The effect of a penalty term involving higher order derivatives on the distribution of phases in an elastic medium with a two-well elastic potential

M. Bildhauer¹, M. Fuchs^{2,*,†} and V. G. Osmolovskii³

¹Universität des Saarlandes, Fachrichtung 6.1 Mathematik, Postach 15 11 50, D-66041 Saarbrücken, Germany
 ²Universität des Saarlandes, Fachrichtung 6.1 Mathematik, Postach 15 11 50, D-66041 Saarbrücken, Germany
 ³Mathematics & Mechanics, Faculty, St. Petersburg State University, 198904 St. Petersburg, Russia

Communicated by H. D. Alber

SUMMARY

We consider the problem of minimizing

$$I[u,\chi,h,\sigma] = \int_{\Omega} (\chi f_h^+(\varepsilon(u)) + (1-\chi)f^-(\varepsilon(u))) \,\mathrm{d}x + \sigma \left(\int_{\Omega} |\Delta u|^2 \,\mathrm{d}x\right)^{p/2}$$

0 0, among functions $u : \mathbb{R}^d \supset \Omega \to \mathbb{R}^d, u_{|\partial\Omega} = 0$, and measurable characteristic functions $\chi : \Omega \to \mathbb{R}$. Here f_h^+, f^- , denote quadratic potentials defined on the space of all symmetric $d \times d$ matrices, h is the minimum energy of f_h^+ and $\varepsilon(u)$ denotes the symmetric gradient of the displacement field. An equilibrium state $\hat{u}, \hat{\chi}$ of $I[\cdot, \cdot, h, \sigma]$ is termed one-phase if $\hat{\chi} \equiv 0$ or $\hat{\chi} \equiv 1$, two-phase otherwise. We investigate the way in which the distribution of phases is affected by the choice of the parameters h and σ . Copyright © 2002 John Wiley & Sons, Ltd.

KEY WORDS: elastic materials; phase transition; equilibrium states; regularization

1. INTRODUCTION

We consider an elastic medium which can exist in two different phases. If the medium occupies a bounded region $\Omega \subset \mathbb{R}^d$ (assumed to be of class C^2), then the energy density of the first (second) phase is given by

$$f_h^+(\varepsilon(u)) = \langle A^+(\varepsilon(u) - \xi^+), \varepsilon(u) - \xi^+ \rangle + h$$
$$(f^-(\varepsilon(u)) = \langle A^-(\varepsilon(u) - \xi^-), \varepsilon(u) - \xi^- \rangle)$$

Copyright © 2002 John Wiley & Sons, Ltd.

Received 28 May 2001

^{*} Correspondence to: M. Fuchs, Universität des Saarlandes, Fachrichtung 6.1. Mathematik, Postach 15 11 50, D-66041 Saarbrücken, Germany

[†]E-mail: fuchs@math.uni-sb.de

where $u = (u^1, ..., u^d) : \Omega \to \mathbb{R}^d$ is the field of displacements, $\varepsilon(u) = \frac{1}{2} (\partial_i u^j + \partial_j u^i)_{1 \le i,j \le d}$ denotes the corresponding strain tensor, and $A^{\pm} : \mathbb{S}^d \to \mathbb{S}^d$ are linear, symmetric operators defined on the space \mathbb{S}^d of all symmetric $d \times d$ matrices having the meaning of the tensors of elastic moduli of the first and the second phase. Finally, $\xi^{\pm} \in \mathbb{S}^d$ denote the stress-free strains of the *i*th phase, and we use the symbol $\langle \varepsilon, \varkappa \rangle := \operatorname{tr}(\varepsilon \varkappa)$ for the scalar product in \mathbb{S}^d . Thus, the energy density of each phase is a quadratic function of the linear strain, where the energy density of the first phase depends in addition on the parameter $h \in \mathbb{R}$. Let us state the hypotheses imposed on the data: A^{\pm} are assumed to be positive, i.e. for some number $\nu > 0$ we have

$$v|\varepsilon|^2 \leqslant \langle A^{\pm}\varepsilon, \varepsilon \rangle \leqslant v^{-1}|\varepsilon|^2 \quad \text{for all } \varepsilon \in \mathbb{S}^d$$

$$\tag{1}$$

hence, the parameter h measures the difference between the minima of f_h^+ and f^- . As a second condition concerning the tensors of elastic moduli we require that for some number $\mu \in (0, v)$

$$|\langle A^+ - A^- \rangle \varepsilon, \varepsilon \rangle| \leqslant \mu |\varepsilon|^2 \quad \text{for all } \varepsilon \in \mathbb{S}^d$$
(2)

is satisfied. Finally, we suppose that

$$A^+\xi^+ \neq A^-\xi^- \tag{3}$$

is valid. Clearly, (2) holds in case $A^+ = A^-$ for which (3) reduces to the condition $\xi^+ \neq \xi^-$. If χ denotes the characteristic function of the set occupied by the first phase, then it is natural to take the functional

$$J[u,\chi,h] := \int_{\Omega} (\chi f_h^+(\varepsilon(u)) + (1-\chi)f^-(\varepsilon(u))) \,\mathrm{d}x \tag{4}$$

as the total deformation energy of the medium and to define an equilibrium state of J as a minimizing pair $(\hat{u}, \hat{\chi})$ consisting of a deformation \hat{u} and a measurable characteristic function $\hat{\chi}$. Following standard convention, we say that the equilibrium state is one-phase if $\hat{\chi} \equiv 0$ or $\hat{\chi} \equiv 1$, two-phase otherwise. Let us consider displacement fields u vanishing on $\partial\Omega$. Then the domain of definition of the functional $J[\cdot, \cdot, h]$ is the space of all pairs (u, χ) with $u \in X := \overset{\circ}{W}_2^1(\Omega; \mathbb{R}^d)$ (equipped with the norm $||u||_X := ||\varepsilon(u)||_{L^2(\Omega; \mathbb{S}^d)}$) and χ denoting an arbitrary measurable characteristic function $\Omega \to \mathbb{R}$. Unfortunately, the variational problem $J[\cdot, \cdot, h] \to \min$ may fail to have solutions as it is shown by an example in Reference [1]. One way to overcome this difficulty is to introduce the quasiconvex envelope $\tilde{f_h}$ of the integrand $f_h := \min\{f_h^+, f^-\} \leq \chi f_h^+ + (1-\chi)f^-$ (see Reference [2] for a definition) and to pass to the relaxed problem

$$\int_{\Omega} \tilde{f}_h(\varepsilon(u)) \, \mathrm{d}x \to \min \quad \text{in } X$$

(note that by Dacorogna's formula $u \equiv 0$ is a solution; non-trivial solutions were produced in Reference [3]), we refer the reader to References [2,4,5] for a more detailed outline of this approach and for further references. From the physical point of view (compare Reference [6]), it is also reasonable to consider a regularization of the functional J from (4), taking the area of the separating surface between the different phases into account, i.e. we replace J by the

energy

$$J[u,\chi,h,\sigma] = J[u,\chi,h] + \sigma \int_{\Omega} |\nabla \chi|$$
⁽⁵⁾

where $\sigma > 0$ denotes a parameter, and the characteristic function χ is required to be an element of the space $BV(\Omega)$ of all functions having bounded variation (see for example [7] for definitions). This model was investigated in References [8,3,9] establishing various existence results for the functional from (5), in particular, in Reference [9] we showed how the distribution of phases depends on the choices for the parameters *h* and σ .

In the present note we regularize $J[u, \chi, h]$ by adding a penalty term involving higher order derivatives of the displacement field. In principal, this model was proposed by Kohn and Müller in References [10, 11]. To be precise, suppose that a number $0 is fixed, and for <math>\sigma > 0$ let

$$I[u,\chi,h,\sigma] := J[u,\chi,h] + \sigma \left(\int_{\Omega} |\Delta u|^2 \,\mathrm{d}x \right)^{p/2} \tag{6}$$

where now $u \in H := W_2^2(\Omega; \mathbb{R}^d) \cap X$ and (as in (4))

 $\chi \in M := \{ \text{measurable characteristic functions } \Omega \to \mathbb{R} \}$

With a slight abuse of notation we sometimes only assume $\chi \in L^{\infty}(\Omega)$, $0 \leq \chi \leq 1$ a.e., equilibrium states of *I* however are always defined w.r.t. $H \times M$. Note, that on account of $\partial \Omega \in C^2$, the quantity

$$\|u\|_H := \|\Delta u\|_{L^2(\Omega;\mathbb{R}^d)}$$

introduces a norm on the space H being equivalent to the W_2^2 -norm which is a consequence of the Calderon–Zygmund regularity results. Our main result now concerns the analysis of the effect of the parameters $h \in \mathbb{R}$ and $\sigma > 0$ on the distribution of phases, we have

Theorem 1.1. Let (1)–(3) hold. Then, for each $h \in \mathbb{R}$ and all $\sigma > 0$, the functional $I[\cdot, \cdot, h, \sigma]$ attains its minimum on the set $H \times M$. There are two bounded, continuous functions $h^{\pm}(\sigma)$, $\sigma > 0$, and a number $\sigma^* > 0$ with the following properties:

$$\begin{aligned} h^{+}(\sigma) &> \hat{h} \quad \text{on } (0, \sigma^{*}), \quad h^{+}(\sigma) \equiv \hat{h} \quad \text{for } \sigma \geq \sigma^{*} \\ h^{-}(\sigma) &< \hat{h} \quad \text{on } (0, \sigma^{*}), \quad h^{-}(\sigma) \equiv \hat{h} \quad \text{for } \sigma \geq \sigma^{*} \\ \hat{h} &:= \langle A^{-}\xi^{-}, \xi^{-} \rangle - \langle A^{+}\xi^{+}, \xi^{+} \rangle \end{aligned}$$

 h^+ strictly decreases on $(0, \sigma^*)$, h^- is strictly increasing on $(0, \sigma^*)$

