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This work is devoted to approximation of evolution semigroups generated by Markov
processes. The presented method of approximation is based on the Chernoff theorem.
In this work, the so-called Chernoff approximations are constructed for Feller processes
(in particular, for Feller diffusions) in Rd. Moreover, this work presents the techniques
to construct Chernoff approximations for semigroups corresponding to Markov pro-
cesses which are obtained from other Markov processes by different operations (or,
equivalently, for semigroups whose generators are obtained from other generators by
different procedures): a random time-change of processes which is equivalent to a
multiplicative perturbation of generators, subordination of processes (or semigroups),
killing of a process upon leaving a domain, additive perturbations of generators (what
allows, in particular, to add a drift and a potential term). The developed techniques
can be combined to approximate semigroups generated by processes obtained via sev-
eral iterative procedures listed above. The constructed Chernoff approximations lead
to representations of solutions of corresponding evolution equations in the form of lim-
its of n-fold iterated integrals of elementary functions when n tends to infinity. Such
representations are called Feynman formulae. They can be used for direct computations,
modelling of the related dynamics, simulation of stochastic processes. Furthermore,
the limits in Feynman formulae sometimes coincide with path integrals with respect to
probability measures (such path integrals are usually called Feynman-Kac formulae) or
with respect to Feynman type pseudomeasures (such integrals are Feynman path inte-
grals). Therefore, the constructed Feynman formulae can be used to approximate (or
even sometimes to define) the corresponding path integrals; different Feynman for-
mulae for the same semigroup allow to establish connections between different path
integrals. In this work, some Feynman formulae, arising from the obtained Chernoff
approximations, are presented, and their connections to path integrals are discussed.
Further, the developed technique of Chernoff approximation is applied to particular
problems: approximation of semigroups generated by some Markov processes on a
star graph and in a Riemannian manifold, approximation of solutions of some time-
fractional evolution equations.
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Chapter 1

Introduction

Let us consider the ordinary differential equation df
dt = Lf with a constant L and

an unknown function f ∶ [0,+∞) → R. For each initial data f0 ∈ R, the Cauchy
problem

{
df
dt = Lf, t > 0,
f(0) = f0

(1.0.1)

has the unique solution f(t) given by f(t) ∶= etLf0. And the exponential func-
tion Tt ∶= etL posesses the following properties:

(i) T0 = 1,
(ii) TtTs = Tt+s, ∀t, s ≥ 0,
(iii) the function T is continuous,
(iv) dTt

dt
∣
t=0

= L.

Let us consider now the following generalization of the above Cauchy problem.
Namely, let (X, ∥ ⋅ ∥X) be a Banach space, f0 ∈ X and f ∶ [0,+∞) → X . Let
L ∶ Dom(L) ⊂ X → X be a linear operator in X . Then (1.0.1) can be read now
as an abstract Cauchy problem in X for the evolution equation df

dt = Lf with the
operator L. If X = Rd, the considered evolution equation is just a system of
linear ordinary differential equations of the first order. If X is a Banach space
of some functions on Rd and L is a differential operator in X , the considered
evolution equation is a partial differential equation. It is natural to expect that
the abstract Cauchy problem (1.0.1) inX can be solved by a generalization of the
exponential function Tt ∶= etL. But how to define this object? If L is a bounded

operator on X , one defines etL ∶=
∞
∑
k=0

tk

k!L
k and checks that f(t) ∶= etLf0 is the

unique solution of (1.0.1) inX for each f0 ∈X . If L is a bounded from above self-
adjoint operator in a Hilbert space X , one can use the spectral decompositon of
L to define Tt ∶= etL as a function of L and to get the unique solution of (1.0.1) in
X . In the general case, one uses the notion of semigroup.

1



2 Chapter 1. Introduction

Definition 1.0.1. A family (Tt)t≥0 of bounded linear operators on a Banach space
X is called a (one-parameter operator) semigroup if

(i) T0 = Id,
(ii) Tt ○ Ts = Tt+s, ∀t, s ≥ 0.

A semigroup (Tt)t≥0 is called strongly continuous if

(iii) lim
t→0

∥Ttϕ − ϕ∥X = 0 for all ϕ ∈X.

The generator (L,Dom(L)) of a strongly continuous semigroup (Tt)t≥0 in X is
defined by

(iv) Lϕ ∶= lim
t→0

Ttϕ − ϕ

t
, Dom(L) = {ϕ ∈X ∶ lim

t→0

Ttϕ − ϕ

t
exists } .

