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Abstract. Holder continuity up to the free boundary is proved for minimizing solutions

if they meet the supporting surface in an angle which is bounded away from zero. The
problem is localized by proving the continuity of the distance function, a result which is
also true for stationary points.

1. Introduction

Given a vector fieldD € C1(R3, R%), we consider twodimensional weak
solutionsX : B1(0) ¢ R? — R3 of the following variational probleny,
which arises for example in the investigation of partitioning problems (see
[1], [12]): find minimizers or stationary points of the functional

1
FlY] :—// |VY|2dudv+// Q(Y) - (Y, AY,)dudv
2JJ) Bo B1(0)

= D[Y] + V9[Y]

in a suitable clas€, which definegartially free or free boundary values
on asupporting surfaces. The Dirichlet integral is denoted byD[Y] with
IVY|? := |(Yy, Y)]? = |Yu|? + |Y,|%. The functionalV ¢ will be called
the volume functionaglalthough capillary forces are involved if timermal
component with respect to the supporting surfaagf the vector fieldQ is
not vanishing. In fact, this situation is studied here. A smooth solution of
is known to be a surface of mean curvatife= divQ/2 satisfying the free
boundary condition

|Q - N| = cose,

wherea denotes the angle in whicki meets the supporting surfadeat the
free boundary, and/ is the outward normal unit vector ¢f(see [1], [12]).
We do not consider existence problems (see [4] or [12] for references) and
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assume in what is following that is a H'-?~solution of the problens,
where we have to distinguish minimizing and stationary points. A detailed
description of the known results on regularity theory is given in [4] and we
can restrict ourself to the most important references.

Since divQ is always assumed to be bounded, interior regularity is com-
pletely proved in [8] and [9]. Regularity for Plateau boundary values is also
known (see [4]), thus only the behavior of the solution at the free boundary
has to be studied. The general case of stationary points is treated in [11]
(minimal surfaces, that i® = 0) and in [12] (surfaces of bounded mean
curvature). To prove smoothness up to the free boundary, the supporting sur-
faces is assumed to be of clagg"?, m > 3, and the solution has to megt
perpendicular, thati@ - N = 0 onS. Itis still an open question if this con-
dition can be dropped. While Gter, Hildebrandt and Nitsche extended the
argumentation of [8] and [9] which is based upon methods from geometric
measure theory, Dziuk ([5]) studied minimal surfaces almost simultaneously
by using agers reflection principle ([14]) and then refering to the interior
regularity results of Giter. However, this approach requires as an additional
assumption theontinuity of the distance functiohe.

dist(X (w), S) — 0 as w — wg € 0B1(0),

wherewg € dB1(0) is a point corresponding to the free boundary.

A direct method to prove Blder continuity up to the free boundary is
applicable in the case of minimizing solutions. Herés assumed to fulfil
a chord—arc—conditionwhich was recognized (also almost simultaneously)
by Nitsche ([16]) and Goldhorn—Hildebrandt ([7]) to be sufficient. Due to an
example of Courant and Cheung (see [4], pp. 43—44), without this condition
we cannot expect smooth minimizers. The weakest requirement on the vector
field QO was given by Hildebrandt ([13]), but he still had to imposgl@bal
smallness conditigmamely| Q| < g < 1 for some real numbey.

In Section 4 and Section 5 of this paper we study this smallness condition
for Q in the case of minimizing solutions: on one hand, regularity at the free
boundary should follow from #ocal conditionin a neighbourhood of the
supporting surfacé. This is proved in Section 4.

To do this, we first prove a result of general interest, namely the continuity
of the distance function. It should be emphasized, that this observation is true
not only for minimizers but also for stationary points and that no conditions
for S are required. Especially and in agreement with the example of Courant
and Cheung, even a chord—arc—condition is not necessary. Our result shows
that the assumption of Dziuk ([5]), which can be traced baclaged ([14]),

Lewy ([15]) and Courant ([2]), in fact is a conclusion from stationarity. As

a corollary we obtain bounded solutions in the case of bounded supporting
surfaces. Recently @ter ([10]) also proved the continuity of the distance
function for weakly harmonic maps.
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On the other hand, in Section 5 we reduce the technical smallness condi-
tion of Hildebrandt to geometricabne. The contact angle is the geometrical
property which controls the boundary behavior of a solution. If this angle con-
vergesto zero, then we cannot exclude unbounded solutions of bounded mean
curvature and of bounded area. However, if this angle is bounded away from
zero, that is if we impose a smallness condition onrtbienal componenf
0, then Hlder continuity of minimizing solutions up to the free boundary is
proved in Theorem 5.3. For some technical reasons and in order to speak of a
normal component, the supporting surface is again assumed to be smooth in
some sense. But let us first fix the notation and make the assumptions precise.

