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Abstract. We introduce integrandsf : R
nN → R of (s, µ, q)–type, which are, roughly

speaking, of lower (upper) growth rates ≥ 1 (q > 1) satisfying in additionD2f(Z) ≥
λ
(
1+ |Z|2

)−µ/2
for someµ ∈ R. Then, ifq < 2−µ+s 2

n
, we prove partialC1–regularity

of local minimizersu ∈ W 1
1,loc(Ω, RN ) by the way including integrandsf being controlled

by someN–function and also integrands of anisotropic power growth. Moreover, we extend
the known results up to a certain limit and present examples which are not covered by the
standard theory.

Mathematics Subject Classification (2000):49 N 60, 49 N 99, 35 J 45

1 Introduction

In this paper we study the problem of partialC1–regularity for local minimizers
u ∈ W 1

1,loc(Ω,R
N ) of strictly convex variational integrals

J(u) =
∫
Ω

f(Du) dx(1.1)

under rather general and also non–standard growth conditions. HereΩ is some
domain in Euclidean spaceRn, n ≥ 2, and we assume that the integrandf :
R
nN → [0,∞) is a function of classC2 whose second derivativeD2f(Z) has

to satisfy certain coercivity conditions to be specified below. Thus, we do not touch
the quasiconvex case (compare e. g. [EV], [FH], [EG1], [AF1], [AF2], [CFM]) and
before presenting our results, we briefly summarize the conditions under which
partial regularity is available in the framework of strong convexity. Roughly speak-
ing, we can consider three different cases:

A. Power growth

For some numberm > 1 and with constantsλ, Λ > 0 the integrandf satisfies

λ
(|Z|m − 1

) ≤ f(Z) ≤ Λ
(|Z|m + 1

)
for all Z ∈ R

nN ,(1.2)
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in particular,f has the same growth rate from above and from below. Then, if also
D2f(Z) > 0 holds for any matrixZ, Anzellotti and Giaquinta proved in [AG] that
for any local minimizeru ∈ W 1

1,loc(Ω,R
N ) of (1.1) there is an open setΩ0 such

that|Ω ∼ Ω0| = 0, i. e. the singular set has measure zero, andu ∈ C1,α(Ω0,R
N ).

We emphasize that the paper [AG] also includes the case of linear growth (m = 1)
with corresponding local minimizers in the spaceBVloc(Ω,RN ). Moreover, the
reader will find there further comments on earlier results obtained under condition
(1.2).

B. Growth conditions involvingN–functions

The modelf(Z) = |Z| ln(1 + |Z|) serves as a typical example for integrandsf
not satisfying (1.2) for any powerm ≥ 1. Generally speaking, the quantity|Z|m
occuring in (1.2) is now replaced byA(|Z|) for some arbitraryN–functionA:
[0,∞) → [0,∞) satisfying a∆2–condition. If we add an appropriate ellipticity
and growth condition onD2f(Z), then in [FO] partial regularity was shown to hold
up to a certain dimensionn. The particular class of integrandsf with logarithmic
structure (i. e. f isC2–close to|Z| ln(1 + |Z|)) was studied first in [FS] with the
result that minimizers are partiallyC1 provided thatn ≤ 4. Later on Esposito and
Mingione [EM2] removed the restriction onn, moreover,Mingione andSiepe [MS]
proved forf(Z) = |Z| ln(1 + |Z|) in fact that the singular set is empty which of
course can not be expected in the general case. We would like to remark that some
extensions of the results obtained in [MS] can be found in [FM].

C. Anisotropic power growth

was introduced byMarcellini [M1]–[M4] as a natural extension of (1.2) where now
f is allowed to have different growth rates from above and from below, precisely:
with numbers1 < p < q we have

λ
(|Z|p − 1

) ≤ f(Z) ≤ Λ
(|Z|q + 1

)
for all Z ∈ R

nN(1.3)

(plus corresponding conditions involvingD2f(Z), for exampleD2f(Z) ≥ λ(1 +
|Z|2)(p−2)/2). Condition (1.3) is motivated by the integral (n = 2, p ≥ 2)

J(u) =
∫
Ω

{(
1 + |∂1u|2) p

2 +
(
1 + |∂2u|2) q

2
}
dx

where the derivatives occur with different powers. It should be noted that B. is not
a subcase of C. For formal reasons this should be obvious by considering energies
of logarithmic type. On the other hand, partial regularity in the anisotropic case
has been studied by Acerbi and Fusco [AF4] and later by Passarelli Di Napoli and
Siepe [PS] under quite restrictive assumptions: in [PS] they impose the condition

2 ≤ p < q < min
{
p+ 1,

pn

n− 1

}
(1.4)

thus excluding any subquadratic growth.
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The purpose of our paper is twofold: first, we would like to give a unified ap-
proach including all the different cases. Secondly, we present certain improvements
by extending for example the results of [FO] (see Remark 5.) below) and by con-
structing integrands to which the results mentioned in A. – C. do not apply but
which can be handled with the help of our techniques. We consider integrandsf
of (s, µ, q)–growth which are defined as follows: letF : [0,∞) → [0,∞) denote a
continuous function such that for somes ≥ 1 we have

lim
t→∞

F (t)
t

= ∞ , F (t) ≥ c0 t
s for large values oft .(1.5)

The integrandf is a non–negativeC2–function such that for allZ, Y ∈ R
nN

c1F (|Z|) ≤ f(Z) ;(1.6)

λ
(
1 + |Z|2)− µ

2 |Y |2 ≤ D2f(Z)(Y, Y ) ≤ Λ
(
1 + |Z|2) q−2

2 |Y |2 .(1.7)

Hereµ ∈ R, q > 1 andc0, c1, λ, Λ denote positive constants. In addition, we
require the(s, µ, q)–condition, i. e.

q < 2 − µ+ s
2
n
.(1.8)

Note that on account ofq > 1 (1.8) gives the upper bound

µ < 1 +
2
n
.(1.9)

In the case thatf isC2 close to|Z| ln(1+ |Z|)we can takes = 1,µ = 1, q = 1+ε
(for anyε > 0) andF (t) = t ln(1 + t), hence (1.8) holds. Now our main result
reads as follows:

Theorem 1.1. Let conditions (1.5)–(1.8) hold and letu ∈ W 1
1,loc

(
Ω,RN

)
denote

a local minimizer of (1.1), i. e.f(Du) ∈ L1
loc(Ω) and∫

spt(u−v)
f(Du) dx ≤

∫
spt(u−v)

f(Dv) dx

for any v ∈ W 1
1,loc

(
Ω,RN

)
such thatspt(u − v) � Ω. Then there is an open

subsetΩ0 ofΩ of full measure, i. e.|Ω ∼ Ω0| = 0, such thatu ∈ C1,α
(
Ω0,R

N
)

for any0 < α < 1.