In the sequel, a semigroup with a given generator L will be denoted both as
(Tt)t≥0 and as (etL)t≥0. Note, that condition (iii) provides actually the continuity
at zero, but, together with the semigroup property (ii), it ensures the continuity
at any t ≥ 01. A semigrpoup (Tt)t≥0 is called a contraction semigroup if ∥Tt∥ ≤ 1 for
all t ≥ 0.

The following fundamental result of the theory of semigroups (see, e.g., Pazy,
1983, Thm 1.2.4, Thm 4.1.3) connects strongly continuous semigroups and evo-
lution equations.

Theorem 1.0.2. Let (L,Dom(L)) be a densely defined linear operator in a Banach
space X with a nonempty resolvent set. The Cauchy problem (1.0.1) in X has a unique
solution f(t), which is continuously differentiable on [0,+∞), for every initial value
f0 ∈ Dom(L) if and only if (L,Dom(L)) is the generator of a strongly continuous
semigroup (Tt)t≥0 on X . Moreover, the solution f(t) is given by f(t) ∶= Ttf0.

Let now (ξt)t≥0 be a temporally homogeneous Markov process with some state
space2 Q and with transition kernel P (t, x,B) (See Appendix B for the defini-
tions.) Consider the Banach space Bb(Q) of bounded Borel functions on Q with
the supremum-norm ∥⋅∥∞. Define the family (Tt)t≥0 of bounded linear operators
on X via

Ttϕ(x) ∶= ∫
Q

ϕ(y)P (t, x, dy), ∀ϕ ∈X, ∀x ∈ Q.

Properties of transition kernels of Markov processes ensure that (Tt)t≥0 is a con-
traction semigroup on Bb(Q). The strong continuity on Bb(Q) is, however,
quite rare. Nevertheless, several important classes of Markov processes posess
semigroups, which are strongly continuous on some smaller Banach spaces

1A family (Tt)t≥0 of bounded linear operators on a Banach space X is called strongly contin-
uous, if limt→t0 ∥Ttϕ − Tt0ϕ∥X = 0 for all t0 ∈ [0,∞) and all ϕ ∈X .

2In the sequel, we consider locally compact metric spaces Q (such as (subdomains of) Rd,
compact Riemannian manifolds and metric graphs).



Chapter 1. Introduction 3

X ⊂ Bb(Q) (and/or on some other Banach spaces). In this case, the following
three problems are essentially equivalent:

Problem 1: To construct the strongly continuous evolution semigroup (Tt)t≥0

with a given generator (L,Dom(L)) on a given Banach space X .

Problem 2: To solve a Cauchy problem for the evolution equation df
dt = Lf inX .

Problem 3: To find a transition kernel P (t, x, dy) of a corresponding Markov
process (ξt)t≥0.

Example 1.0.3. Let us present one of the basic examples. Consider the operator
(L,Dom(L)) being the closure of (1

2∆, S(Rd)) in the Banach space X = C∞(Rd)

or X = Lp(Rd), p ∈ [1,∞). Then (L,Dom(L)) generates3 the strongly continuous
semigroup (Tt)t≥0 given for each f0 ∈X by

Ttf0(x) ≡ e
t
2

∆f0(x) ∶= (2πt)−d/2∫
Rd

f0(y) exp{−
∣x − y∣2

2t
}dy. (1.0.2)

The function f(t, x) ∶= Ttf0(x) solves the corresponding Cauchy problem for
the heat equation

{
∂f
∂t (t, x) =

1
2∆f(t, x) t > 0, x ∈ Rd,

f(0, x) = f0(x), x ∈ Rd.

And the function PBM(t, x, dy) ∶= (2πt)−d/2 exp{−
∣x−y∣2

2t }dy is the transition ker-
nel of a d-dimensional Brownian motion.

Usually, it is not possible to construct a strongly continuous semigroup with
a given generator explicitly. Nonetheless, there exist different methods to ap-
proximate such semigroups. The method, which will be used in the sequel, is
based on the Chernoff theorem (Chernoff, 1968, Chernoff, 1974):

Theorem 1.0.4. Let (F (t))t≥0 be a family of bounded linear operators on a Banach
space X . Assume that

(i) F (0) = Id,

(ii) ∥F k(t)∥ ≤Mewkt for some M ≥ 1, some w ∈ R, all k ∈ N and all t ≥ 0,

(iii) the limit Lϕ ∶= lim
t→0

F (t)ϕ−ϕ
t exists for all ϕ ∈D, where D and (λ0−L)D are dense

subspaces in X for some λ0 > w.

