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Obstacle Problems with Linear Growth: Hölder Regularity

for the Dual Solution
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Abstract. For a strictly convex integrand f : IRn → IR with linear growth we discuss the
variational problem

J(u) =

∫
Ω

f(∇u) dx −→ min

among mappings u : IRn ⊃ Ω → IR of Sobolev class W 1
1 with zero trace satisfying in addition

u ≥ ψ for a given function ψ such that ψ|∂Ω < 0. We introduce a natural dual problem which
admits a unique maximizer σ. In further sections the smoothness of σ is investigated using a special
J–minimizing sequence with limit u∗ ∈ C1,α(Ω) for which the duality relation σ = ∂f

∂P
(∇u∗) holds.

1. Introduction

In a previous paper [BF] we investigated the dual variational problem to the mini-
mization problem

J(u) =
∫
Ω

f(∇u) dx −→ min on u0+
◦

W 1
1
(
Ω, IRN

)
(1.1)

with strictly convex integrand f : IRnN → IR of linear growth. Here Ω denotes a
bounded domain in IRn. The study of the dual problem to (1.1) is motivated by the
fact that (1.1) is in general not solvable whereas the dual problem admits a unique
solution σ which has a clear physical or geometrical meaning (see [FS] for a detailed
list of references). Besides other things we proved in [BF] that σ is partially Hölder
continuous on Ω which means that there exists an open subset Ω0 of Ω with full
measure such that σ ∈ C0,α

(
Ω0, IRnN

)
for any 0 < α < 1.
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In the present paper we concentrate on the scalar case N = 1 and replace (1.1) by
the obstacle problem

J(u) −→ min on
◦

W 1
1
,ψ(Ω) :=

{
u ∈

◦
W 1
1(Ω) : u ≥ ψ almost everywhere

}
(1.2)

where ψ : Ω → IR is a given smooth function such that ψ
∣∣
∂Ω

< 0 and ψ(x) > 0 at
some interior point x ∈ Ω. Problem (1.2) admits a natural dual formulation with
unique solution σ and such that the inf–sup relation holds. We prove that σ has weak
derivatives in L2loc(Ω, IR

n), moreover, we show that σ is Hölder continuous on Ω. The
proofs of these facts are based on the construction of a special minimizing sequence
for (1.2) whose weak limit u∗ is of class C1,α(Ω) and in addition satisfies the duality
relation σ = ∂f

∂q (∇u∗).

2. Notation and results

On a bounded Lipschitz domain Ω ⊂ IRn consider a function ψ ∈ W 2∞(Ω) such that
ψ
∣∣
∂Ω

< 0 and ψ(x) > 0 at some interior point x ∈ Ω. We define the classes

◦
W p
1
,ψ(Ω) :=

{
u ∈

◦
W p
1(Ω) : u ≥ ψ almost everywhere

}
, 1 ≤ p ≤ ∞ ,

consisting of all Sobolev functions with zero trace respecting the obstacle ψ. On
◦

W 1
1
,ψ(Ω) we let J(u) =

∫
Ω
f(∇u) dx with density f satisfying

Assumption 2.1. The function f : IRn → IR is smooth, convex and of linear
growth in the following sense:

(i) f ∈ C2(IRn, IR).
(ii) There are numbers µ1, µ2, ν1 and ν2 in IR+0 such that for all P , Q ∈ IRn

µ1√
1 + |P |2

(
|Q|2− (Q · P )2

1 + |P |2
)

≤ D2f(P )(Q,Q)

≤ µ2√
1 + |P |2

(
|Q|2− (Q · P )2

1 + |P |2
)

,

ν1
√
1 + |P |2 − ν2 ≤ ∇f(P ) · P .

(iii) There is a real number A such that |∇f(P )| ≤ A for all P ∈ IRn.

Clearly (ii) implies with suitable real numbers a, b ∈ IR, a > 0, the growth estimate

f(P ) ≥ a |P |+ b for all P ∈ IRn .

We may assume f ≥ 0 and in addition ∇f(0) = 0 since we have for u ∈ ◦
W 1
1(Ω)

J(u) =
∫
Ω

(
f(∇u)−∇f(0) · ∇u

)
dx .
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Let f∗ denote the conjugate function of f (compare [ET] or [Ro]). Then

J(u) = sup
τ∈L∞(Ω,IRn)

l(u, τ )

for any u ∈ ◦
W 1
1
,ψ(Ω), where

l(u, τ ) =
∫
Ω

(
τ · ∇u− f∗(τ )

)
dx , u ∈ ◦

W 1
1
,ψ(Ω) , τ ∈ L∞(Ω, IRn) ,

is the Lagrangian of the problem. Finally, we introduce the dual functional

R : L∞(Ω, IRn) � τ �−→ inf
u∈ ◦

W 1
1,ψ(Ω)

l(u, τ ) ∈ IR

and the corresponding dual problem

R −→ max on L∞(Ω, IRn) .(2.1)

We now formulate our main results:

Theorem 2.2. Problem (2.1) admits a unique solution σ,

R(σ) = sup
τ∈L∞(Ω,IRn)

R(τ )

= inf
u∈ ◦

W 1
1,ψ(Ω)

J(u)

 ,

with the following properties:
(i) The maximizer σ is of class W 1

2,loc(Ω, IR
n).

(ii) σ is Hölder continuous in the interior of Ω with any exponent α ∈ (0, 1).

Remark 2.3. In [BF] partial regularity of the maximizer σ has been established
under much weaker assumptions as stated above. First of all, it is an easy exercise
to show that (i) of Theorem 2.2 holds under the hypothesis of the paper [BF] but
unfortunately we could not prove (ii) in this modified setting. The technical reason is
that our proof of Theorem 2.2 (ii) is based on a regularity result for local minimizers
of obstacle problems in BV which we only obtained under the assumption that the
minimal surface type ellipticity condition for f — taken from [GMS] — holds true. We
further conjecture that Theorem 2.2 (ii) remains valid if we replace the lower bound
in Assumption 2.1 (ii) by the weaker condition

D2f(P )(Q,Q) ≥ µ1√
1 + |P |2 3

|Q|2 ,

but we did not discuss this question seriously.1)

Remark 2.4. (i) These results are also valid in the case of non vanishing finite
boundary values.
(ii) Of course, the following arguments also cover the case without an obstacle and

Remark 6.2 (ii) of [BF] is proved.
1) Very recently the first author succeeded in proving Theorem 2.2(ii) assuming that

D2f(P )(Q,Q) ≥ µ1(1 + |P |2)−µ/2|Q|2 holds for some exponent µ < 3, we refer to [BI2].
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3. Proof of W 1
2,loc–regularity via a suitable regularization

From now on we assume that all the hypotheses stated in and before Theorem 2.2
are valid. Then the existence of a solution σ to problem (2.1) can be deduced along
the lines of [ET] or just by considering a maximizing sequence, the uniqueness of σ is
a consequence of the results established in [BI1]. Clearly we have

R(σ) = sup
τ∈L∞(Ω,IRn)

R(τ ) ≤ inf
u∈

◦
W 1

1,ψ(Ω)

J(u) ,(3.1)

the reverse inequality again follows from [ET] but is also a byproduct of the following
considerations: in order to construct a special maximizing sequence converging to σ
we let (0 < δ ≤ 1)

fδ(P ) =
δ

2
|P |2+ f(P ) , P ∈ IRn ,

Jδ(u) =
∫
Ω

fδ(∇u) dx , u ∈ ◦
W 2
1
,ψ(Ω) .

