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SUMMARY

We consider the problem of minimizing

I [u; �; h; �]=
∫
F
(�f+

h (�(u)) + (1− �)f−(�(u))) d x + �
(∫

F
|Hu|2 d x

)p=2
0¡p¡1; h∈R; �¿0, among functions u :Rd⊃F→Rd; u|9F =0, and measurable characteristic func-
tions � : F→R. Here f+

h ; f
−, denote quadratic potentials de'ned on the space of all symmetric d×d

matrices, h is the minimum energy of f+
h and �(u) denotes the symmetric gradient of the displacement

'eld. An equilibrium state û; �̂ of I [· ; · ; h; �] is termed one-phase if �̂≡ 0 or �̂≡ 1, two-phase otherwise.
We investigate the way in which the distribution of phases is a0ected by the choice of the parameters
h and �. Copyright ? 2002 John Wiley & Sons, Ltd.
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1. INTRODUCTION

We consider an elastic medium which can exist in two di0erent phases. If the medium
occupies a bounded region F⊂Rd (assumed to be of class C2), then the energy density of
the 'rst (second) phase is given by

f+
h (�(u)) = 〈A+(�(u)− �+); �(u)− �+〉+ h

(f−(�(u)) = 〈A−(�(u)− �−); �(u)− �−〉)
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where u=(u1; : : : ; ud) :F→Rd is the 'eld of displacements, �(u)= 1
2(9iu

j+9jui)16i; j6d denotes
the corresponding strain tensor, and A± :Sd→Sd are linear, symmetric operators de'ned on
the space Sd of all symmetric d×d matrices having the meaning of the tensors of elastic
moduli of the 'rst and the second phase. Finally, �±∈Sd denote the stress-free strains of the
ith phase, and we use the symbol 〈�; –〉 : = tr(�–) for the scalar product in Sd. Thus, the energy
density of each phase is a quadratic function of the linear strain, where the energy density
of the 'rst phase depends in addition on the parameter h∈R. Let us state the hypotheses
imposed on the data: A± are assumed to be positive, i.e. for some number �¿0 we have

�|�|26〈A±�; �〉6�−1|�|2 for all �∈Sd (1)

hence, the parameter h measures the di0erence between the minima of f+
h and f−. As a

second condition concerning the tensors of elastic moduli we require that for some number
�∈ (0; �)

|〈A+ − A−)�; �〉|6�|�|2 for all �∈Sd (2)

is satis'ed. Finally, we suppose that

A+�+ 	=A−�− (3)

is valid. Clearly, (2) holds in case A+ =A− for which (3) reduces to the condition �+ 	= �−.
If � denotes the characteristic function of the set occupied by the 'rst phase, then it is natural
to take the functional

J [u; �; h] :=
∫
F
(�f+

h (�(u)) + (1− �)f−(�(u))) dx (4)

as the total deformation energy of the medium and to de'ne an equilibrium state of J as a
minimizing pair (û; �̂) consisting of a deformation û and a measurable characteristic func-
tion �̂. Following standard convention, we say that the equilibrium state is one-phase if
�̂≡ 0 or �̂≡ 1, two-phase otherwise. Let us consider displacement 'elds u vanishing on 9F.
Then the domain of de'nition of the functional J [· ; · ; h] is the space of all pairs (u; �)

with u∈X :=
◦
W 1

2 (F;Rd) (equipped with the norm ‖u‖X := ‖�(u)‖L2(F;Sd)) and � denoting
an arbitrary measurable characteristic function F→R. Unfortunately, the variational prob-
lem J [· ; · ; h]→ min may fail to have solutions as it is shown by an example in Reference
[1]. One way to overcome this diQculty is to introduce the quasiconvex envelope f̃h of the
integrand fh := min{f+

h ; f
−}6�f+

h + (1 − �)f− (see Reference [2] for a de'nition) and to
pass to the relaxed problem ∫

F
f̃h(�(u)) dx→ min in X

(note that by Dacorogna’s formula u≡ 0 is a solution; non-trivial solutions were produced in
Reference [3]), we refer the reader to References [2; 4; 5] for a more detailed outline of this
approach and for further references. From the physical point of view (compare Reference [6]),
it is also reasonable to consider a regularization of the functional J from (4), taking the area
of the separating surface between the di0erent phases into account, i.e. we replace J by the

Copyright ? 2002 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2002; 25:289–308
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energy

J [u; �; h; �]= J [u; �; h] + �
∫
F
|∇�| (5)

where �¿0 denotes a parameter, and the characteristic function � is required to be an el-
ement of the space BV (F) of all functions having bounded variation (see for example [7]
for de'nitions). This model was investigated in References [8; 3; 9] establishing various exis-
tence results for the functional from (5), in particular, in Reference [9] we showed how the
distribution of phases depends on the choices for the parameters h and �.
In the present note we regularize J [u; �; h] by adding a penalty term involving higher order

derivatives of the displacement 'eld. In principal, this model was proposed by Kohn and
MOuller in References [10; 11]. To be precise, suppose that a number 0¡p¡1 is 'xed, and
for �¿0 let

I [u; �; h; �] := J [u; �; h] + �
(∫

F
|Hu|2 dx

)p=2
(6)

where now u∈H :=W 2
2 (F;Rd) ∩ X and (as in (4))

�∈M := {measurable characteristic functions F→R}
With a slight abuse of notation we sometimes only assume �∈L∞(F); 06�61 a.e., equilib-
rium states of I however are always de'ned w.r.t. H ×M . Note, that on account of 9F∈C2,
the quantity

‖u‖H := ‖Hu‖L2(F;Rd)

introduces a norm on the space H being equivalent to the W 2
2 -norm which is a consequence

of the Calderon–Zygmund regularity results. Our main result now concerns the analysis of
the e0ect of the parameters h∈R and �¿0 on the distribution of phases, we have