2. Notation

The Euclidean spacR? is identified with the complex plan€, sow =
(u,v) € R? is the equivalent counterpart to = u + iv € C. We always
consider a supporting surfag@and a rectifiable art with end pointsP; # P,

in S. The general assumption on the supporting surface (which is in fact not
needed in Section 3) is a chord—arc—condition.

Definition 2.1. A setS in R3 is said to fulfil a chord—arc—condition with
constantsM and$, M > 1and$ > O, if it is closed and if any two points
P; and P, of § whose distancéP; — Ps| is less than or equal té can be
connected ir§ by a rectifiable ard™ with lengthL (I'*) < M | Py — P»|.

The suitable variational clagsof admissible surfacds slightly different
from the natural setting in the context of Dirichlet’s integral (see [3], pp.
255-256) sinceF is invariant only with respect torientation preserving
conformal mappings. Partially free boundary values are considered without
loss of generality (see [12]).

Definition 2.2. For B = B1(0) c R? the classC(T, S) is the set of all

Sobolev functiong € H'? (B, R3) with the following properties: there is

anarcC = {¢" : 0 < 0, < 6 < 6, < 27} such that thel.>~traces ofY

satisfy:

() Free boundary value®:(w) € S for #'-almostall w € 9B ~ C;

(i) Plateau boundary valuegic : C — I' is a continuous, weakly
monotonic mapping ontb with Y (¢’®t) = P;, and Y (¢!2) = P, for
{in,i2} = {1, 2}.

Remark 2.3.The permutation in (ii) is needed to preserve orientation.

A family of surfacesy, € C(T', S), |e| < g for some numbet, > 0, is said
to be anadmissible variation of a surface € C(T", ), if {Y.}¢/<¢, IS Of One
of the following types:
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Type 1 (inner variations)Y, (w) = Y (t.(w)) where{z,} s, is a family of
diffeomorphismsB — B such thatrg is the identity and that (w, ¢) :=

. (w) € Cl(ﬁ X (—e&p, eo),E).

Type 2 (outer variations), (w) = Y (w) + ¥ (w, ¢) where the Dirichletin-
tegralsD[W (-, )] are uniformly bounded and there existe H? (B, R®)N

L>®(B, R%) with

Y(w, ) - ®(w) foralmostallw € B as ¢ — 0.

Remark 2.4.In contrast to [3], p. 330, no deformation 8fis admitted for
inner variations according to the definition of admissible surfaces in the unit
ball.

Finally X € C(T', S) is astationary point off" in this class, if
1
lim - {F[X,] - F[X]} =0
e—>0 ¢
for all admissible variations. This condition is especially fulfilled for mini-
mizers. IfX is a stationary point, then it is parametrized conformally, i.e.
1X.? = |X,/% X.-X,=0 almosteverywhere iB.

Since this is proved by considering inner variations, the well known argu-
ments of [3], pp. 242, cannot be cited (see Remark 2.4). So we refer to [17],
Theorem 3.1, p. 9, observing that fosufficiently small the volume func-
tional is invariant with respect to inner variations. Once the proof of the
conformality relations is done, inner variations are no longer needed in this
paper and nowB, C anddB ~ C can be replaced by the standard notation:

B:={weR?:|w <1v>0}
C:={weR?:|w=1v>0},1:=0B~C.

3. Continuity of the distance function

The above mentioned methods from geometric measure theory are used in
this section to prove the continuity of the distance function for stationary
solutions. Since the conclusion of the following theorem is drawn only from
inner estimates, the chord—arc—condition as a general assumption in fact is
not necessary.