For functions u from this space we introduce

Jδ(u) = sup
τ∈L2(Ω,IRn)

∫
Ω

(
τ · ∇u− f∗

δ (τ )
)
dx =: sup

τ∈L2(Ω,IRn)

lδ(u, τ ) .

Define

Rδ(τ ) = inf
v∈

◦
W 1

2,ψ(Ω)

lδ(v, τ) , τ ∈ L2(Ω, IRn) ,

and let uδ denote the unique solution of

Jδ −→ min on
◦

W 2
1
,ψ(Ω) .

Lemma 3.1. (i) σδ := ∂fδ
∂P (∇uδ) is the unique solution of Rδ → max on L2(Ω, IRn).

(ii) The δ–version of the inf–sup relation holds, i. e. Jδ(uδ) = Rδ(σδ).

The proof is standard (see [ET], p. 85), for the reader’s convenience we give a short
and selfcontained proof using the next result which is of great importance for the rest
of the paper.

Lemma 3.2. For any δ > 0 we have
(i) gδ := χ[uδ=ψ]

( − div
{
Dfδ(∇ψ)

}) ≥ 0 almost everywhere,

(ii)
∫
Ω
σδ · ∇ϕdx =

∫
Ω
gδ ϕdx for all ϕ ∈ C10(Ω).

Proof of Lemma 3.2. Following [Fu1], [Fu2] and [FL] we define for any δ > 0

wε
t := uδ + t η hε ◦ (uδ − ψ)
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where 0 ≤ η ∈ C10(Ω), ε, t > 0 and hε ∈ C1(IR) is satisfying 0 ≤ hε ≤ 1, hε = 1 on

(0, ε) and hε = 0 on (2ε,∞). Since wε
t is of class

◦
W 2
1
,ψ,

1
t

[∫
Ω

fδ
(∇wε

t

)
dx−

∫
Ω

fδ(∇uδ) dx
]

≥ 0

holds true. Passing to the limit t → 0 we see∫
Ω

Dfδ(∇uδ) · ∇
(
η hε ◦ (uδ − ψ)

)
dx ≥ 0 ,

i. e. there exists a Radon measure λ = λδ such that for all ϕ ∈ C10(Ω)∫
Ω

Dfδ(∇uδ) · ∇
(
ϕhε ◦ (uδ − ψ)

)
dx =

∫
Ω

ϕdλ .

Notice that λ does not depend on ε. This can be proved by using w̃ = uδ+
η t
{
hε ◦ (uδ − ψ) − hε′ ◦ (uδ − ψ)

}
, ε < ε′, as testfunction provided t is small enough.

By standard arguments uδ is seen to be of class W 2
2,loc (see [HW] and also Lemma 3.3,

where the testfunction is explicitly given) and we obtain by a partial integration

−
∫
Ω

div
{
Dfδ(∇uδ)

}
hε ◦ (uδ − ψ)ϕdx =

∫
Ω

ϕdλ .(3.2)

Now the right–hand side of (3.2) is independent of ε and we may pass to the limit
ε → 0. Since ∇uδ = ∇ψ almost everywhere on [uδ = ψ] (see [GT], Lemma 7.7, p. 145),
we get ∫

Ω

gδ ϕdx =
∫
Ω

ϕdλ for all ϕ ∈ C10 (Ω) .

Thus the first conclusion is proved because λ is non–negative, the second one since
obviously ∫

Ω

Dfδ(∇uδ) · ∇
(
ϕ
(
1− hε ◦ (uδ − ψ)

))
dx = 0 . ✷

Proof of Lemma 3.1. Again supRδ ≤ inf Jδ is evident and we claim

Rδ(σδ) ≥ Jδ(uδ) = inf
v∈

◦
W 1

2,ψ(Ω)

Jδ(v) ,(3.3)

implying Lemma 3.1. To verify (3.3) we recall the duality relation

f∗
δ (σδ) + fδ(∇uδ) = σδ · ∇uδ .

Thus Lemma 3.2 gives

Rδ(σδ) = inf
v∈ ◦

W 1
2,ψ(Ω)

∫
Ω

[∇v · σδ − f∗
δ (σδ)

]
dx

= inf
v∈ ◦

W 1
2,ψ(Ω)

∫
Ω

σδ · (∇v −∇uδ) dx+
∫
Ω

fδ(∇uδ) dx =
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= inf
v∈ ◦

W 1
2,ψ(Ω)

∫
Ω

(v − uδ)gδ dx+ Jδ(uδ) ≥ Jδ(uδ)

since for all v ∈ ◦
W 2
1
,ψ we have

∫
Ω
(v − uδ)gδ dx =

∫
[uδ=ψ]

(v − ψ)gδ dx ≥ 0. ✷

Now we want to show that {σδ} is a maximizing sequence which converges to σ.
We let τδ = ∂f

∂P (∇uδ), i. e. σδ = δ∇uδ+τδ , and observe the following a priori bounds

‖τδ‖L∞ ≤ c1 , ‖σδ‖L2 ≤ c2 , δ

∫
Ω

|∇uδ|2 dx ≤ c3 .

After passing to subsequences we may assume

τδ
∗
⇁: τ ′ in L∞(Ω, IRn) , σδ ⇁: σ′ in L2(Ω, IRn) ,

and δ∇uδ → 0 in L2(Ω, IRn), in particular σ′ = τ ′, and after passing to a further
subsequence δ∇uδ → 0 a. e. on Ω. Next we claim

Lemma 3.3. The functions σδ are uniformly bounded (with respect to δ) in the
space W 1

2,loc(Ω, IR
n).

Assuming this for the moment we may select another subsequence such that

σδ(x) −→ σ′(x) for almost all x ∈ Ω ,(3.4)

and this enables us to prove

Lemma 3.4. σ′ is R–maximizing and the whole sequence {σδ} converges to σ′ = σ.

Proof of Lemma 3.4. Suppose by contradiction that for some ε > 0

R(σ′) ≤ sup
τ∈L∞(Ω,IRn)

R(τ )− ε ≤ inf
u∈ ◦

W 1
1,ψ(Ω)

J(u)− ε .