Theorem 1.1. Let (1)–(3) hold. Then, for each h∈R and all �¿0, the functional I [· ; · ; h; �]
attains its minimum on the set H ×M . There are two bounded, continuous functions h±(�);
�¿0, and a number �∗¿0 with the following properties:

h+(�)¿ĥ on (0; �∗); h+(�)≡ ĥ for �¿�∗

h−(�)¡ĥ on (0; �∗); h−(�)≡ ĥ for �¿�∗

ĥ := 〈A−�−; �−〉 − 〈A+�+; �+〉
h+ strictly decreases on (0; �∗); h− is strictly increasing on (0; �∗)

The graphs of h± divide the half-plane of parameters �¿0; h∈R, into three open regions

A := {(�; h) :�¿0; h¿h+(�)}
B := {(�; h) : 0¡�¡�∗; h−(�)¡h¡h+(�)}
C := {(�; h) :�¿0; h¡h−(�)}

Copyright ? 2002 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2002; 25:289–308
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in which we have the following distribution of phases:
(i) for (�; h)∈A we only have the one-phase equilibrium û≡ 0; �̂≡ 0;
(ii) for (�; h)∈C only the one-phase equilibrium û≡ 0; �̂≡ 1 exists;
(iii) for (�; h)∈B only two-phase states of equilibria exist.
On the graphs of h± we have the following distribution of equilibrium states:
(iv) for h= h+(�); 0¡�¡�∗, we have the one-phase equilibrium state û≡ 0; �̂≡ 0 and at

least one two-phase equilibrium;
(v) for h= h−(�); 0¡�¡�∗, we have the one-phase equilibrium state û≡ 0; �̂≡ 1 and at

least one two-phase equilibrium;
(vi) for h= ĥ; �¿�∗, the equilibrium states consist of the pairs û≡ 0; �̂≡ any measurable

characteristic function;
(vii) for h= ĥ; �=�∗, there exist the equilibrium states û≡ 0; �̂≡ arbitary measurable char-

acteristic function and at least one two-phase equilibrium state with û 	≡ 0.

Remark 1.2. (a) Except for the behaviour at h= ĥ together with �¿�∗ (see (vi) and (vii))
Theorem 1.1 corresponds in a qualitative sense to Theorem 2:1 in Reference [9]. Of course
we do not claim that the functions h± as well as the numbers �∗ are the same in both cases.

(b) The di0erent behaviour for the choice h= ĥ; �¿�∗ originates from the fact that in this
case the penalty term �(

∫
F |Hu|2 dx)p=2 does not create a formation of phases.

(c) In Reference [3] the reader will 'nd further comments on the above model, moreover,
the choice p¡1 is explained.

Concerning the regularity of solutions, we have the following.

Theorem 1.3. With the above notation let (û; �̂)∈H ×M denote on equilibrium state of
I [· ; · ; h; �]; �¿0. Then û is of class C2; �(F;Rd) for any 0¡�¡1.

Remark 1.4. For h∈R; �¿0 and u∈H let (recall fh=min{f+
h ; f

−})

Ĩ [u; h; �]=
∫
F
fh(�(u)) dx + �‖Hu‖2L2(F;Rd)

Clearly, the variational problem

Ĩ→min on H

has at least one solution û (compare also Lemma 2.2 and Theorem 2.3 below). For u∈H let

�u :=

{
0 if f+

h (�(u))¿f−(�(u));

1 otherwise:

Then we have

I [u; �; h; �]¿Ĩ [u; h; �]¿Ĩ [û; h; �]= I [û; �û; h; �]

for any u∈H and any measurable characteristic function �. Thus û generates a minimizing pair
(û; �û) of I [· ; · ; h; �]. Conversely, consider an equilibrium state ( Uu; U�) of I [· ; · ; h; �]. Observing
(recall fh6 U�f+

h + (1− U�)f−)

Ĩ [ Uu; h; �]6I [ Uu; U�; h; �]6I [u; �u; h; �]= Ĩ [u; h; �] for all u∈H

Copyright ? 2002 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2002; 25:289–308



THE EFFECT OF PENALTY TERM INVOLVING HIGHER ORDER DERIVATIVE 293

we deduce Ĩ [· ; h; �]-minimality of Uu. So there is a one-to-one correspondence between the
minimizing deformation 'elds of both functionals. But the deformation 'eld u alone does not
serve the complete information, for example, in case u≡ 0 there exist various possibilities for
the distribution of phases as described in Theorem 1.1.
As an alternative to the model proposed in Theorem 1.1 we may associate to each Ĩ [· ; h; �]-

minimizing deformation 'eld û the function �û and introduce the notion of one (two)-phase
equilibrium states (û; �û) as before. Then again we get the statements of Theorem 1.1 where in
part (vi) and (vii) the phrase “�̂=any measurable characteristic function” has to be replaced
by the requirement �̂= �0. Obviously the number of equilibrium states (û; �û) generated by
Ĩ [· ; h; �]-minimizers û is in general much smaller than the number of equilibria considered in
the 'rst model: if �̂ is a measurable characteristic function satisfying∫

F
fh(�(û)) dx=

∫
F
(�̂f+

h (�(û)) + (1− �̂)f−(�(û))) dx

then (û; �̂) is a minimizing pair for I [· ; · ; h; �]. But since we are mainly interested in the
qualitative behaviour of the distribution of phases depending on h and �, we do not see any
principal di0erence between both models except for the di0erent behaviour at h= ĥ; �¿�∗.

