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Abstract. We consider a multiphase, incompressible, elastic body with k
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1 Introduction

Consider a multiphase elastic body with k preferred states which is in equilibrium
under a given volume load f . Assume further that the temperature is fixed. Then
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the equilibrium configuration is described by the variational problem (P): find a
displacement u: Ω → R

d such that

I(u) = inf
C
I(v),

I(u) =
∫

Ω
(g(ε(u)) − f · u) dx, ε(u) =

1
2
(∇u+ ∇uT) (strain tensor),

g = min{g1, . . . , gk},

where gi is the elastic potential of the ith phase, i = 1, 2, . . . , k, Ω ⊂ R
d, d = 2, 3,

is a bounded domain and C ⊂ u0+
◦
Wm

1 (Ω,Rd) for a suitable m > 1. In addition,
from now on the incompressible case is considered, i.e. divu = 0 and therefore

C = {u ∈ u0+
◦
Wm

1 (Ω,Rd) : divu ≡ 0}.
Problem (P) may fail to have solutions, even without the incompressibility condi-
tion, and therefore one passes to a relaxed problem which means that a suitable
quasiconvex envelope Qg is introduced taking care of the constraint divu = 0.
The relaxed problem then reads

(QP)




to find a displacement field u ∈ C such that

QI(u) = inf
C
QI(v)

QI(u) :=
∫
Ω{Qg(ε(u)) − f · u} dx

If u is a solution of (QP), then one is interested in the regularity properties of u
which is a quite delicate question since as a matter of fact one expects degeneracy
of Qg, and since the representation formula obtained in [SE3] is not local, it is
hard to decide where degeneracy occurs. So, much attention has been paid to get
explicit formulas for Qg (compare [KO], [SE3]) and regularity with the help of
some explicit formulas was proved in [SE3] and [FS1]. But due to the complex
nature of the problem, success has been obtained only in very special cases.

In place of this we investigate the smoothness of solutions to (QP) via
local arguments in the spirit of [AG] and [AF]. To this purpose we first prove
Theorem 2.1, assuming for simplicity that the volume load vanishes. Roughly
speaking, Theorem 2.1 states that if g has m-growth (m ≥ 2), g is of class C2 in
some neighbourhood of ε0 = ε(u)(x0) and J1

m-strictly quasiconvex at ε0, then u
is smooth in some neighbourhood of x0 provided ε(u) is close in measure to ε0
on balls centered at x0. Concerning the notion of J1

m-quasiconvexity we refer the
reader to [SE3]. The result is also true for sufficiently regular f .

Of course, Theorem 2.1 has a counterpart in the spirit of [AG] for glob-
ally convex integrands g formulated in Theorem 6.1. It is interesting that even in
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the case of global convexity of g Theorem 2.1 gives sometimes better results than
Theorem 6.1 as it is shown by an example (see Proposition 6.5 I and Remark 6.6).

Let us come back to (QP) and assume that g1, . . . , gk are just quadratic
potentials (a general version is given in Section 7). Suppose further that

Qg = g∗∗, (1.1)

where g∗∗ is the second Young transform of g defined on the space of all d×dmatri-
ces which are symmetric with zero trace. Condition (1.1) can be verified in the two-
dimensional case (see [SE3], Theorem 2.3) but in general does not hold for d = 3
even if we just consider two wells, we refer to [SE3] for a counterexample. Under
additional assumptions explicit formulas for Qg (implying (1.1)) were given in
[FS1] and also in [SE3]. Here, we prove our main result (see Theorems 7.2 and 7.3)
without using any explicit representation of Qg. In particular, in Theorem 7.3 it
is stated that the stress tensor is regular on the union of pure phases which is an
open set. Let us remark again that in the incompressible two-dimensional case
(1.1) holds for any number k of quadratic or m-growth potentials. Thus we have
a generalisation of Theorem 2.2 in [FS1]. Nevertheless Theorem 2.2 of [FS1] is
slightly stronger in the sense that in this special setting x0 is only required to be
a Lebesgue point of the stress tensor σ which due to the weak differentiability of
σ (compare Theorem 2.1 in [FS1]) holds up to a set of Hausdorff-dimension zero.
For completeness we would like to mention that in the case of two wells a more
refined analysis of the smoothness of the stress tensor σ is possible. According to
[SE3], Theorem 2.7, we can define a quadratic function of σ which controls the
distribution of phases and which is everywhere continuous on Ω.

2 Local regularity of the elastic displacement
in points of strict quasiconvexity

As usual M
d denotes the space of all real d × d matrices, M

◦
d the subspace of

matrices with vanishing trace, S
d the subspace consisting of symmetric matrices,

S
◦

d the subspace of symmetric matrices with vanishing trace. We set for u = (ui),
v = (vi) ∈ R

d, for Š = (κij), κ = (κij) ∈ M
d and for Š

T := (Šji) ∈ M
d

u · v := uivi, |u| :=
√
u · u, u⊗ v := (uivj) ∈ M

d,

Š : κ := tr (ŠTκ) = Šijκij , |Š| :=
√

Š : Š , Šu := (Šijuj) ∈ R
d,

where we always take the sum over repeated Latin indices from 1 to d. For balls
in R

d the symbol B(·, ·) is used, balls in S
◦

d are denoted by B(·, ·). In the following
Ω ⊂ R

d is assumed to be a bounded Lipschitz domain and we consider

I(u,Ω) =
∫

Ω
g(ε(u)) dx, u ∈ J1

m(Ω,Rd),
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where ε(u) is the symmetric part of the gradient of the vector-field u, ε(u(x)) :=
1
2 (∇u(x) + (∇u(x))T), and the space J1

m(Ω) is defined below. As a general hypo-
thesis the integrand g, g : S

◦
d → R, is a locally Lipschitz function satisfying∣∣∣∣∂g∂κ (κ)
∣∣∣∣ ≤ c1(1 + |κ|m−1) (2.1)

for some m ≥ 2 and for a.e. κ ∈ S
◦

d. This immediately gives

|g(κ)| ≤ c2(1 + |κ|m) for all κ ∈ S
◦ d. (2.2)

The following spaces are used throughout this paper:

C
•∞(Ω,Rd) := {v ∈ C∞

0 (Ω,Rd) : div v = 0 in Ω},
J1

m(Ω,Rd) := {v ∈ W 1
m(Ω,Rd) : div v = 0 in Ω},

◦
Jm

1 (Ω,Rd) := closure of C
•∞(Ω,Rd) in W 1

m(Ω,Rd).

Now the appropriate version of Theorem 2.1 in [AF] reads as follows:

Theorem 2.1 Let u ∈ J1
m(Ω,Rd) be a minimizer of I(·,Ω), that is

I(u,Ω) ≤ I(u+ v,Ω) for all v ∈
◦
Jm

1 (Ω,Rd).

Suppose that for x0 ∈ Ω and for Š0 ∈ S
◦

d

lim
R↘0

∫
−

B(x0,R)

|ε(u) − Š0|m dx = 0, (2.3)

g ∈ C2(B(Š0, ρ1)) for some ρ1 > 0. (2.4)

Assume further that g is J1
m(Ω,Rd)-strictly quasiconvex at Š0, i.e. for any

v ∈
◦
Jm

1 (Ω,Rd) and for some constant ν > 0 we have the inequality∫
Ω
{g(Š0 + ε(v)) − g(Š0)} dx ≥ 2 ν

∫
Ω
{|ε(v)|2 + |ε(v)|m} dx. (2.5)

Then the function ∇u is Hölder continuous in B(x0, R) for some R > 0.

Clearly, the same result is true if we drop the condition divu = 0.