Then by the definition of Jδ

R(σ′) ≤ Jδ(uδ)− ε = Rδ(σδ)− ε .(3.5)

To study the right–hand side of (3.5) observe that for any fixed w ∈
◦

W 2
1
,ψ(Ω)

lim sup
δ↓0

Rδ(σδ) ≤
∫
Ω

σ′ · ∇wdx+ lim sup
δ↓0

∫
Ω

(−f∗
δ (σδ)

)
dx .(3.6)

By definition we have for all Z ∈ IRn

f∗
δ (Z) = sup

Y ∈IRn

[
Y ·Z − δ

2
|Y |2 − f(Y )

]
≥ −f(0)

and Fatou’s Lemma proves

lim sup
δ↓0

∫
Ω

−f∗
δ (σδ) dx = − lim inf

δ↓0

∫
Ω

f∗
δ (σδ) dx ≤

∫
Ω

− lim inf
δ↓0

f∗
δ (σδ) dx .
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Now (3.4) and

f∗
δ

(
σδ(x)

) ≥ Y · σδ(x)− δ

2
|Y |2 − f(Y ) for all Y ∈ IRn

imply almost everywhere

lim inf
δ↓0

f∗
δ (σδ(x)) ≥ Y · σ′(x) − f(Y ) for all Y ∈ IRn

and the definition of f∗ finally gives

lim inf
δ↓0

f∗
δ (σδ(x)) ≥ f∗(σ′(x)) .

Thus (3.6) proves for all w ∈ ◦
W 2
1
,ψ(Ω)

lim sup
δ↓0

Rδ(σδ) ≤
∫
Ω

[
σ′ · ∇w − f∗(σ′)

]
dx .

Given w ∈ ◦
W
1
1,ψ(Ω) we now approximate W 1

1(Ω) � v := w − ψ ≥ 0 with respect to

the W 1
1–norm by a sequence {vk} ⊂ W 1

2(Ω), vk ≥ 0. Setting wk := vk +ψ ∈ ◦
W 2
1
,ψ(Ω)

and observing σ′ ∈ L∞(Ω, IRn) we arrive at

lim sup
δ↓0

Rδ(σδ) ≤ R(σ′) .

So with (3.5) one obtains the contradiction

R(σ′) ≤ R(σ′)− ε .

The uniqueness of σ′ as maximizer of R yields the convergence of the whole sequence.
✷

Remark 3.5. The well–known inf–sup relation for R and J is a byproduct of the
above considerations since the assumption supR < inf J also implies (3.5).

It remains to give the

Proof of Lemma 3.3. Fix e ∈ IRn, |e| = 1, and define for IR � h �= 0

∆hg(x) =
1
h

{
g(x+ he)− g(x)

}
.

By a direct calculation it is easy to check that for η ∈ C∞
0 (Ω), 0 ≤ η ≤ 1,

v := uδ + ε∆−h
(
η2∆h[uδ − ψ]

) ∈ ◦
W 2
1
,ψ(Ω)

provided ε is small enough (see also [HW]). This gives the variational inequality∫
Ω

σδ · ∇
{
∆−h

(
η2∆h[uδ − ψ]

)}
dx ≥ 0
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and by a “partial integration”∫
Ω

∆hσδ · ∇
{
η2∆h[uδ − ψ]

}
dx ≤ 0 .(3.7)

Since uδ is of class W 2
2,loc ,

σδ = δ∇uδ +
∂f

∂Q
(∇uδ) ∈ W 1

2,loc

and we may pass to the limit h → 0 in (3.7). Setting e = eγ , γ = 1, . . . , n, and
summing up from 1 to n with respect to γ this yields∫

Ω

∂γσδ · ∇
{
η2∂γ [uδ − ψ]

}
dx ≤ 0 ,

implying (observe the definition of σδ)∫
Ω

η2D2fδ(∇uδ)
(∇∂γuδ,∇∂γuδ

)
dx

≤
∫
Ω

η2D2fδ(∇uδ)
(∇∂γuδ,∇∂γψ

)
dx

+
∫
Ω

D2fδ(∇uδ)
(∇∂γuδ, 2η∇η[∂γψ − ∂γuδ]

)
dx

≤
∫
Ω

{
D2fδ(∇uδ)

(
η∇∂γuδ, η∇∂γuδ

)} 1
2
{
D2fδ(∇uδ)

(
η∇∂γψ, η∇∂γψ

)} 1
2 dx

+
∫
Ω

{
D2fδ(∇uδ)

(
η∇∂γuδ, η∇∂γuδ

)}1/2
× {D2fδ(∇uδ)

(
2∇η[∂γψ − ∂γuδ], 2∇η[∂γψ − ∂γuδ]

)}1/2
dx .

Using Young’s inequality we see∫
Ω

η2D2fδ(∇uδ) (∇∂γuδ,∇∂γuδ) dx

≤ c(η)
∫
Ω

∥∥D2fδ(∇uδ)
∥∥[|∇2ψ|2 + |∇ψ|2 + |∇uδ|2

]
dx

and our Assumption 2.1 (ii) proves

∫
Ω

η2D2fδ(∇uδ)(∇∂γuδ,∇∂γuδ) dx

≤ c1(η)
∫
Ω

[
δ +

µ2√
1 + |∇uδ|2

][|∇2ψ|2 + |∇ψ|2 + |∇uδ|2
]
dx

≤ c2(η, ψ) + c3(η)
∫
Ω

[
δ |∇uδ|2 + |∇uδ|2√

1 + |∇uδ|2

]
dx ,
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where the right–hand side is uniformly bounded with respect to δ. Summarizing the
results,∫

Ω′
∂γσδ · ∇∂γuδ dx =

∫
Ω

D2fδ(∇uδ)(∇∂γuδ,∇∂γuδ) dx ≤ c(Ω′) < ∞
for all Ω′ ⊂⊂ Ω

is proved and the lemma follows immediately on account of

|∇σδ|2 ≤ c ∂γσδ · ∇∂γuδ

which again is a consequence of Young’s inequality. ✷

4. Proof of part (ii) of Theorem 2.2

Let M denote the set of all L1–limits of J–minimizing sequences from
◦
W 1
1,ψ(Ω).

First of all we note that any J–minimizing sequence {um} ⊂ ◦
W 1
1,ψ(Ω) is bounded in

BV (Ω) so that at least for a subsequence we have um →: u in L1(Ω), i. e. u ∈ M.
From now on we fix some u∗ in M and a J–minimizing sequence {um} generating u∗.
Let

Ĵ
(
w, Ω̂

)
:= inf

{
lim inf
k→∞

J(wk) : wk ∈ C1
(
Ω̂
)
, wk → w in L1loc

(
Ω̂
)}

.

We state the properties of Ĵ which are needed in the following:

Lemma 4.1. (i) Ĵ is lower semicontinuous with respect to L1loc
(
Ω̂
)
–convergence.

(ii) On W 1
1

(
Ω̂
)
, Ĵ and J

∣∣
Ω̂

coincide.

(iii) Ĵ(u∗,Ω) ≤ inf
{
J(u) : u ∈ u0+

◦
W 1
1
,ψ

(
Ω, IRN

)}
.

This lemma is easily proved (see [BF], Proposition 5.3) if we observe the lower
semicontinuity of J on W 1

1

(
Ω̂
)
with respect to the L1loc–topology (see [AD]). A deeper

result on Ĵ is the following representation formula of Goffman and Serrin (see
[GS]):

Lemma 4.2. The representation formula

Ĵ
(
u, Ω̂

)
=
∫
Ω̂

f(∇au) dx+
∫
Ω̂

f∞

( ∇su

|∇su|
)
d |∇su|

is true for all u ∈ BV
(
Ω̂
)
, where f∞ is the recession function of f defined by

f∞(X) = lim sup
t→+∞

f(tX)
t

.

