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Abstract. For a domain Ω ⊂ R2 we consider the second order variational problem of
minimizing J(w) =

∫
Ω
f(∇2w) dx among functions w : Ω → R with zero trace respecting a side

condition of the form w ≥ Ψ on Ω. Here f is a smooth convex integrand with non-standard
growth, a typical example is given by f(∇2w) = |∇2w| ln(1 + |∇2w|) . We prove that—under
suitable assumptions on Ψ—the unique minimizer is of class C1,α(Ω) for any α < 1 . Our results
provide a kind of interpolation between elastic and plastic plates with obstacles.

1. Introduction and main result

Let Ω denote a bounded, star-shaped Lipschitz domain in R2 and suppose
we are given an N -function A having the ∆2 -property, precisely (see, e.g. [A] for
details) the function A: [0,∞)→ [0,∞) satisfies

A is continuous, strictly increasing and convex;(N1)

lim
t↓0

A(t)

t
= 0, lim

t→∞
A(t)

t
= +∞;(N2)

there exist k, t0 ≥ 0 : A(2t) ≤ kA(t) for all t ≥ t0.(N3)

The function A generates the Orlicz space LA(Ω) equipped with the Luxem-
burg norm

‖u‖LA(Ω) := inf

{
l > 0 :

∫

Ω

A

(
1

l
|u|
)
dx ≤ 1

}
,

the Orlicz–Sobolev space W l
A(Ω) is defined in a standard way (see again [A]),

finally, we let
W̊ l
A(Ω) := closure of C∞0 (Ω) in W l

A(Ω).

For local spaces we use symbols like W̊ l
A,loc(Ω), Lploc(Ω) etc. Suppose further that

we are given a function Ψ ∈W 3
2 (Ω) (⊂ C1,α( Ω)) which satisfies

Ψ|∂Ω < 0, max
Ω

Ψ > 0
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and let
K :=

{
v ∈ W̊ 2

A(Ω) : v ≥ Ψ a.e. on Ω
}
.

It is easy to see that K contains a function Ψ0 of class C∞0 (Ω): let Ω+ := [Ψ ≥ 0]
and choose η ∈ C∞0 (Ω) such that η ≡ 1 on Ω+ and 0 ≤ η ≤ 1 on Ω. Then
Ψ0 := ηmax

{
0,max Ω Ψ

}
has the desired properties.

Next we formulate the hypotheses imposed on the integrand: f : R2×2 →
[0,∞) is of class C2 satisfying

c1
{
A
(
|ξ|
)
− 1
}
≤ f(ξ) ≤ c2

{
A
(
|ξ|
)

+ 1
}

;(1.1)

λ
(
1 + |ξ|2

)−µ/2|η|2 ≤ D2f(ξ)(η, η);(1.2)

|D2f(ξ)| ≤ Λ < +∞;(1.3)

|D2f(ξ)| |ξ|2 ≤ c3
{
f(ξ) + 1

}
;(1.4)

A∗
(
|Df(ξ)|

)
≤ c4

{
A
(
|ξ|
)

+ 1
}

(1.5)

for all ξ , η ∈ R2×2 . Here c1 , c2 , c3 , c4 , λ and Λ denote positive constants, µ is
some parameter in [0, 2), and A∗ is the Young transform of A . From (1.3) we see
that f is of subquadratic growth, i.e. lim sup|ξ|→∞ f(ξ)/|ξ|2 < +∞ , (1.4) is the
so-called balancing condition being of importance also in the papers [FO], [FM]
and [BFM]. As shown for example in [FO] we can take f(ξ) := |ξ| ln(1 + |ξ|) or its
iterated version fl(ξ) := |ξ|f̃l(ξ) with f̃1(ξ) = ln(1 + |ξ|) , f̃l+1(ξ) = ln

(
1 + f̃l(ξ)

)
.

But also power growth (1 + |ξ|2)p/2 , 1 < p ≤ 2, is included. Moreover, we can
consider integrands f such that c|ξ|p ≤ f(ξ) ≤ C|ξ|p , |ξ| À 1, 1 < p ≤ 2, and
which are elliptic in the sense of (1.2) for any given 0 ≤ µ < 2 (compare [BFM]
for a concrete construction). Let us now state our main result.