The graphs of h^{\pm} divide the half-plane of parameters $\sigma > 0$, $h \in \mathbb{R}$, into three open regions

$$A := \{(\sigma, h) : \sigma > 0, h > h^{+}(\sigma)\}$$
$$B := \{(\sigma, h) : 0 < \sigma < \sigma^{*}, h^{-}(\sigma) < h < h^{+}(\sigma)\}$$
$$C := \{(\sigma, h) : \sigma > 0, h < h^{-}(\sigma)\}$$

Copyright © 2002 John Wiley & Sons, Ltd.

in which we have the following distribution of phases:

- (i) for $(\sigma, h) \in A$ we only have the one-phase equilibrium $\hat{u} \equiv 0$, $\hat{\chi} \equiv 0$;
- (ii) for $(\sigma, h) \in C$ only the one-phase equilibrium $\hat{u} \equiv 0$, $\hat{\chi} \equiv 1$ exists;
- (iii) for $(\sigma, h) \in B$ only two-phase states of equilibria exist.
- On the graphs of h^{\pm} we have the following distribution of equilibrium states:
- (iv) for $h = h^+(\sigma)$, $0 < \sigma < \sigma^*$, we have the one-phase equilibrium state $\hat{u} \equiv 0$, $\hat{\chi} \equiv 0$ and at least one two-phase equilibrium;
- (v) for $h = h^{-}(\sigma)$, $0 < \sigma < \sigma^*$, we have the one-phase equilibrium state $\hat{u} \equiv 0$, $\hat{\chi} \equiv 1$ and at least one two-phase equilibrium;
- (vi) for $h = \hat{h}$, $\sigma > \sigma^*$, the equilibrium states consist of the pairs $\hat{u} \equiv 0$, $\hat{\chi} \equiv any$ measurable characteristic function;
- (vii) for $h = \hat{h}$, $\sigma = \sigma^*$, there exist the equilibrium states $\hat{u} \equiv 0$, $\hat{\chi} \equiv arbitary$ measurable characteristic function and at least one two-phase equilibrium state with $\hat{u} \neq 0$.

Remark 1.2. (a) Except for the behaviour at $h = \hat{h}$ together with $\sigma \ge \sigma^*$ (see (vi) and (vii)) Theorem 1.1 corresponds in a qualitative sense to Theorem 2.1 in Reference [9]. Of course we do not claim that the functions h^{\pm} as well as the numbers σ^* are the same in both cases.

(b) The different behaviour for the choice $h = \hat{h}$, $\sigma \ge \sigma^*$ originates from the fact that in this case the penalty term $\sigma(\int_{\Omega} |\Delta u|^2 dx)^{p/2}$ does not create a formation of phases.

(c) In Reference [3] the reader will find further comments on the above model, moreover, the choice p < 1 is explained.

Concerning the regularity of solutions, we have the following.

Theorem 1.3. With the above notation let $(\hat{u}, \hat{\chi}) \in H \times M$ denote on equilibrium state of $I[\cdot, \cdot, h, \sigma], \sigma > 0$. Then \hat{u} is of class $C^{2,\alpha}(\Omega; \mathbb{R}^d)$ for any $0 < \alpha < 1$.

Remark 1.4. For $h \in \mathbb{R}$, $\sigma > 0$ and $u \in H$ let (recall $f_h = \min\{f_h^+, f^-\}$)

$$\tilde{I}[u,h,\sigma] = \int_{\Omega} f_h(\varepsilon(u)) \,\mathrm{d}x + \sigma \|\Delta u\|_{L^2(\Omega;\mathbb{R}^d)}^2$$

Clearly, the variational problem

$$\tilde{I} \rightarrow \min$$
 on H

has at least one solution \hat{u} (compare also Lemma 2.2 and Theorem 2.3 below). For $u \in H$ let

$$\chi_u := \begin{cases} 0 & \text{if } f_h^+(\varepsilon(u)) \ge f^-(\varepsilon(u)), \\ 1 & \text{otherwise.} \end{cases}$$

Then we have

$$I[u, \chi, h, \sigma] \ge \tilde{I}[u, h, \sigma] \ge \tilde{I}[\hat{u}, h, \sigma] = I[\hat{u}, \chi_{\hat{u}}, h, \sigma]$$

for any $u \in H$ and any measurable characteristic function χ . Thus \hat{u} generates a minimizing pair $(\hat{u}, \chi_{\hat{u}})$ of $I[\cdot, \cdot, h, \sigma]$. Conversely, consider an equilibrium state $(\check{u}, \check{\chi})$ of $I[\cdot, \cdot, h, \sigma]$. Observing (recall $f_h \leq \check{\chi} f_h^+ + (1 - \check{\chi}) f^-$)

$$\tilde{I}[\check{u},h,\sigma] \leqslant I[\check{u},\check{\chi},h,\sigma] \leqslant I[u,\chi_u,h,\sigma] = \tilde{I}[u,h,\sigma] \text{ for all } u \in H$$

Copyright © 2002 John Wiley & Sons, Ltd.

we deduce $\tilde{I}[\cdot, h, \sigma]$ -minimality of \check{u} . So there is a one-to-one correspondence between the minimizing deformation fields of both functionals. But the deformation field u alone does not serve the complete information, for example, in case $u \equiv 0$ there exist various possibilities for the distribution of phases as described in Theorem 1.1.

As an alternative to the model proposed in Theorem 1.1 we may associate to each $I[\cdot, h, \sigma]$ minimizing deformation field \hat{u} the function $\chi_{\hat{u}}$ and introduce the notion of one (two)-phase equilibrium states $(\hat{u}, \chi_{\hat{u}})$ as before. Then again we get the statements of Theorem 1.1 where in part (vi) and (vii) the phrase " $\hat{\chi} =$ any measurable characteristic function" has to be replaced by the requirement $\hat{\chi} = \chi_0$. Obviously the number of equilibrium states $(\hat{u}, \chi_{\hat{u}})$ generated by $\tilde{I}[\cdot, h, \sigma]$ -minimizers \hat{u} is in general much smaller than the number of equilibria considered in the first model: if $\hat{\chi}$ is a measurable characteristic function satisfying

$$\int_{\Omega} f_h(\varepsilon(\hat{u})) \,\mathrm{d}x = \int_{\Omega} (\hat{\chi} f_h^+(\varepsilon(\hat{u})) + (1-\hat{\chi}) f^-(\varepsilon(\hat{u}))) \,\mathrm{d}x$$

then $(\hat{u}, \hat{\chi})$ is a minimizing pair for $I[\cdot, \cdot, h, \sigma]$. But since we are mainly interested in the qualitative behaviour of the distribution of phases depending on h and σ , we do not see any principal difference between both models except for the different behaviour at $h = \hat{h}$, $\sigma \ge \sigma^*$.

Remark 1.5. At the end, let us briefly discuss some situations for which the non-uniqueness w.r.t. the function χ can be removed. Let $(\hat{u}, \hat{\chi})$ denote an equilibrium state of $I[u, \chi, h, \sigma]$ with $\hat{\chi} := \chi_{\hat{u}}$. We introduce the sets

$$E^{+(-)} := [f_h^+(\varepsilon(\hat{u})) > (<)f^-(\varepsilon(\hat{u}))]$$
$$E^0 := [f_h^+(\varepsilon(\hat{u})) = f^-(\varepsilon(\hat{u}))]$$

and consider $\chi \in L^{\infty}(\Omega)$, $0 \leq \chi \leq 1$. Then

$$I[\hat{u},\hat{\chi},h,\sigma] = I[\hat{u},\chi,h,\sigma] \tag{7}$$

if and only if

$$\int_{E^+} (\hat{\chi} - \chi) (f_h^+(\varepsilon(\hat{u})) - f^-(\varepsilon(\hat{u}))) \, \mathrm{d}x + \int_{E^-} (\hat{\chi} - \chi) (f_h^+(\varepsilon(\hat{u})) - f^-(\varepsilon(\hat{u}))) \, \mathrm{d}x = 0$$

Since $\hat{\chi} = \chi_{\hat{u}} = \begin{cases} 0 & \text{on } E^+ \\ 1 & \text{on } E^- \end{cases}$, we see
 $\chi = \hat{\chi} \quad \text{on } E^+ \cup E^-$ (8)

and the 'non-uniqueness' can be excluded for the case that E_0 is a set of Lebesgue measure zero. In order to find a sufficient condition for $|E_0| = 0$ let us assume that $\hat{u} \neq 0$. Then $\|\Delta \hat{u}\|_{L^2(\Omega;\mathbb{R}^d)} > 0$ and for any $v \in H$ the expression $\|\Delta \hat{u} + t\Delta v\|_{L^2(\Omega;\mathbb{R}^d)} > 0$ is differentiable at t = 0. For $\chi \in L^{\infty}(\Omega)$, $0 \leq \chi \leq 1$, with (8) and all $v \in H$ we have according to (7)

$$\frac{\mathrm{d}}{\mathrm{d}t}_{|_{t=0}}I[\hat{u}+tv,\chi,h,\sigma]=0,\quad\mathrm{i.e}$$

Copyright © 2002 John Wiley & Sons, Ltd.

$$2\int_{\Omega} \chi \langle A^{+}(\varepsilon(\hat{u}) - \xi^{+}) - A^{-}(\varepsilon(\hat{u}) - \xi^{-}), \varepsilon(v) \rangle \, \mathrm{d}x + 2\int_{\Omega} \langle A^{-}\varepsilon(v), \varepsilon(\hat{u}) - \xi^{-} \rangle \, \mathrm{d}x + p\sigma \left(\int_{\Omega} |\Delta \hat{u}|^{2}\right)^{p/2-1} \int_{\Omega} \Delta \hat{u} \cdot \Delta v \, \mathrm{d}x = 0$$
(9)