The absolutely continuous part of Du with respect to the Lebesgue measure is here
denoted by ∇au, the singular part by ∇su and ∇su/|∇su| is the Radon–Nikodym
derivative.
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The third lemma follows from [AG], Theorem 2.1 respectively Proposition 2.2, p. 247
(see also [GMS] and [Re]).

Lemma 4.3. Consider u ∈ BV
(
Ω̂
)

and a sequence {um} ⊂ W 1
1

(
Ω̂
)

such that:
(i) um → u in L1(Ω̂) as m → ∞.
(ii)

∫
Ω̂

√
1 + |∇um|2 dx → ∫

Ω̂

√
1 + |∇u|2 as m → ∞.

(iii) ∇um ⇁ ∇u in the sense of measures as m → ∞.
Then Ĵ is continuous with respect to this kind of convergence, i. e.

Ĵ
(
um, Ω̂

) −→ Ĵ
(
u, Ω̂

)
as m → ∞ .

Next we show (as an alternative one can study a relaxed problem in the space
BVu0,ψ(Ω), see [GMS]):

Lemma 4.4. The function u∗ is a local Ĵ–minimizer on any ball BR(x) ⊂⊂ Ω with
respect to all BV –functions v satisfying v ≥ ψ almost everywhere on BR(x).

Proof . The proof follows the one given in [BF] (see Section 5 and Section 7), so we
only sketch the main arguments. Given the minimizing sequence {um}, we claim that
one can fix traces in the following way: for x0 ∈ Ω choose BR(x0), B2R(x0) ⊂⊂ Ω,

and a sequence {wm}m∈IN ⊂
◦

W 1
1
,ψ(Ω) such that:

(i) wm → u∗ in L1(Ω) as m → ∞ ,

(ii) limm→∞ J(wm) ≤ limm→∞ J(um) ,
(iii) wm

∣∣
∂BR(x0)

= u∗∣∣
∂BR(x0)

, where the traces are well defined functions of class

L1
(
∂BR(x0)

)
.

To prove this claim we follow exactly Section 7 of [BF], where we have to take care
of the obstacle: here, the main new feature is to extend the standard approximation
procedure for BV functions in such a way that the obstacle is respected. This approx-
imation argument is outlined in Appendix A and the above claim is seen to be true.
Now define

(a) I : W 1
1

(
BR(x0)

) −→ IR , I(w) :=
∫
BR(x0)

f(∇w) dx ,

(b) Kψ :=
{
w ∈ W 1

1,ψ

(
BR(x0)

)
: w
∣∣
∂BR(x0)

= u∗∣∣
∂BR(x0)

}
,

where W 1
1,ψ

(
BR(x0)

)
:=
{
w ∈ W 1

1

(
BR(x0)

)
: w ≥ ψ almost everywhere

}
, and let

vm = wm

∣∣
BR(x0)

. Then

inf
Kψ

I = lim inf
m→∞ I(vm)(4.1)

follows immediately as in [BF].
Consider now ϕ ∈ BV

(
BR(x0)

)
, ϕ ≥ ψ almost everywhere, such that

spt(ϕ− u∗)⊂⊂BR(x0). Then we choose (with a slight modification of Appendix A) a
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sequence ϕm ∈ Kψ satisfying ϕm → ϕ in L1
(
BR(x0)

)
and

∫
BR(x0)

√
1 + |∇ϕm|2 dx →∫

BR(x0)

√
1 + |∇ϕ|2, hence by Lemma 4.1 and Lemma 4.3

Ĵ
(
ϕ,BR(x0)

)
= lim

m→∞ Ĵ
(
ϕm, BR(x0)

)
= lim

m→∞ I(ϕm) ≥ inf
Kψ

I
(4.1)
= lim inf

m→∞ I(vm)

≥ Ĵ
(
u∗, BR(x0)

)
,

where the last inequality follows from vm → u∗ in L1(BR) (see (i)) and the definition
of Ĵ( · , BR). Thus the Lemma is proved. ✷

Let us now consider the sequence {uδ} introduced at the beginning of Section 3. By
construction {uδ} is a J–minimizing sequence, and after passing to a subsequence we
have convergence to a function u∗ ∈ M. Let us fix a ball BR(x0) compactly contained
in Ω. Then we may apply Lemma B.1 to see that u∗ is of class C1,α

(
BR(x0)

)
, hence

the singular part of ∇u∗ vanishes. Recalling Lemma 4.4 and using the representation
formula from Lemma 4.2, we can derive the Euler–Lagrange equation exactly along
the lines of Lemma 3.2 with the result∫

BR(x0)

∂f

∂P
(∇u∗) · ∇ϕdx =

∫
BR(x0)

g ϕ dx for all ϕ ∈ C∞
0

(
BR(x0)

)
,

where g ∈ L∞(BR(x0)
)
is defined as in Lemma 3.2 (i) with u∗ and f in place of uδ

and fδ . Recalling∫
BR(x0)

σδ · ∇ϕdx =
∫
BR(x0)

gδ ϕdx for all ϕ ∈ C∞
0

(
BR(x0)

)
with ‖gδ‖L∞ bounded independent of δ, we deduce

∫
BR(x0)

(
σδ − ∂f

∂P
(∇u∗)

)
· ∇ (η2[uδ − u∗]

)
dx

=
∫
BR(x0)

(gδ − g)η2(uδ − u∗) dx ,

(4.2)

where η ∈ C∞
0

(
BR(x0)

)
, 0 ≤ η ≤ 1, is fixed. As shown in [BF], proof of Theorem 6.1,

equation (4.2) yields ∇uδ → ∇u∗ almost everywhere provided∫
BR(x0)

(gδ − g)η2(uδ − u∗) dx −→ 0(4.3)

as δ ↓ 0. But (4.3) follows from uδ → u∗ in L1(Ω) combined with the L∞–bounds
for gδ and g. The pointwise convergence ∇uδ → ∇u∗ finally implies σ = ∂f

∂Q(∇u∗) on
BR(x0) (compare again [BF], proof of Theorem 6.1) and since BR(x0) was arbitrary
σ ∈ C0,α(Ω, IRn) is established. ✷
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Appendix A. Approximation of BV–functions in the presence
of an obstacle

We now prove that the standard approximation of a function with bounded variation
can be modified such that the obstacle is respected.

Lemma A.1. Consider a ball BR and a function u ∈ BV (BR) satisfying u ≥ ψ
almost everywhere. Then there exists a sequence {uj} ⊂ C∞(BR) with the following
properties:

(i) limj→∞
∫
BR

|u− uj | dx = 0 ,

(ii) limj→∞
∫
BR

|Duj| dx =
∫
BR

|Du| ,
(iii) uj

∣∣
∂BR

= u
∣∣
∂BR

,

(iv) uj(x) − ψ(x) > 0 on BR.