Then the closure (L,Dom(L)) of (L,D) generates a strongly continuous semigroup
(Tt)t≥0 given by

Ttϕ = lim
n→∞

[F (t/n)]nϕ

3 For the Banach space X = C∞(Rd), it follows from Theorem 31.5 of Sato, 1999. For Banach
spaces X = Lp(Rd), p ∈ [1,∞), it follows from Theorem 4.6.25 and Example 4.6.29 of Jacob,
2001, cf. Theorem 3.4.2 of Applebaum, 2009. Using the Fourier transform, one can easily show
that e

t
2 ∆(S(Rd)) ⊂ S(Rd) and, hence S(Rd) is a core for (e t

2 ∆)t≥0 by the Core Criterium A.0.7,
cf. Sato, 1999, Lemma 31.6.



4 Chapter 1. Introduction

for all ϕ ∈X , and the convergence is locally uniform with respect to t ≥ 0.

Remark 1.0.5. The result of Chernoff has diverse generalizations. Versions,
using arbitrary partitions of the time interval [0, t] instead of the equiparti-
tion (tk)nk=0 with tk − tk−1 = t/n, are presented, e.g., in Pazy, 1983, Smolyanov,
Weizsäcker, and Wittich, 2003. The analogue of the Chernoff theorem for mul-
tivalued generators can be found, e.g., in Ethier and Kurtz, 1986. Analogues
of Chernoff’s result for semigroups, which are continuous in a weaker sense,
are obtained, e.g., in Albanese and Mangino, 2004, Kúhnemund, 2001. For ana-
logues of the Chernoff theorem in the case of nonlinear semigroups, see, e.g.,
Barbu, 1976, Brézis and Pazy, 1970, Brézis and Pazy, 1972. The Chernoff Theo-
rem for two-parameter families of operators (related to evolution equations of
the form (1.0.1) with time-dependent operators L in the right hand side) can be
found in Obrezkov, Smolyanov, and Trumen, 2005, Plyashechnik, 2012.

Let us consider the following simplified version of Theorem 1.0.4.

Corollary 1.0.6. Let (F (t))t≥0 be a family of bounded linear operators on a Banach
space X . Assume that

(i) F (0) = Id,

(ii) ∥F (t)∥ ≤ ewt for some w ∈ R and all t ≥ 0,

(iii) the limit Lϕ ∶= lim
t→0

F (t)ϕ−ϕ
t exists for all ϕ ∈D, where D is a dense subspace in X

such that (L,D) is closable and the closure (L,Dom(L)) of (L,D) generates a
strongly continuous semigroup (Tt)t≥0.

Then the semigroup (Tt)t≥0 is given by

Ttϕ = lim
n→∞

[F (t/n)]nϕ (1.0.3)

for all ϕ ∈X , and the convergence is locally uniform with respect to t ≥ 0.

The formula (1.0.3) is called Chernoff approximation of the semigroup (Tt)t≥0 by the
family (F (t))t≥0. Any family (F (t))t≥0, satisfying the assumptions (i)–(iii) of the
Chernoff theorem in the form of Corollary 1.0.6 with respect to some semigroup
(Tt)t≥0, is called Chernoff equivalent to this semigroup.

Remark 1.0.7. Since each strongly continuous semigroup (Tt)t≥0 satisfies the
estimate ∥Tt∥ ≤Mewt for some M ≥ 1 and some w ∈ R (cf. Pazy, 1983, Engel and
Nagel, 2000), the family (F (t))t≥0 with F (t) ∶= Tt satisfies all the assumptions of
Theorem 1.0.4, i.e. each strongly continuous semigroup can be approximated
by itself (via Theorem 1.0.4). This trivial case will not be considered in the
sequel. The condition (ii) in Corollary 1.0.6 implies the condition (ii) in Theorem
1.0.4, is easier to check and is fullfilled for the families (F (t))t≥0 constructed in
this work. In the sequel, we assume the existence of the considered semigroups
and use the Chernoff theorem in the form of Corollary 1.0.6

Let us consider some particular cases of families (F (t))t≥0 suitable for Chernoff
approximations.
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Example 1.0.8. Let L be a bounded linear operator on a Banach space X . Con-
sider a family of bounded linear operators (F (t))t≥0 given by F (t) ∶= Id+tL.
Then, obviously, the family (F (t))t≥0 is Chernoff equivalent to the semigroup
(etL)t≥0 generated by L, and hence the following Chernoff approximation holds:

etL = lim
n→∞

(Id+
t

n
L)

n

.