Let $|E_0| > 0$. Then we use (9) with $\chi = 0$ on E_0 and with $\chi = \Phi$ on E_0 , where $\Phi \in L^{\infty}(E_0)$, $0 \leq \Phi \leq 1$. Subtracting the results we get

$$\int_{E_0} \Phi \langle A^+(\varepsilon(\hat{u}) - \xi^+) - A^-(\varepsilon(\hat{u}) - \xi^-), \varepsilon(v) \rangle \, \mathrm{d}x = 0$$

and since Φ can be chosen arbitrarily, this turns into

$$\langle A^+(\varepsilon(\hat{u})-\xi^+)-A^-(\varepsilon(\hat{u})-\xi^-),\varepsilon(v)\rangle=0$$

a.e. on E_0 . Consider a Lebesgue point $x_0 \in E_0$ of $\varepsilon(\hat{u})$ and let $v(x) = \eta(x)x_kE^l$ where $\eta \in C_0^{\infty}(\Omega)$, $\eta \equiv 1$ near x_0 , and E^l is the *l*th standard unit-vector in \mathbb{R}^d . Then $\varepsilon(v)(x_0) = (\delta_{ik}\delta^{jl})_{1 \leq i,j \leq d}$ and the above identity implies

$$A^{+}(\varepsilon(\hat{u}) - \xi^{+}) - A^{-}(\varepsilon(\hat{u}) - \xi^{-}) = 0$$

on E_0 , hence

$$(A^+ - A^-)\varepsilon(\hat{u}) = A^+\xi^+ - A^-\xi^-$$

and we get a contradiction if we assume that

$$A^{+}\xi^{+} - A^{-}\xi^{-} \notin \operatorname{Im}(A^{+} - A^{-})$$
(10)

holds. For example we have (10) in case $A^+ = A^-$ together with $\xi^+ \neq \xi^-$. Thus, the assumption $\hat{u} \neq 0$ combined with (10) shows $|E_0| = 0$ and we can associate to \hat{u} a unique function χ such that (7) is valid.

Our paper is organized as follows: in Section 2, we prove some existence and lower semicontinuity results concerning the functional I from (6). Section 3 contains a series of lemmata which are used in Section 4 and Section 5 to prove statements (i)–(vii) of Theorem 1.1. In the last section we prove Theorem 1.3.

2. SOME EXISTENCE RESULTS

From now on we assume that all the conditions stated in Section 1 are valid.

Lemma 2.1. Let $h \in \mathbb{R}$, $\sigma \ge 0$ be given. Then we have for any $(u, \chi) \in H \times M$

$$\frac{v}{2} \|u\|_{X}^{2} + \sigma \|u\|_{H}^{p} \leq I[u, \chi, h, \sigma] + h|\Omega| + \frac{4 + v^{2}}{v^{3}} (|\xi^{+}|^{2} + |\xi^{-}|^{2})$$

Copyright © 2002 John Wiley & Sons, Ltd.

Proof. Assumption (1) implies

$$I[u, \chi, h, \sigma] \ge v \int_{\Omega} |\varepsilon(u)|^2 \, \mathrm{d}x - |h| \, |\Omega| + \sigma ||u||_H^p$$
$$-\frac{1}{v} \int_{\Omega} (|\xi^+|^2 + |\xi^-|^2) \, \mathrm{d}x$$
$$-2 \int_{\Omega} (|\langle A^+ \varepsilon(u), \xi^+ \rangle| + |\langle A^- \varepsilon(u), \xi^- \rangle|) \, \mathrm{d}x$$

The lemma is proved by combining this inequality with

$$|\langle A^{\pm}\varepsilon,\tilde{\varepsilon}\rangle| \leqslant \sqrt{\langle A^{\pm}\varepsilon,\varepsilon\rangle} \sqrt{\langle A^{\pm}\tilde{\varepsilon},\tilde{\varepsilon}\rangle}.$$

Next we establish a lower semicontinuity result.

Lemma 2.2. Consider sequences $\{u_n\}$, $\{\chi_n\}$, $\{h_n\}$ and $\{\sigma_n\}$, $u_n \in H$, $\chi_n \in L^{\infty}(\Omega)$, $0 \leq \chi_n \leq 1$, $h_n \in \mathbb{R}$, $\sigma_n \geq 0$ such that $u_n \rightarrow u$ in H, $\chi_n \rightarrow \chi$ in $L^2(\Omega)$, $h_n \rightarrow h$ and $\sigma_n \rightarrow \sigma$ as $n \rightarrow \infty$. Then we have

$$I[u,\chi,h,\sigma] \leq \liminf_{n \to \infty} I[u_n,\chi_n,h_n,\sigma_n]$$

Proof. The uniform L^{∞} -bound together with the weak L^2 -convergence of the sequence $\{\chi_n\}$ yields

$$\chi_n \stackrel{n \to \infty}{\rightharpoondown} \chi$$
 in $L^s(\Omega)$ for any $s < \infty$, $0 \le \chi \le 1$ a.e.

The weak *H*-convergence of the sequence $\{u_n\}$ gives in addition

$$\varepsilon(u_n) \stackrel{n \to \infty}{\to} \varepsilon(u)$$
 in $L^r(\Omega; \mathbb{S}^d)$ for some $r > 2$

thus

$$I[u_n, \chi_n, h_n, 0] \to I[u, \chi, h, 0]$$
 as $n \to \infty$

Moreover, again by weak convergence of the sequence $\{u_n\}$,

$$\|u\|_{H}^{p} \leq \liminf_{n \to \infty} \|u_{n}\|_{H}^{p}$$

i.e. we get the estimate

$$I[u, \chi, h, \sigma] = I[u, \chi, h, 0] + \sigma ||u||_{H}^{p} \leq \liminf_{n \to \infty} I[u_{n}, \chi_{n}, h_{n}, 0] + \liminf_{n \to \infty} (\sigma_{n} ||u_{n}||_{H}^{p})$$
$$\leq \liminf_{n \to \infty} (I[u_{n}, \chi_{n}, h_{n}, 0] + \sigma_{n} ||u_{n}||_{H}^{p}) = \liminf_{n \to \infty} I[u_{n}, \chi_{n}, h_{n}, \sigma_{n}] \square$$

As a consequence we obtain the following existence theorem

Copyright © 2002 John Wiley & Sons, Ltd.

Theorem 2.3. The functional $I[\cdot, \cdot, h, \sigma]$, $h \in \mathbb{R}$, $\sigma > 0$, attains its minimum on the set $H \times M$. *Proof.* Lemma 2.1 immediately gives

$$\gamma := \inf_{(u,\chi)\in H\times M} I[u,\chi,h,\sigma] > -\infty$$

and we may consider a minimizing sequence (u_n, χ_n) s.t. (again recall Lemma 2.1)

$$u_n \longrightarrow : \hat{u}$$
 in H , $\chi_n \longrightarrow : \tilde{\chi}$ in $L^2(\Omega)$ as $n \to \infty$

We do not know that $\tilde{\chi}$ is an element of *M*, however $0 \leq \tilde{\chi} \leq 1$ and, by Lemma 2.2,

$$I[\hat{u}, \tilde{\chi}, h, \sigma] \leq \liminf_{n \to \infty} I[u_n, \chi_n, h, \sigma]$$
(11)

Therefore, if $\hat{\chi}$ is defined via

$$\hat{\chi} := \begin{cases} 0 & \text{on the set } [f_h^+(\varepsilon(\hat{u})) \ge f^-(\varepsilon(\hat{u}))] \\ 1 & \text{on the set } [f_h^+(\varepsilon(\hat{u})) < f^-(\varepsilon(\hat{u}))] \end{cases}$$

and if we observe (11) together with

$$\begin{split} \tilde{\chi}f_h^+(\varepsilon(\hat{u})) + (1-\tilde{\chi})f^-(\varepsilon(\hat{u})) &= \tilde{\chi}(f_h^+(\varepsilon(\hat{u})) - f^-(\varepsilon(\hat{u}))) + f^-(\varepsilon(\hat{u})) \\ &\ge \hat{\chi}(f_h^+(\varepsilon(\hat{u})) - f^-(\varepsilon(\hat{u}))) + f^-(\varepsilon(\hat{u})) \end{split}$$

 $(\hat{u}, \hat{\chi}) \in H \times M$ is seen to be an equilibrium state of *I*.

Next, consider the energies of one-phase deformations, i.e. we let

$$I^{+}[u,h,\sigma] := I[u,1,h,\sigma] = \int_{\Omega} f_{h}^{+}(\varepsilon(u)) \,\mathrm{d}x + \sigma ||u||_{H}^{p}$$
$$I^{-}[u,\sigma] := I[u,0,h,\sigma] = \int_{\Omega} f^{-}(\varepsilon(u)) \,\mathrm{d}x + \sigma ||u||_{H}^{p}, \quad u \in H$$

Lemma 2.4. On H the functionals I^{\pm} attain their unique minima at $u^{\pm} \equiv 0$. Proof. For any $u \in H$ we have

$$\begin{split} I^{+}[u,h,\sigma] &= \int_{\Omega} [\langle A^{+}(\varepsilon(u)-\xi^{+}),\varepsilon(u)-\xi^{+}\rangle + h] \,\mathrm{d}x + \sigma \|u\|_{H}^{p} \\ &= \int_{\Omega} \langle A^{+}\varepsilon(u),\varepsilon(u)\rangle \,\mathrm{d}x + |\Omega| \langle A^{+}\xi^{+},\xi^{+}\rangle + h|\Omega| + \sigma \|u\|_{H}^{p} \\ &\geqslant |\Omega| \langle A^{+}\xi^{+},\xi^{+}\rangle + h|\Omega| \end{split}$$

where equality holds if and only if $u \equiv 0$. An analogous inequality is true for I^- and the lemma is proved.