Proof . Consider u ∈ BV (BR) such that u ≥ ψ almost everywhere. Fix a function
g ∈ C∞(BR) satisfying g > 0 on BR and g

∣∣
∂BR

≡ 0, for example we may take a
smooth function approximating g̃(x) = R − |x|. Then for any fixed ε0 > 0 and for
δ ∈ IR+ small enough, wδ := u+ δg satisfies∫

BR

|u− wδ| dx < ε0 and
∣∣∣∣∫
BR

|Dwδ| −
∫
BR

|Du|
∣∣∣∣ < ε0 .(A.1)

Furthermore we have by construction

wδ > ψ on BR and wδ

∣∣
∂BR

= u
∣∣
∂BR

.(A.2)

Fixing some δ as above we write w := wδ and now approximate this function following
for example [Gi], Theorem 1.17, p. 14: for any fixed 0 < ε < ε0 there exists a number
m ∈ IN such that ∫

BR∼B0
|Dw| < ε .

Here we have abbreviated

Bk :=
{
x ∈ BR : dist(x, ∂BR) >

1
m+ k

}
for k = 0 , 1 , 2 , . . .

and B−j := ∅ for all j ∈ IN. The sets Ai, i ∈ IN, are defined by induction:

A1 := B2 , Ai := Bi+1 ∼ Bi−1 , i = 2 , 3 , . . . .

As usual consider a partition of the unity {ϕi} subordinate to the covering {Ai}, i. e.

ϕi ∈ C∞
0 (Ai) , 0 ≤ ϕi ≤ 1 ,

∞∑
i=1

ϕi = 1 on BR .

Let η denote a positive symmetric mollifier and define εi > 0 according to

(a) spt ηεi ∗ (wϕi) ⊂ B i+2 ∼ B
i−2

,



Bildhauer and Fuchs, Obstacle Problems with Linear Growth 17

(b)
∫
BR

|ηεi ∗ (wϕi) −wϕi| dx < ε2−i,

(c)
∫
BR

|ηεi ∗ (wDϕi) −wDϕi| dx < ε2−i.
Now introduce the function

vε :=
∞∑
i=1

ηεi ∗ (wϕi) .

Then we have to prove that vε respects the obstacle. To do this, observe that

w
∣∣
Bi+4−Bi−4 > ψ + ρi

for a real number ρi > 0. Setting ϕ0 ≡ ϕ−1 ≡ 0, for all i0 ∈ IN and for all x ∈ Ai0

vε(x) =
i0+2∑

i=i0−2
ηεi ∗ (wϕi)(x) >

i0+2∑
i=i0−2

ηεi ∗ ((ψ + ρi0)ϕi)(x)(A.3)

follows. In addition to (a) – (c) now choose εi small enough such that for i0− 2 ≤ i ≤
i0 + 2 and for all x ∈ Ai0

|ηεi ∗ (ψϕi) − ψϕi| � ρi0 and |ηεi ∗ ϕi − ϕi| � ρi0 .

Then (A.3) implies for x ∈ Ai0

vε(x) >

i0+2∑
i=i0−2

[
ψ(x) +

ρi0
2

]
ϕi(x) = ψ(x) +

ρi0
2

and since this is true for all i0 ∈ IN, we have proved

vε(x) > ψ(x) for all x ∈ BR .(A.4)

If ε → 0, then convergence in L1 and also∫
BR

|vε − w| dx ≤
∞∑
i=1

∫
BR

|ηεi ∗ (wϕi) −wϕi| dx < ε0(A.5)

follows from (b) and w =
∑∞

i=1wϕi. Semicontinuity, that is∫
BR

|Dw| ≤ lim inf
ε→0

∫
BR

|Dvε| dx ,

(see [Gi], Theorem 1.9, p. 7) proves at least for some small enough ε > 0∫
BR

|Dw| ≤
∫
BR

|Dvε| dx+ ε0 .(A.6)

To show the reverse inequality we fix a function τ ∈ C10(BR), |τ | ≤ 1 and prove exactly
as in [Gi], p. 15, ∫

BR

vε divτ dx ≤
∫
BR

|Dw|+ ε0 .(A.7)

Observe that τ is compactly supported and only finite sums are to be considered,
i. e. we can interchange summation and integration. If we choose δ and ε such that
(A.1) and (A.5) – (A.7) are fulfilled for ε0 = 1/j, j ∈ IN, then the sequence {uj},
uj = vε, is by (A.2) and (A.4) seen to satisfy all the conclusions of the lemma. ✷
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Appendix B. A regularity result for BV–obstacle problems

Let {uδ} denote the sequence introduced in Section 3 and consider a weak cluster
point u∗ of {uδ}, i. e. the weak limit for a suitable sequence δ ↓ 0. We claim

Lemma B.1. u∗ is of class C1,α(Ω) for any 0 < α < 1.

This regularity result is a consequence of

Lemma B.2. The first weak derivatives of u∗ are locally bounded functions, i. e. u∗

belongs to the space W 1
∞,loc(Ω).

Conjecture B.3. This statement is true for any generalized minimizer v ∈ M.2)

Given LemmaB.2, the proof of Lemma B.1 in fact is standard: since the singular part
of ∇u∗ vanishes, Lemma 4.2 and Lemma 4.4 together imply that u∗ locally minimizes

w �−→
∫
BR

f(∇w) dx

on any ball BR ⊂⊂ Ω subject to the constraint w ≥ ψ almost everywhere on BR. We
fix a ball BR and insert the admissible comparison function

v = u∗ + ε∆−h
(
η2∆h[u∗ − ψ]

)
for η ∈ C∞

0 (BR), 0 ≤ η ≤ 1, where ∆±h denotes the difference quotient in a given
coordinate direction e and ε is sufficiently small. Then∫

BR

{∫ 1

0

D2f
(∇u∗(x) + th∆h∇u∗(x+ he)

)
dt

}
× (∆h∇u∗(x),∇[η2(x)∆h(u∗ − ψ)(x)

])
dx ≤ 0 ,

and due to Lemma B.2 the bilinear form {. . .} is uniformly elliptic. Thus the above
inequality implies u∗ ∈ W 2

2,loc(BR), i. e. u∗ ∈ W 2
2,loc(Ω). On the other hand, we may

repeat the proof of Lemma 3.2 to get∫
Ω

Df(∇u∗) · ∇ϕdx =
∫
Ω

gϕ dx

valid for all ϕ ∈ C10(Ω) with g defined according to Lemma 3.2 (i) where of course now
the index δ has to be dropped. Let v = ∂su

∗ denote any weak derivative. Then∫
Ω

D2f(∇u∗)
(∇v,∇ϕ

)
dx = −

∫
Ω

g∂sϕdx

for all ϕ ∈ C10(Ω). The coefficients ∂2f
∂pα∂pβ

(∇u∗) of this equation are uniformly elliptic
on any subdomain, Hölder continuity of v can be deduced from [GT], Theorem 8.22.

✷

2) In the mean time we obtained a positive answer to conjecture B3 since it can be shown that
generalized minimizers are unique up to a constant.
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It remains to prove Lemma B.2. Actually Lemma B.2 corresponds to Proposition 3.6
of [GMS] but since the proof given by Giaquinta – Modica– Souček is quite con-
densed and since due to the presence of the obstacle our setting is slightly different,
we prefer to present the necessary steps in somewhat more detail. We also would like
to point out that similar gradient bounds occur in the papers of Gerhardt [GE] and
Ladyzhenskaya – Ural’tseva [LU]. Following [GMS] and also [LU] we introduce
the following notation:

ωδ := ln
(
1 + |∇uδ|2

)
, νδ(x) :=

1√
1 + |∇uδ|2

(−∇uδ(x), 1
)
,

Aδ,k :=
{
x ∈ Ω : ωδ(x) ≥ k

}
, Sδ,k :=

{(
x, uδ(x)

)
: x ∈ Aδ,k

}
.