Let us briefly comment on our conditions:

1.) The(s, µ, q)–condition was introduced in [BFM] where full regularity (i. e.Ω0
= Ω) was established for the scalar case under exactly the same assumptions as
stated here. The key ingredient in [BFM] is a local gradient bound inL∞ which
follows via Moser iteration technique or from DeGiorgi type arguments. In the
vectorial settingN > 1 such a bound can not be expected to hold true, thus we
could not benefit too much from the arguments in [BFM]. However, as it is shown
in [BFM] for the scalar case, it is easy to check that the result of Theorem 1.1
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continues to hold if we replace (1.8) by the weaker condition (note thats ≤ q on
account of 2.))

q < (2 − µ)
n

n− 2
(1.8∗)

provided we add the balancing condition (introduced in [FO])

|D2f(Z)| |Z|2 ≤ const
(
f(Z) + 1

)
.(B)

Note that (1.8∗) makes sense only in the case thatn ≥ 3 and then (1.8∗) clearly
implies (1.9). For the twodimensional case we have to replace (1.8∗) by the require-
ment thatµ < 2. We leave the details of the proof of this variant of Theorem 1.1 to
the reader.

2.) (1.5) together with the second inequality in (1.7) implies (see [AF3], Lemma
2.1, if q < 2) the bounds ≤ q.

3.) In the caseµ ≥ 1 we have2 − µ ≤ s. If µ ≤ 0 we clearly may assume that
2 − µ ≤ s since2 − µ is a lower bound for the growth off , hence we can replace
s bymax{s, 2−µ}. For0 < µ < 1 this inequality is also reasonable: from [AF3],
Lemma 2.1, and the first inequality in (1.7) we get again that2 − µ is a lower
growth rate forf . Comparing this to (1.5) we may directly assume that2 − µ ≤ s.
In particular we have by 2.) that2 − µ ≤ q.

4.) Suppose we are given numbers1 < p < q such that for allZ ∈ R
nN

a
(|Z|p − 1

) ≤ f(Z) ≤ b
(|Z|q + 1

)
,

λ
(
1 + |Z|2) p−2

2 ≤ D2f(Z) ≤ Λ
(
1 + |Z|2) q−2

2 .

Then we may letµ = 2 − p, s = p, and we deduce partial regularity if

q < p
n+ 2
n

which is much weaker than (1.4). (Note: [PS] do not need an upper bound for
D2f(Z).)

5.) In [FO] partial regularity was established under the assumptions (1.5)–(1.7),
q ≤ 2, µ < 4/n together with condition (B) (see Remark 1.)). Clearlyq ≤ 2 and
µ < 4/n imply (1.8∗) so that we have included the result of [FO] on account of
the first remark. But, what is even more important, Theorem 1.1 does not need any
balancing condition of the form (B), the regularity of local minimizers follows from
µ < 2 − q + s2/n which for q close to1 and large values ofn is a much weaker
hypothesis thanµ < 4/n.
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6.) Let us now sketch an example of an integrand of(s, µ, q)–growthwhich is not of
type A., B. or C. For simplicity we assumes ≥ 2, for a corresponding subquadratic
example we refer to [BFM].

As shown in [BFM], Section 3, there exists for eachk ∈ N andt ≥ 2 a function
Φkt : R

k → [0,∞) such that

Φkt (η) ≥ a |η|t for large values ofη ∈ R
k ,(1.10)

and 0 ≤ D2Φkt (η)(τ, τ) ≤ b
(
1 + |η|2) t−2

2 , η , τ ∈ R
k ,(1.11)

hold with positive constantsa, b. Roughly speaking, the functionΦkt is constructed
by first considering(1+ |Z|2)t/2, then redefining equidistant parts to be linear and
finally smoothing the result of the first two steps. By definition ofΦkt , the exponents
in (1.10) and (1.11) can not be improved,moreover, due to the degeneracy ofD2Φkt ,
the lower bound of (1.11) is the best possible. Next consider numberss, µ, q such
that 2 ≤ s < q and2 − µ < s. Again, according to [BFM], Section 3, we can
construct a functionΦ: R

nN → [0,∞) satisfying

D2Φ(Z)(τ, τ) ≥ c
(
1 + |Z|2)− µ

2 |τ |2 .

For instance, we may chooseΦ(Z) = ϕ(|Z|) wereϕ is defined via

ϕ(r) =
∫ r

0

∫ s

0

(
1 + |t|2)− µ

2 dt ds , r ∈ R
+
0 .

In the caseµ ≥ 1Φ is of lower growth than any power|Z|1+ϑ,ϑ > 0, forµ < 1we
getΦ(Z) ≤ d (1 + |Z|2)(2−µ)/2, and it is not possible to improve the exponents.
We then define

(
z = (zi1, . . . z

i
n)1≤i≤N ∈ R

nN
)

f(Z) = Φ(Z) + ΦNs (z1) + Φ(n−1)N
q (z2, . . . , zn) .

Then (1.5)–(1.7) hold and if we also impose (1.8) then regularity of local minimiz-
ers follows which can not be deduced from the results stated in A. – C.

Our paper is organized as follows: in Section 2 we introduce a suitable regu-
larizationvε of our local minimizeru which converges weakly and in energy tou
on compact subsets. Section 3 investigates higher weak differentiability ofvε. As
a consequence we obtain uniform local estimates inLq forDvε which allow us to
give local apriori bounds for‖Du‖Lq . Moreover, we prove certain Caccioppoli–
type inequalities. Finally, Section 4 contains the proof of Theorem 1.1 via blow-up
arguments by considering the casesq ≥ 2 and1 < q < 2 more or less separately.

2 Approximation and some preliminary results

Let ε denote a sequence of positive real numbers converging to zero, where we do
not care about relabelling if necessary. Then we defineuε as theε–mollification
of u throughϕε, where{ϕt}t>0 is a family of smooth mollifiers. Moreover, let
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us fixR > 0 andx0 ∈ Ω. LettingBr := Br(x0) we assumeB2R ⊂ {x ∈ Ω :
dist(x, ∂Ω) > ε}. Forδ ∈ (0, 1] we define

fδ(Z) := f(Z) + δ
(
1 + |Z|2) q

2

and denote byvε,δ the unique solution of the variational problem

Jδ(w) :=
∫
B2R

fδ(Dw) dx ❀ min in uε+
◦
Wq

1(B2R,R
N

)
.

Lemma 2.1. If ε andδ are connected via

δ = δ(ε) :=
1

1 + ε−1 + ‖Duε‖2q
Lq(B2R)

and ifvε = vε,δ(ε), fε = fδ(ε), then we have asε → 0:

(i.) vε ⇁ u in W 1
1
(
B2R,R

N
)
,

(ii.) δ(ε)
∫
B2R

(
1 + |Dvε|2

) q
2 dx → 0 ,

(iii.)
∫
B2R

f(Dvε) dx →
∫
B2R

f(Du) dx ,

(iv.)
∫
B2R

fε(Dvε) dx →
∫
B2R

f(Du) dx .