Remark 2.2 The notion of J1
m-quasiconvexity was introduced in [SE3]. It is

a natural modification of quasiconvexity introduced by Morrey [MO1] and
W 1

p -quasiconvexity in the sense of Ball and Murat [BM] if solenoidal vector fields
are considered.
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3 Two auxiliary lemmata

Let us place two auxiliary lemmata in front of the proof of Theorem 2.1. The
first one follows the idea of [AF], Lemma 2.2. A proof can be also found in the
preliminary version [BFS]. The second one is a simple but very useful observation.

Lemma 3.1 Suppose that, besides the general hypotheses, g satisfies (2.4) and
(2.5). Then g is strictly J1

m-quasiconvex in some neighbourhood of Š0, i.e.∫
Ω
{g(Š + ε(v)) − g(Š)} dx ≥ ν

∫
Ω
{|ε(v)|2 + |ε(v)|m} dx (3.1)

holds for any v ∈
◦
Jm

1 (Ω,Rd), for any Š ∈ B(Š0, ρ) and for some ρ ∈ (0, ρ1].

Lemma 3.2 If (2.4) holds, then there is a constant A depending on Š0, ρ1 and
‖∂g/∂κ‖C1(B(Š0,3ρ1/4)) such that for a.e. τ ∈ S

◦
d and for all Š ∈ B(Š0,

ρ1
2 )∣∣∣∣∂g∂κ (τ) − ∂g

∂κ
(Š)
∣∣∣∣ ≤ A(1 + |τ |m−2)|τ − Š|. (3.2)

Proof. Assume first that τ ∈ B(Š, ρ1
4 ), i.e. τ ∈ B(Š0,

3ρ1
4 ). Then we have∣∣∣∣∂g∂κ (τ) − ∂g

∂κ
(Š)
∣∣∣∣=
∣∣∣∣
∫ 1

0

∂2g

∂κ2 (Š + θ(τ − Š))(τ − Š) dθ
∣∣∣∣≤
∥∥∥∥∂g∂κ

∥∥∥∥
C1(B(Š0,3ρ1/4))

|τ−Š|.

Suppose now that τ /∈ B(Š, ρ1
4 ). We then introduce

Š = Š +
ρ1

8
τ − Š

|τ − Š| ,

where it is assumed w.l.o.g. that the following derivatives exist. So,∣∣∣∣∂g∂κ (τ) − ∂g

∂κ
(Š)
∣∣∣∣ ≤

∣∣∣∣∂g∂κ (τ)
∣∣∣∣+
∣∣∣∣∂g∂κ (Š)

∣∣∣∣+
∣∣∣∣∂g∂κ (Š) − ∂g

∂κ
(Š)
∣∣∣∣

≤ c5(2 + |τ |m−1 + |Š|m−1) + |Š − Š|
∥∥∥∥∂g∂κ

∥∥∥∥
C1(B(Š0,3ρ1/4))

≤ c6(Š0, ρ1)(1 + |τ |m−1) + |Š − Š|
∥∥∥∥∂g∂κ

∥∥∥∥
C1(B(Š0,3ρ1/4))

.

This together with

1
|τ − Š| ≤ 2

1 + |τ | ·
{

1 if |τ | > 2|Š| + 1
4ρ−1

1 (1 + ρ1 + |Š0|) if |τ | ≤ 2|Š| + 1

proves (3.2) in the case τ /∈ B(Š, ρ1
4 ) as well and the lemma follows. ¨
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4 A Caccioppoli-type inequality

In this section an inequality of Caccioppoli’s type is proved which is the counter-
part of [AF], Lemma 2.5. However, since Lemma 3.2 is used to prove this inequal-
ity, it is a slight improvement compared to the one of [AF]. Especially we do not
have to impose new assumptions on the general situation.

Lemma 4.1 Suppose that all the conditions of Theorem 2.1 hold, that B(x0, R) b
Ω and that π ∈ M

◦
d such that

Š :=
1
2
(π + πT) ∈ B

(
Š0,

ρ

2

)
,

where ρ is the number according to Lemma 3.1. Then for any a ∈ R
d we have∫

B(x0, R
2 )

{|∇u− π|2 + |∇u− π|m} dx

≤ c7
R2

∫
B(x0,R)

|u− π(x− x0) − a|2 dx

+
c7
Rm

∫
B(x0,R)

|u− π(x− x0) − a|m dx,

where the constant c7 does not depend on x0, R and π.

Proof. Consider ϕ ∈ C∞
0 (B(x0, r)) satifying 0 ≤ ϕ ≤ 1, ϕ ≡ 1 in B(x0, r1) and

|∇ϕ| ≤ c8
r−r1

, where R
2 ≤ r1 < r ≤ R is assumed. We also let

ū = u− π(x− x0) − a, ψ = 1 − ϕ.

According to [LS] there is a function û ∈ ◦
W p

1 (B(x0, r)) such that

div û = div (ϕū) = ū · ∇ϕ on B(x0, r),∫
B(x0,r)

|∇û|2 dx ≤ c9(m, d)
∫

B(x0,r)
|ū · ∇ϕ|2 dx,∫

B(x0,r)
|∇û|m dx ≤ c9(m, d)

∫
B(x0,r)

|ū · ∇ϕ|m dx.

Now, by Korn’s inequality, by strict quasiconvexity (see (3.1)) and by the relation
ε(ū) = ε(u) − Š we obtain an upper bound for

A := c10(m, d) ν
∫

B(x0,r)
{|∇(ϕū− û)|2 + |∇(ϕū− û)|m} dx,
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A ≤ ν

∫
B(x0,r)

{|ε(ϕū− û)|2 + |ε(ϕū− û)|m} dx

≤
∫

B(x0,r)
{g(Š + ε(ϕū− û)) − g(Š)} dx

=
∫

B(x0,r)
{g(ε(u) − ε(ψū+ û)) − g(ε(u))} dx

+
∫

B(x0,r)
{g(ε(u)) − g(ε(u) − ε(ϕū− û))} dx

+
∫

B(x0,r)
{g(Š + ε(ψū+ û)) − g(Š)} dx = I + II + III.

Observing div (ϕū− û) = 0 in B(x0, r), minimality of u gives a non-positive sign
for the second integral on the right hand side, i.e.

c10(m, d) ν
∫

B(x0,r)
{|∇(ϕū− û)|2 + |∇(ϕū− û)|m} dx ≤ I + III. (4.1)

We now define

Φ(x0, r) :=
∫

B(x0,r)
{|∇ū|2 + |∇ū|m} dx,

Φ1(x0, r) :=
∫

B(x0,r)
{|∇ϕ|2|ū|2 + |∇ϕ|m|ū|m} dx,

and claim that there is a constant c11 > 0 such that for every γ > 0 and for some
other constant c12 = c12(γ)

I + III ≤ c11(Φ(x0, r) − Φ(x0, r1)) + 2 γ Φ(x0, r) + c12(γ)Φ1(x0, r). (4.2)

Let us assume for the moment that (4.2) holds. By the choice of û∫
B(x0,r)

{|∇û|2 + |∇û|m} dx ≤ c9(m, d)Φ1(x0, r) (4.3)

is seen to be true and this implies together with (4.1)

Φ(x0, r1) ≤ c13(Φ(x0, r) − Φ(x0, r1)) + c14 γ Φ(x0, r) + c15(γ)Φ1(x0, r),

respectively after “hole-filling”

Φ(x0, r1) ≤ c13 + c14γ

c13 + 1
Φ(x0, r) +

c15(γ)
c13 + 1

Φ1(x0, r).
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Since c13 and c14 are independent of γ, we can arrange

0 < θ :=
c13 + c14γ

c13 + 1
< 1.