This formula is a straight generalization of the classical limit

etx = lim
n→∞

(1 ±
t

n
x)

±n
.

Moreover, even if L is unbounded, as soon as L generates a strongly continuous
semigroup (Tt)t≥0, the family (F (t))t≥0, given by

F (t) ∶= (Id−tL)
−1
≡

1

t
RL(1/t),

whereRL(λ) is the resolvent operator of L at the point λ, is Chernoff equivalent
to the semigroup (Tt)t≥0. And the identity below (known as the Post–Widder
inversion formula) immediately follows from the Chernoff theorem 1.0.6:

Ttϕ = lim
n→∞

(Id−
t

n
L)

−n
ϕ ≡ lim

n→∞
[
n

t
RL(n/t)]

n

ϕ, ∀ϕ ∈X.

Example 1.0.9. Let opertors (A,Dom(A)) and (B,Dom(B)) in a Banach space
X generate strongly continuous semigroups (etA)t≥0 and (etB)t≥0 respectively.
Assume that the closure of (A + B,Dom(A) ∩ Dom(B)) generates a strongly
continuous semigroup (et(A+B))t≥0. If the operators A and B do not commute,
then

etA ○ etB ≠ etB ○ etA ≠ et(A+B).

Nevertheless, one can easily check that the families (F1(t))t≥0 and (F2(t))t≥0,
such that F1(t) ∶= etA ○ etB and F2(t) ∶= etB ○ etA, are Chernoff equivalent to
the semigroup (et(A+B))t≥0. And the identity below (known as the Daletskii–Lie–
Trotter formula) immediately follows from the Chernoff theorem 1.0.6:

et(A+B)ϕ = lim
n→∞

[e
t
n
A ○ e

t
n
B]

n
ϕ, ∀ϕ ∈X. (1.0.4)

Chernoff approximation has the following advantage: in order to check the
conditions of the Chernoff theorem with respect to a given semigroup (Tt)t≥0,
one has to construct a Chernoff-equivalent family (F (t))t≥0 explicitly. There-
fore, the expressions [F (t/n)]n can be directly used for calculations and hence
for approximation of solutions of the corresponding evolution equations, for
computer modelling of the considered dynamics, for approximation of transi-
tion probabilities of underlying stochastic processes and hence for simulation
of these processes. If all operators F (t) are integral operators with elementary
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kernels or pseudo-differential operators with elementary symbols, the identity
(1.0.3) leads to representation of a given semigroup by n-folds iterated integrals
of elementary functions when n tends to infinity. This gives rise to Feynman
formulae.

Definition 1.0.10. A Feynman formula is a representation of a solution of an ini-
tial (or initial-boundary) value problem for an evolution equation (or, equiv-
alently, a representation of the semigroup solving the problem) by a limit of
n-fold iterated integrals of some functions as n→∞.

Remark 1.0.11. One should not confuse the notions of Chernoff approxima-
tion and Feynman formula. On the one hand, not all Chernoff approximations
can be directly interpreted as Feynman formulae since, generally, the operators
(F (t))t≥0 do not have to be neither integral operators, nor pseudo-differential
operators. On the other hand, representations of solutions of evolution equa-
tions in the form of Feynman formulae can be obtained by different methods,
not necessarily via the Chernoff Theorem. And such Feynman formulae may
have no relations to any Chernoff approximation, or their relations may be quite
indirect (see, e.g., Feynman formulae (5.3.5), (6.3.9) and (6.3.13)).