Theorem 3.1. Consider aboundary configurati@it, S) as above and define
U, :={z e R®: dist(z, S) < t} forany givent > 0.
A vector fieldQ(z) € C* (R3, R®) is assumed to satisfy

|divQ(z)| < Hp < oo for aconstantHy > 0 and for all z € R®.
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If X is a stationary point of the function& in the classC(T’, S), then for
all o > 0 and for allw € I there exists a real numbé& < R = R(w, to)
such that

X (Sg(0)) C Uy,

Here and below we set farg € I andr > 0: S, (wp) ;= {w € R?: |w —
wol <7, v>0}NBandC,(wp) :={w eR?: |w—wg|=r, v>0}NB.

Proof of Theorem 3.Fix 7o > 0 and definéio := Ho/2. For a givenw € I
choose O< R < 1 — |w| such that

2 . T[TOZ —hoT,
// IVX|¢dudv < co(tg, Hp) := Te 0to, (3.1)
S()

The modified Courant-Lebesgue Lemma (see [11], Lemma 2, p. 393) with
r € [R/n, R], n € Nsufficiently large, ensures the existence of a real number
R,0 < R < R, satisfying

0SG )X < To/2. (3.2)

Since the proof of the Courant-Lebesgue Lemmadoes notdepend on measure
zero sets of radii and since € H? (B, R®), we can assume the limi2(R)
to existinsS:

O(R) := gﬂrﬂox@ + Re'%) e 8. (3.3

Following [12], the proof is completed by an indirect argument: assume that
there existaw* € Sg(w) such thatX (w*) ¢ U, thatis

dist(X (w™), S) > 10. (3.4)
The relations (3.2)—(3.4) imply
inf | X(w) — X(w*)| > 10/2. (3.5)

weCpr(W)

On the other handX is a stationary point of the function& in the class
C(T, S), especiallyX is a conformally parametrized solution of

/f (VX -Vn+divo(X)n - (Xu A X,)} dudv =0
B

forall n € Hy*(B,R% N L®(B,R®).

(3.6)

Now considen.(s) € C1(R, R) with A'(s) > 0 andi(s) = 0 fors < 0 and
define

\D(p):%//s (A))\ (,o - |X(w)—X(w*)|) IVX|?2dudv VYO0<p < 10/2,
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as well as

() = Mo — X (w) = X)) (X(w) — X(w") 1w € Sg()
M= 0 ‘we B~ Sp(i)

By (3.5),| X (w) — X (w*)| > 10/2 is true forw € Cg(w), and by assumption

for almost everyw € I we have|X(w) — X(w*)| > t9. Thusyp is seen

to be admissible in (3.6) and the argumentation of [12], pp. 130-131, gives
a monotonicity formula fon(p)/p? and with [12], Lemma 1, p. 129, a
contradiction to (3.1), i.e. the theorem is proved:

Of course the continuity of a solution up to the free boundary is not
implied. Only a special kind of singularities is excluded and we obtain the
following corollary.

Corollary 3.2. If S is bounded, then a stationary solution is also bounded.

From now on the context of stationary solutions is left and the continuity
of minimizers is studied in the next sections.

4. Alocal problem

In order to formulate a theorem concerning the local character of regularity

results for minimizers, that is to require only a local smallness condition in a

neighbourhood of, we have to introduce some further notation:
Zs={weB:|lw <1-d}for0<d < 1andS,(wg) := BN B,(wg)

for all wo € B. Givenw € I and O< R < 1 — || define

ZgR,w)={weB:|lw—w <R-—d} for 0<d <R,

SR (wg) = Sg() N B, (wo) forall wp € Sp().

Here the condition O< R < 1 — |w| implies Sg(w) = {w : |lw — W] <

R,v >0} C BandCr(w) = {w : |lw — w| = R,v > 0} C B. With this
notation, the continuity of the distance function is the main tool to prove the
following theorem.