Finally, for R
2 ≤ r1 < r ≤ R the upper bound

θΦ(x0, r) + c17

[
1

(r − r1)2

∫
B(x0,R)

|ū|2 dx+
1

(r − r1)m

∫
B(x0,R)

|ū|m dx

]
(4.4)

for Φ(x0, r1) is derived from the obvious inequality

Φ1(x0, r) ≤ c16

[
1

(r − r1)2

∫
B(x0,R)

|ū|2 dx+
1

(r − r1)m

∫
B(x0,R)

|ū|m dx

]
.

Following [Gi], p. 161, or [AF] (see Lemma 2.4), Lemma 4.1 is proved by (4.4).
So it remains to show (4.2):

I = −
∫

B(x0,r)

{∫ 1

0

∂g

∂κ
(ε(u) − θε(ψū+ û)) : ε(ψū+ û) dθ

}
dx

= −
∫

B(x0,r)

{∫ 1

0

[
∂g

∂κ
(Š + ε(ū) − θε(ψū+ û)) − ∂g

∂κ
(Š)
]

: ε(ψū+ û) dθ
}
dx

−
∫

B(x0,r)

{∫ 1

0

∂g

∂κ
(Š) : ε(ψū+ û) dθ

}
dx =: I1 + I2.

To estimate I1, Lemma 3.2 is used:

I1 ≤ c18

∫
B(x0,r)

∫ 1

0
[1 + |Š + ε(ū) − θε(ψū+ û)|m−2]|ε(ū) − θε(ψū+ û)|

·|ε(ψū+ û)| dθ dx

≤ c19(Š0, ρ)
∫

B(x0,r)

∫ 1

0
(1 + |ε(ū) − θε(ψū+ û)|m−2)|ε(ū) − θε(ψū+ û)|

·|ε(ψū+ û)| dθ dx

= c20

{∫
B(x0,r)

∫ 1

0
|ε(ū) − θε(ψū+ û)| |ε(ψū+ û)| dθ dx

+
∫

B(x0,r)

∫ 1

0
|ε(ū) − θε(ψū+ û)|m−1 |ε(ψū+ û)| dθ dx

}
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≤ c21

∫
B(x0,r)

(|ε(ū)| + |ε(ū)|m−1)|ε(ψū+ û)| dx

+c22
∫

B(x0,r)
(|ε(ψū+ û)|2 + |ε(ψū+ û)|m) dx.

Since ψ ≡ 0 in B(x0, r1), we obtain

I1 ≤ c23

∫
B(x0,r)\B(x0,r1)

(|∇ū|2 + |∇ū|m) dx

+c24
∫

B(x0,r)
(|∇ū| + |∇ū|m−1)(|ū| |∇ϕ| + |∇û|) dx

+c25
∫

B(x0,r)
{(|∇ϕ|2|ū|2 + |∇ϕ|m|ū|m) + |∇û|2 + |∇û|m} dx

and finally using Hölder’s inequality

I1 ≤ c23

∫
B(x0,r)\B(x0,r1)

(|∇ū|2 + |∇ū|m) dx

+c26

(∫
B(x0,r)

|∇ū|2 dx
) 1

2
(∫

B(x0,r)
(|ū|2 |∇ϕ|2 + |∇û|2) dx

) 1
2

+c26

(∫
B(x0,r)

|∇ū|m dx

)m−1
m
(∫

B(x0,r)
(|ū|m |∇ϕ|m + |∇û|m) dx

) 1
m

+c25
∫

B(x0,r)
{(|∇ϕ|2|ū|2 + |∇ϕ|m|ū|m) + |∇û|2 + |∇û|m} dx.

Recalling (4.3) and the definitions of Φ and Φ1, the following inequality is proved:

I1 ≤ c23(Φ(x0, r) − Φ(x0, r1))

+c26(Φ
1
2 (x0, r)Φ

1
2
1 (x0, r) + Φ

m−1
m (x0, r)Φ

1
m
1 (x0, r))

+c27Φ1(x0, r).

If γ > 0 is fixed, then Young’s inequality gives

I1 ≤ c23(Φ(x0, r) − Φ(x0, r1)) + γΦ(x0, r) + c28(γ)Φ1(x0, r).
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Now, observe that I2 has a negative counterpart arising from III:

III =
∫

B(x0,r)

{∫ 1

0

∂g

∂κ
(Š + θε(ψū+ û)) : ε(ψū+ û) dθ

}
dx

=
∫

B(x0,r)

{∫ 1

0

[
∂g

∂κ
(Š + θε(ψū+ û)) − ∂g

∂κ
(Š)
]

: ε(ψū+ û) dθ
}
dx

+
∫

B(x0,r)

{∫ 1

0

∂g

∂κ
(Š) : ε(ψū+ û) dθ

}
dx := III1 + III2.

Thus I2 = −III2 and it only remains to estimate III1 which can be done in the
same manner as above and the whole Lemma is proved. ¨

5 Proof of Theorem 2.1

Theorem 2.1 will be a consequence of the following lemma.

Lemma 5.1 Again suppose that the general hypotheses are satisfied for the inte-
grand g and that u is a minimizer of I(·,Ω) as described above. Suppose further
that the conditions (2.4) and (2.5) hold for some Š0 ∈ S

◦
d and let for x0 ∈ Ω

Ψ(x0, R) : =


 ∫

−
B(x0,R)

|∇u− (∇u)x0,R|2 dx




1
2

+


 ∫

−
B(x0,R)

|∇u− (∇u)x0,R|m dx




1
2

,

where (ϕ)x,r always denotes the mean value of ϕ on B(x, r). Finally ρ > 0 is fixed
according to Lemma 3.1. Then, for any t ∈ (0, 1/8] there are numbers γ0 > 0 and
R0 > 0 such that: if for x0 ∈ Ω and for 0 < R < R0 the conditions B(x0, R) b Ω,

(ε(u))x0,tR ∈ B
(

Š0,
ρ

4

)
, (ε(u))x0,R ∈ B

(
Š0,

ρ

4

)
, Ψ(x0, R) < γ0

are satisfied, then the conclusion is

Ψ(x0, tR) ≤ c⊕ tΨ(x0, R)

where the constant c⊕ does not depend on x0, R and t.

Proof. The lemma is proved by contradiction, so assume that there is a num-
ber t ∈ (0, 1/8] and that there are sequences {xh}, {Rh} and {γh} such that
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B(xh, Rh) b Ω and Rh → 0, γh = Ψ(xh, Rh) → 0 as h → 0, Ψ(xh, tRh) ≥ c⊕ t γh,

Š
h
t = (ε(u))xh,tRh

∈ B(Š0,
ρ
4 ), Š

h = (ε(u))xh,Rh
∈ B(Š0,

ρ
4 ),

where c⊕ is chosen below in an appropriate way to obtain the contradiction. We
now consider the scaling x = xh + yRh,

vh(y) =
u(xh + yRh) − (∇u)xh,Rh

(x− xh) − (u)xh,Rh

γhRh

and get after changing the variables

∇xu = (∇xu)xh,Rh
+ γh∇yv

h(y), (∇xu)xh,tRh
= (∇xu)xh,Rh

+ γh(∇yv
h)0,t,

(vh)0,1 = 0, (∇yv
h)0,1 = 0,Ψ(xh, tRh) = γhΦh(t),

where we have abbreviated

Φh(t) =


 ∫

−
B(0,t)

|∇vh − (∇vh)0,t|2 dy




1
2

+ γ
m
2 −1

h


 ∫

−
B(0,t)

|∇vh − (∇vh)0,t|m dy




1
2

From our assumptions we get

Φh(1) =


 ∫

−
B(0,1)

|∇vh|2 dy




1
2

+ γ
m
2 −1

h


 ∫

−
B(0,1)

|∇vh|m dy




1
2

= 1,

i.e. Φh(t) ≥ c⊕t. Thus, after passing to subsequences (still denoted by the same
symbols) without loss of generality it may be assumed that:

vh → v in L2(B(0, 1),Rd),
∇vh ⇀ ∇v in L2(B(0, 1),M

◦
d),

γ
1− 2

m

h vh → 0 in Lm(B(0, 1),Rd) if m > 2,

γ
1− 2

m

h ∇vh ⇀ 0 in Lm(B(0, 1),M
◦

d) if m > 2

and Š
h → Š∗ in S

◦
d as h → 0. Now, using the minimality of u, we will prove that∫

B(0,1)

∂2g

∂κ2 (Š∗)ε(v) : ε(w) dy = 0 for all w ∈ C
•∞(B(0, 1),Rd). (5.1)

To prove the claim (5.1), choose w ∈ C
•∞(B(0, 1),Rd) and define

wh = γhRhw

(
x− xh

Rh

)
∈ C

•∞(B(xh, Rh),Rd).
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As mentioned above, we use the minimality of u, i.e.