Theorem 1.1. Let (1.1)–(1.5) hold. Then the obstacle problem

(V) J(w) :=

∫

Ω

f(∇2w) dxÃ min in K

admits a unique solution u which is of class W 2
p,loc(Ω) for any finite p , in particular

we have u ∈ C1,α(Ω) for any α < 1 , thus u belongs—at least locally—to the same
Hölder class as the obstacle Ψ .

Remark 1.2. The statement clearly extends to the vectorial setting of func-
tions v: Ω → RM and componentwise constraints vi ≥ Ψi provided Ψ1, . . . ,ΨM

are as above.

First of all, let us remark that Theorem 1.1 extends the power-growth case
studied in [FLM] to the whole scale of arbitrary subquadratic growth which is
described in terms of the N -function A . The main difficulty here is that we have
no analogue to the density property of smooth functions with compact support in
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the class {v ∈ W̊ 2
p (Ω) : v ≥ Ψ} stated in Lemma 2.3 of [FLM] which in turn is

based on the deep result Theorem 9.1.3 of [AH]. In place of this we now use a more
elaborate approximation procedure involving not only the functional J but also
the obstacle Ψ which has the advantage that the density result (see Lemma 2.2
for a precise statement) becomes more or less evident. Of course, this strategy is
also applicable in the setting of [FLM] which is included as a subcase.

The problem under consideration is of some physical interest: consider a plate
which is clamped at the boundary and whose undeformed state is represented by
the region Ω. If some outer forces are applied acting in vertical direction, then
the equilibrium configuration can be found as a minimizer of the energy

I(w) :=

∫

Ω

g(∇2w) dx+ potential terms.

The physical properties of the plate are characterized in terms of the given convex
function g: R2×2 → R . In the case of elastic plates we have g(ξ) = |ξ|2 (up to
physical constants), for perfectly plastic plates (treated for the unconstrained case
e.g. in [S] with the help of duality methods) g is of linear growth near infinity.
Since we describe g in terms of the arbitrary N -function A , we can construct
any kind of interpolation between the limit cases of linear and quadratic growth.
Let us also mention that for elastic plates with obstacles the minimizer is of class
C2( Ω) (see [FR]) provided that Ψ is sufficiently regular. For unconstrained plates
with logarithmic hardening law it was shown in [FS, Theorem 5.1], that u is of
class C2,α(Ω) for any 0 < α < 1.

Our paper is organized as follows: in Section 2 we introduce suitable regu-
larisations of problem (V) and prove some convergence properties. Moreover, a
density result is established. Section 3 is devoted to the proof of Theorem 1.1: we
show that for the approximative solutions uε the quantities (1 + |∇2uε|2)(2−µ)/4

are locally uniformly bounded in W 1
2,loc(Ω) which gives the claim with the help of

Sobolev’s embedding theorem.

2. Regularisation and a density result

From now on assume that all the hypotheses stated in and before Theorem 1.1
hold. Without loss of generality we may also assume that

Ψ > −1 on ∂Ω and Ω = D1 =
{
z ∈ R2 : |z| < 1

}
.

Proceeding exactly as in [FO, Theorem 3.1], we find that (V) has a unique so-
lution u (which of course holds for any strictly convex f with property (1.1)).
For the reader’s convenience we remark that the trace theorem 2.1 of [FO] used
during the existence proof has now to be replaced by the statement that W̊ 2

A(Ω) =

W 2
A(Ω)∩ W̊ 2

1 (Ω) which can be obtained with the same arguments as used in [FO,
Theorem 2.1].
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Since the statement of Theorem 1.1 is local, we fix some disc D b Ω. Let us
introduce a sequence {Ψε}ε such that

Ψε ∈W 3
2 (Ω),

Ψε = Ψ in a neighborhood of D,

Ψε ≡ −1 on D1 −D1−ε and

Ψε → Ψ a.e. on D1 as ε ↓ 0.

Of course we can also arrange Ψ0 ≥ Ψ ≥ Ψε . Consider now the problems

(Vε ) J(w)Ã min in Kε :=
{
v ∈ W̊ 2

A(Ω) : v ≥ Ψε a.e.
}

with unique solution uε and its quadratic regularisation

(Vε
δ )

Jδ(w) :=
δ

2

∫

Ω

|∇2w|2 dx+ J(w)Ã min

in Kε′ :=
{
v ∈ W̊ 2

2 (Ω) : v ≥ Ψε a.e.
}
.