Copyright © 2002 John Wiley & Sons, Ltd.

Math. Meth. Appl. Sci. 2002; 25:289-308

We finish this section by introducing the quantity $I_0(h) := \min\{I^+[0,h,\sigma], I^-[0,\sigma]\}$, i.e.

$$egin{aligned} I_0(h) &= egin{cases} |\Omega|(\langle A^+ \xi^+, \xi^+
angle + h), & h \leqslant \hat{h} \ &\ |\Omega|\langle A^- \xi^-, \xi^-
angle, & h \geqslant \hat{h} \ &\ \hat{h} := \langle A^- \xi^-, \xi^-
angle - \langle A^+ \xi^+, \xi^+
angle \end{aligned}$$

which measures the dependence of the energy of one-phase equilibria on the parameter h.

3. AUXILIARY RESULTS

In this section we prove (under the hypotheses stated in Section 1) a series of auxiliary results which are needed in Section 4 to show Theorem 1.1. We start with two lemmata estimating the X-norm of equilibrium states.

Lemma 3.1. Consider an equilibrium state $(\hat{u}, \hat{\chi})$ of $I[\cdot, \cdot, h, \sigma]$. Then

$$\sigma \|\hat{u}\|_{H}^{p} + (v - \mu)\|\hat{u}\|_{X}^{2} \leq 2|A^{-}\xi^{-} - A^{+}\xi^{+}|\sqrt{|\Omega|} \|\hat{u}\|_{X}$$
(12)

holds true, in particular, there is a constant R, not depending on h, σ , such that

$$\|\hat{u}\|_{X} = \|\varepsilon(\hat{u})\|_{L^{2}(\Omega;\mathbb{S}^{d})} \leqslant R \tag{13}$$

Proof. The minimizing property yields $I[\hat{u}, \hat{\chi}, h, \sigma] \leq I[0, \hat{\chi}, h, \sigma]$, i.e.

$$\begin{split} \sigma \|\hat{u}\|_{H}^{p} &+ \int_{\Omega} \hat{\chi} \langle (A^{+} - A^{-}) \varepsilon(\hat{u}), \varepsilon(\hat{u}) \rangle \, \mathrm{d}x + \int_{\Omega} \langle A^{-} \varepsilon(\hat{u}), \varepsilon(\hat{u}) \rangle \, \mathrm{d}x \\ &+ 2 \int_{\Omega} \hat{\chi} \langle \varepsilon(\hat{u}), A^{-} \xi^{-} - A^{+} \xi^{+} \rangle \, \mathrm{d}x \leq 0 \end{split}$$

thus the assertions follow from (1) to (3).

Lemma 3.2. There is a real number $\delta > 0$ such that we have for any equilibrium state $(\hat{u}, \hat{\chi})$ of $I[\cdot, \cdot, h, \sigma]$, $\hat{u} \neq 0$,

$$\|\hat{u}\|_{X}^{1-p} \ge \delta\sigma \tag{14}$$

Proof. From the Calderon–Zygmund regularity results (compare, for example Reference [12], Theorems 9.14 and 9.15), we deduce the existence of a positive number $\kappa = \kappa(\Omega, d)$ such that

$$\|\hat{u}\|_{X} = \|\varepsilon(\hat{u})\|_{L^{2}(\Omega;\mathbb{S}^{d})} \leq \|\hat{u}\|_{W^{2}_{2}(\Omega;\mathbb{R}^{d})} \leq \kappa \|\Delta\hat{u}\|_{L^{2}(\Omega;\mathbb{R}^{d})} = \kappa \|\hat{u}\|_{H}$$

(12) gives

$$\sigma \|\hat{u}\|_{H}^{p} \leq 2|A^{+}\xi^{+} - A^{-}\xi^{-}|\sqrt{|\Omega|} \|\hat{u}\|_{X} \leq 2|A^{+}\xi^{+} - A^{-}\xi^{-}|\sqrt{|\Omega|} \|\hat{u}\|_{X}^{1-p}\kappa^{p}\|\hat{u}\|_{H}^{p}$$

Copyright © 2002 John Wiley & Sons, Ltd.

Math. Meth. Appl. Sci. 2002; 25:289-308

297

implying Lemma 3.2 since

$$\|\hat{u}\|_X^{1-p} \ge \sigma \frac{1}{2|A^+\xi^+ - A^-\xi^-|\sqrt{|\Omega|}\kappa^p} =: \sigma\delta$$

In the next lemma we investigate the relation between one-phase equilibrium states and the vanishing of the associated deformation field.

Lemma 3.3. Consider an equilibrium state $(\hat{u}, \hat{\chi})$ of $I[\cdot, \cdot, h, \sigma]$. Then

(a) if $(\hat{u}, \hat{\chi})$ is one-phase, i.e. $\hat{\chi} \equiv 0$ or $\hat{\chi} \equiv 1$, then $\hat{u} \equiv 0$;

(b) if $h \neq \hat{h}$ and if $\hat{u} \equiv 0$, then $(\hat{u}, \hat{\chi})$ is a one-phase equilibrium;

(c) if $h = \hat{h}$ and if $\hat{u} \equiv 0$, then any $\chi \in M$ provides an equilibrium state $(0, \chi)$.

Proof. Assume that $\hat{\chi} \equiv 1$ ($\hat{\chi} \equiv 0$), thus $I[\cdot, \hat{\chi}, h, \sigma] = I^+[\cdot, h, \sigma]$ ($=I^-[\cdot, \sigma]$), hence by Lemma 2.4 $\hat{u} \equiv 0$ and (a) is verified. Next observe that for any $\chi \in M$

$$I[0,\chi,h,\sigma] = [\langle A^+\xi^+,\xi^+\rangle - \langle A^-\xi^-,\xi^-\rangle + h] \int_{\Omega} \chi \, \mathrm{d}x + |\Omega| \langle A^-\xi^-,\xi^-\rangle$$
$$= (h-\hat{h}) \int_{\Omega} \chi \, \mathrm{d}x + |\Omega| \langle A^-\xi^-,\xi^-\rangle$$

In the case $h > \hat{h}$, it is seen that

$$I[0,\chi,h,\sigma] \ge |\Omega| \langle A^-\xi^-,\xi^- \rangle$$

and equality is true if and only if $\chi \equiv 0$. This proves part (b) for $h > \hat{h}$, the case $h < \hat{h}$ is treated in the same manner. Finally $h = \hat{h}$ implies $I[0, \chi, h, \sigma] = |\Omega| \langle A^- \xi^-, \xi^- \rangle$ for any $\chi \in M$, thus we have (c).

As a next step, we ensure that the existence of one-phase (two-phase) equilibria depends continuously on h and σ .

Lemma 3.4. Given two sequences $\{h_n\}$, $\{\sigma_n\}$ assume that $h_n \to h_0$ and $\sigma_n \to \sigma_0 > 0$ as $n \to \infty$. As usual denote by $(\hat{u}_n, \hat{\chi}_n)$, $(\hat{u}_0, \hat{\chi}_0)$ equilibrium states of $I[\cdot, \cdot, h_n, \sigma_n]$ and $I[\cdot, \cdot, h_0, \sigma_0]$, respectively.

- (a) If $\hat{u}_n \equiv 0$ ($\hat{u}_n \neq 0$) at least for a subsequence, then there exists an equilibrium state ($\hat{u}_0, \hat{\chi}_0$) satisfying $\hat{u}_0 \equiv 0$ ($\hat{u}_0 \neq 0$).
- (b) If $\hat{\chi}_n \equiv 0$ ($\hat{\chi}_n \equiv 1$) for a subsequence, then $I[\cdot, \cdot, h_0, \sigma_0]$ admits an equilibrium state satisfying $\hat{u}_0 \equiv 0$, $\hat{\chi}_0 \equiv 0$ ($\hat{\chi}_0 \equiv 1$).
- (c) If $h_0 \neq \hat{h}$ and if $0 \neq \hat{\chi}_n \neq 1$, again at least for a subsequence, then there is a solution with $0 \neq \hat{\chi}_0 \neq 1$.

Proof. From Lemma 2.1 we deduce

$$\frac{v}{2} \|\hat{u}_n\|_X^2 + \sigma_n \|\hat{u}_n\|_H^p \leq I[\hat{u}_n, \hat{\chi}_n, h_n, \sigma_n] + h_n |\Omega| + \frac{4 + v^2}{v^3} (|\xi^+|^2 + |\xi^-|^2)$$
$$\leq I[0, 0, h_n, \sigma_n] + h_n |\Omega| + \frac{4 + v^2}{v^3} (|\xi^+|^2 + |\xi^-|^2)$$

Copyright © 2002 John Wiley & Sons, Ltd.

hence (recall that $\sigma_0 > 0$) there is a real number c > 0 such that $\|\hat{u}_n\|_H \leq c < +\infty$. Passing to a subsequence (not relabelled) we may assume that

$$\hat{u}_n \rightarrow : \hat{u}_0 \text{ in } H \text{ as } n \rightarrow \infty$$

Sobolev's embedding theorem then gives the existence of a real number r > 1 such that

$$\hat{u}_n \to \hat{u}_0$$
 in $W^1_{2r}(\Omega; \mathbb{R}^d)$ as $n \to \infty$

Moreover, we may assume (again passing to a subsequence if necessary) that

$$\hat{\chi}_n \stackrel{n \to \infty}{\longrightarrow} \tilde{\chi}_0$$
 in $L^2(\Omega)$, $0 \leq \tilde{\chi}_0 \leq 1$ a.e.

and applying Lemma 2.2 we see for all $(u, \chi) \in H \times M$

$$I[\hat{u}_0, \tilde{\chi}_0, h_0, \sigma_0] \leq \liminf_{n \to \infty} I[\hat{u}_n, \hat{\chi}_n, h_n, \sigma_n] \leq \liminf_{n \to \infty} I[u, \chi, h_n, \sigma_n] = I[u, \chi, h_0, \sigma_0]$$