I(u,B(xh, Rh)) ≤ I(u+ wh, B(xh, Rh)).

This yields

∫
B(xh,Rh)

{∫ 1

0

∂g

∂κ
(ε(u) + θε(wh)) : ε(wh) dθ

}
dx ≥ 0, i.e.

∫
B(0,1)

{∫ 1

0

∂g

∂κ
(Šh + γhε(vh) + θγhε(w)) : ε(w) dθ

}
dy ≥ 0. (5.2)

In order to pass to the limit in (5.2) we first observe that by condition (2.4) for
every γ > 0 there is a real number δ(γ) > 0 with the property∣∣∣∣∂2g

∂κ2 (τ) − ∂2g

∂κ2 (τ ′)
∣∣∣∣ < γ,

whenever τ , τ ′ ∈ B(Š0,
ρ
2 ) and |τ − τ ′| < δ(γ). Now two sets are introduced

setting γ̂ = min{ρ
4 ,

δ(γ)
2 }: B1

h = {y ∈ B(0, 1) : γh(|ε(vh)(y)| + |ε(w)(y)|) ≥ γ̂},
B2

h = B(0, 1)\B1
h. Then, by definition

γ̂2|B1
h| ≤ γ2

h

∫
B1

h

(|ε(vh)| + |ε(w)|)2 dy ≤ c29γ
2
h

(
1 +

∫
B(0,1)

|ε(w)|2 dy
)
,

|B1
h| ≤ c29γ

2
h

γ̂2

(
1 +

∫
B(0,1)

|ε(w)|2 dy
)
. (5.3)

Going back to (5.2) we see

A :=
∫

B(0,1)

∂2g

∂κ2 (Š∗)ε(v) : ε(w) dy

≥
∫

B(0,1)

{
∂2g

∂κ2 (Š∗)ε(v)

− 1
γh

∫ 1

0

(
∂g

∂κ
(Šh + γhε(vh) + θγhε(w)) − ∂g

∂κ
(Šh)

)
dθ

}
: ε(w) dy,

i.e. A = A1 +A2 +A3 +A4 where the Ai are defined via

A1 = − 1
γh

∫
B1

h

∫ 1

0

(
∂g

∂κ
(Šh + γhε(vh) + θγhε(w)) − ∂g

∂κ
(Šh)

)
dθ : ε(w) dy,

A2 = − 1
γh

∫
B2

h

∫ 1

0

(
∂g

∂κ
(Šh + γhε(vh) + θγhε(w)) − ∂g

∂κ
(Šh)

)
dθ : ε(w) dy
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+
∫

B2
h

∫ 1

0

∂2g

∂κ2 (Šh)(ε(vh) + θε(w)) dθ : ε(w) dy,

A3 =
∫

B(0,1)

∂2g

∂κ2 (Š∗)ε(v) : ε(w) dy −
∫

B2
h

∂2g

∂κ2 (Šh)ε(vh) : ε(w) dy,

A4 = −
∫

B2
h

∫ 1

0

∂2g

∂κ2 (Šh)θε(w) dθ : ε(w) dy = −1
2

∫
B2

h

∂2g

∂κ2 (Šh)ε(w) : ε(w) dy.

We have assumed that Š
h ∈ B(Š0,

ρ
4 ) and that ∂2g

∂κ2 is continuous in B(Š0, ρ). Thus

A4 → −1
2

∫
B(0,1)

∂2g

∂κ2 (Š∗)ε(w) : ε(w) dy as h → 0.

is seen by (5.3). Next, we observe that

|A3| ≤
∣∣∣∣∣
∫

B2
h

(
∂2g

∂κ2 (Š∗) − ∂2g

∂κ2 (Šh)
)
ε(v) : ε(w) dy

∣∣∣∣∣
+

∣∣∣∣∣
∫

B2
h

∂2g

∂κ2 (Šh)ε(v − vh) : ε(w) dy +
∫

B1
h

∂2g

∂κ2 (Š∗)ε(v) : ε(w) dy

∣∣∣∣∣ ,
hence |A3| → 0 as h → 0. By construction, Š

h + γhε(vh) + θγhε(w) ∈ B(Š0,
ρ
2 )

for y ∈ B2
h and A2 may be written in the following way

A2 =
∫

B2
h

∫ 1

0

[
∂2g

∂κ2 (Šh)(ε(vh) + θε(w)) : ε(w)

−
∫ 1

0

∂2g

∂κ2 (Šh + θ1γh(ε(vh) + θε(w)))(ε(vh) + θε(w)) : ε(w) dθ1

]
dθ dy.

Since we have on the other hand Š
h + θ1γh(ε(vh) + θε(w)) ∈ B(Š0,

ρ
2 ) and

|θ1γh(ε(vh) + θε(w))| ≤ γ̂ ≤ δ(γ)
2

< δ(γ)

for y ∈ B2
h, we obtain

|A2| ≤ γ

∫
B(0,1)

(|ε(vh)| + |ε(w)|)|ε(w)| dy ≤ c30γ

(
1 +

∫
B(0,1)

|ε(w)|2 dy
)
.
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Finally, from Lemma 3.2 we get an upper bound for |A1|:

c31

∫
B1

h

(1 + (|Šh| + γh|ε(vh)| + γh|ε(w)|)m−2)(|ε(vh)| + |ε(w)|)|ε(w)| dy

≤ c32‖∇w‖L∞(B(0,1))

∫
B1

h

(|ε(vh)| + |ε(w)| + γm−2
h (|ε(vh)| + |ε(w)|)m−1) dy

≤ c33(∇w)


|B1

h| 1
2

(∫
B(0,1)

(|ε(vh)|2 + |ε(w)|2) dy
) 1

2

+γm−2
h |B1

h| 1
m

(∫
B(0,1)

(|ε(vh)|m + |ε(w)|m) dy

)m−1
m


 .

Again (5.3) proves A1 → 0 as h → 0. Summarizing these estimates we have
proved

A ≥ −c30γ
(

1 +
∫

B(0,1)
|ε(w)|2 dy

)
− 1

2

∫
B(0,1)

∂2g

∂κ2 (Š∗)ε(w) : ε(w) dy,

or, since γ was an arbitrary positive number

∫
B(0,1)

∂2g

∂κ2 (Š∗)ε(v) : ε(w) dy +
1
2

∫
B(0,1)

∂2g

∂κ2 (Š∗)ε(w) : ε(w) dy ≥ 0.