Theorem 4.1. Consider a boundary configuratiofT', S) as above, espe-
cially S is assumed to fulfil a chord—arc—condition with constavtsaind§.
Consider a vector fiel@ which satisfies besides the assumptions of Theorem
3.1

||Q”CO(UrosR3) <1 for T0 > 0. (41)
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According to Theorem 3.1 choose for @il € I a real numberRy =
Ro(w, 19/2). If X is a minimizer of the functionaF in the classC (T, S),
then

2K
R o 2 2r 2
DY (r, wp) 1= A IVX|“dudv < IVX|“dudv
S22 (wp) d Sk (D)

is true forallw € I, forall 0 < R < Ry satisfying

173 173 ﬁ
AM2k7’ 8km kmw |’
(4.2)

// IVX|?dudv < ci(to, M, 8, k) i= min{
Sr(W)

forall d € (O, R), forall wg € Z,(R, w) and for allr > 0, wherex is given
by
1—| Q||C0(U,O,R3)

K= 1+ M>»™
1+ Q||C0(U,0,R3)

SoX is of classC%* (Zd(R, W), R3) and there is a constamb(x) > 0such
that

[X] c2(k) d™*/min{co(t0/2, Ho), c1(t0, M, 8, k)} .

k,Z4(R,W) =

Lhus, for alld € (0, 1) the minimizerX is a Holder continuous function
onZ,.

Proof of Theorem 4.1The idea of constructing a harmonic function is given
in [13], here we refer to the detailed proof given in [4], Chapter 7.5. The
additional ideas to extend this proof to our situation are the following:

fix w e I and consider a real numb&r< Ry, whereRg is chosen according

to Theorem 3.1. In our context assertion (6) of [4], p. 50, reads as follows:

Assertion 1. For alld € (0, R), for all wg € I satisfyinglwg—w| < R—d
and for allr € (0, d] we have

N 2 o
SR (7, wg) < (2) R (4, wp).

Proof of Assertion 1Fix d andwg as above. Because §f(wg) = S,Rv@(wo),
the indicesk undw can be omitted and the argumentation of [4] is carried
over until we arrive at (12), p. 51. Notice that the aétsatisfies

(i) @'(r,wo) existswith ®'(r, wo) =2~ [ | Xo(r,0)|?d0, 4.3)
(ii) O1(r) = liMy_,_o X(r,0) exisitsin S '
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forall r € (0, d) ~ N. The counterpart of [4], condition (12), is:
Case 1.Consider any < (0, d) ~ N for which

" 2 8 Tg
Xo(r,0)|°d6 < min{ —, 4.4
/O Xy (r, 0)2d6 < {n 4M2n} (4.4)
holds true. Then a vector valued harmonic function, definedBofwo),
with appropriate admissible boundary values (i.e. boundary valu&saf
9B, (wo) N {v > 0} and achord—arc—curve on S elsewhere) satisfies (19)
of [4], p. 52:

1
f/ IVH]?dudv < =(1+ M?) r @' (r, wp). (4.5)
B, (wo) 2
Now, define onB U B, (wg)

H(w) . w e B, (wp)

Y(w) = )
X(w) : we B~ B.(wp)

by construction a function of clagg>?(B U B, (wo), R%), and consider the
orientation preservindhomeomorphism, which map8 conformally onto

B U B, (wp), keeping the seft—1, 1} as well as the pointfixed. This home-
omorphism yields the desired comparison functbn=Y ot € C(T, S).

By the minimality of X and by conformal, orientation preserving invariance
of ¥

1
FUo[X] = - // VX [2du dv + // O(X) - (Xu A Xy) du dv
2JJ s.wo) S, (o)

1
5—// IVHIZduvar/f Q(H) - (H, A Hy) dudv
2JJ B.wo B, (wo)
(4.6)

holds true. Because @t < Ry and by Theorem 3.1, the assumption (4.1)
gives an estimate fa@ o X, ) Settingk := || Q||C°(UTO,R3) < 1 we obtain

1 K
- f/ IVX|?dudv— — // IVX|[?dudv < F'°[X]. (4.7)
2JJ) s w0 2 JJ s.wo

In order to use the assumption on the right hand side of (4.6), the following
lemma has to be proved. For bounded vector fields this lemma will give a
better Holder exponent than estimates using the global bound. Furthermore,
notice that the theorem is also true for unbounded vector fields.