As done in the proof of Theorem 2.3 (compare also Remark 1.4 and Remark 1.5), we may replace $\tilde{\chi}_0$ by a characteristic function $\hat{\chi}_0 \in M$, which provides an admissible minimizer $(\hat{u}_0, \hat{\chi}_0)$ of $I[\cdot, \cdot, h_0, \sigma_0]$.

ad (a) If $\hat{u}_n = 0$ for a subsequence, then by the above arguments we clearly may take $\hat{u}_0 \equiv 0$. If $\hat{u}_n \neq 0$ for a subsequence, Lemma 3.2 gives $\|\hat{u}_n\|_X^{1-p} \ge \delta \sigma_n$, hence strong convergence in $W_{2r}^1(\Omega; \mathbb{R}^d)$ proves $\|\hat{u}_0\|_X^{1-p} \ge \delta \sigma_0$, i.e. $\hat{u}_0 \neq 0$.

ad (b) The case $\hat{\chi}_n \equiv 0$ for a subsequence shows (with the above notation) $\tilde{\chi}_0 \equiv 0$ and $(\hat{u}_0, 0)$ is seen to be minimizing. The first assertion of Lemma 3.3 ensures the statement $\hat{u}_0 \equiv 0$. The case $\hat{\chi}_n \equiv 1$ is covered by the same arguments.

ad (c) We may assume that $h_n \neq \hat{h}$ for all *n* sufficiently large. Moreover, by Lemma 3.3 (b) we then observe that $\hat{u}_n \neq 0$, in conclusion Lemma 3.2 gives $\|\hat{u}_n\|_X^{1-p} \ge \delta \sigma_n$ and therefore the limit \hat{u}_0 does not vanish. The claim now follows from Lemma 3.3a).

The volume of the phases depends in a monotonic manner on the parameter h, more precisely

Lemma 3.5. Denote by $(\hat{u}_i, \hat{\chi}_i)$ equilibrium states of $I[\cdot, \cdot, h_i, \sigma]$, i = 1, 2. Then we have

$$(h_1 - h_2)(\|\hat{\chi}_1\|_{L^1(\Omega)} - \|\hat{\chi}_2\|_{L^1(\Omega)}) \leq 0$$

Proof. The proof is an immediate consequence of

$$I[\hat{u}_{1}, \hat{\chi}_{1}, h_{1}, \sigma] \leq I[\hat{u}_{2}, \hat{\chi}_{2}, h_{1}, \sigma]$$
$$I[\hat{u}_{2}, \hat{\chi}_{2}, h_{2}, \sigma] \leq I[\hat{u}_{1}, \hat{\chi}_{1}, h_{2}, \sigma]$$

Remark 3.6. If there exists an equilibrium state $(\hat{u}_0, \hat{\chi}_0)$ of $I[\cdot, \cdot, h_0, \sigma]$ satisfying $\hat{\chi}_0 \equiv 0$ ($\hat{\chi}_0 \equiv 1$), then by Lemma 3.5 for $h > h_0$ ($h < h_0$) any equilibrium state ($\hat{u}, \hat{\chi}$) of $I[\cdot, \cdot, h, \sigma]$ is one-phase, i.e. $\hat{\chi} \equiv 0$ ($\hat{\chi} \equiv 1$).

If we want two-phase equilibria to exist, then we have to restrict the admissible values for the parameters h and σ . A precise formulation is given in the next two lemmata.

Lemma 3.7. There is a real number $h_0 > 0$ with the following property: for any $h > h_0$ ($h < -h_0$), for all $\sigma > 0$ and for any equilibrium state $(\hat{u}, \hat{\chi})$ of $I[\cdot, \cdot, h, \sigma]$ we have $\hat{u} \equiv 0$ and $\hat{\chi} \equiv 0$ ($\hat{\chi} \equiv 1$).

Proof. The idea is to find a real number $h_0 > 0$ such that for any $\sigma > 0$ and for any $(u, \chi) \in H \times M$

$$I[u, \chi, h_0, \sigma] \ge I[0, 0, h_0, \sigma]$$
(15)

Once (15) is established, (0,0) is seen to be an equilibrium state of $I[\cdot, \cdot, h_0, \sigma]$ and the first assertion follows from Remark 3.6. The case $h < -h_0$ is treated in the same manner, where we have to increase h_0 if necessary. Thus, it remains to show (15) which is equivalent to

$$\int_{\Omega} \chi[\langle (A^{+} - A^{-})\varepsilon(u), \varepsilon(u) \rangle - 2\langle A^{+}\xi^{+} - A^{-}\xi^{-}, \varepsilon(u) \rangle + \langle A^{+}\xi^{+}, \xi^{+} \rangle - \langle A^{-}\xi^{-}, \xi^{-} \rangle + h_{0}] dx + \int_{\Omega} \langle A^{-}\varepsilon(u), \varepsilon(u) \rangle dx + \sigma ||u||_{H}^{p} \ge 0$$
(16)

We may estimate $(0 < \lambda < 1)$

$$\begin{split} \langle A^{-}\varepsilon(u),\varepsilon(u)\rangle &+ \chi \langle (A^{+}-A^{-})\varepsilon(u),\varepsilon(u)\rangle \\ &\geqslant \langle A^{-}\varepsilon(u),\varepsilon(u)\rangle - |\langle (A^{+}-A^{-})\varepsilon(u),\varepsilon(u)\rangle|,2|\langle A^{\pm}\xi^{\pm},\varepsilon(u)\rangle| \\ &\leqslant \lambda \langle A^{\pm}\varepsilon(u),\varepsilon(u)\rangle + \frac{1}{\lambda} \langle A^{\pm}\xi^{\pm},\xi^{\pm}\rangle \end{split}$$

thus (16) is implied by

$$\int_{\Omega} [\langle A^{-}\varepsilon(u), \varepsilon(u) \rangle - |\langle (A^{+} - A^{-})\varepsilon(u), \varepsilon(u) \rangle| - \lambda \langle (A^{+} + A^{-})\varepsilon(u), \varepsilon(u) \rangle] dx + \int_{\Omega} \chi \left[h_{0} + \left(1 - \frac{1}{\lambda} \right) \langle A^{+}\xi^{+}, \xi^{+} \rangle - \left(\frac{1}{\lambda} + 1 \right) \langle A^{-}\xi^{-}, \xi^{-} \rangle \right] dx \ge 0$$
(17)

By (1) and (2) the first integral on the left-hand side of (17) is greater than or equal to

$$(v - \mu - 2\lambda v^{-1}) \|u\|_{X}^{2}$$

hence positive if we choose λ sufficiently small. Decreasing λ , if necessary, we finally let

$$h_0 := \left(1 + \frac{1}{\lambda}\right) \langle A^- \xi^-, \xi^- \rangle - \left(1 - \frac{1}{\lambda}\right) \langle A^+ \xi^+, \xi^+ \rangle > 0$$

With this choice (17), hence (16), holds and in conclusion the lemma is valid.

Except for $h \neq \hat{h}$ the existence of two-phase equilibria requires also the boundedness of σ : Copyright © 2002 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2002; 25:289–308 *Lemma 3.8.* There exists a real number $\sigma_0 > 0$ with the following property: for any $\sigma > \sigma_0$ and for any $h \in \mathbb{R}$ the functional $I[\cdot, \cdot, h, \sigma]$ admits only equilibria $(\hat{u}, \hat{\chi})$ satisfying $\hat{u} \equiv 0$.

Proof. Recalling (12) and (13) one gets

$$\sigma \|\hat{u}\|_{H}^{p} \leq 2|A^{+}\xi^{+} - A^{-}\xi^{-}\|\Omega|^{1/2}R$$

i.e. $\sigma \|\hat{u}\|_{X}^{p} \leq 2|A^{+}\xi^{+} - A^{-}\xi^{-}\|\Omega|^{1/2}R\kappa^{p}$

hence we may estimate

$$\sigma^{(1-p)/p} \|\hat{u}\|_X^{1-p} \leq R' := (2|A^+\xi^+ - A^-\xi^-||\Omega|^{1/2}R\kappa^p)^{(1-p)/p}$$

If $\hat{u} \neq 0$ is supposed, then (14) gives

$$\sigma^{(1-p)/p}\delta\sigma \!\leqslant\! R' \Leftrightarrow \!\sigma \!\leqslant\! (R'/\delta)^p$$

thus the lemma is proved by letting $\sigma_0 := (R'/\delta)^p$.

As a last auxiliary result on the distribution of phases, a sufficient condition for the existence of two phase equilibria is given.

Lemma 3.9. If $\sigma > 0$ is sufficiently small, then $I[\cdot, \cdot, \hat{h}, \sigma]$ admits only equilibria $(\hat{u}, \hat{\chi})$ satisfying $\hat{u} \neq 0$.