The same is true for any scaling of w and we arrive at (5.1). Concerning the linear
system (5.1) with constant coefficients we first claim that strict J1

m-quasiconvexity

(3.1) implies for all w ∈
◦
J2

1 (B(0, 1),Rd)∫
B(0,1)

∂2g

∂κ2 (Š∗)ε(w) : ε(w) dy ≥ c34(ν)
∫

B(0,1)
|∇w|2 dy. (5.4)

So by (5.1) and (5.4) the standard linear theory can be applied (compare for
example [FS2], Lemma 3.0.5, p. 138, and notice that condition (5.4) is sufficient).
Thus, setting

Φ(s) =


 ∫

−
B(0,s)

|∇v − (∇v)0,s|2 dy




1
2

it is proved for all s ∈ (0, 1) that

Φ(s) ≤ c35

(
ν,

∥∥∥∥∂2g

∂κ2

∥∥∥∥
L∞(B(Š0,ρ/4))

)
sΦ(1).
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The uniform boundedness of Φh(1) gives in addition

Φ(s) ≤ c35 s for all s ∈ (0, 1). (5.5)

Then the contradiction will follow from the above assumption

lim inf
h→0

Φh(t) ≥ c⊕t. (5.6)

In fact, since Š
h
t ∈ B(Š0,

ρ
2 ), we can apply Lemma 4.1 replacing x0 and R by xh

and tRh with the result that Ψ(xh, tRh) is bounded by

c36




1
2tRh


 ∫

−
B(xh,2tRh)

∣∣u− (∇u)xh,tRh
(x− xh) − (u)xh,2tRh

∣∣2 dx



1
2

+
1

(2tRh)
m
2


 ∫

−
B(xh,2tRh)

∣∣u− (∇u)xh,tRh
(x− xh) − (u)xh,2tRh

∣∣m dx




1
2




≤ c37




1
2tRh


 ∫

−
B(xh,2tRh)

∣∣u− (∇u)xh,2tRh
(x− xh) − (u)xh,2tRh

∣∣2 dx



1
2

+
1

(2tRh)
m
2


 ∫

−
B(xh,2tRh)

∣∣u− (∇u)xh,2tRh
(x− xh) − (u)xh,2tRh

∣∣m dx




1
2




+c38{|(∇u)xh,2tRh
− (∇u)xh,tRh

| + |(∇u)xh,2tRh
− (∇u)xh,tRh

|m
2 }.

By transformation we get

Φh(t) ≤ c39




1
2t


 ∫

−
B(0,2t)

|vh − (∇vh)0,2ty − (vh)0,2t|2 dy




1
2

+
1

(2t)
m
2


γm−2

m

h

∫
−

B(0,2t)

|vh − (∇vh)0,2ty − (vh)0,2t|m dy




1
2




+c40{|(∇vh)0,2t − (∇vh)0,t| + γ
m−2

m

h |(∇vh)0,2t − (∇vh)0,t|m
2 },

lim sup
h→∞

Φh(t) ≤ c39
2t


 ∫

−
B(0,2t)

|v − (∇v)0,2ty − (v)0,2t|2 dy




1
2

+c40{|(∇v)0,2t − (∇v)0,t|}.
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Finally, we notice that

∣∣∣∣∣∣∣
∫
−

B(0,t)

{∇v − (∇v)0,2t} dy

∣∣∣∣∣∣∣ ≤ c41


 ∫

−
B(0,2t)

|∇v − (∇v)0,2t|2 dy




1
2

and by Poincaré’s inequality (5.5) proves

lim sup
h→∞

Φh(t) ≤ c42Φ(2t) ≤ c42 c35 2 t.

So, the contradiction to (5.6) follows if c⊕ = 4 c42 c35 was chosen at the beginning
of the proof, i.e. Lemma 5.1 is proved. ¨

Now, we proceed as usual (see, for example [AF] or [BFS]) by iterating
Lemma 5.1 and obtain:

Lemma 5.2 With the assumptions of Lemma 5.1 suppose that the numbers
α ∈ (0, 1) and t ∈ (0, 1/8) satisfy the condition

c⊕ t1−α ≤ 1.

If we assume for x0 ∈ Ω and for 0 < R < R0 that B(x0, R) b Ω,

(ε(u))x0,tR ∈ B
(

Š0,
ρ

10

)
, (ε(u))x0,R ∈ B

(
Š0,

ρ

10

)
,

Ψ(x0, R) < γ1 := min
{
γ0, t

d(1 − tα)
3ρ
20

}
,

where γ0 and R0 are the numbers of Lemma 5.1, then for any k ∈ IN0, we have

(ε(u))x0,tk+1R ∈ B
(

Š0,
ρ

4

)
, Ψ(x0, t

kR) ≤ tαkΨ(x0, R).

Now the proof of Theorem 2.1 follows in a standard way from Lemma 5.2.

6 The convex counterpart of Theorem 2.1
and its comparison with Theorem 2.1

As a corollary the main theorem will immediately imply a result in the spirit of
[AG]. Of course m ≥ 2 has to be assumed here.
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Theorem 6.1 Suppose that g : S
◦

d → R satisfies our general hypotheses and that
there is a convex function f : S

◦
d → R and some Š0 ∈ S

◦
d such that:

(i) f(κ) ≤ g(κ) for all κ ∈ S
◦

d.

(ii) f(κ) ≥ c̃1|κ|m − c̃2 for all κ ∈ S
◦

d and for some real numbers c̃1, c̃2 > 0.

(iii) f ∈ C2(B(Š0, ρ1)) for some ρ1 > 0 and f(κ) = g(κ) on B(Š0, ρ1).

(iv) (∂2f
∂κ2 (Š0)τ) : τ ≥ λ|τ |2 for all τ ∈ S

◦
d and for some real number λ > 0.

Let u ∈ J1
m(Ω,Rd) be a (local) minimizer of I(·,Ω) and suppose further that (2.3)

is true. Then the function ∇u is Hölder continuous in B(x0, R) for some R > 0.

Proof. Notice that we may assume without loss of generality that

g(Š0) = 0 and
∂g

∂κ
(Š0) = 0. (6.1)

In fact, if we consider g̃(κ) := g(κ) − ∂g
∂κ (Š0) : κ and ˜̃g(κ) := g̃(κ) − g̃(Š0), then ˜̃g

satisfies the above assumptions and we have for all ϕ ∈
◦
Jm

1 (Ω,Rd)

I∗(u+ ϕ, Ω̃) :=
∫

Ω̃

˜̃g(ε(u+ ϕ)) dx = I(u+ ϕ, Ω̃) + const.,

where the constant depends on the trace of u on the boundary of the domain
under consideration. Observe that the conditions (i)–(iv) are also left unaltered.

Now, since f ∈ C2(B(Š0, ρ1)) and on account of (iv), there is a real number
ρ2 ∈ (0, ρ1] such that(

∂2f

∂κ2 (Š)τ
)

: τ ≥ 1
2
λ|τ |2 if |Š − Š0| ≤ ρ2.