Proof of Lemma 2.1.We argue as in [BFM], conclusion of Theorem 1.1, i. e. we
use the minimality ofvε as well as Jensen’s inequality to get∫

B2R

F (|Dvε|) dx ≤
∫
B2R

f(Dvε) dx ≤
∫
B2R

fε(Duε) dx

≤
∫
B2R

f(Du) dx+ o(ε) ,
(2.1)

i. e. we may suppose that

vε ⇁: v weakly in W 1
1
(
B2R,R

N
)
.

Passing to the limitε → 0, lower semicontinuity implies∫
B2R

f(Dv) dx ≤ lim inf
ε→0

∫
B2R

f(Dvε) dx ≤
∫
B2R

f(Du) dx .

Finally, the minimality ofu together with strict convexity off (see (1.7)) ensure
thatv = u, thus, with (2.1) the lemma is proved. ��

In the following δ is always assumed to be chosen according to Lemma 2.1.
To finish this section, some well known properties ofvε are summarized. Part a.)
of the following lemma is proved in [AF3], Proposition 2.4 and Lemma 2.5, for
the second part we refer the reader to [GM], especially formula (3.3), and to [CA]
(compare Theorem 1.1).
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Lemma 2.2.

a.) In the caseq < 2 the approximative solution satisfies:
(i.) vε ∈ W 2

q,loc

(
B2R,R

N
)
,

(ii.) Dfε(Dvε) ∈ W 1
2,loc

(
B2R,R

nN
)
,

(iii.)
(
1 + |Dvε|2

) q−2
4 Dvε ∈ W 1

2,loc

(
B2R,R

nN
)
,

(iv.)
∣∣D2vε1[|vε|≤M ]

∣∣ ∈ L2
loc(B2R) for all M > 0 .

b.) In the caseq ≥ 2 we have
(i.) vε ∈ W 2

2,loc

(
B2R,R

N
)
,

(ii.) Dfε(Dvε) ∈ W 1
q/(q−1),loc

(
B2R,R

nN
)
,

(iii.)
(
1 + |Dvε|2

) q
4 ∈ W 1

2,loc(B2R) ,

(iv.)
(
1 + |Dvε|2

) q−2
4 Dvε ∈ W 1

2,loc

(
B2R,R

nN
)
.

3 Apriori Lq–estimates and Caccioppoli–type inequalities

In this section we are going to prove the two main ingredients which will enable us
to perform the blow–up procedure in Section 4. The starting point is the following
Caccioppoli–type inequality for the approximative solutions.

Lemma 3.1. There is a real numberc > 0 such that for allη ∈ C1
0 (B2R),

0 ≤ η ≤ 1, and for allQ ∈ R
nN

∫
B2R

η2D2fε(Dvε)
(
∂sDvε, ∂sDvε

)
dx

≤ c‖Dη‖2
∞

∫
B2R∩sptDη

∣∣D2fε(Dvε)
∣∣ |Dvε −Q|2 dx ,

where summation with respect tos = 1, . . . , n is always assumed in the following.
In particular, for allQ ∈ R

nN

∫
B2R

η2 (
1 + |Dvε|2

)− µ
2 |D2vε|2 dx

≤ c‖Dη‖2
∞

∫
B2R∩sptDη

∣∣D2fε(Dvε)
∣∣ |Dvε −Q|2 dx .

Proof of Lemma 3.1.First of all we recall thatvε solves the regularized problem,
i. e. ∫

B2R

Dfε(Dvε) : Dϕdx = 0 for all ϕ ∈
◦
Wq

1(B2R,R
N

)
.(3.1)

Next, denote byes ∈ R
n the unit coordinate vector inxs–direction and let for a

functiong onΩ

∆hg(x) = ∆s
hg(x) =

g(x+ hes) − g(x)
h

, h ∈ R ,
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denote the difference quotient ofg atx in the directiones. Then, givenQ ∈ R
nN ,

ϕ = ∆−h(η2 ∆h (vε − Qx)), η ∈ C∞
0 (B2R), is admissible in (3.1) and by a

“partial integration” we obtain

∫
B2R

η2∆h

(
Dfε(Dvε)

)
: D∆hvε dx

= −2
∫
B2R

η∆h

(
Dfε(Dvε)

)
: Dη ⊗∆h(vε −Qx) dx .

(3.2)

Consider now the caseq ≥ 2: by Lemma 2.2 and by (1.8)Dvε is known to be of
classLrloc for somer > q and ifFh denotes the integrand on the right–hand side
of (3.2), then the existence of a real numberc(Dη), independent ofh, follows such
that

|Fh| ≤ c
{∣∣∆h

(
Dfε(Dvε)

)∣∣l1+|∆hvε|l2
}

for some l1 <
q

q − 1
, q < l2 < r ,

thus, equiintegrability ofFh in the sense of Vitali’s convergence theorem is ensured
by Lemma 2.2, b.), (ii.), and passing to the limith → 0 the right–hand side of (3.2)
tends to

−2
∫
B2R

η∂s
(
Dfε(Dvε)

)
: Dη ⊗ (∂svε −Qs) dx ∈ (−∞,+∞) .(3.3)

For the left–hand side of (3.2) we observe

∆h

(
Dfε(Dvε)

)
=

∫ 1

0
D2fε

(
Dvε + th∆hDvε

)(
∆hDvε, ·

)
dt

and get using (3.3), Fatou’s lemma and Young’s inequality

∫
B2R

η2D2fε(Dvε)
(
∂sDvε, ∂sDvε

)
dx

≤
∫
B2R

η2 lim inf
h→0

∫ 1

0
D2fε

(
Dvε + th∆hDvε

)(
∆hDvε, ∆hDvε

)
dt dx

≤ 1
2

∫
B2R

η2D2fε(Dvε)
(
∂sDvε, ∂sDvε

)
dx

+ c‖Dη‖2
∞

∫
B2R∩sptDη

∣∣D2fε(Dvε)
∣∣ |Dvε −Q|2 dx ,

i. e. the lemma is proved forq ≥ 2. If q < 2 then we modify the truncation
arguments given in [EM1]. To this purpose fixM � 1 and let fort ≥ 0

ψ(t) :=
{

0 , t ≥ M
1 , t ≤ M/2 , |ψ′(t)| ≤ 4/M .
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Given η, Q as above, then, by Lemma 2.2, a.), (iv.), and by [EM1], Lemma 1,
ϕ = ∆−h

(
η2 ∂s(vε −Qx)ψ(|Dvε|)

)
is seen to be admissible, hence

∫
B2R

η2ψ∆h

(
Dfε(Dvε)

)
: D∂svε dx

= −2
∫
B2R

ηψ∆h

(
Dfε(Dvε)

)
: Dη ⊗ ∂s(vε −Qx) dx

−2
∫
B2R

η2 ∆h

(
Dfε(Dvε)

)
: Dψ ⊗ ∂s(vε −Qx) dx .

