are not possible: if we assume the existence of an equilibrium state $\left(\hat{u}_{0}, \hat{\chi}_{0}\right)$ of $I\left[\cdot, \cdot, \hat{h}, \sigma_{0}\right], \sigma_{0}>\sigma^{*}, \hat{u}_{0} \not \equiv 0$, then we obtain for any $\sigma \in\left(\sigma^{*}, \sigma_{0}\right)$

$$
I_{0}(\hat{h})=I_{1}(\sigma, \hat{h}) \leqslant I\left[\hat{u}_{0}, \hat{\chi}_{0}, \hat{h}, \sigma\right]<I\left[\hat{u}_{0}, \hat{\chi}_{0}, \hat{h}, \sigma_{0}\right]=I_{1}\left(\sigma_{0}, \hat{h}\right)=I_{0}(\hat{h})
$$

where we used the existence of equilibria of type $\hat{u} \equiv 0$ for the parameters $\sigma=\sigma_{0}, h=\hat{h}$.
ad (vii). Finally, the case $h=\hat{h}$ and $\sigma=\sigma^{*}$ has to be discussed. As in (vi) equilibrium states of type $\hat{u} \equiv 0, \hat{\chi} \equiv$ arbitrary characteristic function, are found. The existence of a twophase equilibrium state satisfying $\hat{u} \not \equiv 0$ is proved by considering a sequence $\left\{\sigma_{n}\right\}, \sigma_{n} \uparrow \sigma^{*}$ as $n \rightarrow \infty, h_{n} \equiv \hat{h}$, i.e. $\left(\sigma_{n}, \hat{h}\right) \in B$. By the definition of B we have $I_{1}\left(\sigma_{n}, \hat{h}\right)<I_{0}(\hat{h})$ and, as a consequence (compare Lemma 3.3(c)), $\hat{u}_{n} \neq 0$ if ($\hat{u}_{n}, \hat{\chi}_{n}$) denotes a corresponding equilibrium state of $I\left[\cdot, \cdot, \hat{h}, \sigma_{n}\right]$. With Lemma 3.4(a) assertion (vii) holds and the whole theorem is proved.

6. PROOF OF THEOREM 1.3

W.1.o.g. assume that $\hat{u} \not \equiv 0$. Then we have $\int_{\Omega}|\Delta \hat{u}|^{2} \mathrm{~d} x>0$ and letting $u_{t}:=\hat{u}+t \varphi, t \in \mathbb{R}$, $\varphi \in C_{0}^{\infty}\left(\Omega ; \mathbb{R}^{d}\right)$, minimality of ($\hat{u}, \hat{\chi}$) implies

$$
\begin{aligned}
0= & \frac{\mathrm{d}}{\mathrm{~d} t}{ }_{\mid t=0} I\left[u_{t}, \hat{\chi}, h, \sigma\right] \\
= & 2 \int_{\Omega}\left\langle\hat{\chi} A^{+}\left(\varepsilon(\hat{u})-\xi^{+}\right)+(1-\hat{\chi}) A^{-}\left(\varepsilon(\hat{u})-\xi^{-}\right), \varepsilon(\varphi)\right\rangle \mathrm{d} x \\
& +p \sigma\left(\int_{\Omega}|\Delta \hat{u}|^{2}\right)^{p / 2-1} \int_{\Omega} \Delta \hat{u}: \Delta \varphi \mathrm{d} x
\end{aligned}
$$

hence, letting $T=c\left(\hat{\chi} A^{+}\left(\varepsilon(\hat{u})-\xi^{+}\right)+(1-\hat{\chi}) A^{-}\left(\varepsilon(\hat{u})-\xi^{-}\right)\right)$for a suitable real number $c>0$, we obtain

$$
\begin{equation*}
\int_{\Omega} \Delta \hat{u}: \Delta \varphi \mathrm{d} x=\int_{\Omega} \nabla \varphi: T \mathrm{~d} x \quad \text { for all } \varphi \in C_{0}^{\infty}\left(\Omega ; \mathbb{R}^{d}\right) \tag{20}
\end{equation*}
$$

Now we abbreviate $U:=\Delta \hat{u} \in L^{2}\left(\Omega ; \mathbb{R}^{d}\right)$ and denote by U^{ρ}, T^{ρ} the standard mollifications of U and T, respectively, where $\rho>0$ is chosen sufficiently small. Then (20) is valid for U^{ρ}, T^{ρ} in the following sense:

$$
\begin{equation*}
\int_{\Omega} \nabla U^{\rho}: \nabla \varphi \mathrm{d} x=-\int_{\Omega} \nabla \varphi: T^{\rho} \mathrm{d} x, \quad \varphi \in C_{0}^{\infty}\left(\Omega ; \mathbb{R}^{d}\right), \quad \operatorname{dist}(\operatorname{spt} \varphi, \partial \Omega)>\rho \tag{21}
\end{equation*}
$$