Remark 1.5. At the end, let us brieXy discuss some situations for which the non-uniqueness
w.r.t. the function � can be removed. Let (û; �̂) denote an equilibrium state of I [u; �; h; �] with
�̂ := �û. We introduce the sets

E+(−) := [f+
h (�(û))¿(¡)f−(�(û))]

E0 := [f+
h (�(û))=f−(�(û))]

and consider �∈L∞(F); 06�61. Then

I [û; �̂; h; �]= I [û; �; h; �] (7)

if and only if∫
E+
(�̂ − �)(f+

h (�(û))− f−(�(û))) dx +
∫
E−

(�̂ − �)(f+
h (�(û))− f−(�(û))) dx=0

Since �̂= �û=

{
0 on E+

1 on E− ; we see

�= �̂ on E+ ∪E− (8)

and the ‘non-uniqueness’ can be excluded for the case that E0 is a set of Lebesgue mea-
sure zero. In order to 'nd a suQcient condition for |E0|=0 let us assume that û 	≡ 0. Then
‖Hû‖L2(F;Rd)¿0 and for any v∈H the expression ‖Hû + tHv‖L2(F;Rd)¿0 is di0erentiable at
t=0. For �∈L∞(F); 06�61, with (8) and all v∈H we have according to (7)

d
dt |t=0

I [û+ tv; �; h; �]= 0; i:e:

Copyright ? 2002 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2002; 25:289–308
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2
∫
F
�〈A+(�(û)− �+)− A−(�(û)− �−); �(v)〉 dx

+2
∫
F
〈A−�(v); �(û)− �−〉 dx + p�

(∫
F
|Hû|2

)p=2−1 ∫
F
Hû ·Hv dx=0 (9)

Let |E0|¿0. Then we use (9) with �=0 on E0 and with �=Z on E0, where Z∈L∞(E0);
06Z61. Subtracting the results we get∫

E0

Z〈A+(�(û)− �+)− A−(�(û)− �−); �(v)〉 dx=0

and since Z can be chosen arbitrarily, this turns into

〈A+(�(û)− �+)− A−(�(û)− �−); �(v)〉=0

a.e. on E0. Consider a Lebesgue point x0 ∈E0 of �(û) and let v(x)=#(x)xkEl where #∈C∞
0 (F),

#≡ 1 near x0, and El is the lth standard unit-vector in Rd. Then �(v)(x0)= (&ik&jl)16i; j6d and
the above identity implies

A+(�(û)− �+)− A−(�(û)− �−) = 0

on E0, hence

(A+ − A−)�(û)=A+�+ − A−�−

and we get a contradiction if we assume that

A+�+ − A−�− =∈ Im(A+ − A−) (10)

holds. For example we have (10) in case A+ =A− together with �+ 	= �−. Thus, the assumption
û 	≡ 0 combined with (10) shows |E0|=0 and we can associate to û a unique function � such
that (7) is valid.

Our paper is organized as follows: in Section 2, we prove some existence and lower semicon-
tinuity results concerning the functional I from (6). Section 3 contains a series of lemmata
which are used in Section 4 and Section 5 to prove statements (i)–(vii) of Theorem 1.1. In
the last section we prove Theorem 1.3.

2. SOME EXISTENCE RESULTS

From now on we assume that all the conditions stated in Section 1 are valid.

Lemma 2.1. Let h∈R; �¿0 be given. Then we have for any (u; �)∈H×M
�
2
‖u‖2X + �‖u‖pH6I [u; �; h; �] + h|F|+ 4+ �2

�3
(|�+|2 + |�−|2)

Copyright ? 2002 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2002; 25:289–308
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Proof. Assumption (1) implies

I [u; �; h; �]¿ �
∫
F
|�(u)|2 dx − |h| |F|+ �‖u‖pH

−1
�

∫
F
(|�+|2 + |�−|2) dx

− 2
∫
F
(|〈A+�(u); �+〉|+ |〈A−�(u); �−〉|) dx

The lemma is proved by combining this inequality with

|〈A±�; �̃〉|6
√
〈A±�; �〉

√
〈A±�̃; �̃〉:

Next we establish a lower semicontinuity result.

Lemma 2.2. Consider sequences {un}; {�n}; {hn} and {�n}; un ∈H; �n ∈L∞(F), 06�n61;
hn ∈R; �n¿0 such that un+u in H; �n+� in L2(F); hn→ h and �n→� as n→∞. Then
we have

I [u; �; h; �]6 lim inf
n→∞ I [un; �n; hn; �n]

Proof. The uniform L∞-bound together with the weak L2-convergence of the sequence {�n}
yields

�n
n→∞+ � in Ls(F) for any s¡∞; 06�61 a:e:

The weak H -convergence of the sequence {un} gives in addition

�(un)
n→∞→ �(u) in Lr(F;Sd) for some r¿2

thus

I [un; �n; hn; 0] → I [u; �; h; 0] as n→∞
Moreover, again by weak convergence of the sequence {un},

‖u‖pH6 lim inf
n→∞ ‖un‖pH

i.e. we get the estimate

I [u; �; h; �] = I [u; �; h; 0] + �‖u‖pH6 lim inf
n→∞ I [un; �n; hn; 0] + lim inf

n→∞ (�n‖un‖pH )

6 lim inf
n→∞ (I [un; �n; hn; 0] + �n‖un‖pH )= lim inf

n→∞ I [un; �n; hn; �n]

As a consequence we obtain the following existence theorem

Copyright ? 2002 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2002; 25:289–308
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Theorem 2.3. The functional I [· ; · ; h; �]; h∈R; �¿0; attains its minimum on the set H×M .

Proof. Lemma 2.1 immediately gives

+ := inf
(u;�)∈H×M

I [u; �; h; �]¿−∞

and we may consider a minimizing sequence (un; �n) s.t. (again recall Lemma 2.1)

un +: û in H; �n +: �̃ in L2(F) as n→∞
We do not know that �̃ is an element of M , however 06�̃61 and, by Lemma 2.2,

I [û; �̃; h; �]6 lim inf
n→∞ I [un; �n; h; �] (11)

Therefore, if �̂ is de'ned via

�̂ :=

{
0 on the set [f+

h (�(û))¿f−(�(û))]

1 on the set [f+
h (�(û))¡f−(�(û))]

and if we observe (11) together with

�̃f+
h (�(û)) + (1− �̃)f−(�(û)) = �̃(f+

h (�(û))− f−(�(û))) + f−(�(û))

¿ �̂(f+
h (�(û))− f−(�(û))) + f−(�(û))

(û; �̂)∈H×M is seen to be an equilibrium state of I .

Next, consider the energies of one-phase deformations, i.e. we let

I+[u; h; �] := I [u; 1; h; �]=
∫
F
f+
h (�(u)) dx + �‖u‖pH

I−[u; �] := I [u; 0; h; �]=
∫
F
f−(�(u)) dx + �‖u‖pH ; u∈H

Lemma 2.4. On H the functionals I± attain their unique minima at u± ≡ 0.