For ξ ∈ IRn we let ξ̂ := (ξ, 0) ∈ IRn+1 and

ξ′ := ξ̂ − (ξ̂ · νδ)νδ(
more precisely we should write ξ′ = ξ′δ

)
, then our ellipticity condition implies

µ1√
1 + |∇uδ|2

|ξ′|2 ≤ D2f(∇uδ)
(
ξ, ξ
) ≤ µ2√

1 + |∇uδ|2
|ξ′|2 .

If w : Ω → IR denotes a function for which the next expression makes sense, we let

Dw := ∇ŵ − (∇ŵ · νδ)νδ .

Proposition B.4. (Compare [GMS], inequality (3.12).) There exist positive con-
stants c, C and k0 = k0(ψ) independent of δ such that for all η ∈ C10(Ω), 0 ≤ η ≤ 1,
we have

c

∫
Sδ,k

|Dωδ|2η2 dHn + δ

∫
Aδ,k

(
1 + |∇uδ|2

)|∇ωδ|2η2 dx

≤ C

∫
Sδ,k

(ωδ − k)2 |Dη|2 dHn + δ

∫
Aδ,k

(
1 + |∇uδ|2

)
(ωδ − k)2 |∇η|2 dx

being valid for all k ≥ k0(ψ).

Remark B.5. For functions w : Ω → IR we have by definition∫
Sδ,k

w dHn =
∫
Sδ,k

w(x1, . . . , xn) dHn(x1, . . . , xn+1)

=
∫
Aδ,k

w
√
1 + |∇uδ|2 dx .

Proof of Proposition B.4. We recall the Euler equation from Lemma 3.2∫
Ω

Dfδ(∇uδ) · ∇ϕdx =
∫
Ω

gδϕdx

with right–hand side gδ supported on the coincidence set
[
uδ = ψ

]
. Fix a coordinate

direction s = 1, . . . , n and let ∆±h denote the corresponding difference quotients. For
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k > 0 and η as above we let ϕ := ∆−h
(
∆huδ max{ωδ − k, 0}η2) and “perform an

integration by parts” in order to get after passing to the limit h → 0 (from now on
summation with respect to s)∫

Aδ,k

D2fδ(∇uδ)
(
∂s∇uδ,∇

(
∂suδ(ωδ − k)η2

))
dx

= −
∫
Aδ,k

gδ∂s
(
∂suδη

2max{ωδ − k, 0})dx .

(B.1)

We have (compare [GT], Lemma 7.7)

gδ max{ωδ − k, 0} = gδ max
{
ln
(
1 + |∇ψ|2)− k, 0

}
,

hence the right–hand side of (B.1) vanishes for k ≥ k0(ψ). On the left–hand side we
observe ∫

Aδ,k

D2fδ
(
∂s∇uδ, ∂s∇uδ

)
(ωδ − k)η2 dx ≥ 0 ,

and according to fδ = f + δ
2 | · |2 we get four additional terms which are handled as

follows: ∫
Aδ,k

D2f(∇uδ)
(
∂s∇uδ, ∂suδ∇ωδη

2
)
dx

=
1
2

∫
Aδ,k

D2f(∇uδ)
(∇|uδ|2,∇ωδη

2
)
dx

=
1
2

∫
Aδ,k

D2f(∇uδ)
(∇ωδ,∇ωδ

)
(1 + |∇uδ|2)η2 dx

≥ µ1
2

∫
Aδ,k

|Dωδ|2
√

1 + |∇uδ|2 η2 dx

=
µ1
2

∫
Sδ,k

|Dωδ|2 η2 dHn ,

δ

∫
Aδ,k

∂s∇uδ · ∂suδ∇ωδη
2 dx =

δ

2

∫
Aδ,k

|∇ωδ|2
(
1 + |∇uδ|2

)
η2 dx ,

the third term is estimated from above:∣∣∣∣∣
∫
Aδ,k

D2f(∇uδ)
(
∂s∇uδ, ∂suδ(ωδ − k)∇η2

)
dx

∣∣∣∣∣
≤
∫
Aδ,k

(
D2f(∇uδ)

(∇ |∇uδ|2,∇ |∇uδ|2
)) 1

2
(
D2f(∇uδ)

(∇η,∇η
)) 1

2 η(ωδ − k) dx

≤
∫
Aδ,k

(
µ2√

1 + |∇uδ|2
∣∣D |∇uδ|2

∣∣2)1
2
(

µ2√
1 + |∇uδ|2

|Dη|2
)1

2

η(ωδ − k) dx

=
∫
Aδ,k

µ2 |Dωδ| |Dη| η(ωδ − k)
√
1 + |∇uδ|2 dx

=
∫
Sδ,k

µ2 |Dωδ| |Dη| η(ωδ − k) dHn ,
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and the last one satisfies∣∣∣∣∣δ
∫
Aδ,k

∂s∇uδ · ∇η2∂suδ(ωδ − k) dx

∣∣∣∣∣ ≤ δ

∫
Aδ,k

(
1 + |∇uδ|2

) |∇ωδ| |∇η| η(ωδ − k) dx .

Now, if we let k > k0(ψ) and if we apply Young’s inequality, the claim of Proposi-
tion B.4 follows from Equation (B.1) together with the above estimates. ✷

Proposition B.6. (Compare [GMS], inequality (3.13).) There are constants C
and k0 = k0(ψ) not depending on δ and k such that for all k > k0 and η ∈ C10 (Ω),
0 ≤ η ≤ 1, we have

δ

∫
Aδ,k

(ωδ − k)2
∣∣∇2uδ∣∣2η2 dx

≤ C

{∫
Sδ,k

(ωδ − k)2 |Dη|2 dHn + δ

∫
Aδ,k

(
1 + |∇uδ|2

) |∇η|2(ωδ − k)2 dx
}
.

Proof . Replacing the derivative ∂s by the difference quotients ∆−h and ∆h we let
ϕ = ∂s

(
∂suδ max{ωδ − k, 0}2η2) and deduce from the Euler equation for uδ at least

for k ≥ k0(ψ)

0 =
∫
Aδ,k

D2fδ(∇uδ)
(
∂s∇uδ,∇

[
∂suδ(ωδ − k)2η2

])
dx

=
∫
Aδ,k

D2fδ(∇uδ)
(
∂suδ∂s∇uδ, 2(ωδ − k)∇ωδη

2
)
dx

+
∫
Aδ,k

D2fδ(∇uδ)
(
∂s∇uδ, ∂s∇uδ

)
(ωδ − k)2η2 dx

+
∫
Aδ,k

D2fδ(∇uδ)
(
∂suδ∂s∇uδ,∇η2

)
(ωδ − k)2 dx =: T0 + T1 + T2 .