Remark 1.0.12. Richard Feynman was the first who considered representations
of solutions of evolution equations by limits of iterated integrals (Feynman,
1948, Feynman, 1951). He has, namely, introduced a construction of a path in-
tegral (known nowadays as Feynman path integral) for solving the Schrödinger
equation. And this path integral was defined exactly as a limit of iterated fi-
nite dimensional integrals. Feynman path integrals can be also understood as
integrals with respect to Feynman type pseudomeasures (see Section 3.5 for
details). Analogously, one can sometimes obtain representations of a solution
of an initial (or initial-boundary) value problem for an evolution equation (or,
equivalently, a representation of an operator semigroup resolving the problem)
by functional (or, path) integrals with respect to probability measures. Such
representations are usually called Feynman–Kac formulae. It is a usual situa-
tion that limits in Feynman formulae coincide with (or in some cases define)
certain path integrals with respect to probability measures or Feynman type
pseudomeasures on a set of paths of a physical system. Hence the iterated in-
tegrals in Feynman formulae for some problem give approximations to path
integrals representing the solution of the same problem. Therefore, represen-
tations of evolution semigroups by Feynman formulae, on the one hand, allow
to establish new path-integral-representations and, on the other hand, provide
an additional tool to calculate path integrals numerically. Note that different
Feynman formulae for the same semigroup allow to establish relations between
different path integrals (cf. Remark 3.4.5 and Remark 3.5.15 (ii)). Moreover, the
method of Chernoff approximation itself can be understood in some particular
cases as a construction of Markov chains approximating a given Markov pro-
cess (see Smolyanov, Weizsäcker, and Wittich, 2007b; Böttcher and Schilling,
2009 for details) and as the numerical path integration method for solving the
corresponding PDE/SDE (see Chen, Jakobsen, and Naess, 2016).
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Let us illistrate the connection between Feynman formulae and path integrals
with the following two classical examples.

Example 1.0.13. Let V ∶ Rd → R, V ∈ Cb(Rd), f0 ∈ X where X ∶= C∞(Rd) or
X ∶= Lp(Rd), p ∈ [1,∞). Consider the Cauchy problem

{
∂f
∂t (t, x) =

1
2∆f(t, x) + V (x)f(t, x), t > 0, x ∈ Rd,

f(0, x) = f0(x), x ∈ Rd.

The function V can be considered as a bounded multiplication operator V ∶

(V ϕ)(x) = V (x)ϕ(x), ∀ϕ ∈ X , ∀x ∈ Rd. This operator generates the strongly
continuous semigroup (etV )t≥0 on X ; (etV ϕ)(x) = etV (x)ϕ(x). And we have
∥etV ∥ ≤ et∥V ∥∞ . The operator (1

2∆, S(Rd)) generates the contraction semigroup
(e

t
2

∆)t≥0 described in Example 1.0.3 by formula (1.0.2). Therefore, one gets the
solution of the Cauchy problem with the Daletskii–Lie–Trotter formula in the
following form:

f(t, x0) = e
t( 1

2
∆+V )f0(x0) = lim

n→∞
[eV t/n ○ e

t
2n

∆]
n
f0(x0) =

= lim
n→∞∫

Rd

. . .∫
Rd

e
t
n ∑

n
k=1 V (xk−1)f0(xn)P

BM(t/n,x0, dx1) . . . P
BM(t/n,xn−1, dxn) =

(1.0.5)

= Ex0 [e∫
t

0 V (ξs)dsf0(ξt)] , (1.0.6)

where the order of integration in iterated integrals in the line (1.0.5) is from xn
to x1, (ξs)s∈[0,t] is a d-dimensional Brownian motion starting at x0, the expec-
tation Ex0 [. . .] is nothing else but a path integral with respect to the Wiener
measure concentrated on paths starting at x0. Therefore, the solution f(t, x0)

is represented by a Feynman formula in the line (1.0.5) and by a Feynman–Kac
formula in the line (1.0.6).

Example 1.0.14. Let now V ∶ Rd → C, V ∈ Cb(Rd), f0 ∈ L2(Rd). Consider the
Cauchy problem for the Schrödinger equation

{
−i∂f∂t (t, x) =

1
2∆f(t, x) + V (x)f(t, x), t > 0, x ∈ Rd,

f(0, x) = f0(x), x ∈ Rd.