Proof. For any u∈H we have

I+[u; h; �] =
∫
F
[〈A+(�(u)− �+); �(u)− �+〉+ h] dx + �‖u‖pH

=
∫
F
〈A+�(u); �(u)〉 dx + |F|〈A+�+; �+〉+ h|F|+ �‖u‖pH

¿ |F|〈A+�+; �+〉+ h|F|

where equality holds if and only if u≡ 0. An analogous inequality is true for I− and the
lemma is proved.

Copyright ? 2002 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2002; 25:289–308
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We 'nish this section by introducing the quantity I0(h) := min{I+[0; h; �]; I−[0; �]}, i.e.

I0(h) =

{ |F|(〈A+�+; �+〉+ h); h6ĥ

|F|〈A−�−; �−〉; h¿ĥ

ĥ := 〈A−�−; �−〉 − 〈A+�+; �+〉

which measures the dependence of the energy of one-phase equilibria on the parameter h.

3. AUXILIARY RESULTS

In this section we prove (under the hypotheses stated in Section 1) a series of auxiliary results
which are needed in Section 4 to show Theorem 1.1. We start with two lemmata estimating
the X -norm of equilibrium states.

Lemma 3.1. Consider an equilibrium state (û; �̂) of I [· ; · ; h; �]. Then
�‖û‖pH + (�− �)‖û‖2X62|A−�− − A+�+|

√
|F| ‖û‖X (12)

holds true, in particular, there is a constant R, not depending on h, �, such that

‖û‖X = ‖�(û)‖L2(F;Sd)6R (13)

Proof. The minimizing property yields I [û; �̂; h; �]6I [0; �̂; h; �], i.e.

�‖û‖pH +
∫
F
�̂〈(A+ − A−)�(û); �(û)〉 dx +

∫
F
〈A−�(û); �(û)〉 dx

+2
∫
F
�̂〈�(û); A−�− − A+�+〉 dx60

thus the assertions follow from (1) to (3).

Lemma 3.2. There is a real number &¿0 such that we have for any equilibrium state (û; �̂)
of I [· ; · ; h; �], û 	≡ 0,

‖û‖1−p
X ¿&� (14)

Proof. From the Calderon–Zygmund regularity results (compare, for example Refer-
ence [12], Theorems 9:14 and 9:15), we deduce the existence of a positive number -=-(F; d)
such that

‖û‖X = ‖�(û)‖L2(F;Sd)6‖û‖W 2
2 (F;Rd)6-‖Hû‖L2(F;Rd) =-‖û‖H

(12) gives

�‖û‖pH62|A+�+ − A−�−|
√
|F| ‖û‖X62|A+�+ − A−�−|

√
|F| ‖û‖1−p

X -p‖û‖pH
Copyright ? 2002 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2002; 25:289–308
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implying Lemma 3.2 since

‖û‖1−p
X ¿�

1
2|A+�+ − A−�−|√|F|-p =:�&

In the next lemma we investigate the relation between one-phase equilibrium states and the
vanishing of the associated deformation 'eld.

Lemma 3.3. Consider an equilibrium state (û; �̂) of I [· ; · ; h; �]. Then
(a) if (û; �̂) is one-phase, i.e. �̂≡ 0 or �̂≡ 1, then û≡ 0;
(b) if h 	= ĥ and if û≡ 0, then (û; �̂) is a one-phase equilibrium;
(c) if h= ĥ and if û≡ 0, then any �∈M provides an equilibrium state (0; �).

Proof. Assume that �̂≡ 1 (�̂≡ 0), thus I [· ; �̂; h; �]= I+[· ; h; �] (= I−[· ; �]), hence by
Lemma 2.4 û≡ 0 and (a) is veri'ed. Next observe that for any �∈M

I [0; �; h; �] = [〈A+�+; �+〉 − 〈A−�−; �−〉+ h]
∫
F
� dx + |F|〈A−�−; �−〉

= (h− ĥ)
∫
F
� dx + |F|〈A−�−; �−〉

In the case h¿ĥ, it is seen that

I [0; �; h; �]¿|F|〈A−�−; �−〉
and equality is true if and only if �≡ 0. This proves part (b) for h¿ĥ, the case h¡ĥ is
treated in the same manner. Finally h= ĥ implies I [0; �; h; �]= |F|〈A−�−; �−〉 for any �∈M ,
thus we have (c).

As a next step, we ensure that the existence of one-phase (two-phase) equilibria depends
continuously on h and �.

Lemma 3.4. Given two sequences {hn}, {�n} assume that hn→ h0 and �n→�0¿0 as
n→∞. As usual denote by (ûn; �̂n), (û0; �̂0) equilibrium states of I [· ; · ; hn; �n] and I [· ; · ; h0; �0],
respectively.
(a) If ûn≡ 0 (ûn 	≡ 0) at least for a subsequence, then there exists an equilibrium state (û0; �̂0)

satisfying û0 ≡ 0 (û0 	≡ 0).
(b) If �̂n≡ 0 (�̂n≡ 1) for a subsequence, then I [· ; · ; h0; �0] admits an equilibrium state satis-

fying û0 ≡ 0, �̂0 ≡ 0 (�̂0 ≡ 1).
(c) If h0 	= ĥ and if 0 	≡ �̂n 	≡ 1, again at least for a subsequence, then there is a solution with

0 	≡ �̂0 	≡ 1.