(3.4)

By the definition ofψ and again on account of Lemma 2.2, a.), (iv.), both integrals
on the right–hand side of (3.4) can be written as∫

sptη

∆h

(
Dfε(Dvε)

)
: ξ(x) dx

≤
∫
sptη

∣∣∆h

(
Dfε(Dvε)

)∣∣2 dx+ ‖ξ‖2
L2(B2R,RnN ) ,(3.5)

forasuitable functionξ of classL2.SinceLemma2.2,a.), (ii.), shows∂s(Dfε(Dvε))
to be of classL2

loc, strong convergence of difference quotients (see [MO], Theorem
3.6.8 (b)) implies passing to the limith → 0

∣∣∆h

(
Dfε(Dvε)

)∣∣2 → ∣∣∂s(Dfε(Dvε))∣∣2 almost everywhere,∫
sptη

∣∣∆h

(
Dfε(Dvε)

)∣∣2 dx →
∫
sptη

∣∣∂s(Dfε(Dvε))∣∣2 dx .(3.6)

With (3.5) and (3.6) the variant of the dominated convergence theorem, given for
example in [EG2], Theorem 4, p. 21, is applicable (note that almost everywhere
convergence in (3.6) is needed for a proof of this variant). Thus, we may pass to
the limit h → 0 on the right–hand side of (3.4). The left–hand side is handled as
in the caseq ≥ 2 and summarizing the results we arrive at (again after applying
Young’s inequality to the bilinear formD2fε(Dvε))

∫
B2R

η2ψD2fε(Dvε)
(
∂sDvε, ∂sDvε

)
dx

≤ 1
2

∫
B2R

η2ψD2fε(Dvε)
(
∂sDvε, ∂sDvε

)
dx

+ c‖Dη‖2
∞

∫
sptDη

∣∣D2fε(Dvε)
∣∣ |Dvε −Q|2 dx

+ c

∫
sptDη

∣∣D2fε(Dvε)
∣∣ |D2vε|21[M/2≤|Dvε|≤M ] dx .

Here we use the fact that|Dvε − Q| < 2 M on [M/2 ≤ |Dvε| ≤ M ] for M
sufficiently large and thatD

(
ψ(|Dvε|)

) ≤ c |D2vε|/M . Before passing to the
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limit M → ∞ we use Proposition 2.4 of [AF3] once again, i. e. we observe the
estimate∫

Bt

(
1 + |Dvε|2

) q−2
2 |D2vε|2 dx ≤ c(t, t′)

∫
Bt′

(
1 + |Dvε|2

) q
2 dx

being valid for all0 < t < t′ < 2R. Recalling the growth of|D2f(Dvε)| we
immediately get that∫

sptDη

∣∣D2fε(Dvε)
∣∣ |D2vε|21[M/2≤|Dvε|≤M ] dx

M→∞−→ 0

on account of1sptDψ → 0 asM → ∞ and the claim of the lemma follows. ��
Besides Lemma 3.1 the following technical proposition is needed to prove

uniformLq–estimates forDvε. So let us introduceΘ(t) := (1+ t2)(2−µ)/4, t ≥ 0,
and lethε := Θ(|Dvε|).
Proposition 3.2. With this notationhε ∈ W 1

2,loc(B2R) and

Dhε = Θ′(|Dvε|)D∣∣Dvε∣∣ .
Remark 3.3. If we consider for instance the caseq ≥ 2, then the fact thathε is of
classW 1

2 follows from Lemma 2.2, b.), (iii.). However, in Lemma 3.4 we need an
explicit formula for the derivative.

Proof of Proposition 3.2.In order to reduce the problem to an application of the
usual chain rule for Lipschitz functions, letL � 1 be some real number and let

ΘL(t) =

{
(1 + t2)

2−µ
4 , 0 ≤ t ≤ L

(1 + L2)
2−µ

4 , t ≥ L
, hLε := ΘL(|vε|) .

AsaconsequenceofLemma2.2,hLε is immediately seen tobeof classW
1
1 satisfying

DhLε = Θ′
L

(|Dvε|)D∣∣Dvε∣∣ .(3.7)

In addition, for0 < r < 2R we have the estimate∫
Br

∣∣DhLε ∣∣2 dx ≤
∫
Br∩[|Dvε|≤L]

|Θ′|2 ∣∣D2vε
∣∣2 dx

≤ c

∫
Br

(
1 + |Dvε|2

)− µ
2
∣∣D2vε

∣∣2 dx ,
hence, by Lemma 3.1,‖DhLε ‖L2(Br,Rn) is uniformly bounded with respect toL
and we may assume

DhLε ⇁: Wε in L2(Br,Rn) as L → ∞ .

On the other hand, the obvious convergencehLε → hε inL2(Br) asL → ∞ implies
Wε = Dhε, thushε ∈ W 1

2 (Br). (3.7) also gives

DhLε → Θ′(|Dvε|)D∣∣Dvε∣∣ almost everywhere,
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hence we can identify the limit and the proposition is proved. ��
Asmentioned above,we now turn our attention to (uniform) higher integrability

ofDvε. Let us remark, that with uniform growth estimates forf , but even without
any control on the derivatives, integrability of the gradient can be slightly improved
(compare, for instance, [CF]). In the situation at hand, Lemma 3.4 can be proved
following the lines of [BFM], Lemma 2.4.

Lemma 3.4. Assume again (1.5)–(1.8) and letχ = n
n−2 if n > 2, in the case

n = 2 let χ > 2s
s+2−µ−q . Then there are real numbersc, β, independent ofε such

that for all r < 2R

∫
Br

(
1 + |Dvε|2

) (2−µ)χ
2 dx ≤ c(r,R)

{∫
B2R

(
1 + fε(Dvε)

)
dx

}β

.

In particular, by Lemma 2.1,Dvε ∈ L
(2−µ)χ
loc (B2R,R

nN ) ⊂ Lqloc(B2R,R
nN )

uniformly with respect toε, i. e.

Du ∈ L
(2−µ)χ
loc

(
B2R,R

nN
) ⊂ Lqloc

(
B2R,R

nN
)
.

Proof of Lemma 3.4.We consider the casen ≥ 3, let α = (2−µ)n
2(n−2) and assume

without loss of generalityR < r < 3R/2. Moreover, fix0 < ρ < R/2 and
η ∈ C1

0 (Br+ρ/2), η ≡ 1 onBr, Dη ≤ 4/ρ. Sincehε was proved in Proposition
3.2 to be of classW 1

2 , we obtain using Sobolev’s inequality∫
Br

(
1 + |Dvε|2

)α
dx ≤

∫
B2R

(
η
[
1 + |Dvε|2

]αn−2
2n

) 2n
n−2

dx

=
∫
B2R

(
ηhε

) 2n
n−2 dx

≤ c

(∫
B2R

∣∣D(ηhε)|2 dx
) n

n−2

≤ c
{
T1 + T2

} n
n−2 ,

where we have set

T1 =
∫
B2R

|Dη|2h2
ε dx , T2 =

∫
B2R

η2 |Dhε|2 dx .