Lemma 4.2. Using the above notation and assumptions, the condition (4.4)
implies for allr € (0,d) ~ N

H (B, (o)) C Usy.
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Proof of Lemma 4.2The setV of measure zero was chosen to fulfil

Ho:= H(wo+rd™) = lim X(wo+re’)es.

SinceH is harmonic, the functionH (w) — Ho|? is subharmonic. The max-
imum principle proves for allv € B, (wo)

|H(w) — Ho| = sup [H(w)— Hol.

wed B, (wo)

With the help of (4.4)

02 0
X(r,01) — X, 0] < Xo(r,0)|do < —
| X (r, 61) (r, 2)|_/01 [ Xo(r,0)| = o
is verified for 0< 6, < 6, < 7. Forw € C,(wg) we haveH (w) = X (w)
and
70
sup |H(w)— Hol| < -

70
< —.
weCy(wo) 2M 2

Givenw € 9B, (wg) ~ C,(wp), thenH (r, 0) is defined via the chord-arc—
condition and the length of the corresponding curve ist estimated in [4], p.
51, byl* < 19/2, where our assumption has to be observed. This gives

T
sup  |H(w)— Hol < —
wed By (wo)~Cr (wo) 2

and the lemma is proved.o

Now (4.5), (4.6) and (4.7) are seen to imply for alle (0,d) ~ N
satisfying (4.4)

1+ K 1
D (r, wo) < + // IVH|?dudv < —r &' (r, wo). (4.8)
1-K JJ o 2

Case 2.Consider any € (0,d) ~ N for which (4.4) is not true. By the
choice of R (see (4.2)), by (4.3 (i)) and by assumption, in this case we also
get

®(r, wo) < /f \VX12dudv ) = @ (r, wo)  min o
r, = u — s —_ —
° Sp(h) 2 0 7’ AM?x

1
< —r ®'(r, wo). (4.9)
2K

-1

Now (4.8) and (4.9) prove by integration Assertion o
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Assertion 2. Forall wg € Sg(w) satisfyingwo—w| < R—p and Imlwg) >
o for somep € (0, R) we have

2
®(r, wo) < <%) ®(p, wo) forall r [0, p].

Proof of Assertion 2Distinguishing the casefoz” | Xo(r,0)]?°d0 < (>)
rg/(&r) and observing thak (w) € U2 for w* € 9B,(wo), we prove
Assertion 2 as above.oO

Now distinguishing three cases exactly as in [4], p. 54, and refering to
Dirichlet's Growth Theorenthe proof of Theorem 4.1 is completedo

5. The normal component

In this section a geometrical theorem will be proved, namely atheorem on the
Holder continuity of minimizers if the contact angle is not allowed to tend to
zero. As mentioned in the introduction, this assumption on the contact angle
seems to be the best possible. Consider again a boundary configyration

as above and a vector fietd ¢ C#(R3, R%), 0 < B < 1, satisfying

|divQ(z)| < Hy < oo  foraconstantHy > 0 and for all z € R,

| Qllcowrs sy < Qo < oo foraconstantQo > 0.

Since we will have to bend the supporting surface locally to a plane,
since we will have to control the behavior 6fat infinity and since we
have to define a normal ¢f we impose the following smoothness condition,

which includes the bound on the normal componem dfVe will distinguish
twodimensional ball and threedimensional balig.

Assumption 5.1. There is a neighbourhoot,, of S such that:

(i) There are positive, real constanis o and a countable number of points
Z; € S such that

U C | B, (z) for 5 <pi < p.

1

(i) For any z;, a C?>—diffeomorphismh; : h'(Bis, (zi)) — Bisy (zi)
exists with

(hi—l(z))3 =0 forall z € Bis,(zi)NS.
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(i) Consider h(y)(= h;(y)) and defineg,,(y) = Y5 hluhl,, 1 <
m,n < 3. ThenG(y) = (gu ()., € R>3 is positive definite, and
there is a constank such thatforalf andforally € h=1(81s,, (z;)) the
norms ofG, DG, G~* are bounded b as well as for alk € 815, (z;)

the norm ofDA 1.
(iv) Thereis a constant, 0 < ¢ < 1, such that for all

oh;  0h; _
Q) - (8—y1 A —2) o (hi*(2))

| DR; ()11 3
y

<q

forall z € Bep, (z:),

where|| || is the operator norm of the linear mappirlglzl.‘l.