Proof. From Lemma 2.1 we deduce

�
2
‖ûn‖2X + �n‖ûn‖pH 6 I [ûn; �̂n; hn; �n] + hn|F|+ 4+ �2

�3
(|�+|2 + |�−|2)

6 I [0; 0; hn; �n] + hn|F|+ 4+ �2

�3
(|�+|2 + |�−|2)
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hence (recall that �0¿0) there is a real number c¿0 such that ‖ûn‖H6c¡+∞. Passing to
a subsequence (not relabelled) we may assume that

ûn +: û0 in H as n→∞
Sobolev’s embedding theorem then gives the existence of a real number r¿1 such that

ûn→ û0 in W 1
2r(F;Rd) as n→∞

Moreover, we may assume (again passing to a subsequence if necessary) that

�̂n
n→∞
+: �̃0 in L2(F); 06�̃061 a:e:

and applying Lemma 2.2 we see for all (u; �)∈H ×M

I [û0; �̃0; h0; �0]6 lim inf
n→∞ I [ûn; �̂n; hn; �n]6 lim inf

n→∞ I [u; �; hn; �n]= I [u; �; h0; �0]

As done in the proof of Theorem 2.3 (compare also Remark 1.4 and Remark 1.5), we may
replace �̃0 by a characteristic function �̂0 ∈M , which provides an admissible minimizer (û0; �̂0)
of I [· ; · ; h0; �0].

ad (a) If ûn=0 for a subsequence, then by the above arguments we clearly may take û0 ≡ 0.
If ûn 	≡ 0 for a subsequence, Lemma 3.2 gives ‖ûn‖1−p

X ¿&�n, hence strong convergence in
W 1

2r(F;Rd) proves ‖û0‖1−p
X ¿&�0, i.e. û0 	≡ 0.

ad (b) The case �̂n≡ 0 for a subsequence shows (with the above notation) �̃0 ≡ 0 and (û0; 0)
is seen to be minimizing. The 'rst assertion of Lemma 3.3 ensures the statement û0 ≡ 0. The
case �̂n≡ 1 is covered by the same arguments.

ad (c) We may assume that hn 	= ĥ for all n suQciently large. Moreover, by Lemma 3.3
(b) we then observe that ûn 	≡ 0, in conclusion Lemma 3.2 gives ‖ûn‖1−p

X ¿&�n and therefore
the limit û0 does not vanish. The claim now follows from Lemma 3.3a).

The volume of the phases depends in a monotonic manner on the parameter h, more
precisely

Lemma 3.5. Denote by (ûi; �̂i) equilibrium states of I [· ; · ; hi; �], i=1; 2. Then we have

(h1 − h2)(‖�̂1‖L1(F) − ‖�̂2‖L1(F))60

Proof. The proof is an immediate consequence of

I [û1; �̂1; h1; �]6I [û2; �̂2; h1; �]

I [û2; �̂2; h2; �]6I [û1; �̂1; h2; �]

Remark 3.6. If there exists an equilibrium state (û0; �̂0) of I [· ; · ; h0; �] satisfying �̂0 ≡
0 (�̂0≡ 1), then by Lemma 3.5 for h¿h0 (h¡h0) any equilibrium state (û; �̂) of I [· ; · ; h; �]
is one-phase, i.e. �̂≡ 0 (�̂≡ 1).

If we want two-phase equilibria to exist, then we have to restrict the admissible values for
the parameters h and �. A precise formulation is given in the next two lemmata.

Copyright ? 2002 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2002; 25:289–308



300 M. BILDHAUER, M. FUCHS AND V. G. OSMOLOVSKII

Lemma 3.7. There is a real number h0¿0 with the following property: for any h¿h0 (h¡−
h0), for all �¿0 and for any equilibrium state (û; �̂) of I [· ; · ; h; �] we have û≡ 0 and �̂≡ 0
(�̂≡ 1).

Proof. The idea is to 'nd a real number h0¿0 such that for any �¿0 and for any
(u; �)∈H ×M

I [u; �; h0; �]¿I [0; 0; h0; �] (15)

Once (15) is established, (0; 0) is seen to be an equilibrium state of I [· ; · ; h0; �] and the 'rst
assertion follows from Remark 3.6. The case h¡−h0 is treated in the same manner, where
we have to increase h0 if necessary. Thus, it remains to show (15) which is equivalent to

∫
F
�[〈(A+ − A−)�(u); �(u)〉 − 2〈A+�+ − A−�−; �(u)〉+ 〈A+�+; �+〉

−〈A−�−; �−〉+ h0] dx +
∫
F
〈A−�(u); �(u)〉 dx + �‖u‖pH¿0 (16)

We may estimate (0¡/¡1)

〈A−�(u); �(u)〉+ �〈(A+ − A−)�(u); �(u)〉
¿〈A−�(u); �(u)〉 − |〈(A+ − A−)�(u); �(u)〉|; 2|〈A±�±; �(u)〉|

6/〈A±�(u); �(u)〉+ 1
/
〈A±�±; �±〉

thus (16) is implied by

∫
F
[〈A−�(u); �(u)〉 − |〈(A+ − A−)�(u); �(u)〉| − /〈(A+ + A−)�(u); �(u)〉] dx

+
∫
F
�
[
h0 +

(
1− 1

/

)
〈A+�+; �+〉 −

(
1
/
+ 1

)
〈A−�−; �−〉

]
dx¿0 (17)

By (1) and (2) the 'rst integral on the left-hand side of (17) is greater than or equal to

(�− � − 2/�−1)‖u‖2X
hence positive if we choose / suQciently small. Decreasing /, if necessary, we 'nally let

h0 :=
(
1 +

1
/

)
〈A−�−; �−〉 −

(
1− 1

/

)
〈A+�+; �+〉¿0

With this choice (17), hence (16), holds and in conclusion the lemma is valid.

Except for h 	= ĥ the existence of two-phase equilibria requires also the boundedness of �:
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Lemma 3.8. There exists a real number �0¿0 with the following property: for any �¿�0
and for any h∈R the functional I [·; ·; h; �] admits only equilibria (û; �̂) satisfying û≡ 0:

Proof. Recalling (12) and (13) one gets

�‖û‖pH62|A+�+ − A−�−‖F|1=2R

i:e: �‖û‖pX62|A+�+ − A−�−‖F|1=2R-p

hence we may estimate

�(1−p)=p‖û‖1−p
X 6R′ := (2|A+�+ − A−�−‖F|1=2R-p)(1−p)=p

If û 	≡ 0 is supposed, then (14) gives

�(1−p)=p&�6R′ ⇔�6(R′=&)p

thus the lemma is proved by letting �0 := (R′=&)p:

As a last auxiliary result on the distribution of phases, a suQcient condition for the existence
of two phase equilibria is given.