Proof. Suppose by contradiction that there is a sequence $\{\sigma_n\}$ of positive real numbers, $\sigma_n \downarrow 0$ as $n \to \infty$, such that $I[\cdot, \cdot, \hat{h}, \sigma_n]$ admits a one-phase equilibrium state, i.e., $\hat{\chi}_n \equiv 0$ or $\hat{\chi}_n \equiv 1$ and, by Lemma 3.3, $\hat{u}_n \equiv 0$. Minimality implies for any $(u, \chi) \in H \times M$

$$I[u,\chi,\hat{h},\sigma_n] \ge I[0,\hat{\chi}_n,\hat{h},\sigma_n] = |\Omega| \langle A^-\xi^-,\xi^- \rangle$$

Using the definition of \hat{h} this can be rewritten as

$$\int_{\Omega} \chi[\langle (A^+ - A^-)\varepsilon(u), \varepsilon(u) \rangle - 2\langle \varepsilon(u), A^+ \xi^+ - A^- \xi^- \rangle] \, \mathrm{d}x + \int_{\Omega} \langle A^- \varepsilon(u), \varepsilon(u) \rangle \, \mathrm{d}x \\ + \sigma_n \|u\|_H^p \ge 0 \quad \text{for any } (u, \chi) \in H \times M$$

If we replace u by $\sigma_n u$, divide through σ_n and pass to the limit $n \to \infty$, we get

$$-\int_{\Omega} \chi \langle \varepsilon(u), A^{+} \xi^{+} - A^{-} \xi^{-} \rangle \, \mathrm{d}x \ge 0 \quad \text{for any } (u, \chi) \in H \times M$$

In fact, equality is true since we may consider -u instead of u. Let $\gamma = A^- \xi^- - A^+ \xi^+$, fix $x_0 \in \Omega$ and consider $\rho > 0$ such that $B_{2\rho}(x_0) \in \Omega$. Finally we choose $\chi = \mathbf{1}_{B_{\rho}(x_0)}, \ \varphi \in C_0^{\infty}(\Omega), \varphi \equiv 1$ on $B_{2\rho}(x_0)$ and let $v_k(x) = e\varphi(x)x_k$ with $1 \leq k \leq d, e \in \mathbb{R}^d$. This choice implies on $B_{2\rho}(x_0)$

$$\varepsilon(v_k) = \frac{1}{2} (e^i \delta_{jk} + e^j \delta_{ik})_{1 \leq i, j \leq d}$$

Copyright © 2002 John Wiley & Sons, Ltd.

Math. Meth. Appl. Sci. 2002; 25:289-308

hence we get

$$0 = \int_{\Omega} \chi \, \mathrm{d}x \frac{1}{2} (\gamma_{ij} e^i \delta_{jk} + \gamma_{i,j} e^j \delta_{ik}) = |B_{\rho}(x_0)| (\gamma e)_k$$

This gives the contradiction $\gamma = 0$ and the lemma is proved.

We finish this section with the following.

Lemma 3.10. For any $h \in \mathbb{R}$ and for any real number $\sigma > 0$ we let

$$I_1(\sigma,h) := \inf_{(u,\chi) \in H \times M} I[u,\chi,h,\sigma]$$

Then $I_1(\sigma, h)$ is a concave function, in particular, $I_1(\sigma, h)$ is continuous.

Proof. Note that for h and σ as above $I_1(\sigma, h)$ is well defined. Moreover, for any fixed $(u, \chi) \in H \times M$ the mapping $(h, \sigma) \mapsto I[u, \chi, h, \sigma]$ is a linear function in h and σ , hence concave. Since the infimum of a family of concave functions again in concave, the lemma is seen to be valid.

4. PROOF OF THEOREM 1.1, (i)-(iii)

Step 1: (Definition of the set B). Note that by construction we have

$$I_1(\sigma,h) \leqslant I_0(h) \quad \text{for any } h \in \mathbb{R}, \ \sigma > 0$$
 (18)

Inequality (18) leads to the definition

$$B := \{(\sigma, h) \in \mathbb{R}^+ \times \mathbb{R} : I_1(\sigma, h) < I_0(h)\}$$

and we observe that

 $(\sigma_0, h_0) \in B \Leftrightarrow I[\cdot, \cdot, h_0, \sigma_0]$ admits only two-phase equilibria $(\hat{u}, \hat{\chi})$

By Lemma 3.9, *B* is known to be non-empty, moreover, *B* is seen to be open on account of $B = (I_0 - I_1)^{-1}(0, \infty)$ and the continuity of I_0 , I_1 . Finally, Lemma 3.7 and Lemma 3.8 prove *B* to be bounded. Given $\sigma_0 > 0$ let

$$L(\sigma_0) := \{h \in \mathbb{R}: (\sigma_0, h) \in B\}$$

Lemma 4.1. Either we have $L(\sigma_0) = \emptyset$ or there exist two uniquely defined real numbers $h^{\pm}(\sigma_0), h^{-}(\sigma_0) < \hat{h} < h^{+}(\sigma_0)$, such that

$$L(\sigma_0) = (h^-(\sigma_0), h^+(\sigma_0))$$

Proof. Suppose that $L(\sigma_0) \neq \emptyset$, i.e. there exists a real number $h \in \mathbb{R}$ such that $(\sigma_0, h) \in B$. Since B is open $L(\sigma_0)$ is also open, thus

$$L(\sigma_0) = \bigcup_{n=1}^N I_n, \quad N \in \mathbb{N} \cup \{\infty\}$$

Copyright © 2002 John Wiley & Sons, Ltd.

Math. Meth. Appl. Sci. 2002; 25:289-308

302

where $I_n \neq \emptyset$ denote some open, bounded, mutually disjoint intervals. If we fix one of these intervals $I_n = (\alpha, \beta)$, then α, β do not belong to $L(\sigma_0)$, hence $(\sigma_0, \alpha), (\sigma_0, \beta) \notin B$. This proves

$$I_{1}(\sigma_{0},\alpha) = I_{0}(\alpha), \quad I_{1}(\sigma_{0},\beta) = I_{0}(\beta), \quad I_{1}(\sigma_{0},h) < I_{0}(h)$$
(19)

for any $h \in (\alpha, \beta)$. Now we claim that $\alpha < \hat{h} < \beta$, which clearly gives the lemma. Suppose by contradiction that $\alpha \ge \hat{h}$. From $I_1(\sigma_0, \alpha) = I_0(\alpha)$ we see the existence of at least one one-phase equilibrium at (σ_0, α) . The assumption $\alpha \ge \hat{h}$ gives

$$I_0(\alpha) = |\Omega| \langle A^- \xi^-, \xi^- \rangle = I[0, 0, \alpha, \sigma_0]$$

hence the one-phase equilibrium with $\hat{u} \equiv 0$, $\hat{\chi} \equiv 0$ exists for (σ_0, α) . One the other hand, Remark 3.6 then proves that for $h > \alpha$, only one-phase equilibria with $\hat{\chi} \equiv 0$ exist which contradicts (19) and the lemma is proved since analogous arguments show the second inequality $\hat{h} < \beta$.

Step 2: (Definition of the functions $h^{\pm}(\sigma)$). Following Lemma 4.1 we define for any $\sigma > 0$ satisfying $L(\sigma) \neq \emptyset$

$$h^+(\sigma) := \sup L(\sigma), \quad h^-(\sigma) := \inf L(\sigma)$$

If $L(\sigma) = \emptyset$ then we let

$$h^+(\sigma) := h^-(\sigma) := \hat{h}$$

Step 3: (Definition of the sets A and C). The sets A and C are defined via

$$A := \{(\sigma, h): \sigma > 0, h > h^+(\sigma)\}$$
$$C := \{(\sigma, h): \sigma > 0, h < h^-(\sigma)\}$$

and we claim that for $(\sigma, h) \in A$ $((\sigma, h) \in C)$ the functional $I[\cdot, \cdot, h, \sigma]$ admits only one-phase equilibria $(\hat{u}, \hat{\chi})$ with $\hat{u} \equiv 0$ and $\hat{\chi} \equiv 0$ $(\hat{\chi} \equiv 1)$. To verify our claim we assume $(\sigma, h) \in A$, hence $h > h^+(\sigma) \ge \hat{h}$. Recalling (19) we have $I_1(\sigma, h^+(\sigma)) = I_0(h^+(\sigma))$ and by Remark 3.6 $I[\cdot, \cdot, h, \sigma]$ admits only a one-phase equilibrium which on account of $h > \hat{h}$ is of type $\hat{\chi} \equiv 0$. The case $(\sigma, h) \in C$ is treated in the same way, and the claim is proved. Now let

$$A' := \{ (\sigma, h): \sigma > 0, h \ge h, I_1(\sigma, h) = I_0(h) = \langle A^- \xi^-, \xi^- \rangle |\Omega| \}$$

It is easily seen that

$$A' = A \cup \operatorname{graph} h^+$$

In fact, if $(\sigma, h) \in A'$, then we either have $h > h^+(\sigma)$ or $h = h^+(\sigma)$ since $h < h^+(\sigma)$ would imply two-phase equilibria which are excluded by the definition of A'. Thus the inclusion ' \subset ' is proved. The other inclusion follows from Lemma 3.4(b). In a similar way we define

$$C' = \{(\sigma, h): \sigma > 0, h \leq \hat{h}, I_1(\sigma, h) = I_0(h) = (\langle A^+ \xi^+, \xi^+ \rangle + h) |\Omega| \}$$
$$C' = C \cup \operatorname{graph} h^-$$

Copyright © 2002 John Wiley & Sons, Ltd.

Lemma 4.2. A' and C' are convex sets.

Proof. Fix two points $(\sigma_i, h_i) \in A'$, i = 1, 2, a real number $0 \le \tau \le 1$, and let $\sigma_\tau := \tau \sigma_1 + (1 - \tau)\sigma_2$, $h_\tau := \tau h_1 + (1 - \tau)h_2$. Since $\sigma_1, \sigma_2 > 0$ and since $h_1, h_2 \ge \hat{h}$ the assertions $\sigma_\tau > 0$ and $h_\tau \ge \hat{h}$ are trivial, it remains to show

$$I_1(\sigma_\tau,h_\tau) = I_0(h_\tau) = |\Omega| \langle A^-\xi^-,\xi^- \rangle$$

However, these equalities are known to be true for σ_i , h_i and since in addition I_1 is concave (see Lemma 3.10), we obtain

$$I_{1}(\sigma_{\tau}, h_{\tau}) \geq \tau I_{1}(\sigma_{1}, h_{1}) + (1 - \tau)I_{1}(\sigma_{2}, h_{2})$$

= $\tau I_{0}(h_{1}) + (1 - \tau)I_{0}(h_{2}) = |\Omega| \langle A^{-}\xi^{-}, \xi^{-} \rangle$

On the other hand, $I_1(\sigma, h) \leq I_0(h)$ holds for any $h \in \mathbb{R}$, $\sigma > 0$. This together with $h_\tau \geq \hat{h}$ gives

$$I_1(\sigma_{\tau},h_{\tau}) \leq I_0(h_{\tau}) = |\Omega| \langle A^-\xi^-,\xi^- \rangle$$

This proves that the convexity of A', C' is handled with analogous arguments.