Note that Ψ0 ∈ Kε′ , hence Kε′ 6= ∅ , and (Vε
δ ) has a unique solution uεδ . We have

Jδ(u
ε
δ) ≤ Jδ(Ψ0) ≤ J1(Ψ0) < +∞, thus

∫

Ω

A
(
|∇2uεδ|

)
dx ≤ const < +∞

and similar to [FO, Lemma 3.1], or [FLM, Lemma 2.4], we deduce

Lemma 2.1. For any fixed ε > 0 we have

uεδ
δ↓0
⇁ uε in W 2

1 (Ω),(i)

δ

∫

Ω

|∇2uεδ|2 dx
δ↓0→ 0,(ii)

Jδ(uεδ)
δ↓0→ J(uε).(iii)

Proof. Clearly uεδ ⇁ ũε as δ ↓ 0 in W 2
1 (Ω) for some function ũε which is

easily seen (compare [FO]) to belong to the class Kε (obviously uεδ → ũε a.e. on
Ω as δ ↓ 0). For w ∈ Kε′ we have

Jδ(ũ
ε) ≤ Jδ(w)

δ↓0→ J(w) and J(ũε) ≤ lim inf
δ↓0

J(uεδ) ≤ lim inf
δ↓0

Jδ(u
ε
δ);

thus it is proved for all w ∈ Kε′

(2.1) J(ũε) ≤ J(w).

By Lemma 2.2 we also know that Kε′ is dense in Kε , hence (2.1) holds for any
w ∈ Kε and ũε = uε follows. The other statements of Lemma 2.1 are obvious.
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Lemma 2.2. The class Kε′ is dense in Kε .

Proof. Consider v ∈ Kε and define (0 < % < 1)

v%(x) :=




v

(
1

%
x

)
, if |x| ≤ %,

0, if % ≤ |x|,

for x ∈ Ω; v% is of class W̊ 2
A(Ω) and

(2.2) ‖v% − v‖W 2
A

(Ω) → 0 as % ↑ 1.

According to Poincaré’s inequality (see, for example, [FO, Lemma 2.4]) (2.2) is a
consequence of

(2.3) ‖∇2v% −∇2v‖LA(Ω)→ 0 as % ↑ 1,

and (2.3) is established as soon as we can show (compare, e.g. [FO, Lemma 2.1])

(2.4)

∫

Ω

A
(
|∇2v% −∇2v|

)
dx→ 0 as % ↑ 1.

To this end observe that

∇2v% −∇2v
%↑1→ 0 a.e. on Ω.

Moreover

A
(
|∇2v% −∇2v|

)
≤ A

(
|∇2v%|+ |∇2v|

)
≤ 1

2

(
A
(
2|∇2v%|

)
+A

(
2|∇2v|

))

by convexity and monotonicity of A . The ∆2 -condition yields (see [FO, inequality
(2.1)])

A(mt) ≤ A(mt0) +
(
1 + k(lnm/ln 2)+1

)
A(t)

for all m , t ≥ 0. This implies for a.a. |x| ≤ %

A
(
2|∇2v%(x)|

)
= A

(
2%−2|∇2v(x/%)|

)

≤ A
(
2%−2t0

)
+
(
1 + k(ln 2%−2/ln 2)+1

)
A
(
|∇2v(x/%)|

)
:= g̃%(x),

hence
A
(
|∇2v% −∇2v|

)
≤ 1

2

(
A
(
2|∇2v|

)
+ g̃%(x)

)
=: g%(x)

being valid for a.a. x ∈ Ω if we define g̃%(x) = 0 for |x| > % . We have

g%(x)
%↑1→ 1

2

(
A
(
2|∇2v(x)|

)
+A(2t0) +

(
1 + k2

)
A
(
|∇2v(x)|

))
=: g(x)
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a.e. and also
∫

Ω
g% dx →

∫
Ω
g dx as % ↑ 1. The version of the dominated conver-

gence theorem given in [EG, Theorem 4, p. 21], implies (2.4).
For small enough h > 0 let (ϕ)h denote the mollification of a function ϕ with

radius h . Let us define

w := (v%)h + Ψε −
(
[Ψε]%

)
h
, where

[Ψε]%(x) :=





Ψε

(
1

%
x

)
, if |x| ≤ %,

−1, if |x| ≥ %,

for x ∈ Ω. Of course we assume 1 − % ≤ 1
2ε and h ≤ 1

2 (1 − %) (note that we
can define the mollified functions for any x ∈ Ω since v% and [Ψε]% are constant
near the boundary and therefore can be extended by the same value to the whole
plane). Then