Lemma 3.9. If �¿0 is suQciently small, then I [·; ·; ĥ; �] admits only equilibria (û; �̂) sat-
isfying û 	≡ 0:

Proof. Suppose by contradiction that there is a sequence {�n} of positive real numbers,
�n ↓ 0 as n→∞, such that I [·; ·; ĥ; �n] admits a one-phase equilibrium state, i.e., �̂n≡ 0 or
�̂n≡ 1 and, by Lemma 3.3, ûn≡ 0. Minimality implies for any (u; �)∈H ×M

I [u; �; ĥ; �n]¿I [0; �̂n; ĥ; �n]= |F|〈A−�−; �−〉

Using the de'nition of ĥ this can be rewritten as

∫
F
�[〈(A+ − A−)�(u); �(u)〉 − 2〈�(u); A+�+ − A−�−〉] dx +

∫
F
〈A−�(u); �(u)〉 dx

+�n‖u‖pH¿0 for any (u; �)∈H ×M

If we replace u by �nu, divide through �n and pass to the limit n→∞, we get

−
∫
F
�〈�(u); A+�+ − A−�−〉 dx¿0 for any (u; �)∈H ×M

In fact, equality is true since we may consider −u instead of u. Let +=A−�−−A+�+, 'x x0 ∈F
and consider 0¿0 such that B20(x0)bF. Finally we choose �= 1B0(x0); ’∈C∞

0 (F); ’≡ 1 on
B20(x0) and let vk(x)= e’(x)xk with 16k6d; e∈Rd. This choice implies on B20(x0)

�(vk)=
1
2
(ei&jk + ej&ik)16i; j6d
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hence we get

0=
∫
F
� dx

1
2
(+ijei&jk + +i; jej&ik)= |B0(x0)|(+e)k

This gives the contradiction +=0 and the lemma is proved.

We 'nish this section with the following.

Lemma 3.10. For any h∈R and for any real number �¿0 we let

I1(�; h) := inf
(u; �)∈H×M

I [u; �; h; �]

Then I1(�; h) is a concave function, in particular, I1(�; h) is continuous.

Proof. Note that for h and � as above I1(�; h) is well de'ned. Moreover, for any 'xed
(u; �)∈H ×M the mapping (h; �) �→ I [u; �; h; �] is a linear function in h and �, hence concave.
Since the in'mum of a family of concave functions again in concave, the lemma is seen to
be valid.

4. PROOF OF THEOREM 1.1, (i)–(iii)

Step 1: (De'nition of the set B). Note that by construction we have

I1(�; h)6I0(h) for any h∈R; �¿0 (18)

Inequality (18) leads to the de'nition

B := {(�; h)∈R+×R : I1(�; h)¡I0(h)}
and we observe that

(�0; h0)∈B⇔ I [·; ·; h0; �0] admits only two-phase equilibria (û; �̂)

By Lemma 3.9, B is known to be non-empty, moreover, B is seen to be open on account of
B=(I0 − I1)−1(0;∞) and the continuity of I0; I1. Finally, Lemma 3.7 and Lemma 3.8 prove
B to be bounded. Given �0¿0 let

L(�0) := {h∈R: (�0; h)∈B}
Lemma 4.1. Either we have L(�0)= ∅ or there exist two uniquely de'ned real numbers

h±(�0); h−(�0)¡ĥ¡h+(�0), such that

L(�0)= (h−(�0); h+(�0))

Proof. Suppose that L(�0) 	= ∅, i.e. there exists a real number h∈R such that (�0; h)∈B.
Since B is open L(�0) is also open, thus

L(�0) =
N⋃
n=1

In; N∈N∪{∞}
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where In 	= ∅ denote some open, bounded, mutually disjoint intervals. If we 'x one of these
intervals In=(�; 4), then �; 4 do not belong to L(�0), hence (�0; �); (�0; 4) =∈B. This proves

I1(�0; �)= I0(�); I1(�0; 4)= I0(4); I1(�0; h)¡I0(h) (19)

for any h∈ (�; 4). Now we claim that �¡ĥ¡4, which clearly gives the lemma. Suppose by
contradiction that �¿ĥ. From I1(�0; �)= I0(�) we see the existence of at least one one-phase
equilibrium at (�0; �). The assumption �¿ĥ gives

I0(�)= |F|〈A−�−; �−〉= I [0; 0; �; �0]

hence the one-phase equilibrium with û≡ 0; �̂≡ 0 exists for (�0; �). One the other hand,
Remark 3.6 then proves that for h¿�, only one-phase equilibria with �̂≡ 0 exist which con-
tradicts (19) and the lemma is proved since analogous arguments show the second inequality
ĥ¡4.

Step 2: (De'nition of the functions h±(�)). Following Lemma 4.1 we de'ne for any �¿0
satisfying L(�) 	= ∅

h+(�):= supL(�); h−(�):= inf L(�)

If L(�)= ∅ then we let

h+(�) := h−(�) := ĥ

Step 3: (De'nition of the sets A and C). The sets A and C are de'ned via

A := {(�; h): �¿0; h¿h+(�)}
C := {(�; h): �¿0; h¡h−(�)}

and we claim that for (�; h)∈A ((�; h)∈C) the functional I [·; ·; h; �] admits only one-phase
equilibria (û; �̂) with û≡ 0 and �̂≡ 0 (�̂≡ 1). To verify our claim we assume (�; h)∈A, hence
h¿h+(�)¿ĥ. Recalling (19) we have I1(�; h+(�))= I0(h+(�)) and by Remark 3.6 I [·; ·; h; �]
admits only a one-phase equilibrium which on account of h¿ĥ is of type �̂≡ 0. The case
(�; h)∈C is treated in the same way, and the claim is proved. Now let

A′ := {(�; h): �¿0; h¿ĥ; I1(�; h)= I0(h)= 〈A−�−; �−〉|F|}
It is easily seen that

A′=A∪ graph h+

In fact, if (�; h)∈A′, then we either have h¿h+(�) or h= h+(�) since h¡h+(�) would imply
two-phase equilibria which are excluded by the de'nition of A′. Thus the inclusion ‘⊂’ is
proved. The other inclusion follows from Lemma 3.4(b). In a similar way we de'ne

C ′ = {(�; h): �¿0; h6ĥ; I1(�; h)= I0(h)= (〈A+�+; �+〉+ h)|F|}
C ′ =C ∪ graph h−
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Lemma 4.2. A′ and C ′ are convex sets.