We may assume in addition ρ2 < 1 and by Taylor’s formula we therefore obtain
real numbers δ1, δ2 > 0 such that for all Š ∈ B(Š0, ρ2)

f(Š) ≥ δ1|Š − Š0|2 ≥ δ2(|Š − Š0|2 + |Š − Š0|m). (6.2)

The growth condition (ii) also implies the existence of real numbers 0 < δ3, δ4
and 1 < ρ3 such that for all |Š − Š0| > ρ3

f(Š) ≥ δ3|Š − Š0|m ≥ δ4(|Š − Š0|2 + |Š − Š0|m). (6.3)

It remains to consider the case ρ2 ≤ |Š−Š0| ≤ ρ3. To do this, fix κ1 ∈ S
◦

d, |κ1| = 1,
and suppose Š = Š0 + (ρ2

2 +α)κ1 for some real number ρ2
2 ≤ α ≤ ρ3 − ρ2

2 . Global
convexity of f implies (again by Taylor’s formula) for all t ∈ R

f
(

Š0 +
ρ2

2
κ1 + tκ1

)
≥ f

(
Š0 +

ρ2

2
κ1

)
+ t

∂f

∂κ

(
Š0 +

ρ2

2
κ1

)
κ1.
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Inserting t = −ρ2
2 and recalling (6.1), (6.2) and assumption (iii) we see

∂f

∂κ

(
Š0 +

ρ2

2
κ1

)
κ1 > 0,

i.e. there is a real number δ5 > 0 such that f(Š) > δ5 for all Š as above. Since by
the choice of Š the quantity |Š−Š0| is uniformly bounded, there is a real number
δ6 > 0 satisfying for all Š with ρ2 ≤ |Š − Š0| ≤ ρ3

f(Š) ≥ δ5 ≥ δ6(|Š − Š0|2 + |Š − Š0|m). (6.4)

Summarizing the results, (6.2)–(6.4) prove the existence of a real number δ7 > 0
satisfying

f(Š0 + κ) − f(Š0) ≥ δ7(|κ|2 + |κ|m) for all κ ∈ S
◦ d.

Thus, by assumption (i) and by f(Š0) = g(Š0) the conclusion is∫
Ω
{g(Š0 + ε(v)) − g(Š0)} dx ≥

∫
Ω
{f(Š0 + ε(v)) − f(Š0)} dx

≥ δ7

∫
Ω
(|ε(v)|2 + |ε(v)|m) dx

for any v ∈
◦
Jm

1 (Ω,Rd) and Theorem 6.1 is proved. ¨

Remarks 6.2 (i) Of course, the above arguments neither depend on the incom-
pressibility condition divu = 0 nor they use the fact that only the symmetric
part of ∇u is considered. Citing [AF], the corresponding results follow for
functionals

I(u,Ω) =
∫

Ω
g(∇u) dx, u ∈ W 1

m(Ω,Rd). (6.5)

(ii) The setting of [AG] requires g = f , that is only convex integrands are under
consideration. The more general assumptions of Theorem 6.1 are adjusted
to the quasiconvex case.

According to these remarks we finish this section with an example which compares
typical regularity results of Anzellotti-Giaquinta’s type to the corresponding ones
of Acerbi-Fusco. For simplicity suppose N = n = 2 and consider the general
situation (6.5). For a fixed p̄ ∈ M

2 let

g1(p) =
1
2
|p− p̄|2, g2(p) =

1
2
|p+ p̄|2, p ∈ M

2,

and then define g(p) = min{g1(p), g2(p)}.
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The above theorems cannot be applied to g directly, so consider the convex
envelope g∗∗ and the quasiconvex envelope Qg of g respectively. As outlined
for example in [DA] we have the formulas

g∗∗(p) = sup{p∗ : p− g∗(p∗) : p∗ ∈ M
2},

g∗(p∗) = sup{p∗ : p− g(p) : p ∈ M
2},

and for the quasiconvex envelope we have

Qg(p) = inf



∫
−
Ω

g(p+ ∇v) dx : v ∈ C∞
0 (Ω,R2)


 .

In our particular case simple calculations prove

g∗∗(p) =
1
2




|p+ p̄|2 if p : p̄ < −|p̄|2
|p− p̄|2 if p : p̄ > |p̄|2
|p|2 − (p:p̄)2

|p̄|2 if |p : p̄| ≤ |p̄|2.
(6.6)

For an arbitrary tensor-valued parameter p̄, an explicit formula forQg was obtained
by Kohn in [KO]. Here we are going to consider the two choices

p̄ = a⊗ a for some fixed a ∈ R
2, (6.7)

p̄ = Id, (6.8)

where Id denotes the identity matrix in M
2. Kohn’s formula implies for all p ∈ M

2

Qg(p) = g∗∗(p)

in the case (6.7), and in the case (6.8) we get

Qg(p) =
1
2

∣∣∣∣p− 1
2
tr p Id

∣∣∣∣
2

+
1
4




(tr p+ 2)2 if tr p < −1
(tr p− 2)2 if tr p > 1
−(tr p)2 + 2 if |tr p| ≤ 1

(6.9)

g∗∗(p) =
1
2

∣∣∣∣p− 1
2
tr p Id

∣∣∣∣
2

+
1
4




(tr p+ 2)2 if tr p < −2
(tr p− 2)2 if tr p > 2
0 if |tr p| ≤ 2

(6.10)

Let us start considering the first case (6.7). Then we have the following

Proposition 6.3 Suppose that p̄ = a ⊗ a, a ∈ R
2, and that u ∈ W 1

2 (Ω,R2) is a
local minimizer of I(·,Ω), where

I(v,Ω) =
∫

Ω
g∗∗(∇v) dx.
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Then there exists an open set Ω+ = Ω+(u) ⊂ Ω such that:

(i) ∇u ∈ C0,α(Ω+,M
2) for all α ∈ [0, 1[,

(ii) |(∇u(x)a) · a| > |a|4 for all x ∈ Ω+,

(iii) |(∇u(x)a) · a| ≤ |a|4 for almost all x ∈ Ω\Ω+.

Remarks 6.4 (i) We do not claim that the set Ω+ is non-empty. Note that
∇u(Ω+) contains only points of strict quasiconvexity of g∗∗.

(ii) For the proof of this proposition, it will make no difference if Theorem 2.1
or Theorem 6.1 is applied.

Proof. The representations (6.6) and (6.7) of g∗∗ respectively p̄ immediately imply

(
∂2g∗∗

∂p2 (p) q
)

: q =

{
|q|2 if |(pa) · a| > |a|4
|q|2 − ((qa)·a)2

|a|4 if |(pa) · a| < |a|4 . (6.11)

Thus, the proof of Theorem 6.1 in case m = 2 and Lemma 3.1 show that g∗∗ is
strictly quasiconvex in some neighbourhood of any point p if |(pa) · a| > |a|4. On
the other hand, strict quasiconvexity of g∗∗ at some point p0 gives (see [MO1],
[MO2])

(
∂2g∗∗

∂p2 (p0) ã⊗ b̃

)
: (ã⊗ b̃) ≥ ν|ã|2|b̃|2 (6.12)

for all ã, b̃ ∈ R
2. Hence, by (6.11), g∗∗ is not strictly quasiconvex at p if |(pa) ·a| <

|a|4, i.e. we have proved Proposition 6.3 and Remark 6.4, (ii). ¨

Now let us concentrate on the second case (6.8). Then the convex and
quasiconvex envelopes do not coincide and we have

Proposition 6.5 Suppose that p̄ = Id. Then we have the following
I: If u ∈ W 1

2 (Ω,R2) is a local minimizer of Ic(·,Ω), where

Ic(v,Ω) =
∫

Ω
g∗∗(∇v) dx,

then there exists an open set Ω+ = Ω+(u) ⊂ Ω such that:

(i) ∇u ∈ C0,α(Ω+,M
2) for all α ∈ [0, 1[,

(ii) |divu(x)| 6= 2 for any x ∈ Ω+,

(iii) |divu(x)| = 2 almost everywhere on Ω\Ω+.
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II: If u ∈ W 1
2 (Ω,R2) is a local minimizer of Iq(·,Ω), where

Iq(v,Ω) =
∫

Ω
Qg(∇v) dx,

then there exists an open set Ω+ = Ω+(u) ⊂ Ω such that:

(i) ∇u ∈ C0,α(Ω+,M
2) for all α ∈ [0, 1[,

(ii) |divu(x)| > 1 for any x ∈ Ω+,

(iii) |divu(x)| ≤ 1 almost everywhere on Ω\Ω+.