Remark 5.2.For example each compact—surface — such that the absolute
value of the normal component of the vector field is bounded by 1 — is
easily seen to fulfil Assumption 5.1.

Now we can state our main theorem. The essential idea is given in
Lemma 5.5, which is due to the fact that the volume functional associates the
controled normal components gfandX with the tangential components of
X andQ. Itis remarkable that — distinguishing different cases as in the last
section —we have precisely the room to move which is needed in proving the
smallness of terms invoking the tangential componen® of

Theorem 5.3. There are positive real numbers € (0,1) andt < 1o,
depending only o, o, K, M, §, Hy, Qg andg, such that:
if X is a minimizer of the functionat in the clasC (T, §), thenX (B) C U,
implies for alld € (0, 1), for all wo € Z, and forallr > 0

2 2r\* 2
D (r, wp) = IVX|“dudv < IVX|“dudv.
d
Sy (wo) B

According to Theorem 3.1 and to the arguments of Theorem 4.1 we imme-
diately see:

Corollary 5.4. Foralld e 0,1 there is a real number < (0, 1) such that
a minimizerX is of classC%*(Z,, R3).

Proving Theorem 5.3 we need the following lemma to see that only the
normal component of) is of geometric significance. The lemma will be
proved at the end of this section.
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Lemma 5.5. There are positive real numbets< 1o andeg > 0, depending
onlyong, p, K, M, §, Hy, Qo andg, such that:
supposeX is a minimizer ofF in the classC (T, ) satisfyingX (B) C U,.

Then:
l+q
OX) - Xy nXydudv| < ——— |VX| dudv
S (wo) Sy (wo)

(i) forall wo e I and forallr € (0, 1 — |wg|) satisfying

/ |Xo(r, 0)12d6 < ®(r, wo) & and
0

o) .= . lim 0X(r, 9) exisitsin S,
(iiy forall S,(wo) = B,(wp) C B satisfying

2
f 1 Xo(r, 0)12d6 < ®(r, wo) €o.
0

Proof of Theorem 5.3Chooser andgg according to Lemma 5.5. Then there
exists a constant, depending only on the above gquantities, such that:

Assertion 1. The conditionX (B) c U, implies for alld € (0, 1), for all
wo € I satisfyinglwg| < 1 — d and for allr € (0, d)

®(r, wo) < (:—i)ZK ®(d, wo).

Proof of Assertion 1Fix d andwg as above. Then the arguments of Assertion

1 of the last section are completely the same until we arrive at Case 1. Observe
that.V is chosen to satisfy (4.3(i)). Now Case 1 reads as follows.

Case 1:Consider any < (0, d) ~ N for which

/” 1 Xo(r, 0)]?d0 < ®(r, wo) &0 (5.1)
0

holds true, where we may assume without loss of generlity wg) g9 <
82 /. Constructing a harmonic function as above and using Lemma 5.5 (i)
we see

+ Qo

1
®(r, wo) < (14 M?) r &' (r, wo).
—q
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Case 2:Consider any € (0,d) ~ N for which (5.1) is not true. Then we
get

@ (r, wo) < ®(r, wo) {(/ | Xy (r, 9>|2d9) (@ (r, wo) 80)_1}
0

IA

1 / -1
> r ®'(r, wo) &

and the assertion.O

In the same manner Assertion 2 is proved and again the theorem follows:

Assertion 2. The conditionX (B) C U, implies for allwg satisfying|wg| <
1— p and Imwg) > p for somep € (0, 1)

2k
@ (r, wo) < (£> ®(p, wo) forall r € (0, p).
P

We finish this paper with the proof of Lemma 5.5. Notice that there is
no gap between the assumptions of Case 2 and of Lemma 5.5, both of them
being precisely needed.