Proof. Fix two points (�i; hi)∈A′; i=1; 2, a real number 06561, and let �5 := 5�1 + (1−
5)�2, h5 := 5h1 + (1− 5)h2. Since �1; �2¿0 and since h1; h2¿ĥ the assertions �5¿0 and h5¿ĥ
are trivial, it remains to show

I1(�5; h5)= I0(h5)= |F|〈A−�−; �−〉
However, these equalities are known to be true for �i; hi and since in addition I1 is concave
(see Lemma 3.10), we obtain

I1(�5; h5)¿ 5I1(�1; h1) + (1− 5)I1(�2; h2)

= 5I0(h1) + (1− 5)I0(h2)= |F|〈A−�−; �−〉

On the other hand, I1(�; h)6I0(h) holds for any h∈R; �¿0. This together with h5¿ĥ gives

I1(�5; h5)6I0(h5)= |F|〈A−�−; �−〉
This proves that the convexity of A′; C ′ is handled with analogous arguments.

Step 4: (Properties of the functions h±(�)).

Lemma 4.3. The functions h± are bounded and depend continuously on �¿0: Moreover,
h+(�) is convex on (0;∞), whereas h−(�) is concave on (0;∞).

Proof. In Step 1, it was shown that B is bounded, hence with Lemma 4.1 the functions
h± are seen to be uniformly bounded on (0;∞). Thus we only have to prove that h+(h−) is
convex (concave) which will imply continuity. Now 'x �1; �2¿0; 06561, and observe that
(�i; h+(�i))∈A′; i=1; 2. In fact, h+(�i)¿ĥ is proved in Lemma 4.1, and the existence of a
one-phase equilibrium of type �̂≡ 0 follows from Lemma 3.4(b). Convexity of A′ then yields

(5�1 + (1− 5)�2︸ ︷︷ ︸
�̃

; 5h+(�1) + (1− 5)h+(�2))︸ ︷︷ ︸
=: h̃

∈A′

Since (�̃; h̃)∈A′ immediately gives (compare Step 3.) h̃¿h+(�̃), we have proved the convexity
of h+:

5h+(�1) + (1− 5)h+(�2)= h̃¿h+(�̃)= h+(5�1 + (1− 5)�2)

Using the same arguments h− is seen to be concave and the lemma is veri'ed.

Lemma 4.4. There is a real number �∗¿0 such that h+ is strictly decreasing on (0; �∗);
whereas h− is strictly increasing on this interval. On (�∗;∞) both h+ and h− are equal to ĥ.

Proof. By Lemma 3.9 we know that h−(�)¡ĥ¡h+(�) if ��1 is suQciently small. On
the other hand, ��1 implies according to Lemma 3.8 h−(�)= ĥ= h+(�). Hence, we may
de'ne

�∗+ := inf{�¿0: h+ = ĥ on (�;∞)}
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Now assume by contradiction that h+ is not strictly decreasing on (0; �∗+), i.e. for some positive
numbers 0¡�1¡�2¡�∗+ we have h+(�1)6h+(�2). Together with this assumption, convexity
of h+ gives for any �¿�2.

h+(�)− h+(�2)
� − �2

¿
h+(�2)− h+(�1)

�2 − �1
¿0

Since �2¡�∗+ implies h+(�2)¿ĥ, we obtain the contradiction h+(�)¿h+(�2)¿ĥ for any
�¿�2. Up to now, it is proved that h+ is strictly decreasing on (0; �∗+). Analogous con-
siderations prove the existence of a real number �∗− ∈ (0;∞) such that h− ≡ ĥ for �¿�∗− and
such that h− is strictly increasing on (0; �∗−). It remains to verify �∗+ =�∗−: to this purpose
observe that by Lemma 4.1 h−(�) 	= h+(�) implies ĥ∈ (h−(�); h+(�)). If we assume that
�∗−¡�∗+, then we may 'nd �∈ (�∗−; �

∗
+) such that (h−(�); h+(�)) 	= ∅ and such that h−(�)= ĥ.

This gives the contradiction ĥ 	∈ (h−(�); h+(�)). Again the case �∗−¿�∗+ is excluded with the
same arguments, and the proof of Lemma 4.4 is complete.

5. EQUILIBRIUM STATES OF I [· ; · ; h; �] FOR POINTS (�; h) ON THE
GRAPHS OF h±

In this section we prove (iv)–(vii) of Theorem 1.1.
ad (iv). Consider the case 0¡�¡�∗ and h= h+(�). Letting �n≡� and by considering a

sequence {hn} satisfying hn ↑ h as n→∞ we may assume (�n; hn)∈B for n suQciently large,
hence there exists a sequence of two-phase equilibria (ûn; �̂n) of I [· ; · ; hn; �n]. Since limn→∞
hn= h= h+(�)¿ĥ, Lemma 3.4(b) is applicable and I [· ; · ; h+(�); �] is seen to admit a two-
phase equilibrium. On the other hand, now letting �n≡� and considering a sequence {hn}; hn↓h
as n→∞, we have (�n; hn)∈A and the same reasoning proves the existence of a one-phase
equilibrium, which on account of Remark 3.6 can only be of type �̂≡ 0.
ad (v). We can apply the same arguments as used for (iv) with obvious modi'cations.
ad (vi). For h= ĥ and �¿�∗ we again apply Lemma 3.4 to 'nd (û; �̂); û≡ 0, as an

equilibrium state of I [· ; · ; ĥ; �]. Here, Lemma 3.3(c) shows any characteristic function �̂ to be
admissible. Equilibrium states satisfying û 	≡ 0 are not possible: if we assume the existence of
an equilibrium state (û0; �̂0) of I [· ; · ; ĥ; �0]; �0¿�∗; û0 	≡ 0, then we obtain for any �∈ (�∗; �0)