Remark 6.6 Although the first part of the proposition deals with a globally con-
vex integrand, the proof will be an application of Theorem 2.1. This gives better
results than Theorem 6.1. The reason is that ∂2g∗∗

∂p2 is degenerated if |tr p| < 2,
that is Theorem 6.1 cannot be applied in that case.

Proof. First of all notice that ∂2g∗∗/∂p2 is of class C2 on the set {p ∈ M
2 :

|tr p| 6= 2}. Next, we have by (6.10) the decomposition

g∗∗(p) = g0(p) + g+(p), g0(p) =
1
2

∣∣∣∣p− 1
2
tr p Id

∣∣∣∣
2

,

where g+(p) is a convex function. Thus, for any v ∈ ◦
W 2

1 (Ω,R2) and for any p ∈ M
2

convexity of g+ implies with some elementary calculations∫
Ω
{g∗∗(p+ ∇v) − g∗∗(p)} dx ≥ 1

2

∫
Ω
{|∇v|2 − 1

2
div 2v} dx (6.13)

=
1
2

∫
Ω

{
1
2
|∇v|2 − det(∇v) +

1
2
(D1v

2 −D2v
1)2
}
dx ≥ 1

4

∫
Ω

|∇v|2 dx.

So, the first part of the proposition is proved by Theorem 2.1. Now consider the
quasiconvex envelope Qg which is not globally convex. The representation for-
mula (6.10) shows that ∂2Qg/∂p2 is of class C2 on the set {p ∈ M

2 : |tr p| 6= 1}.
First we observe that our result is optimal in the sense that Qg is not strictly
quasiconvex at p ∈ M

2 if |tr p| < 1. This follows from (6.12) and from

(
∂2Qg

∂p2 (p)(ã⊗ b̃)
)

: (ã⊗ b̃) = |ã|2|b̃|2 − (ã · b̃)2

for any ã, b̃ ∈ R
2 and for any p ∈ M

2 with |tr p| < 1. Now we want to prove
quasiconvexity of Qg at any point p0 ∈ M

2 with |tr p0| > 1, more precisely we
claim∫

Ω
{Qg(p0 + ∇v) −Qg(p0)} dx ≥ 1

4
min

{
1,

3|tr p0| − 2
2|tr p0|

}∫
Ω

|∇v|2 dx (6.14)
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for any v ∈ ◦
W 2

1 (Ω,R2) and for any p0 ∈ M
2 with |tr p0| > 1. To prove this claim,

ḡ+(p) = Qg(p) − g0(p) and g0(p) =
1
2

∣∣∣∣p− 1
2
tr p Id

∣∣∣∣
2

are introduced. Considering ḡ+(p), the idea of construction is to find a parabola
which touches the parabolas (t − 2)2 and (t + 2)2, t ∈ R, at the points t0 :=
|tr p0| > 1 and −t0 respectively. This leads to the definition

ĝ+(p) = −2 − t0
4t0

(tr p)2 + 2(2 − t0).

Then, by construction ḡ+(p) ≥ ĝ+(p) for any p ∈ M
2 and ḡ+(p0) = ĝ+(p0).

Recalling (6.13) and using Taylor’s formula we obtain

J :=
∫

Ω
{Qg(p0 + ∇v) −Qg(p0)} dx

=
∫

Ω
g0(∇v) dx+

∫
Ω
{ḡ+(p0 + ∇v) − ḡ+(p0)} dx

≥ 1
4

∫
Ω

|∇v|2 dx+
∫

Ω
{ĝ+(p0 + ∇v) − ĝ+(p0)} dx

=
1
4

∫
Ω

|∇v|2 dx+
1
2

∫
Ω

∫ 1

0
(1 − θ)

(
∂2ĝ+
∂p2 (p0 + θ∇v)∇v

)
: ∇v dθ dx

≥ 1
4

∫
Ω

|∇v|2 dx− 2 − t0
8t0

∫
Ω

div 2v dx.

So, if t0 ≥ 2 we are done and in the case 1 < t0 < 2 we see

J ≥ 1
4

∫
Ω

{
3t0 − 2

2t0
|∇v|2 +

2 − t0
2t0

(D1v
2 −D2v

1)2 − 2 − t0
t0

det(∇v)
}
dx

≥ 3t0 − 2
8t0

∫
Ω

|∇v|2 dx.

Thus (6.14) and by Theorem 2.1 the whole proposition is proved. ¨
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7 Applications: local regularity of the stress
tensor for the k-well problem

Consider the energy density of a k-phase body given by

g(κ) = min
i=1...k

{gi(κ)}, κ ∈ S
◦ d.

We assume the densities to satisfy for all i = 1 . . . k and for some m ≥ 2:

(i) gi is smooth and strictly convex,

(ii) c1|κ|m − c2 ≤ gi(κ) ≤ c3(1 + |κ|m),

(iii)
∂g∗

i

∂τ
(·) is an open mapping, (7.1)

(iv) g(κ) = mini=1...k{gi(κ)} satisfies the general hypotheses (see (2.1) and
(2.2)) of our paper.

Here g∗
i , g∗ (g∗∗

i , g∗∗) denote, as usual, the first (second) Young transforms of gi

and g respectively on S
◦

d, for example

g∗(τ) = sup{κ : τ − g(κ) : κ ∈ S
◦ d}, τ ∈ S

◦ d,

g∗∗(κ) = sup{κ : τ − g∗(τ) : τ ∈ S
◦ d}, κ ∈ S

◦ d.

From the definition of g we immediately get g∗(τ) = maxi=1...k{g∗
i (τ)}. Following

[SE3] (see Theorem 2.4 and 2.5) we now pass to a suitable relaxed variational

problem QP: find a function u ∈ u0+
◦
Jm

1 (Ω,Rd) such that

QI(u) = inf{QI(v) : v ∈ u0+
◦
Jm

1 (Ω,Rd)}.

Here Qg denotes the J1
m-quasiconvex envelope for g intoduced in [SE3] and the

relaxed energy QI is given by

QI(v) =
∫

Ω
Qg(ε(v)) dx.

In the following it is assumed that Qg = g∗∗.

Example 7.1 (i) This hypothesis is fulfilled in the case d = 2 (compare [SE3],
Theorem 2.3). Thus the situation of [FS1] is generalized by admitting
k-wells of m-growth.

(ii) Since the arguments of this paper are not limited to the incompressible case,
the (compressible) setting of [SE1] is also covered, where the compatible
structure of two wells in three dimensions implies Qg = g∗∗. A discussion
of the incompatible case can be found in [SE2].
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Now let u be a solution of QP and denote by Ωu the set of all x0 ∈ Ω
such that (2.3) holds for some Š0 ∈ S

◦
d. Then, as an immediate consequence of

Theorem 6.1 one obtains

Theorem 7.2 If x0 ∈ Ωu and if g∗∗(x0) = g(x0) = gi(x0) for all x near x0 and
for only one i = 1, . . . , k, then ∇u is Hölder continuous in B(x0, R) for some
R > 0.

On the other hand, consider the dual variational problem P∗: find a tensor
σ ∈ Q such that σ maximizes the dual functional R:

R(σ) = sup{R(τ) : τ ∈ Q},
R(τ) =

∫
Ω
(ε(u0) : τ − g∗(τ)) dx,

τ ∈ Q :=
{
τ ∈ L

m
m−1 (Ω,S

◦ d) :
∫

Ω
τ : ε(v) dx = 0 for all v ∈

◦
Jm

1 (Ω,Rd)
}
.

We recall that P∗ has a unique solution σ. If u denotes a solution of QP, and if ∂
denotes the subdifferential, then the duality relation (see [ET], Prop. 5.1, p. 115)

σ(x) ∈ ∂g∗∗(ε(u)(x)) for almost all x ∈ Ω (7.2)

is known as well as the equation

QI(u) = R(σ). (7.3)

Now introduce the set of (σ, u) Lebesgue points, i.e.