Since $\eta^{2} U^{\rho}, \eta \in C_{0}^{\infty}(\Omega), 0 \leqslant \eta \leqslant 1$, is admissible in (21) for ρ sufficiently small, this implies

$$
\begin{aligned}
& \int_{\Omega} \eta^{2}\left|\nabla U^{\rho}\right|^{2} \mathrm{~d} x+2 \int_{\Omega} \eta \nabla \eta \otimes U^{\rho}: \nabla U^{\rho} \mathrm{d} x \\
& \quad=-\int_{\Omega} \eta^{2} \nabla U^{\rho}: T^{\rho} \mathrm{d} x-2 \int_{\Omega} \eta \nabla \eta \otimes U^{\rho}: T^{\rho} \mathrm{d} x
\end{aligned}
$$

hence, with the help of Young's inequality

$$
\int_{\Omega} \eta^{2}\left|\nabla U^{\rho}\right|^{2} \mathrm{~d} x \leqslant \tilde{c}(\eta)\left(\int_{\mathrm{spt} \eta}\left|U^{\rho}\right|^{2} \mathrm{~d} x+\int_{\mathrm{spt} \eta}\left|T^{\rho}\right|^{2} \mathrm{~d} x\right)
$$

This proves $\left\{U^{\rho}\right\}$ to be uniformly bounded in $W_{2, l o c}^{1}\left(\Omega ; \mathbb{R}^{d}\right)$ which, together with $U^{\rho} \rightarrow U$ in $L_{l o c}^{2}\left(\Omega ; \mathbb{R}^{d}\right)$ as $\rho \rightarrow 0$, gives $U \in W_{2, l o c}^{1}\left(\Omega ; \mathbb{R}^{d}\right)$. As a result, we have the equation

$$
\begin{equation*}
\int_{\Omega} \nabla U: \nabla \varphi \mathrm{d} x=-\int_{\Omega} T: \nabla \varphi \mathrm{d} x \quad \text { for all } \varphi \in C_{0}^{\infty}\left(\Omega ; \mathbb{R}^{d}\right) \tag{22}
\end{equation*}
$$

Now we apply the standard L^{p}-theory for weak solutions of " $\Delta v=\nabla T$ " as well as the Calderon-Zygmund regularity results. To be precise let us first consider the case $d=2$. Here $\varepsilon(u) \in W_{2}^{1}\left(\Omega ; \mathbb{R}^{d \times d}\right)$ implies $T \in L^{p}\left(\Omega ; \mathbb{R}^{d \times d}\right)$ for any $p<\infty$. L^{p}-theory gives $\nabla U \in L_{\text {loc }}^{p}$
$\left(\Omega ; \mathbb{R}^{d \times d}\right)$ (compare Reference [13], Section 4.3, in particular p. 73), hence $\Delta u \in W_{p, l o c}^{1}\left(\Omega ; \mathbb{R}^{d}\right)$ for any $p<\infty$ and we obtain $\Delta u \in C_{\text {loc }}^{0, \alpha}\left(\Omega ; \mathbb{R}^{d}\right)$ for any $\alpha \in(0,1)$. Finally, the assertion follows from the interior Schauder estimates (see Reference [13], Theorem 3.6). Next we assume that $d \geqslant 3$ and let $s_{l}:=2 d /(d-2 l)$. Then it is easy to see that

$$
\begin{align*}
& \hat{u} \in W_{2}^{2}\left(\Omega ; \mathbb{R}^{d}\right)
\end{align*} \quad \Rightarrow \varepsilon(\hat{u}) \in L^{s_{1}}\left(\Omega ; \mathbb{R}^{d \times d}\right) \Rightarrow T \in L^{s_{1}}\left(\Omega ; \mathbb{R}^{d \times d}\right),
$$