I0(ĥ)= I1(�; ĥ)6I [û0; �̂0; ĥ; �]¡I [û0; �̂0; ĥ; �0]= I1(�0; ĥ)= I0(ĥ)

where we used the existence of equilibria of type û≡ 0 for the parameters �=�0; h= ĥ.
ad (vii). Finally, the case h= ĥ and �=�∗ has to be discussed. As in (vi) equilibrium

states of type û≡ 0; �̂≡ arbitrary characteristic function, are found. The existence of a two-
phase equilibrium state satisfying û 	≡ 0 is proved by considering a sequence {�n}; �n ↑�∗ as
n→∞; hn≡ ĥ, i.e. (�n; ĥ)∈B. By the de'nition of B we have I1(�n; ĥ)¡I0(ĥ) and, as a conse-
quence (compare Lemma 3.3(c)), ûn 	≡ 0 if (ûn; �̂n) denotes a corresponding equilibrium state
of I [· ; · ; ĥ; �n]. With Lemma 3.4(a) assertion (vii) holds and the whole theorem is proved.
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6. PROOF OF THEOREM 1:3

W.l.o.g. assume that û 	≡ 0. Then we have
∫
F |Hû|2 dx¿0 and letting ut := û+t’; t ∈R;

’∈C∞
0 (F;Rd), minimality of (û; �̂) implies

0 =
d
dt |t=0

I [ut; �̂; h; �]

= 2
∫
F

〈
�̂A+(�(û)− �+) + (1− �̂)A−(�(û)− �−); �(’)

〉
dx

+p�
(∫

F
|Hû|2

)p=2−1 ∫
F
Hû: H’ dx

hence, letting T = c(�̂A+(�(û)− �+)+ (1− �̂)A−(�(û)− �−)) for a suitable real number c¿0,
we obtain ∫

F
Hû: H’ dx=

∫
F
∇’: T dx for all ’∈C∞

0 (F;Rd) (20)

Now we abbreviate U :=Hû∈L2(F;Rd) and denote by U0; T0 the standard molli'cations of
U and T , respectively, where 0¿0 is chosen suQciently small. Then (20) is valid for U0; T0

in the following sense:∫
F
∇U0: ∇’ dx=−

∫
F
∇’: T0 dx; ’∈C∞

0 (F;Rd); dist(spt’; 9F)¿0 (21)

Since #2U0; #∈C∞
0 (F); 06#61, is admissible in (21) for 0 suQciently small, this implies

∫
F
#2|∇U0|2 dx + 2

∫
F
#∇#⊗U0: ∇U0 dx

=−
∫
F
#2∇U0: T0 dx − 2

∫
F
#∇#⊗U0: T0 dx

hence, with the help of Young’s inequality∫
F
#2|∇U0|2 dx6c̃(#)

(∫
spt #

|U0|2 dx +
∫
spt #

|T0|2 dx
)

This proves {U0} to be uniformly bounded in W 1
2; loc(F;Rd) which, together with U0→U in

L2loc(F;Rd) as 0→ 0, gives U ∈W 1
2; loc(F;Rd). As a result, we have the equation∫

F
∇U : ∇’ dx=−

∫
F
T : ∇’ dx for all ’∈C∞

0 (F;Rd) (22)

Now we apply the standard Lp-theory for weak solutions of “Hv=∇T” as well as the
Calderon–Zygmund regularity results. To be precise let us 'rst consider the case d=2.
Here �(u)∈W 1

2 (F;Rd×d) implies T ∈Lp(F;Rd×d) for any p¡∞: Lp-theory gives ∇U ∈Lploc
Copyright ? 2002 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2002; 25:289–308
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(F;Rd×d) (compare Reference [13], Section 4:3, in particular p. 73), hence Hu∈W 1
p; loc(F;Rd)

for any p¡∞ and we obtain Hu∈C0;�
loc (F;Rd) for any �∈ (0; 1). Finally, the assertion follows

from the interior Schauder estimates (see Reference [13], Theorem 3:6). Next we assume that
d¿3 and let sl := 2d=(d− 2l). Then it is easy to see that

û∈W 2
2 (F;Rd) ⇒ �(û)∈Ls1 (F;Rd×d) ⇒ T ∈Ls1 (F;Rd×d)

⇒ ∇(Hû)∈Ls1loc(F;Rd×d) ⇒ Hû∈W 1
s1 ; loc(F;R

d)

⇒ Hû∈Ls2loc(F;Rd) ⇒ û∈W 2
s2 ; loc(F;R

d×d) ⇒ T ∈Ls3 (F;Rd×d)

· · ·

(23)

This procedure stops if d62l. Thus, denote by l∗ the maximum of all l∈N such that d−2l¿0.
Then sl∗ is well de'ned and satis'es sl∗¿d. In fact, the latter inequality is equivalent to
2¿d− 2l∗ which is true on account of the maximality of l∗. Now assume that l∗ is an even
number. Then (23) implies for any p¡∞

û∈W 2
sl∗ ;loc(FR

d) ⇒ �(û)∈W 1
d; loc(F;Rd×d) ⇒ �(û)∈Lploc(F;Rd×d)

⇒ T ∈Lploc(F;Rd×d)

thus Hû∈W 1
p; loc(F;Rd) for any p¡∞ (again compare Reference [13], Section 4:3) and as

a consequence Hû∈C0;�
loc (F;Rd) for all 0¡�¡1. Again the interior Schauder estimates (see

Reference [13], Theorem 3:6) prove the result. In the case that l∗ is an odd number, we
conclude

Hû∈W 1
sl∗ ; loc(F;R

d) ⇒ Hû∈W 1
d; loc(F;Rd) ⇒ Hû∈Lploc(FRd)

⇒ û∈W 2
p; loc(F;Rd)

which again is valid for any p¡∞, hence �(û)∈Lploc(F;Rd×d) for any p¡∞ and we proceed
as before, i.e. Theorem 1.3 is proved.
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