(v%)h −
(
[Ψε]%

)
h
≥ 0

which is a consequence of v% − [Ψε]% ≥ 0, thus w ≥ Ψε . Since Ψε ≡ −1 on
D1−D1−ε we also have w = 0 near ∂Ω, moreover, w ∈W 3

2 (Ω), and ‖w−v‖W 2
A

(Ω)

becomes as small as we want if we first choose % close to 1 and then let h go to
zero.

Lemma 2.3. We have the following convergence properties

uε
ε↓0
⇁ u in W 2

1 (Ω),(i)

J(uε)
ε↓0→ J(u).(ii)

Proof. From Ψ0 ∈ Kε we get J(uε) ≤ J(Ψ0) < +∞ ; as usual this implies
that uε ⇁: ũ in W 2

1 (Ω) as ε ↓ 0 and that ũ is in the space W̊ 2
1 (Ω). We may

assume that uε → ũ a.e. as ε ↓ 0, hence Ψ = limε↓0 Ψε ≤ limε↓0 uε = ũ a.e. Thus
ũ ∈ K and in conclusion

J(u) ≤ J(ũ).

On the other hand

u ≥ Ψ ≥ Ψε

implies u ∈ Kε , hence

J(uε) ≤ J(u) and in conclusion J(ũ) ≤ lim inf
ε↓0

J(uε) ≤ J(u).

By strict convexity J(u) = J(ũ) implies u = ũ .
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3. Proof of Theorem 1.1

Consider now η ∈ C∞0 (D) , 0 ≤ η ≤ 1. Following the lines of [FLM] we get
estimate (3.6) of [FLM] with gδ replaced by fδ(ξ) = 1

2δ|ξ|2 + f(ξ) and uεδ , Ψε in
place of uδ , Φ, i.e. (summation with respect to γ = 1, 2)
∫

D

η6D2fδ
(
∇2uεδ

)(
∂γ∇2uεδ, ∂γ∇2uεδ

)
dx

≤ c
∫

D

∣∣D2fδ
(
∇2uεδ

)∣∣ (|∇uεδ|2 + |∇2uεδ|2 + |∇Ψε|2 + |∇2Ψε|2 + |∇3Ψε|2
)
dx.(3.1)

By construction, Ψε = Ψ in a neighborhood of D , hence we may write Ψ in place
of Ψε on the right-hand side of (3.1). Note also that the constant c appearing in
(3.1) is independent of ε and δ . (1.3) together with the remark that Ψ = Ψε on
D implies
∫

D

∣∣D2fδ(∇2uεδ)
∣∣(|∇Ψε|2 + |∇2Ψε|2 + |∇3Ψε|2

)
dx ≤ c (independent of ε , δ ).

From
Jδ(u

ε
δ) ≤ J1(Ψ0) < +∞

we deduce

δ

∫

D

|∇2uεδ|2 dx ≤ c (independent of ε , δ ).

From (1.4) we get
∫

D

∣∣D2f(∇2uεδ)
∣∣ |∇2uεδ|2 dx ≤ c

∫

D

(
f
(
∇2uεδ

)
+ 1
)
dx

≤ c
(
J(uεδ) + 1

)
≤ c
(
J(Ψ0) + 1

)
.

From the uniform bound on J(uεδ) we deduce a uniform bound for the quantity
‖uεδ‖W 2

1 (Ω) , and since n = 2, we see that ‖∇uεδ‖L2(Ω) is bounded independent of

ε and δ . Inserting these estimates in (3.1) we end up with

(3.2)

∫

D

η6D2fδ
(
∇2uεδ

)(
∂γ∇2uεδ, ∂γ∇2uεδ

)
dx ≤ c(η) < +∞

being valid for all sufficiently small ε and δ . Consider now the auxiliary function

hεδ :=
(
1 + |∇2uεδ|2

)(2−µ)/4

which is of class W 1
2,loc(Ω) (note that µ < 2 and that uεδ ∈ W 3

2,loc(Ω), the last
statement following exactly along the lines of [FLM]). (3.2) implies

(3.3)

∫

D

|∇hεδ|2η6 dx ≤ c(η) < +∞,
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and from µ ≥ 0 we get

hεδ ≤
(
1 + |∇2uεδ|2

)1/2
.