Ωσ,u =
{
x ∈ Ωu : lim

R↓0
(σ)x,R exists and (7.2) holds

}
.

Furthermore, let A = {1 . . . k} and

A(τ) = {i ∈ A : g∗(τ) = g∗
i (τ)},

ai = {τ ∈ S
◦ d : g∗(τ) = g∗

i (τ) and cardA(τ) = 1},
a(σ) = {x ∈ Ωσ,u : cardA(σ(x)) = 1}.

The physical meaning of the set a(σ) is that it can be seen as the union of single
phases and that no microstructure occurs. Then our regularity result reads as:

Theorem 7.3 The set a(σ) is open and σ is Hölder continuous on a(σ) for any
exponent 0 < α < 1. Moreover, cardA(σ(x)) > 1 for almost all x ∈ Ω ∼ a(σ).
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Remark 7.4 For the particular case studied in [FS1] we have a slightly stronger
result, i.e. a(σ) can be replaced by the set of all Lebesgue points x of σ for which
cardA(σ(x)) = 1.

Proof. Fix i and τ0 ∈ ai such that

g∗(τ0) = g∗
i (τ0) 6= g∗

j (τ0)

for all j ∈ {1, . . . k}, j 6= i. Since g∗(τ) = maxj=1...k{g∗
j (τ)} and since each g∗

j is a
smooth function, there exists a real number 0 < ρ0 and a ball B(τ0, ρ0) such that

g∗(τ) = g∗
i (τ) 6= g∗

j (τ) for all τ ∈ B(τ0, ρ0)

and again for all j ∈ {1, . . . k}, j 6= i. In particular, g∗ is seen to be smooth on
B(τ0, ρ0) and we have

∂g∗

∂τ
(τ) =

∂g∗
i

∂τ
(τ) for all τ ∈ B(τ0, ρ0). (7.4)

In general, given a convex function F and its polar function F ∗, it follows that
v∗ ∈ ∂F (v) if and only if F (v)+F ∗(v∗) = 〈v, v∗〉. Setting Š = ∂g∗

∂τ (τ) on B(τ0, ρ0)
we have on this ball g∗(τ) + g∗∗(Š) = τ : Š and the same relation holds for g∗

i ,
that is one obtains

g∗(τ) + g∗∗
(
∂g∗

∂τ
(τ)
)

= τ :
∂g∗

∂τ
(τ),

g∗
i (τ) + g∗∗

i

(
∂g∗

i

∂τ
(τ)
)

= τ :
∂g∗

i

∂τ
(τ). (7.5)

Notice that only the local smoothness of g∗ and no further properties of g∗∗ are
used to prove (7.5). Now let

V =
∂g∗

∂τ
(B(τ0, ρ0)).

By assumption, ∂g∗
i

∂τ is an open mapping, hence V is known to be an open
neighbourhood of Š0 := ∂g∗

∂τ (τ0). By definition, for any Š ∈ V there exists
τ = τ(Š) ∈ B(τ0, ρ0) such that

Š =
∂g∗

∂τ
(τ) =

∂g∗
i

∂τ
(τ),

i.e. for any Š ∈ V we have by (7.5)

g∗∗(Š) = τ :
∂g∗

∂τ
(τ) − g∗(τ) = τ :

∂g∗
i

∂τ
(τ) − g∗

i (τ) = g∗∗
i (Š).
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So far the existence of an open neighbourhood V (Š0) = ∂g∗

∂τ (B(τ0, ρ0)) such that

g∗∗(Š) = g∗∗
i (Š) = gi(Š) for all Š ∈ V (7.6)

is proved. In particular, g∗∗ is seen to be smooth and strictly convex on V . Thus,
on B(τ0, ρ0) it is allowed to take the derivatives of (7.5) and we get

∂g∗

∂τ
(τ) +

∂g∗∗

∂τ

(
∂g∗

∂τ
(τ)
)
∂2g∗

∂τ2 (τ) =
∂g∗

∂τ
(τ) + τ

∂2g∗

∂τ2 (τ).

Since g∗
i is strictly convex the second derivatives are not degenerated at least on

a dense set and by smoothness we obtain on B(τ0, ρ0)

τ =
∂g∗∗

∂τ

(
∂g∗

∂τ
(τ)
)
. (7.7)

At this point, consider the dual solution and fix x0 ∈ a(σ). On one hand, the
above reasoning can be applied to σ(x0) and (7.7) gives

σ(x0) =
∂g∗∗

∂τ

(
∂g∗

∂τ
(σ(x0))

)
. (7.8)

On the other hand, by (7.2) we have

σ(x0) ∈ ∂g∗∗(ε(u)(x0)). (7.9)

Let κ1 := ∂g∗

∂τ (σ(x0)) and κ2 := ε(u)(x0). We claim that κ1 = κ2. In fact, g∗∗ is
smooth in an open neighbourhood V = V (κ1) and we can choose 0 < δ sufficiently
small such that κ̃ := κ1 + δ(κ2 − κ1) ∈ V . By construction, we have

κ1 − κ̃ = δ(κ1 − κ2), κ̃− κ2 = (1 − δ)(κ1 − κ2).

On account of (7.8) and (7.9) one gets

0 =
(
∂g∗∗

∂τ
(κ1) − σ(x0)

)
: (κ1 − κ2)

=
(
∂g∗∗

∂τ
(κ1) − ∂g∗∗

∂τ
(κ̃)
)

:
κ1 − κ̃

δ
+
(
∂g∗∗

∂τ
(κ̃) − σ(x0)

)
:
κ̃− κ2

1 − δ
. (7.10)

Since g∗∗ is convex and smooth at κ̃, we obtain

∂g∗∗

∂τ
(κ̃) : (κ2 − κ̃) + g∗∗(κ̃) ≤ g∗∗(κ2).
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Although g∗∗ is not necessarily smooth at κ2, σ(x0) at least is known to be a
subgradient of g∗∗ at κ2, which means

σ(x0) : (κ̃− κ2) + g∗∗(κ2) ≤ g∗∗(κ̃).

Combining these relations we see(
∂g∗∗

∂τ
(κ̃) − σ(x0)

)
: (κ̃− κ2) ≥ 0.

Thus together with (7.10) it is proved that

0 =
(
∂g∗∗

∂τ
(κ1) − ∂g∗∗

∂τ
(κ̃)
)

: (κ1 − κ̃). (7.11)

However, on the line (κ1, κ̃) the function g∗∗ is known to be smooth and strictly
convex, that is we can write

(
∂g∗∗

∂τ
(κ1) − ∂g∗∗

∂τ
(κ̃)
)

: (κ1 − κ̃)

=
∫ 1

0

d

ds

{
∂g∗∗

∂τ
(sκ1 + (1 − s)κ̃) : (κ1 − κ̃)

}
ds

=
∫ 1

0

∂2g∗∗

∂τ2 (sκ1 + (1 − s)κ̃)((κ1 − κ̃), (κ1 − κ̃)) ds > 0

by strict convexity if κ1 6= κ2. In other words, we have proved that

ε(u)(x0) =
∂g∗

∂τ
(σ(x0)).

Then, as above, there is a ball B(σ(x0), ρ) such that for some i ∈ {1 . . . k}

g∗∗(Š) = g∗∗
i (Š) = gi(Š) for all Š ∈ V,

where V is some open neighbourhood of ε(u)(x0). Again, we can apply Theorem 6.1
and the theorem is proved since ε(u) is smooth near x0, since g∗∗ is smooth near
ε(u)(x0) and since we have (7.2). ¨
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