Since ∂suδ∂s∇uδ = 1
2 ∇ |∇uδ|2 and ∇ωδ =

(
1 + |∇uδ|2

)−1∇ |∇uδ|2, we get T0 ≥ 0.
The ellipticity of D2f implies

T1 ≥ µ1

∫
Aδ,k

1√
1 + |∇uδ|2

|D∂suδ|2(ωδ − k)2η2 dx+ δ

∫
Aδ,k

∣∣∇2uδ∣∣2(ωδ − k)2η2 dx .

For T2 we use the upper bound imposed on D2f together with the Cauchy–Schwarz
inequality with the result

|T2| ≤ µ2

∫
Aδ,k

|Dη| η(ωδ − k)2√
1 + |∇uδ|2

∣∣D |∇uδ|2
∣∣ dx+ δ

∫
Aδ,k

∣∣∇ |∇uδ|2
∣∣ |∇η| η(ωδ − k)2 dx

≤ εµ2

∫
Aδ,k

√
1 + |∇uδ|2 |Dωδ|2η2(ωδ − k)2 dx+

µ2
ε

∫
Sδ,k

|Dη|2(ωδ − k)2 dHn

+ δ

∫
Aδ,k

|∇ωδ|
(
1 + |∇uδ|2

) |∇η| η(ωδ − k)2 dx
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being valid for any ε > 0. It is easy to check that

|Dωδ| ≤ 2
1 + |∇uδ|2 |∇uδ|

√
D(∂suδ) · D(∂suδ)

holds, hence we get after appropriate choice of ε

δ

∫
Aδ,k

∣∣∇2uδ∣∣2 (ωδ − k
)2
η2 dx

≤ C

{∫
Sδ,k

|Dη|2(ωδ − k)2 dHn + δ

∫
Aδ,k

|∇ωδ|
(
1 + |∇uδ|2

) |∇η| η(ωδ − k)2 dx
}
.

In a last step we observe

∫
Aδ,k

|∇ωδ|
(
1 + |∇uδ|2

) |∇η| η(ωδ − k)2 dx

≤ 2ε
∫
Aδ,k

η2
∣∣∇2uδ∣∣2 (ωδ − k)2 dx+

1
ε

∫
Aδ,k

|∇η|2 (1 + |∇uδ|2
)
(ωδ − k)2 dx ,

and the claim of Proposition B.6 follows. ✷

For balls Br compactly contained in Ω and positive numbers h we let

A(h, r) := Aδ(h, r) := Aδ,h ∩Br ,

S(h, r) := Sδ(h, r) := (A(h, r)× IR) ∩ Sδ =
{(

x, uδ(x)
)
: x ∈ A(h, r)

}
,

a(h, r) := aδ(h, r) := Hn(S(h, r)) =
∫
A(h,r)

√
1 + |∇uδ|2 dx ,

τ (h, r) := τδ(h, r) :=
∫
S(h,r)

(ωδ − h)2 dHn + δ

∫
A(h,r)

(
1 + |∇uδ|2

)
(ωδ − h)2 dx .

Proposition B.7. Fix a ball BR0 compactly contained in Ω. Then for arbitrary
numbers h > k ≥ k0(ψ) and 0 < r < R ≤ R0 the following estimates hold:

a) τ (h, r) ≤ c1
(R−r)2 τ (h, R) a(h, r)

2
n ,

b) a(h, r) ≤ 1
(h−k)2 τ (k, r) .

Here c1 is a constant independent of h, k, r, R, and δ.

Proof . Let η ∈ C10(BR), 0 ≤ η ≤ 1, η ≡ 1 on Br and |∇η| ≤ c(R− r)−1.
(i) Let us assume n ≥ 3, the case n = 2 requires some non–essential modifications.
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We have by Hölder’s and Sobolev’s inequality (see [GMS], Lemma 3.8, compare [LU])∫
S(h,r)

(ωδ − h)2 dHn ≤ a(h, r)
2
n

(∫
S(h,R)

{
η(ωδ − h)

} 2n
n−2 dHn

)n−2
n

≤ c a(h, r)
2
n

∫
S(h,R)

∣∣D{η(ωδ − h)
}∣∣2 dHn

≤ c a(h, r)
2
n

∫
S(h,R)

{
(ωδ − h)2 |Dη|2 + η2 |Dωδ|2

}
dHn

≤ c

(R− r)2
a(h, r)

2
n

∫
S(h,R)

(ωδ − h)2 dHn

+ c a(h, r)
2
n

∫
S(h,R)

η2 |Dωδ|2 dHn .

(ii) On account of n−1
2n < 1

2 we get in the same manner∫
A(h,r)

(
1 + |∇uδ|2

)
(ωδ − h)2 dx

≤ a(h, r)
2
n

(∫
A(h,R)

{
η
(
1 + |∇uδ|2

)n−1
2n (ωδ − h)

} 2n
n−2

dx

)n−2
n

≤ a(h, r)
2
n

(∫
A(h,R)

{
η
√

1 + |∇uδ|2 (ωδ − h)
} 2n
n−2

dx

)n−2
n

≤ c a(h, r)
2
n

∫
A(h,R)

∣∣∣∇{η√1 + |∇uδ|2 (ωδ − h)
}∣∣∣2 dx ,

thus

δ

∫
A(h,r)

(
1 + |∇uδ|2

)
(ωδ − h)2 dx

≤ c δ a(h, r)
2
n

{
1

(R− r)2

∫
A(h,R)

(
1 + |∇uδ|2

)
(ωδ − h)2 dx

+
∫
A(h,R)

η2(ωδ − h)2
∣∣∇2uδ∣∣2 dx+

∫
A(h,R)

η2
(
1 + |∇uδ|2

) |∇ωδ|2 dx
}
.

(iii) Putting together the estimates from (i) and (ii) and using the results from
Propositions B.4 and B.6, we immediately deduce claim a) of Proposition B.7.
(iv) Claim b) is immediate:

a(h, r) =
∫
A(h,r)

√
1 + |∇uδ|2 dx

≤ 1
(h− k)2

∫
A(h,r)

(ωδ − k)2
√
1 + |∇uδ|2 dx

≤ 1
(h− k)2

∫
A(k,r)

(ωδ − k)2
√
1 + |∇uδ|2 dx

=
1

(h− k)2
τ (k, r) . ✷
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With notation introduced in and before Proposition B.7 we infer from Lemma 3.7 in
[GMS] (compare [ST], Lemma 5.1): there exist numbers d ≥ k0(ψ) and c2 = c2(c1, n)
such that

a

(
d,

R0
2

)
τ

(
d,

R0
2

)
= 0 .

For d we have the estimate

d ≤ c2 τ (0, R0)
1
2R

−n
2 θ

0 a(0, R0)
θ−1
2 , θ :=

1
2
+

√
1
4
+

2
n

.

Remark B.8. In order to apply Lemma 3.7 of [GMS] it is sufficient to check the
hypothesis just for h > k ≥ k0(ψ).