T1 is directly seen to satisfy

T1 ≤ c

ρ2

∫
B2R

(
1 + |Dvε|2

) 2−µ
2 dx ,

whereasT2 has to be handled via the representation formula for the derivative of
hε given in Proposition 3.2:

T2 ≤ c

∫
Br+ρ/2

(
1 + |Dvε|2

)− µ
2
∣∣D2vε

∣∣2 dx .
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With Lemma 3.1 (choosingQ = 0) and (1.7) we obtain∫
Br

(
1 + |Dvε|2

)α
dx

≤ c

ρ2

{∫
B2R

(
1 + |Dvε|2

) 2−µ
2 dx+

∫
Br+ρ∼Br

(
1 + |Dvε|2

) q
2 dx

}χ

,

where the arguments used for the right–hand side are the same as in [BFM], i. e.:
the interpolation procedure demonstrated in [ELM] (starting with the inequality
given after (4.6) in [ELM]) is modified using (1.5):

‖Dvε‖q ≤ ‖Dvε‖θs ‖Dvε‖1−θ
(2−µ)χ .

This inequality holds withθ ∈ (0, 1) defined according to1q = θ
s + 1−θ

(2−µ)χ . Note
that the subsequent arguments of [ELM] require the bound(1 − θ)q/(2 − µ) < 1
which incasen ≥ 3 is equivalent to (1.8).Now letn = 2anddefineα = χ(2−µ)/2.
Then we have

∫
Br

(
1 + |Dvε|2

)α
dx ≤

∫
B2R

(ηhε)2χ dx ≤ c

(∫
B2R

∣∣D(ηhε)
∣∣t dx) 2χ

t

,

wheret ∈ (1, 2) is defined through2χ = 2t/(2− t). Using Ḧolder’s inequality we
get ∫

Br

(
1 + |Dvε|2

)α
dx ≤ c

(∫
B2R

∣∣D(ηhε)
∣∣2 dx)χ

,

and we can proceed as before withn/(n − 2) replaced byχ. Again we have to
satisfy the requirement(1 − θ)q/(2 − µ) < 1 which for n = 2 is equivalent to
χ > s/(s+2−µ− q). But the latter inequality follows from our choice ofχ, thus
Lemma 3.4 is established also in casen = 2. ��

Having established higher integrability ofDu, the next proposition gives some
preperations needed for the limit version of Caccioppoli’s–type inequality.

Proposition 3.5. Leth = (1 + |Du|2)(2−µ)/4. Then

(i.) h ∈ W 1
2,loc(B2R) ,

(ii.) hε ⇁ h in W 1
2,loc(B2R) as ε → 0 ,

(iii.) Dvε → Du almost everywhere onB2R as ε → 0 .

Proof of Proposition 3.5.We fix 0 < r < r̂ < 2R, combine Lemma 3.1 and
Proposition 3.2 to obtain

‖Dhε‖2
L2(Br,Rn) ≤ c

(
1 + ‖Dvε‖2

Lq(Br̂,RnN )

)
,
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hence, by Lemma3.4,hε is uniformly bounded inW 1
2,loc(B2R)andwemayassume

asε → 0

hε ⇁: ĥ weakly in W 1
2,loc(B2R) and almost everywhere.

The proof ofĥ = h together with the pointwise convergences exactly follows the
lines of [FO], Lemma 4.1. ��
Now we can formulate the limit version of Lemma 3.1.

Lemma 3.6. There is a real numberc such that for allη ∈ C1
0 (B2R), 0 ≤ η ≤ 1,

and for allQ ∈ R
nN

∫
B2R

η2 |Dh|2 dx ≤ c‖Dη‖2
∞

∫
B2R∩sptDη

∣∣D2f(Du)
∣∣ |Du−Q|2 dx.

Proof of Lemma 3.6.GivenQ, η as above, Proposition 3.5, lower semicontinuity,
Lemma 3.1 and Proposition 3.2 together imply

∫
B2R

η2 |Dh|2 dx ≤ lim inf
ε→0

∫
B2R

η2 |Dhε|2 dx

≤ lim inf
ε→0

c‖Dη‖2
∞

∫
B2R∩sptDη

∣∣D2fε(Dvε)
∣∣ |Dvε −Q|2 dx

= lim inf
ε→0

c‖Dη‖2
∞

∫
B2R∩sptDη

∣∣D2f(Dvε)
∣∣ |Dvε −Q|2 dx .(3.8)

Here, for the last equality, we made use of Lemma 2.1, (ii). Next, by the pointwise
convergence almost everywhere stated in Proposition 3.5, (iii.), we have

∣∣D2f(Dvε)
∣∣ |Dvε −Q|2 → ∣∣D2f(Du)

∣∣ |Du−Q|2 a. e. asε → 0 .(3.9)

Finally, by Lemma3.4we know that
∣∣D2f(Dvε)

∣∣ |Dvε−Q|2 is uniformly bounded
in L1+τ

loc (B2R) for someτ > 0, hence

∣∣D2f(Dvε)
∣∣ |Dvε −Q|2 ⇁: ϑ in L1+τ

loc (B2R) ,∫
B2R

∣∣D2f(Dvε)
∣∣ |Dvε −Q|2 dx →

∫
B2R

ϑ dx

(3.10)

asε → 0. From (3.9), (3.10) we clearly getϑ = |D2f(Du)| |Du − Q|2, which
together with (3.8) gives the proof of Lemma 3.6. ��
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4 Blow–up

Now we fix a local minimizeru which by Lemma 3.4 is known to be of class
W 1
q,loc(Ω,R

N ). The final step is to prove partial regularity ofu via a blow–up
procedure. As usual, the main tool is the decay estimate given in Lemma 4.1. The
iteration of Lemma 4.1 leading to partial regularity is well known. Depending on
the casesq ≥ 2 andq < 2 an appropriate excess function has to be introduced: in
the caseq ≥ 2 we let for ballsBr(x) � BR ⊂ Ω

E+(x, r) :=
∫
−

Br(x)

|Du− (Du)x,r|2 dy +
∫
−

Br(x)

|Du− (Du)x,r|q dy ,

where(g)x,r denotes the mean value of the functiong with respect to the ball
Br(x). In the caseq < 2 we define for allξ ∈ R

k, k ∈ N,

V (ξ) :=
(
1 + |ξ|2) q−2

4 ξ .