This procedure stops if $d \leqslant 2 l$. Thus, denote by l^{*} the maximum of all $l \in \mathbb{N}$ such that $d-2 l>0$. Then $s_{l^{*}}$ is well defined and satisfies $s_{l^{*}} \geqslant d$. In fact, the latter inequality is equivalent to $2 \geqslant d-2 l^{*}$ which is true on account of the maximality of l^{*}. Now assume that l^{*} is an even number. Then (23) implies for any $p<\infty$

$$
\begin{aligned}
& \hat{u} \in W_{s_{l_{*}}, l o c}^{2}\left(\Omega \mathbb{R}^{d}\right) \Rightarrow \varepsilon(\hat{u}) \in W_{d, l o c}^{1}\left(\Omega ; \mathbb{R}^{d \times d}\right) \Rightarrow \varepsilon(\hat{u}) \in L_{l o c}^{p}\left(\Omega ; \mathbb{R}^{d \times d}\right) \\
\Rightarrow & T \in L_{l o c}^{p}\left(\Omega ; \mathbb{R}^{d \times d}\right)
\end{aligned}
$$

thus $\Delta \hat{u} \in W_{p, l o c}^{1}\left(\Omega ; \mathbb{R}^{d}\right)$ for any $p<\infty$ (again compare Reference [13], Section 4.3) and as a consequence $\Delta \hat{u} \in C_{\text {loc }}^{0, \alpha}\left(\Omega, \mathbb{R}^{d}\right)$ for all $0<\alpha<1$. Again the interior Schauder estimates (see Reference [13], Theorem 3.6) prove the result. In the case that l^{*} is an odd number, we conclude

$$
\begin{aligned}
& \Delta \hat{u} \in W_{s^{*} *}, l o c \\
& \left(\Omega ; \mathbb{R}^{d}\right) \Rightarrow \Delta \hat{u} \in W_{d, l o c}^{1}\left(\Omega ; \mathbb{R}^{d}\right) \Rightarrow \Delta \hat{u} \in L_{l o c}^{p}\left(\Omega \mathbb{R}^{d}\right) \\
\Rightarrow & \hat{u} \in W_{p, l o c}^{2}\left(\Omega ; \mathbb{R}^{d}\right)
\end{aligned}
$$

which again is valid for any $p<\infty$, hence $\varepsilon(\hat{u}) \in L_{l o c}^{p}\left(\Omega ; \mathbb{R}^{d \times d}\right)$ for any $p<\infty$ and we proceed as before, i.e. Theorem 1.3 is proved.

REFERENCES

1. Morozov NF, Osmolovskii V. The formulation and an existence theorem for a variational problem on phase transitions in continuous medium mechanics. Journal of Applied Mathematics and Mechanics 1994; 58(5): 889-896.
2. Dacorogna B. Direct methods in the calculus of variations. Applied Mathematical Sciences, vol. 78. Springer: Berlin, 1989.
3. Osmolovskii VG. The variational problems on phase transition theory in the mechanics of continuum media. St. Petersburg, 2000 (in Russian).
4. Kohn, RV. The relaxation of a double-well energy. Continuum Mechanics and Thermodynamics 1991; 3:193236.
5. Seregin G. J_{p}^{1}-quasiconvexity and variational problems on sets of solenoidal vector fields. Algebra and Analiz 1999; 11:170-217. Engl. transl. in St. Petersburg Mathematical Journal 2000; 11(2):337-373.
6. Grinfeld MA. The methods of continuum mechanics in the phase transition theory. Moskow, 1990 (in Russian).
7. Giusti E. Minimal Surfaces and Functions of Bounded Variation. Birkhäuser: Boston, 1984.
8. Osmolovskii VG. Phase transitions for models of an elastic medium with residual stress operators. Problemy matematicheskogo analiza 1997; 17:153-191 (in Russian). Engl. Trans.: Journal of Mathematical Sciences 1999; 97(4):4280-4305.
9. Bildhauer M, Fuchs M, Osmolovskii V. The effect of a surface energy term on the distribution of phases in an elastic medium with a two-well elastic potential. Mathematical Methods In The Applied Sciences 2001.
10. Kohn RV. Müller S. Surface energy and microstructure in coherent phase transitions. Communications in Pure and Applied Mathematics 1994; 57:405-432.
11. Müller S. Microstructures, phase transitions and geometry. Max-Planck-Institut für Mathematik in den Naturwissenschaften, preprint no. 3, Leipzig, 1997.
12. Gilbarg D, Trudinger NS. Elliptic partial differential equations of second order. Grundlehren der math. Wiss. 224, (2nd edn revised third print). Springer: Berlin, 1998.
13. Giaquinta M. Introduction to regularity theory for nonlinear elliptic systems. Lectures in Mathematics ETH Zürich, Birkhäuser: Basel, 1993.

[^0]: * Correspondence to: M. Fuchs, Universität des Saarlandes, Fachrichtung 6.1. Mathematik, Postach 1511 50, D-66041 Saarbrücken, Germany
 † E-mail: fuchs@math.uni-sb.de