By construction we deduce A
(
d, R0

2

)
= ∅, i. e.

|∇uδ(x)|2 ≤ ed on BR0/2 ,

thus it remains to estimate d which means that we have to control

T1 :=
∫
S(0,R0)

ω2δ dHn + δ

∫
BR0

(
1 + |∇uδ|2

)
ω2δ dx and

T2 :=
∫
BR0

√
1 + |∇uδ|2 dx .

For a suitable constant c we have

T2 ≤ c Jδ(uδ) ≤ c Jδ
(
max{0, ψ}) ≤ c J1

(
max{0, ψ})

if we assume without loss of generality δ ≤ 1. Thus it remains to find a suitable bound
for T1. Assuming B2R0 ⊂⊂ Ω we let ϕ = uδω

2
δη
2 with η = 1 on BR0 , 0 ≤ η ≤ 1,

|∇η| ≤ c/R0. Inserting ϕ as test function into the Euler equation from Lemma 3.2
and using the structural conditions for f we get (applying also Young’s inequality)

ν1

∫
B2R0

√
1 + |∇uδ|2 ω2δη2 dx+ δ

∫
B2R0

ω2δ |∇uδ|2η2 dx− ν2

∫
B2R0

ω2δη
2 dx

≤ C

{
1
R0

sup
Ω

|uδ|
∫
B2R0

ω2δ dx

+ sup
Ω

|uδ|
∫
B2R0

η2
(
εω2δ
√
1 + |∇uδ|2 + ε−1

1√
1 + |∇uδ|2

|∇ωδ|2
)
dx

+ δ sup
Ω

|uδ|
∫
B2R0

{
2εη2 |∇uδ|2 ω2δ + ε−1

[
ω2δ |∇η|2+ |∇ωδ|2η2

]}
dx

+
∫
B2R0

gδuδω
2
δη
2 dx

}
.

Since ω2δ is bounded by
√

1 + |∇uδ|2 , we can apply the same reasoning as for T2 to
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get a uniform bound for
∫
B2R0

ω2δ dx. Moreover we have∫
B2R0

gδuδω
2
δη
2 dx ≤ C sup

Ω
|uδ|

∫
B2R0

ω2δ dx ,

hence the desired bound for T1 follows after appropriate choice of ε and η as soon we
can control supΩ |uδ| and

T3 :=
∫
B2R0

η2
|∇ωδ|2√
1 + |∇uδ|2

dx+ δ

∫
B2R0

η2 |∇ωδ|2 dx .

Let v := min
{
uδ, supΩ |ψ|

}
. Then the minimality of uδ implies (recall f ≥ 0)∫

Ω

fδ(∇uδ) dx ≤
∫
Ω

fδ(∇v) dx =
∫[

uδ≤supΩ |ψ|
] fδ(∇uδ) dx ,

so that ∇uδ = 0 on
[
uδ > supΩ |ψ|], i. e. uδ ≤ supΩ |ψ|. In order to discuss T3 we

observe |∇ωδ|2 ≤ |Dωδ|2
(
1 + |∇uδ|2

)
, therefore we are going to consider

T ′
3 :=

∫
B2R0

η2 |Dωδ|2
√
1 + |∇uδ|2 dx+ δ

∫
B2R0

η2 |∇ωδ|2 dx .

To this purpose we let ϕ := ∂s
(
η2∂suδ

)
in the Euler equation for uδ, thus∫

B2R0

D2fδ(∇uδ)
(∇∂suδ,∇∂suδ

)
η2 dx+

∫
B2R0

D2fδ(∇uδ)
(∇∂suδ,∇η2

)
∂suδ dx

= −
∫
B2R0

gδ∂s
(
η2∂suδ

)
dx

= −
∫
B2R0

gδ∂s
(
η2∂sψ

)
dx ,

and the right–hand side is bounded independent of δ. The first integral on the left–
hand side is bounded from below by

µ1

∫
B2R0

η2
1√

1 + |∇uδ|2
|D∂suδ|2 dx+ δ

∫
B2R0

∣∣∇2uδ∣∣2η2 dx ,

further we have (for any ε > 0)∣∣∣∣ ∫
B2R0

D2fδ
(∇∂suδ,∇η2

)
∂suδ dx

∣∣∣∣
≤ 2

∫
B2R0

|∇uδ|
(
D2f(∇uδ)

(∇∂suδ,∇∂suδ
)) 1

2
(
D2f(∇uδ)

(∇η,∇η
)) 1

2 η dx

+ ε δ

∫
B2R0

η2
∣∣∇2uδ∣∣2 dx+ c

δ

ε

∫
B2R0

|∇η|2 |∇uδ|2 dx

≤ c µ2

∫
B2R0

η
√

D∂suδ · D∂suδ |Dη| dx+ ε δ

∫
B2R0

η2
∣∣∇2uδ∣∣2 dx +
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+ c
δ

ε

∫
B2R0

|∇η|2 |∇uδ|2 dx

≤ ε c µ2

∫
B2R0

η2
|D∂suδ|2√
1 + |∇uδ|2

dx+
c µ2
ε

∫
B2R0

√
1 + |∇uδ|2 |Dη|2 dx

+ ε δ

∫
B2R0

η2
∣∣∇2uδ∣∣2 dx+ c

δ

ε

∫
B2R0

|∇η|2 |∇uδ|2 dx .

Appropriate choice of ε yields after absorbing terms

∫
B2R0

1√
1 + |∇uδ|2

|D∂suδ|2η2 dx+ δ

∫
B2R0

∣∣∇2uδ∣∣2η2 dx
≤ C(R0)

{
1 +

∫
B2R0

√
1 + |∇uδ|2 dx+ δ

∫
B2R0

|∇uδ|2 dx
}
.

The boundedness of δ
∫
B2R0

|∇uδ|2 dx is immediate (see Section 3), hence∫
B2R0

1√
1 + |∇uδ|2

|D∂suδ|2η2 dx+ δ

∫
B2R0

∣∣∇2uδ∣∣2η2 dx ≤ C ,

where C — as before — denotes a local constant not depending on δ. Finally we recall

|Dωδ|2 ≤ c

1 + |∇uδ|2 |D∂suδ|2 and |∇ωδ|2 ≤ c
∣∣∇2uδ∣∣2 ,

thus T ′
3 is bounded. Putting together all our results we arrive at

|∇uδ(x)| ≤ C < ∞
for all x ∈ BR0/2, C being independent of δ. From this the claim of Lemma B.2 follows
by passing to the limit δ ↓ 0 and a covering argument. ✷
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matics 80, Birkhäuser, Boston –Basel – Stuttgart, 1984

[GS] Goffman, C., and Serrin, J.: Sublinear Functions of Measures and Variational Integrals,
Duke Math. J. 31 (1964), 159 – 168

[HW] Hildebrandt, S., and Widman, K. O.: Variational Inequalities for Vector Valued Functions,
J. Reine Angew. Math. 309 (1979), 191 – 220

[LU] Ladyzhenskaya, O. A., and Ural’tseva, N. N.: Local Estimates for Gradients of Solutions
of Non–Uniformly Elliptic and Parabolic Equations, Comm. on Pure and Appl. Math. 23
(1970), 677 – 703

[Re] Reschetnyak, Y.: Weak Convergence of Completely Additive Vector Functions on a Set,
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