The properties ofV are studied for example in [CFM], in particular we refer to
Lemma 2.1 of [CFM]. With these preliminaries we let forq < 2

E−(x, r) :=
∫
−

Br(x)

|V (
Du(x)

) − V
(
(Du)x,r

)|2 dy ,
a definition which makes sense sinceq/2 is the growth rate ofV . In both cases we
have

Lemma 4.1. Fix L > 0. Then there exists a constantC∗(L) such that for every
0 < τ < 1/4 there is anε = ε(L, τ) satisfying: ifBr(x) � BR and if we have∣∣(Du)x,r

∣∣ ≤ L , E(x, r) ≤ ε(L, τ) ,

then
E(x, τ r) ≤ C∗(L)τ2E(x, r) .

Here and in the followingE denotes – depending onq –E+ orE− respectively.

Proof of Lemma 4.1.The proof is organized in four steps, always distinguishing
the casesq ≥ 2 andq < 2. If q ≥ 2 then we mostly refer to [FO], the caseq < 2
follows the lines of [CFM] and [EM2].

Step 1. (Blow–up and limit equation)To argue by contradiction, assume thatL > 0
is fixed, the corresponding constantC∗(L) will be chosen later on (see Step 4). If
Lemma 4.1 is not true, then for some0 < τ < 1/4, there are ballsBrm(xm) � BR
such that ∣∣(Du)xm,rm

∣∣ ≤ L , E(xm, rm) =: λ2
m

m→∞−→ 0 ,(4.1)

E(xm, τ rm) > C∗ τ2λ2
m .(4.2)
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Now a sequence of rescaled functions is introduced by letting

am := (u)xm,rm
, Am := (Du)xm,rm

,

um(z) :=
1

λm rm

[
u(xm + rm z) − am − rmAm z

]
if |z| ≤ 1 .

Passing to a subsequence, which is not relabeled, (4.1) implies

Am → : A in R
nN .(4.3)

We also observe that

Dum(z) = λ−1
m

[
Du(xm + rm z) −Am

]
, (um)0,1 = 0 , (Dum)0,1 = 0 ,

and concentrate for the moment on the caseq ≥ 2. Using (4.1) and (4.2) we have∫
−
B1

|Dum|2 dz + λq−2
m

∫
−
B1

|Dum|q dz = λ−2
m E+(xm, rm) = 1 ,(4.4)

∫
−
B1

∣∣Dum − (Dum)0,τ |2 dz + λq−2
m

∫
−
B1

|Dum − (Dum)0,τ |q dz > C∗ τ2 .(4.5)

With (4.4) we obtain asm → ∞

um ⇁: û in W 1
2
(
B1,R

nN
)
,(4.6)

λmDum → 0 in L2(B1,R
nN

)
and almost everywhere,(4.7)

λ
1− 2

q
m Dum ⇁ 0 in Lq

(
B1,R

nN
)
if q > 2 .(4.8)

Considering the caseq < 2 we follow [CFM], Poposition 3.4, Step 1, to see∫
−
B1

∣∣V (
Dum(z)

)|2 dz ≤ c(L) ,(4.9)

hence the “q/2–growth” ofV (compare [CFM], Lemma 2.1, (i)) implies the exis-
tence of a finite constant, independent ofm, such that

‖Dum‖Lq(B1,RnN ) ≤ c .

Thus, in the subquadratic situation (4.6)–(4.8) have to be replaced by

um ⇁: û in W 1
q

(
B1,R

nN
)
,(4.10)

λmDum → 0 in Lq
(
B1,R

nN
)
and almost everywhere.(4.11)

In both cases the limit̂u satisfies a blow–up equation stated in



M. Bildhauer, M. Fuchs

Proposition 4.2. There is a constantC∗, only depending onL, such that for all
ϕ ∈ C1

0 (B1,R
N ) ∫

B1

D2f(A)(Dû,Dϕ) dz = 0 ,∫
−
Bτ

∣∣Dû− (Dû)τ
∣∣2 dz ≤ C∗ τ2 .(4.12)

Proof of Proposition 4.2.The proof of the limit equation forq ≥ 2 is well known
and can be taken from [EV], p. 236. The subquadratic case again is treated in
[CFM], Step 2. Inequality (4.12) of Proposition 4.2 follows from the theory of
linear elliptic systems (compare [Gi], Chapter 3) where the subquadratic case also
involves Proposition 2.10 of [CFM]. ��
Step 2. Proceeding in the proof of Lemma 4.1 we have to show the following
proposition which will imply strong convergence in the third step.

Proposition 4.3. Let q ≥ 2 and0 < ρ < 1 or consider the caseq < 2 together
with 0 < ρ < 1/3. Then

lim
m→∞

∫
Bρ

(
1 + |Am + λmDû+ λmDwm|2)− µ

2 |Dwm|2 dz = 0 ,

where we have setwm = um − û.

Remark 4.4. The restrictionρ < 1/3 in the caseq < 2 is needed to apply the
Sobolev–Poincaré type inequality, Theorem 2.4 of [CFM].

Proof of Proposition 4.3.Againq ≥ 2 is the first case to consider, where the basic
ideas are given for example in [EG1]. Here we argue exactly as in [FO], pp. 410,
i. e. we use the minimality ofu together with the convexity off , and conclude for
all ϕ ∈ C1

0
(
B1,R

N
)
, ϕ ≥ 0,

∫
B1

∫ 1

0
ϕD2f

(
Am + λmDû+ sλmDwm

)
(Dwm, Dwm)(1 − s) ds dz

= λ−2
m

∫
B1

ϕ
{
f(Am + λmDum) − f(Am + λmDû)

}
dz

−λ−1
m

∫
B1

ϕDf(Am + λmDû) : Dwm dz

≤ c

{∫
B1

|Dϕ|2 |wm|2 dz + λq−2
m

∫
B1

|Dϕ|q |wm|q dz
}

+λ−1
m

∫
B1

Df
(
Am + λm

(
(1 − ϕ)Dum + ϕDû

))
:
(
Dϕ⊗ (û− um)

)
dz

−λ−1
m

∫
B1

ϕDf(Am + λmDû) : Dwm dz .

(4.13)
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Clearly, (4.13) is the analogue to inequality (6.6) in [FO]. As demonstrated in [FO]
we can discuss the last two integrals on the right–hand side of (4.13) which finally
bounds the left–hand side of (4.13) by the quantityc

{
I1 + I2 + I3

}
where we have

I1 :=
∫
B1

|Dϕ|2 |wm|2 dz + λq−2
m

∫
B1

|Dϕ|q |wm|q dz m→∞−→ 0 .