Step 4: (Properties of the functions $h^{\pm}(\sigma)$).

Lemma 4.3. The functions h^{\pm} are bounded and depend continuously on $\sigma > 0$. Moreover, $h^+(\sigma)$ is convex on $(0,\infty)$, whereas $h^-(\sigma)$ is concave on $(0,\infty)$.

Proof. In Step 1, it was shown that *B* is bounded, hence with Lemma 4.1 the functions h^{\pm} are seen to be uniformly bounded on $(0, \infty)$. Thus we only have to prove that $h^+(h^-)$ is convex (concave) which will imply continuity. Now fix $\sigma_1, \sigma_2 > 0$, $0 \le \tau \le 1$, and observe that $(\sigma_i, h^+(\sigma_i)) \in A'$, i = 1, 2. In fact, $h^+(\sigma_i) \ge \hat{h}$ is proved in Lemma 4.1, and the existence of a one-phase equilibrium of type $\hat{\chi} \equiv 0$ follows from Lemma 3.4(b). Convexity of A' then yields

$$\underbrace{(\tau\sigma_1 + (1-\tau)\sigma_2}_{\tilde{\sigma}}, \underbrace{\tau h^+(\sigma_1) + (1-\tau)h^+(\sigma_2))}_{=:\tilde{h}} \in A'$$

Since $(\tilde{\sigma}, \tilde{h}) \in A'$ immediately gives (compare Step 3.) $\tilde{h} \ge h^+(\tilde{\sigma})$, we have proved the convexity of h^+ :

$$\tau h^+(\sigma_1) + (1-\tau)h^+(\sigma_2) = \tilde{h} \ge h^+(\tilde{\sigma}) = h^+(\tau\sigma_1 + (1-\tau)\sigma_2)$$

Using the same arguments h^- is seen to be concave and the lemma is verified.

Lemma 4.4. There is a real number $\sigma^* > 0$ such that h^+ is strictly decreasing on $(0, \sigma^*)$, whereas h^- is strictly increasing on this interval. On (σ^*, ∞) both h^+ and h^- are equal to \hat{h} .

Proof. By Lemma 3.9 we know that $h^-(\sigma) < \hat{h} < h^+(\sigma)$ if $\sigma \ll 1$ is sufficiently small. On the other hand, $\sigma \ge 1$ implies according to Lemma 3.8 $h^-(\sigma) = \hat{h} = h^+(\sigma)$. Hence, we may define

$$\sigma_{+}^{*} := \inf \{ \sigma > 0 : h^{+} = h \text{ on } (\sigma, \infty) \}$$

Copyright © 2002 John Wiley & Sons, Ltd.

Math. Meth. Appl. Sci. 2002; 25:289-308

Now assume by contradiction that h^+ is not strictly decreasing on $(0, \sigma_+^*)$, i.e. for some positive numbers $0 < \sigma_1 < \sigma_2 < \sigma_+^*$ we have $h^+(\sigma_1) \leq h^+(\sigma_2)$. Together with this assumption, convexity of h^+ gives for any $\sigma > \sigma_2$.

$$\frac{h^+(\sigma)-h^+(\sigma_2)}{\sigma-\sigma_2} \ge \frac{h^+(\sigma_2)-h^+(\sigma_1)}{\sigma_2-\sigma_1} \ge 0$$

Since $\sigma_2 < \sigma_+^*$ implies $h^+(\sigma_2) > \hat{h}$, we obtain the contradiction $h^+(\sigma) \ge h^+(\sigma_2) > \hat{h}$ for any $\sigma > \sigma_2$. Up to now, it is proved that h^+ is strictly decreasing on $(0, \sigma_+^*)$. Analogous considerations prove the existence of a real number $\sigma_-^* \in (0, \infty)$ such that $h^- \equiv \hat{h}$ for $\sigma \ge \sigma_-^*$ and such that h^- is strictly increasing on $(0, \sigma_-^*)$. It remains to verify $\sigma_+^* = \sigma_-^*$: to this purpose observe that by Lemma 4.1 $h^-(\sigma) \ne h^+(\sigma)$ implies $\hat{h} \in (h^-(\sigma), h^+(\sigma))$. If we assume that $\sigma_-^* < \sigma_+^*$, then we may find $\sigma \in (\sigma_-^*, \sigma_+^*)$ such that $(h^-(\sigma), h^+(\sigma)) \ne \emptyset$ and such that $h^-(\sigma) = \hat{h}$. This gives the contradiction $\hat{h} \ne (h^-(\sigma), h^+(\sigma))$. Again the case $\sigma_-^* > \sigma_+^*$ is excluded with the same arguments, and the proof of Lemma 4.4 is complete.

5. EQUILIBRIUM STATES OF $I[\cdot, \cdot, h, \sigma]$ FOR POINTS (σ, h) ON THE GRAPHS OF h^{\pm}

In this section we prove (iv)-(vii) of Theorem 1.1.

ad (iv). Consider the case $0 < \sigma < \sigma^*$ and $h = h^+(\sigma)$. Letting $\sigma_n \equiv \sigma$ and by considering a sequence $\{h_n\}$ satisfying $h_n \uparrow h$ as $n \to \infty$ we may assume $(\sigma_n, h_n) \in B$ for *n* sufficiently large, hence there exists a sequence of two-phase equilibria $(\hat{u}_n, \hat{\chi}_n)$ of $I[\cdot, \cdot, h_n, \sigma_n]$. Since $\lim_{n \to \infty} h_n = h = h^+(\sigma) > \hat{h}$, Lemma 3.4(b) is applicable and $I[\cdot, \cdot, h^+(\sigma), \sigma]$ is seen to admit a two-phase equilibrium. On the other hand, now letting $\sigma_n \equiv \sigma$ and considering a sequence $\{h_n\}$, $h_n \downarrow h$ as $n \to \infty$, we have $(\sigma_n, h_n) \in A$ and the same reasoning proves the existence of a one-phase equilibrium, which on account of Remark 3.6 can only be of type $\hat{\chi} \equiv 0$.

ad (v). We can apply the same arguments as used for (iv) with obvious modifications.

ad (vi). For $h = \hat{h}$ and $\sigma > \sigma^*$ we again apply Lemma 3.4 to find $(\hat{u}, \hat{\chi})$, $\hat{u} \equiv 0$, as an equilibrium state of $I[\cdot, \cdot, \hat{h}, \sigma]$. Here, Lemma 3.3(c) shows any characteristic function $\hat{\chi}$ to be admissible. Equilibrium states satisfying $\hat{u} \neq 0$ are not possible: if we assume the existence of an equilibrium state $(\hat{u}_0, \hat{\chi}_0)$ of $I[\cdot, \cdot, \hat{h}, \sigma_0]$, $\sigma_0 > \sigma^*$, $\hat{u}_0 \neq 0$, then we obtain for any $\sigma \in (\sigma^*, \sigma_0)$

$$I_0(\hat{h}) = I_1(\sigma, \hat{h}) \leq I[\hat{u}_0, \hat{\chi}_0, \hat{h}, \sigma] < I[\hat{u}_0, \hat{\chi}_0, \hat{h}, \sigma_0] = I_1(\sigma_0, \hat{h}) = I_0(\hat{h})$$

where we used the existence of equilibria of type $\hat{u} \equiv 0$ for the parameters $\sigma = \sigma_0$, $h = \hat{h}$.

ad (vii). Finally, the case $h = \hat{h}$ and $\sigma = \sigma^*$ has to be discussed. As in (vi) equilibrium states of type $\hat{u} \equiv 0$, $\hat{\chi} \equiv$ arbitrary characteristic function, are found. The existence of a twophase equilibrium state satisfying $\hat{u} \neq 0$ is proved by considering a sequence $\{\sigma_n\}$, $\sigma_n \uparrow \sigma^*$ as $n \to \infty$, $h_n \equiv \hat{h}$, i.e. $(\sigma_n, \hat{h}) \in B$. By the definition of *B* we have $I_1(\sigma_n, \hat{h}) < I_0(\hat{h})$ and, as a consequence (compare Lemma 3.3(c)), $\hat{u}_n \neq 0$ if $(\hat{u}_n, \hat{\chi}_n)$ denotes a corresponding equilibrium state of $I[\cdot, \cdot, \hat{h}, \sigma_n]$. With Lemma 3.4(a) assertion (vii) holds and the whole theorem is proved. \Box

Copyright © 2002 John Wiley & Sons, Ltd.