Proof of Lemma 5.8Consider the situation (i) for fixea, andr. According

to Assumption 5.1 (i) and to the covering theorem of Vitali (see [6], pp. 26)
we obtain adisjoint subcollection, again denoted B3B8, (zi)}iczcn, such
that

Uy C | JVi for V; := Bg,,(z) and V1 :=Vy,
iel
i—1
V.=V, ~UVk forall i > 1.
k=1

GivenA C R3, setA™! := {w € B: X(w) € A} C B C R?. By construc-
tion, the coIIection{f/i‘l}ia~ is a disjoint covering ofB sincer < tp and
sinceX is assumed to be a mapping irt,. If 2 (omitting the index) is
the diffeomorphism corresponding ¥, if we setY; = Y := h~1 0 X and if
0(y) € R3 denotes

dh(y) 9h(y)
(Q(h(y))a—yz A 8—y3’

dh(y) ~9h(y) dh(y) 9h(y)
5y3 Aa—yl’Q(h(y)) o)L A 52 ),

Q(h(y))
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then we are led to

'// Q(X)(Xu/\xv)dudv
Sr(wo)

Z// Q(X) - (X A X,)du dv

ier /Y Swonv
= Z/f O(Y) - (Yi, AY;,) dudv (5.2)
iel S’(“’O)m71'71
2
<> ff QP i A YR+ Y QR Yy A Y)Y dudy
iel S"(w(’)mvfl k=1
1 -
<> 5 ff |03 VYi > dudv + ¢(Qo. K)J,
it 2/ siwoni

whereJ is given by (setYi(l’z) = (1 y2 0)

1

2 2
7= // VY2 P du dv // V3P dudv) .
il Sy (wo)V; S, (wo)nV; L

By Assumption 5.1 (iv) and since the sé'l;sl are mutually disjoint, the first
term on the right hand side of (5.2) is estimated from above:

1 A3y, 12 q 2
> 103(Y)| |VYi [P dudv < VX2 du dv.
7 2 swoni 2 5.0

(5.3)

To get an estimate faf, define non—negative, real valued, smooth functions

1 : s<6p _
Ai(s) = . M) <2/pi <2/p.
0 : s>T7p;

SettingW; = B7,,(z;) we observe: it is possible to arrange the balls

in c1(n, p, p) mutually disjoint subcollection$W,};cr,r, wheren is the
dimension of the surrounding Euclidean spaces= 3. Indeed, following

the idea of Besicovitchs covering theorem (see [6], pp. 30), the balls are
distributed to several “rows” by induction. The first element in the first row
is W1. Assume the ball$Vy,...,.W; are mutually disjoint arranged in rows.
Thenthe balW; 1 becomes an element of the first of thesews, where the
intersection with all other elements is empty. If no such row exists, #gn

is the first element of the row with number+ 1. By construction, the balls

B, are mutually disjoint and the ratios of the radii are uniformly bounded.
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So the intersection of a given balf; with another ballW; is nonempty
only for a finite number,(n, p, o) and the observation is proved. With this
observation we will obtain an estimate fdusing the definition of,;:

J < Z > (//S - (X = 7)) VY2 du dv) 2 (5.4)

k=1liely
%
x (f/ L(X =z |Vy?|2dudv)
Sy (wo)

Here we have to give an estimate for the last integral in (5.4): the smoothness
of Q impliesX e C%(B, R®) (see [9]) and a partial integration proves for all
iel

/f M(X = 2]) V3R du dv
Sr(wo)

VX, (X —z))-Vy?
[ rex—ap TSN s 59
S, (wo) | X — z;

// A(|X—z,|)Ayl Vi 3dudv
Sr(wo)

/ (X =z y2Vy? - vdatt,
a8, (wo)

wherev is the outer unit normal t8.S, (wg). Now, assumeX (w) € U, for

all w € S, (wo), wherer < g is chosen below in an appropriate way. Since
z; is an element of the supporting surface, forualk S, (wg) N Wl.‘1 there

is a pointf € Bis,, such thatf € S and that X (w) — f| < 2t. The third
component ohi‘l(f) vanishes by construction and the mean value theorem
yields for allw € S, (wg) N Wi‘1 a pointé € 815, satisfying

ly2w)l < [ID(H3E) X (w) — f] < ca(K) 7. (5.6)

With the assumption on the diffeomorphignfagain omitting the fixed index
i) and by virtue of the variational equation (see (3.6) and [4], pp. 64)