The limit behaviour follows from the weak convergence ofum inW 1
2
(
B1,R

nN
)

and from

λ
1− 2

q
m wm → 0 in Lq

(
B1,R

N
)

as m → ∞ .(4.14)

In fact, the latter convergence is obtained by (4.8) and by Poincaré’s inequality
which together with(wm)0,1 = 0 implies (4.14). Further we have

I2 :=
∫
B1

|Dwm| |Dϕ| |wm| dz + λq−2
m

∫
B1

|Dwm|q−1 |Dϕ| |wm| dz

≤
∫
B1

|Dwm| |Dϕ| |wm| dz + c(Dϕ)
(∫

B1

λq−2
m |Dwm|q dz

) q−1
q

×
(∫

B1

λq−2
m |wm|q dz

) 1
q

and again we use (4.14) to seeI2 → 0 asm → ∞. The third part

I3 :=
∣∣∣∫
B1

∫ 1

0
D2f

(
Am + sλmDû

)(
Dû,D(ϕwm)

)
ds dz

∣∣∣
is immediately seen to vanish asm → ∞ and the proposition is proved ifq ≥ 2.

Forq < 2we now benefit from [EM2] (compare [EV]) since the proof of higher
integrability given in [CFM], Step 3, is adapted to balanced structure conditions.
Thus, let forξ ∈ R

nN

fm(ξ) :=
f(Am + λm ξ) − f(Am) − λmDf(Am) : ξ

λ2
m

and define for0 < ρ < 1/3, w ∈ W 1
1,loc(B1/3,R

N )

Imρ (w) :=
∫
Bρ

fm(Dw) dz .

The first claim to prove is

lim sup
m→∞

{
Imρ (um) − Imρ (û)

}
≤ 0 for almost everyρ ∈ (0, 1/3) .(4.15)

To verify (4.15) we fixρ as above, choose0 < s < ρ, η ∈ C∞
0 (Bρ), 0 ≤ η ≤ 1,

η ≡ 1 onBs, |∇η| ≤ c/(ρ− s) and defineϕm = (û− um)η. Now,um obviously
is a local minimizer ofImρ and together with Lemma 3.3 of [CFM] this yields
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Imρ (um) − Imρ (û) ≤ Imρ (um + ϕm) − Imρ (û)

=
∫
Bρ∼Bs

[
fm(Dum +Dϕm) − fm(Dû)

]
dz

≤ c(q, Λ, L)
λ2
m

∫
Bρ∼Bs

[∣∣V (λmDû)
∣∣2

+
∣∣V (

λm(û− um) ⊗Dη + λm ηDû

+λm (1 − η)Dum
)∣∣2)] dz

≤ c

λ2
m

∫
Bρ∼Bs

[∣∣V (λmDû)
∣∣2 +

∣∣V (λmDum)
∣∣2

+(ρ− s)−2
∣∣V (

λm(û− um)
)∣∣2] dz .

Next, a family of positive, uniformly bounded Radon measuresµm on B1/3 is
introduced by letting

µm(S) :=
∫
S

1
λ2
m

[∣∣V (λmDû)
∣∣2 +

∣∣V (λmDum)
∣∣2] dz .

Wemay assume thatµm converges in measure to a Radon measureµ onB1/3. Ex-
actly as in [EM2], the Sobolev-Poincaré type inequality proved in [CFM], Theorem
2.4, gives for some1 < θ < 2

Imρ (um) − Imρ (û) ≤ c

[
µm(Bρ ∼ Bs) + (ρ− s)−2

(∫
B1

|um − û| dz
)2θ

]
,

hence, by taking first the limitm → ∞ and then the limits ↑ ρ, we get (4.15) for
any0 < ρ < 1/3 such thatµ(∂Bρ) = 0 which is true for a. a.ρ.
Once (4.15) is established for some0 < ρ < 1/3, the following identity is the
starting point to derive an estimate for the left–hand side:

Imρ (um) − Imρ (û) = λ−2
m

∫
Bρ

[
f(Am + λmDum) − f(Am + λmDû)

−λmDf(Am) : Dwm
]
dz

= λ−1
m

∫
Bρ

∫ 1

0

[
Df(Am + λmDû+ tλmDwm)

−Df(Am + λmDû)
]

: Dwm dt dz

+λ−1
m

∫
Bρ

[
Df(Am + λmDû) −Df(Am)

]
: Dwm dz

=: (I)m + (II)m .
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Local smoothness of̂u immediately implieslimm→∞(II)m = 0. On account of

(I)m =
∫
Bρ

∫ 1

0

∫ 1

0
tD2f(Am + λmDû+ stλmDwm)(Dwm, Dwm) ds dt dz

≥ c

∫
Bρ

(
1 + |Am + λmDû+ λmDwm|2)− µ

2 |Dwm|2 dz

and by (4.15) the proposition is proved for almost all, hence for anyρ ∈ (0, 1/3).��
Step 3a. (Strong convergence forq ≥ 2)

Proposition 4.5. In the caseq ≥ 2 we have asm → ∞

(i.) Dum → Dû in L2
loc

(
B1,R

nN
)
;

(ii.) λ
1− 2

q
m Dum → 0 in Lqloc

(
B1,R

nN
)

if q > 2 .
(4.16)

Proof of Proposition 4.5.Here we have to distinguish two subcases: Forµ ≤ 0
the first convergence follows directly from Proposition 4.3. Using this fact, local
smoothness of̂u and again Proposition 4.3, the next conclusion is∫

Bρ

λ−µ
m |Dwm|2−µ dz m→∞−→ 0 for all 0 < ρ < 1 .(4.17)

The proceed further, we introduce the auxiliary functionsψm (see [FO]),

ψm := λ−1
m

[(
1 + |Am + λmDum|2) 2−µ

4 − (
1 + |Am|2) 2−µ

4
]
,(4.18)

and by Lemma 3.6, (4.6), (4.8), (1.7) we can estimate (0 < ρ < 1)∫
Bρ

|Dψm|2 dz ≤ c(ρ)
∫
B1

∣∣D2f(Am + λmDum)
∣∣ |Dum|2 dz ≤ c(ρ) .

If we now letΘ(Z) := (1 + |Z|2)(2−µ)/4, Z ∈ R
nN , then

|ψm| = λ−1
m

∣∣∣∫ 1

0

d

dt
Θ(Am + tλmDum) dt

∣∣∣
≤ c

∣∣∣∫ 1

0
Dum : DΘ(Am + tλmDum) dt

∣∣∣
≤ c

∫ 1

0
|Dum|(1 + |Am + tλmDum|2)− µ

4 dt

≤ c
(
|Dum| + λ

− µ
2

m |Dum|1− µ
2

)
.