The (semi)group (e
it
2

∆)t≥0 on the space L2(Rd) is given by

e
it
2

∆ϕ(x) ∶= (2πit)−d/2∫
Rd

ϕ(y) exp{i
∣x − y∣2

2t
}dy

for each ϕ ∈ L1(Rd) ∩ L2(Rd). For each ϕ ∈ L2(Rd), the semigroup (e
it
2

∆)t≥0 is
given by the same formula, where the integral is understood in a regularized
sense, i.e. as an L2-limit of

it
2

∆ϕn, n → ∞, with ϕn ∈ L1(Rd) ∩ L2(Rd) and ϕn →
ϕ in L2(Rd) as n → ∞ (see Reed and Simon, 1975 Ch. IX, § 7, Thm. X.66).
Proceeding similar to Example 1.0.13, one obtains the solution of the Cauchy
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problem for the Schrödinger equation in the following form (cf. Nelson, 1964,
Reed and Simon, 1975 Ch. X, § 11):

f(t, x0) = e
it( 1

2
∆+V )f0(x0) = lim

n→∞
[eiV t/n ○ e

it
2n

∆]
n
f0(x0) =

= lim
n→∞∫

Rd

. . .∫
Rd

ei
t
n ∑

n
k=1 V (xk−1)f0(xn)e

i∑nk=1
∣xk−xk−1 ∣2

t/n (2πit/n)−dn/2dxn . . . dx1,

(1.0.7)

where the order of integration is from xn to x1, and iterated integrals are under-
stood in a regularized sense: ∫Rd ∶= limR→∞ ∫∣x∣≤R and limits are taken inL2-sense.
The Feynman formula in the line (1.0.7) gives rise to the formal Feynman path
integral (cf. Feynman, 1948, Reed and Simon, 1975 Ch. X, § 11)

f(t, x0) ∶= ∫ ei ∫
t

0 [ 1
2
∣ẋ(s)∣2+V (x(s))]dsf0(x(t))Dx (1.0.8)

over all paths (x(s))s∈[0,t] (in the configuration space of the considered sys-
tem) starting at x0. Some rigorous mathematical constructions of this object
can be found, e.g., in Albeverio, Høegh-Krohn, and Mazzucchi, 2008 and in
Smolyanov and Shavgulidze, 1990 (see also a discussion in Section 3.5).

In the sequel, we distinguish two particular classes of Feynman formulae. Cher-
noff approximation (1.0.3) is referred to as a Lagrangian Feynman formula if all
operators F (t), t > 0, are integral operators with explicitly given kernels. If all
F (t), t > 0, are pseudo-differential operators with explicitly given symbols (see
Chapter 3 for the definition), we speak of a Hamiltonian Feynman formula. Such
terminology is inspired by the fact that a Lagrangian Feynman formula usually
gives approximations to a functional integral over a set of paths in the con-
figuration space of a system (whose evolution is described by the semigroup
(Tt)t≥0), whereas a Hamiltonian Feynman formula corresponds to a functional
integral over a set of paths in the phase space of some system. Following this
terminology, both Feynman formulae (1.0.5) and (1.0.7) are Lagrangian ones.
And the Lagrangian Feynnman formula (1.0.5) corresponds to a functional inte-
gral with respect to a probability measure in the Feynman–Kac formula (1.0.6),
whereas the Lagrangian Feynman formula (1.0.7) corresponds to the Feynman
path integral (1.0.8). More Lagrangian Feynman formulae and corresponding
path integrals can be found in Chapters 2, 4, 5, 6. Some Hamiltonian Feynman
formulae and corresponding phase space Feynman path integrals are discussed
in Chapter 3.

Remark 1.0.15. The example 1.0.14 demonstrates a rigorous mathematical justi-
fication of the heuristic representetion (obtained in Feynman, 1948) for the solu-
tion of the Cauchy problem for the Schrödinger equation with potential in terms
of Feynman path integral over trajectories in the configuration space. This justi-
fication was first obtained in 1964 by E. Nelson (Nelson, 1964) exactly by means
of the Daletskii–Lie–Trotter formula. A rigorous mathematical justification of
the heuristic representetion (obtained in Feynman, 1951) for the solution of the
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Cauchy problem for the same Schrödinger equation in terms of Feynman path
integral over trajectories in the phase space has been published for the first time
only in the paper Smolyanov, Tokarev, and Truman, 2002. And the authors
have used the Chernoff theorem to prove their results. Relatively at the same
time, the Chernoff theorem has been used in works of O.G. Smolyanov, H. v.
Weizsäcker and O. Wittich (see, e.g., Smolyanov, Weizsäcker, and Wittich, 2000,
Weizsäcker, Smolyanov, and Wittich, 2000, Smolyanov and Weizsäcker, 2001,
Smolyanov, Weizsäcker, and Wittich, 2003, Smolyanov, Weizsäcker, and Wit-
tich, 2005, Smolyanov, Weizsäcker, and Wittich, 2006, Smolyanov, Weizsäcker,
and Wittich, 2007b) to obtain different approximations (Feynman formulae) for
the heat semigroup, corresponding to the process of Brownian motion in a com-
pact Riemannian manifold, and to construct some related surface measures on
infinite dimensional manifolds of Brownian paths. Starting from these results,
the Chernoff theorem has been actively used to obtain Chernoff approximations
(in particular, Feynman formulae) and path integral representations for evolu-
tion semigroups related to different types of evolution equations on different
geometrical objects:

• Schrödinger type evolution equations have been considered, e.g., in Remi-
zov, 2016, Plyashechnik, 2012, Sakbaev and Smolyanov, 2010, Kupsch and
Smolyanov, 2009, Gadèl′ya and Smolyanov, 2008, Smolyanov and Tru-
man, 2004, Smolyanov and Shavgulidze, 2003, Smolyanov and Truman,
2000; stochastic Schrödinger type equations have been studied in Obrezkov
and Smolyanov, 2016; Obrezkov, 2006; Obrezkov, Smolyanov, and Tru-
men, 2005; Gough, Obrezkov, and Smolyanov, 2005.

• Second order parabolic equations related to diffusions in different geometrical
structures (e.g., in Eucliean spaces and their subdomains, Riemannian ma-
nifolds and their subdomains, metric graphs, Hilbert spaces) have been
studied, e.g., in Butko, Grothaus, and Smolyanov, 2016, Butko, 2015, Rat′
yu and Smolyanov, 2015, Butko, 2014, Plyashechnik, 2013b, Smolyanov
and Tolstyga, 2013, Remizov, 2012, Böttcher et al., 2011, Butko, Schilling,
and Smolyanov, 2011, Weizsäcker, Smolyanov, and Tolstyga, 2011, Butko,
Grothaus, and Smolyanov, 2010, Weizsäcker and Smolyanov, 2009, Butko,
Grothaus, and Smolyanov, 2008, Butko, 2008, Butko, 2007, Smolyanov,
Weizsäcker, and Wittich, 2007a, Butko, 2006, Butko, 2004, Smolyanov,
Weizsäcker, and Wittich, 2004, Obrezkov, 2003.

• Evolution equations with non-local operators generating some Markov pro-
cesses in Rd and its subdomains have been considered in Butko, 2017a,
Butko, 2017b, Butko, Grothaus, and Smolyanov, 2016, Butko, Schilling,
and Smolyanov, 2012, Butko, Schilling, and Smolyanov, 2010.

• Evolution equations with the Vladimirov operator (this operator is a p-adic
analogue of the Laplace operator) have been investigated in Smolyanov
and Shamarov, 2011, Smolyanov, Shamarov, and Kpekpassi, 2011 as well
as in Smolyanov and Shamarov, 2010, Smolyanov and Shamarov, 2009,
Smolyanov and Shamarov, 2008.
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• Evolution equations containing Lévy Laplacians have been considered in, e.g.,
Accardi and Smolyanov, 2007, Accardi and Smolyanov, 2006.

• Feynman formulae as a method of averaging of random Hamiltonians have
been discussed in Orlov, Sakbaev, and Smolyanov, 2016; Orlov, Sakbaev,
and Smolyanov, 2014.

The present work demonstrates the results of the author on Chernoff approxi-
mations of evolution semigroups corresponding to Markov processes. In Chap-
ter 2, Chernoff approximations are obtained for semigroups generated by addi-
tively and / or multiplicatively perturbed generators of some original semi-
groups. It is supposed that the original semigroups are known or already
Chernoff approximated. In particular, Chernoff approximations in the form of
Lagrangian Feynman formulae are obtained for semigroups corresponding to
Markov processes constructed through a random time-change of Markov pro-
cesses with known transitional probabilities (such as, e.g., Brownian motion
or Cauchy process); as well as for semigroups corresponding to second order
parabolic equations with variable (position-dependent) coefficients (such equa-
tions are governing equations for diffusions with variable diffusion coefficients,
variable drift and a potential term).