0gi;(Y)
a k

VYV + 2H (V) g(Y) (Y A Y,)

gii(V)AY + == vy vy
_ 19gi(¥)
2 oy’

we obtain the estimates

VY (w)]? < c3(K) |[VX (w)[? forall w e S, (wo) N Wt

(5.7)
and|AY;(w)| < ca(K, Ho) |VY;[2forall w € S, (wo) N WL,
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By (5.5), (5.6) and (5.7) there is a constagtK, Ho, p), independent of,
such that

f/ (X = zi]) VY22 dudv
Sr(wo)

< IC5/f |VX|2dudv+/ L(X —zi) y3Vy2 vdat.
S, (wonW; 35S, (wo)

Now it remains to estimate the boundary integrals. Assumption 5.1 (ii) shows

[ naax =z 9y viase (5.8)
a5 (wo)
<c(K) sup  |yi(w)l IVX|dHt,
weC, (wo)NW, L Cr(wo)nw;

and so only the ball@; satisfyingX (C,(wo)) N'W; # @ are to be considered.
Fix one of these balls ang} € X (C,(wg)) N W;. For allw € C,(wg) we
have by assumption

1

| X (w) —ai| < ﬁ(/n | X (r, (9)|2d(9)2 < V®(r, wo)eo V71 .
0

Thus forgg sufficiently smallgg < ¢7(D[X], p) < c7(p), the seX (C, (wo))
and the pointO (r) defined in (i) are seen to stay inside the @ik, . This
gives for allw € C,(wo)

ly2(w)| = |7 H(X (w))® — h7HO0 )3
< cg(K) ( f s 9)|2d9)2 < cg(K) /O, wo)so.
0

Finally the conformality relations imply

1
1 2
/ IVX|dH* < /2 (—2|X9(r, 9)|2> d it
Cr (wo) r

Cr(wo)

1
/2 2
< ”(/ |X9<r,9>|2dﬂl) < V27 ®(r, wo)o,
Jr C (wo)

and the above computations prove foriadatisfyingX (C,(wg)) N W; £ 0

/ (X =z [y3IVy2 - v dFH* < co(K, 8) D(r, wo) go.
9Sr(wo)
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By the choice ofgg, the intersection ofX (C,(wg)) with W; is nonempty
only for c1o(n, p, p) balls, while the other balls can be omitted in estimat-
ing (5.8). Furthermore, the subcollectiofi¥; };c;, are mutually disjoint and
summarizing the results we have found an upper bound for

s ;
>/ VY du dv
F(wo)NW;

k=liely

1
2
x (// A,-(lX—ziI)Wy;?lzdudv)
Sy (wo)
1

c1 2
SCll(K)ZZ( // (womw_lwxﬁdudv) .

k=1iel;

1
2

IC5// IVX|?dudv +/ L(X =) Y2 IVy2 - v daet
S, (wo)NW; 35S, (wo)

< c12n, §, p, K. o, 8) (VT + /%0) ff VX2 dudv.
- (wo)

Ifwe choose andeg to be smallerthan aconstant., o, p, K, Ho, 8§, Qo, q)
and if we recall (5.3), then we obtain the first conclusion of Lemma 5.5.
To prove the lemma in situation (ii), observe that there are at mg@t, o, p)
balls W; such thatX (3B, (wg)) N W; # (. The other balls are treated as
above since the boundary integrals are vanishing. If there is a ppiat
X (3B, (wo)) N W;, then defineP; := h; *(a;). As above we see

f/ A (X = zil) VY2 du dv
Sr(wO)

VX, (X —z))-Vy3
- _f/ (X = 7y XX 22 VO (s p3y gy gy
S, (wo) | X — z]

— // Ai(|X —zi]) Ayig (y,»3 — Pis) du dv
Sy (wo)
+/ (X —zi) 0 = PP Vy? - vd st
95y (wo)
Now consider; and argue as in (5.6) to prove fare S, (wg) N Wl.‘l

1y3(w) — P3| < [yh(w)| + | P3| < 2c2(K) T

The boundary estimates are the same if we substiflty y> — P3andO(r)
by a; and the lemma is proved.o
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