6. PROOF OF THEOREM 1.3

W.l.o.g. assume that $\hat{u} \neq 0$. Then we have $\int_{\Omega} |\Delta \hat{u}|^2 dx > 0$ and letting $u_t := \hat{u} + t\varphi$, $t \in \mathbb{R}$, $\varphi \in C_0^{\infty}(\Omega; \mathbb{R}^d)$, minimality of $(\hat{u}, \hat{\chi})$ implies

$$0 = \frac{\mathrm{d}}{\mathrm{d}t} \prod_{|t=0} I[u_t, \hat{\chi}, h, \sigma]$$

= $2 \int_{\Omega} \langle \hat{\chi} A^+(\varepsilon(\hat{u}) - \xi^+) + (1 - \hat{\chi}) A^-(\varepsilon(\hat{u}) - \xi^-), \varepsilon(\varphi) \rangle \,\mathrm{d}x$
+ $p\sigma \left(\int_{\Omega} |\Delta \hat{u}|^2 \right)^{p/2-1} \int_{\Omega} \Delta \hat{u}: \ \Delta \varphi \,\mathrm{d}x$

hence, letting $T = c(\hat{\chi}A^+(\varepsilon(\hat{u}) - \xi^+) + (1 - \hat{\chi})A^-(\varepsilon(\hat{u}) - \xi^-))$ for a suitable real number c > 0, we obtain

$$\int_{\Omega} \Delta \hat{u}: \ \Delta \varphi \, \mathrm{d}x = \int_{\Omega} \nabla \varphi: \ T \, \mathrm{d}x \quad \text{for all } \varphi \in C_0^{\infty}(\Omega; \mathbb{R}^d)$$
(20)

Now we abbreviate $U := \Delta \hat{u} \in L^2(\Omega; \mathbb{R}^d)$ and denote by U^{ρ}, T^{ρ} the standard mollifications of U and T, respectively, where $\rho > 0$ is chosen sufficiently small. Then (20) is valid for U^{ρ}, T^{ρ} in the following sense:

$$\int_{\Omega} \nabla U^{\rho} \colon \nabla \varphi \, \mathrm{d}x = -\int_{\Omega} \nabla \varphi \colon T^{\rho} \, \mathrm{d}x, \quad \varphi \in C_{0}^{\infty}(\Omega; \mathbb{R}^{d}), \quad \operatorname{dist}(\operatorname{spt} \varphi, \partial \Omega) > \rho$$
(21)

Since $\eta^2 U^{\rho}$, $\eta \in C_0^{\infty}(\Omega)$, $0 \leq \eta \leq 1$, is admissible in (21) for ρ sufficiently small, this implies

$$\int_{\Omega} \eta^2 |\nabla U^{\rho}|^2 \, \mathrm{d}x + 2 \int_{\Omega} \eta \nabla \eta \otimes U^{\rho}: \ \nabla U^{\rho} \, \mathrm{d}x$$
$$= -\int_{\Omega} \eta^2 \nabla U^{\rho}: \ T^{\rho} \, \mathrm{d}x - 2 \int_{\Omega} \eta \nabla \eta \otimes U^{\rho}: \ T^{\rho} \, \mathrm{d}x$$

hence, with the help of Young's inequality

$$\int_{\Omega} \eta^2 |\nabla U^{\rho}|^2 \, \mathrm{d}x \leq \tilde{c}(\eta) \left(\int_{\operatorname{spt} \eta} |U^{\rho}|^2 \, \mathrm{d}x + \int_{\operatorname{spt} \eta} |T^{\rho}|^2 \, \mathrm{d}x \right)$$

This proves $\{U^{\rho}\}$ to be uniformly bounded in $W_{2,loc}^{1}(\Omega; \mathbb{R}^{d})$ which, together with $U^{\rho} \to U$ in $L_{loc}^{2}(\Omega; \mathbb{R}^{d})$ as $\rho \to 0$, gives $U \in W_{2,loc}^{1}(\Omega; \mathbb{R}^{d})$. As a result, we have the equation

$$\int_{\Omega} \nabla U: \ \nabla \varphi \, \mathrm{d}x = -\int_{\Omega} T: \ \nabla \varphi \, \mathrm{d}x \quad \text{for all } \varphi \in C_0^{\infty}(\Omega; \mathbb{R}^d)$$
(22)

Now we apply the standard L^p -theory for weak solutions of " $\Delta v = \nabla T$ " as well as the Calderon–Zygmund regularity results. To be precise let us first consider the case d = 2. Here $\varepsilon(u) \in W_2^1(\Omega; \mathbb{R}^{d \times d})$ implies $T \in L^p(\Omega; \mathbb{R}^{d \times d})$ for any $p < \infty$. L^p -theory gives $\nabla U \in L_{loc}^p$

Copyright © 2002 John Wiley & Sons, Ltd.

 $(\Omega; \mathbb{R}^{d \times d})$ (compare Reference [13], Section 4.3, in particular p. 73), hence $\Delta u \in W_{p,loc}^1(\Omega; \mathbb{R}^d)$ for any $p < \infty$ and we obtain $\Delta u \in C_{loc}^{0,\alpha}(\Omega; \mathbb{R}^d)$ for any $\alpha \in (0, 1)$. Finally, the assertion follows from the interior Schauder estimates (see Reference [13], Theorem 3.6). Next we assume that $d \ge 3$ and let $s_l := 2d/(d-2l)$. Then it is easy to see that

$$\hat{u} \in W_2^2(\Omega; \mathbb{R}^d) \implies \varepsilon(\hat{u}) \in L^{s_1}(\Omega; \mathbb{R}^{d \times d}) \Rightarrow T \in L^{s_1}(\Omega; \mathbb{R}^{d \times d})$$

$$\Rightarrow \nabla(\Delta \hat{u}) \in L^{s_1}_{loc}(\Omega; \mathbb{R}^{d \times d}) \Rightarrow \Delta \hat{u} \in W^1_{s_1, loc}(\Omega; \mathbb{R}^d)$$

$$\Rightarrow \Delta \hat{u} \in L^{s_2}_{loc}(\Omega; \mathbb{R}^d) \implies \hat{u} \in W^2_{s_2, loc}(\Omega; \mathbb{R}^{d \times d}) \Rightarrow T \in L^{s_3}(\Omega; \mathbb{R}^{d \times d})$$

$$\cdots$$
(23)

This procedure stops if $d \leq 2l$. Thus, denote by l^* the maximum of all $l \in \mathbb{N}$ such that d-2l > 0. Then s_{l^*} is well defined and satisfies $s_{l^*} \geq d$. In fact, the latter inequality is equivalent to $2 \geq d - 2l^*$ which is true on account of the maximality of l^* . Now assume that l^* is an even number. Then (23) implies for any $p < \infty$

$$\hat{u} \in W^2_{s_{l^*}, loc}(\Omega \mathbb{R}^d) \implies \varepsilon(\hat{u}) \in W^1_{d, loc}(\Omega; \mathbb{R}^{d \times d}) \implies \varepsilon(\hat{u}) \in L^p_{loc}(\Omega; \mathbb{R}^{d \times d})$$
$$\implies T \in L^p_{loc}(\Omega; \mathbb{R}^{d \times d})$$

thus $\Delta \hat{u} \in W_{p,loc}^1(\Omega; \mathbb{R}^d)$ for any $p < \infty$ (again compare Reference [13], Section 4.3) and as a consequence $\Delta \hat{u} \in C_{loc}^{0,\alpha}(\Omega, \mathbb{R}^d)$ for all $0 < \alpha < 1$. Again the interior Schauder estimates (see Reference [13], Theorem 3.6) prove the result. In the case that l^* is an odd number, we conclude

$$\Delta \hat{u} \in W^1_{s_{l^*}, loc}(\Omega; \mathbb{R}^d) \Rightarrow \Delta \hat{u} \in W^1_{d, loc}(\Omega; \mathbb{R}^d) \Rightarrow \Delta \hat{u} \in L^p_{loc}(\Omega \mathbb{R}^d)$$
$$\Rightarrow \hat{u} \in W^2_{p, loc}(\Omega; \mathbb{R}^d)$$

which again is valid for any $p < \infty$, hence $\varepsilon(\hat{u}) \in L^p_{loc}(\Omega; \mathbb{R}^{d \times d})$ for any $p < \infty$ and we proceed as before, i.e. Theorem 1.3 is proved.

REFERENCES

- 1. Morozov NF, Osmolovskii V. The formulation and an existence theorem for a variational problem on phase transitions in continuous medium mechanics. *Journal of Applied Mathematics and Mechanics* 1994; **58**(5): 889–896.
- 2. Dacorogna B. Direct methods in the calculus of variations. Applied Mathematical Sciences, vol. 78. Springer: Berlin, 1989.
- 3. Osmolovskii VG. The variational problems on phase transition theory in the mechanics of continuum media. St. Petersburg, 2000 (in Russian).
- Kohn, RV. The relaxation of a double-well energy. Continuum Mechanics and Thermodynamics 1991; 3:193– 236.
- Seregin G. J¹_p-quasiconvexity and variational problems on sets of solenoidal vector fields. Algebra and Analiz 1999; 11:170-217. Engl. transl. in St. Petersburg Mathematical Journal 2000; 11(2):337-373.
- 6. Grinfeld MA. The methods of continuum mechanics in the phase transition theory. Moskow, 1990 (in Russian).
- 7. Giusti E. Minimal Surfaces and Functions of Bounded Variation. Birkhäuser: Boston, 1984.
- Osmolovskii VG. Phase transitions for models of an elastic medium with residual stress operators. *Problemy matematicheskogo analiza* 1997; 17:153–191 (in Russian). Engl. Trans.: *Journal of Mathematical Sciences* 1999; 97(4):4280–4305.

Copyright © 2002 John Wiley & Sons, Ltd.

=

- 9. Bildhauer M, Fuchs M, Osmolovskii V. The effect of a surface energy term on the distribution of phases in an elastic medium with a two-well elastic potential. Mathematical Methods In The Applied Sciences 2001.
- 10. Kohn RV. Müller S. Surface energy and microstructure in coherent phase transitions. *Communications in Pure and Applied Mathematics* 1994; **57**:405–432.
- 11. Müller S. Microstructures, phase transitions and geometry. Max-Planck-Institut für Mathematik in den
- Naturwissenschaften, preprint no. 3, Leipzig, 1997.
 12. Gilbarg D, Trudinger NS. *Elliptic partial differential equations of second order*. Grundlehren der math. Wiss. 224, (2nd edn revised third print). Springer: Berlin, 1998.
- 13. Giaquinta M. Introduction to regularity theory for nonlinear elliptic systems. Lectures in Mathematics ETH Zürich, Birkhäuser: Basel, 1993.