With this inequality we obtain∫
Bρ

|ψm|2 dz ≤ c(ρ) for all 0 < ρ < 1 .(4.19)
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In fact, (4.19) is obvious forµ = 0. If µ < 0, then (4.19) is just a consequence of
(4.17). Thus, we have proved that

sup
m

‖ψm‖W 1
2 (Bρ) ≤ c(ρ) < ∞ for all 0 < ρ < 1(4.20)

and this will imply (4.16), (ii.): to this purpose we fix some real numberM � 1
and letUm = Um(M,ρ) := {z ∈ Bρ : λm |Dum| ≤ M}. On one hand, local
L2–convergence andq > 2 prove∫

Um

λq−2
m |Dum|q dz ≤

∫
Um

λq−2
m |Dwm|q dz +

∫
Um

λq−2
m |Dû|q dz

≤ c

∫
Um

λq−2
m

(
|Dum|q−2

+|Dû|q−2
)

|Dwm|2 +
∫
Um

λq−2
m |Dû|q dz

→ 0 as m → ∞ .(4.21)

On the other hand, observe that forM sufficiently large and forz ∈ Bρ ∼ Um

ψm(z) ≥ cλ−1
m λ

2−µ
2

m |Dum(z)| 2−µ
2 , i. e.

λ
q−2+ µq

2−µ
m ψ

2q
2−µ
m (z) ≥ cλq−2

m |Dum(z)|q .

Since (1.8) guarantees2q/(2 −µ) < 2n/(n− 2), since by (4.20)ψm is uniformly
bounded inL2n/(n−2) and sinceq− 2 + µq/(2 − µ) ≥ 0 follows fromq ≥ 2 − µ,
we can conclude∫

Bρ∼Um

λq−2
m |Dum|q dz → 0 for all 0 < ρ < 1(4.22)

asm → ∞. Summarizing the results, (4.21) and (4.22) prove Propostion 4.5 in the
caseµ ≤ 0.
Now suppose thatµ > 0. Proposition 4.3 implies in the case at hand for any
0 < ρ < 1 ∫

Bρ

(
1 + |λmDwm|2)− µ

2 |Dwm|2 dz → 0 as m → ∞

which immediately gives∫
Um

|Dwm|2 dz → 0 as m → ∞ .(4.23)

HereUm is defined as above for fixedM andρ. Also as above we introduceψm
and observe that now|ψm| ≤ c |Dum| is obvious, i. e. (4.20) remains to be true in
the caseµ > 0. If M is chosen sufficiently large, then

|ψm| 4
2−µ λ

2µ
2−µ
m ≥ |Dum|2 on Bρ ∼ Um ,
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and since4/(2 − µ) ≤ 2n/(n − 2) ⇔ µ ≤ 4/n, the last inequality being true on
account ofq ≥ 2, we get∫

Bρ∼Um

|Dwm|2 dz m→∞−→ 0 for all 0 < ρ < 1.(4.24)

With (4.23) and (4.24) the first claim of (4.16) also is proved in the caseµ > 0.
(4.16), (ii.), forµ > 0 follows exactly as for the caseµ ≤ 0 and the proof of the
proposition is complete. ��
Step 3b. (Strong convergence forq < 2)

Proposition 4.6. If q < 2, then for any0 < ρ < 1/3

lim
m→∞

1
λ2
m

∫
Bρ

∣∣V (λmDwm)
∣∣2 dz = 0 .

Proof of Proposition 4.6. In the subquadratic case, the auxiliary functionψm
introduced in (4.18) is handled via Lemma 2.1, (vi.) of [CFM]. We have

∫
Bρ

|Dψm|2 dz ≤ c

∫
B1

(
1 + |λmDum|2) q−2

2 |Dum|2 dz

≤ c

λ2
m

∫
−
B1

∣∣V (λmDum)
∣∣2 dz

≤ c

λ2
m

∫
−

B(xm,Rm)

∣∣V (Du−Am)
∣∣2 dx

≤ c(L)
λ2
m

∫
−

B(xm,Rm)

∣∣V (Du) − V (Am)
∣∣2 dx ≤ const.

for any0 < ρ < 1. In addition we have|ψm| ≤ c |Dum|, henceψm ∈ W 1
q,loc(B1),

thusψm ∈ Lq1loc(B1)with q1 := nq/(n− q). Iterating this argument we again have
verified

sup
m

‖ψm‖W 1
2 (Bρ) ≤ c(ρ) < ∞ for all 0 < ρ < 1 .(4.25)

Assume now that0 < ρ < 1/3. With M andUm as before, (4.23) is again a
consequence of Proposition 4.3. Let us write ([CFM], Lemma 2.1)

1
λ2
m

∫
Bρ

∣∣V (λmDwm)
∣∣2 dz ≤ c

λ2
m

∫
Um

∣∣V (λmDwm)
∣∣2 dz

+
c

λ2
m

∫
Bρ∼Um

∣∣V (λmDum)
∣∣2 dz

+
c

λ2
m

∫
Bρ∼Um

∣∣V (λmDû)
∣∣2 dz .
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Then, by (4.23)

1
λ2
m

∫
Um

∣∣V (λmDwm)
∣∣2 dz ≤

∫
Um

|Dwm|2 (
1 + λ2

m |Dwm|2) q−2
2 dz

≤
∫
Um

|Dwm|2 dz m→∞−→ 0 .

The second term vanishes asm → ∞ provided that∫
Bρ∼Um

λq−2
m |Dum|q dz → 0 as m → ∞ .

To see this we recall the estimates forψm stated after (4.21) being valid also in the
case under consideration and with the same reasoning we obtain (4.22) where now
we make use of the apriori bound (4.25). Finally, we use the local boundedness of
Dû to see

1
λ2
m

∫
Bρ∼Um

∣∣V (λmDû)
∣∣2 dz ≤

∫
Bρ∼Um

|Dû|2 dz

≤ ‖Dû‖2
L∞(Bρ,RnN ) |Bρ ∼ Um| m→∞−→ 0

on account ofλmDum → 0 a. e. onB1 asm → ∞ (see (4.11)). This completes
the proof of Proposition 4.6. ��
Step 4. (Conclusion)Proposition 4.5 together with (4.5) gives in the caseq ≥ 2∫

−
Bτ

|Dû− (Dû)τ |2 dz ≥ C∗ τ2 ,

thus we have a contradiction to (4.12) if we chooseC∗ = 2C∗.

If q < 2, then we estimate according to [CFM], p. 24,

lim
m→∞

E−(xm, τ Rm)
λ2
m

≤ lim
m→∞

c

λ2
m

∫
−
Bτ

{∣∣V (λmDwm)
∣∣2

+
∣∣V (

λm(Dû− (Dû)τ )
)∣∣2

+
∣∣V (

λm
(
(Dû)τ − (Dum)τ

))∣∣2} dz ,

where the first integral is handled by Proposition 4.6. The last one vanishes when
passing to the limitm → ∞ since we may first estimate∫

−
Bτ

∣∣V (
λm

(
(Dû)τ − (Dum)τ

))∣∣2} dz ≤ λ2
m

∫
−
Bτ

∣∣(Dû)τ − (Dum)τ
∣∣2 dz

and then use (4.10) for the right–hand side. The second integral again is estimated
by (4.12). Thus, choosingC∗ sufficiently large we also get the contradiction in the
caseq < 2 and the lemma is proved. ��
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