Jδ(u
ε
δ) ≤ const implies

∫
Ω
hεδ dx ≤ const < +∞ and together with (3.3) we find

hεδ ∈W 1
2,loc(D) with local bound independent of ε and δ . We claim

(3.4) hεδ
δ↓0
⇁
(
1 + |∇2uε|2

)(2−µ)/4

weakly in W 1
2,loc(D) . First of all, for any fixed ε > 0, we find a subsequence δ ↓ 0

and a function hε in W 1
2,loc(D) such that

hεδ ⇁ hε in W 1
2,loc(D),

hεδ → hε a.e. as δ ↓ 0.

For proving (3.4) let us write (observe (1.5))

Jδ(u
ε
δ)− J(uε) =

δ

2

∫

Ω

|∇2uεδ|2 dx+ J(uεδ)− J(uε)

=
δ

2

∫

Ω

|∇2uεδ|2 dx+

∫

Ω

Df(∇2uε) : (∇2uεδ −∇2uε) dx

+

∫

Ω

∫ 1

0

D2f
(
(1− t)∇2uε + t∇2uεδ

)(
∇2uεδ −∇2uε,∇2uεδ −∇2uε

)
(1− t) dt dx.

The minimality of uε together with uεδ ∈ Kε implies

∫

Ω

Df(∇2uε) : (∇2uεδ −∇2uε) dx ≥ 0

so that by Lemma 2.1

lim
δ↓0

∫

Ω

∫ 1

0

D2f
(
(1− t)∇2uε+ t∇2uεδ

)(
∇2uεδ−∇2uε,∇2uεδ−∇2uε

)
(1− t) dt dx = 0.

From the ellipticity condition (1.2) we get

∫ 1

0

D2f
(
(1− t)∇2uε + t∇2uεδ

)(
∇2uεδ −∇2uε,∇2uεδ −∇2uε

)
(1− t) dt

≥ λ
∫ 1

0

(
1 +

∣∣∇2uε + t
(
∇2uεδ −∇2uε

)∣∣2
)−µ/2

|∇2uεδ −∇2uε|2(1− t) dt

≥ c(µ, λ)
(
1 + |∇2uε|2 + |∇2uεδ|2

)−µ/2|∇2uεδ −∇2uε|2,
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hence

(3.5)
(
1 + |∇2uε|2 + |∇2uεδ|2

)−µ/2|∇2uεδ −∇2uε|2 δ↓0→ 0

in L1(Ω) and a.e. for a subsequence. hεδ → hε a.e. on D implies

|∇2uεδ|2
δ↓0→{hε}4/(2−µ) − 1 a.e.,

{hε}4/(2−µ) − 1 being finite a.e. Returning to (3.5) and observing that (1 +
|∇2uε|2 + |∇2uεδ|2)−µ/2 has a pointwise limit a.e. on D as δ ↓ 0 which is not zero
we get

∇2uεδ
δ↓0→∇2uε a.e. on D

and in conclusion (3.4) is established at least for a subsequence of δ ↓ 0. But since
the limit is unique, the statement is true for any sequence δ ↓ 0. Recall that

‖hεδ‖W 1
2 (D̃)

≤ c(D̃) < +∞

for any subdomain D̃ b D . Combining this with (3.4) we get

∥∥(1 + |∇2uε|2
)(2−µ)/2∥∥

W 1
2 (D̃)

≤ lim inf
δ↓0

‖hεδ‖W 1
2 (D̃)

≤ c(D̃)

so that by Sobolev’s embedding theorem

‖∇2uε‖
Lp(D̃)

≤ c(p, D̃) ≤ +∞

for any finite p . Therefore uε ∈ W 2
p,loc(D) uniformly for any finite p and

Lemma 2.3 implies u ∈W 2
p,loc(D) (uε converges weakly as ε ↓ 0 to some function

in W 2
p,loc(D) , by Lemma 2.3 the limit is just u).
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