In Chapter 3, different types of correspondence between a pseudo-differential
operator and its symbol are considered, they are parameterized by a number
τ ∈ [0,1]. They can be understood as different procedures of quantization when
one considers a pseudo-differential operator as Hamiltonian of a quantum sys-
tem obtained from a classical system with a given Hamilton function (sym-
bol of this pseudo-differential operator) through a given procedure of quan-
tization. The case τ = 1 corresponds to the so-called qp-quantization which
is usually used in the literature devoted to pseudo-differential operators gen-
erating Markov processes (cf. Jacob, 2001). The considered symbols are sec-
ond order polynomials with variable coefficients or a more general class of
continuous negative definite functions with “variable coefficients” (such sym-
bols are related to Feller processes). Chernoff approximations are obtained
for semigroups generated by such type of operators on Banach spaces C∞(Rd)

and L1(Rd). These Chernoff approximations are based on families of pseudo-
differential operators (constructed either by the same procedure of τ -quantiza-
tion as the considered semigroups, or by the qp-quantization). These Chernoff
approximations give rise to Hamiltonian Feynman formulae and coincide with
some phase space Feynman path integrals. In particular, Feller semigroups are
considered; Chernoff approximations are obtained under very mild conditions
on the symbols of the underlying Feller processes; some corresponding Hamil-
tonian and Lagrangian Feynman Formulae, as well as Feynman-Kac formulae
and phase space Feynman path integrals are discussed.

In Chapter 4, some Chernoff approximations are constructed for semigroups
obtained by the procedure of subordination. These semigroups are subordi-
nate to some original (or “parent”) semigroups which are unknown explicitly
but are already Chernoff approximated. And the considered semigroups are
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subordinate with respect to subordinators posessing either known transitional
probabilities, or known and bounded Lévy measures. In the case when tran-
sitional probabilities of subordinators are known, the obtained approximations
are given as iterated integrals of elementary functions and lead to representa-
tions of the considered semigroups by Feynman formulae.

In Chapter 5, some semigroups generated by Feller processes in Rd, killed upon
leaving a given domain, are considered. Chernoff approximations for such
semigroups are constructed under assumption that the semigroups generated
by the same processes in the whole space (i.e. without killing) are known
or already Chernoff approximated. Using the constructed Chernoff approx-
imations, a Lagrangian Feynman formula is obtained for semigroups corre-
sponding to a Cauchy–Dirichlet type initial exterior-value problem for evolu-
tion equations with some of operators considered in Chapter 3. As a special
case, a Lagrangian Feynman formula for semigroups corresponding to killed
Feller diffusions (i.e. for a Cauchy–Dirichlet initial boundary-value problem
for second order parabolic equations with variable coefficients) follows.

In Chapter 6, the developed technique of Chernoff approximation is applied to
several particular problems: approximation of semigroups generated by some
Markov processes on a star graph and in a Riemannian manifold, approxima-
tion of solutions of some distributed order time-fractional evolution equations.

For the convenience of the reader, some prerequisites and related results are
collected in the first sections of Chapters 3 — 5 as well as in Appendices A–D.





Chapter 2

Lagrangian Feynman Formulae For
Evolution Semigroups

This chapter is devoted to some general results on the technique of Chernoff
approximation, to Feynman formulae related to families (F (t))t≥0 of integral
operators with elementary kernels (i.e. to Lagrangian Feynman formulae) and
to discussion of corresponding Feynman-Kac formulae. For the convenience of
the reader, some basic notions of the Semigroup Theory and some results on
generation of strongly continuous semigroups are collected in Appendices A
and D.

2.1 Chernoff approximations for semigroups gener-
ated by a sum of operators

In this Section, we discuss a generalization of the Daletskii–Lie–Trotter formula
(1.0.4) to the case when the considered semigroup is generated by a sum of
operators and the semigroups, generated by each summand, are not known
but are already Chernoff approximated. This generalization follows, of course,
from the Chernoff theorem 1.0.6 and will be used in Chapters 2, 4, 5, 6 as an
element of subsequent constructions.

Theorem 2.1.1. Let (Tk(t))t≥0, k = 1, . . . ,m, be strongly continuous semigroups on
a Banach space X with generators (Lk,Dom(Lk)) respectively. Let (Fk(t))t≥0, k =

1, . . . ,m, be families of operators in X which are Chernoff equivalent to the semigroups
(Tk(t))t≥0 respectively. Assume that L = L1 + ⋯ + Lm defined on ∩mk=1 Dom(Lk) is
closable and that the closure (L,Dom(L)) is the generator of a strongly continuous
semigroup (T (t))t≥0 on X . Let a set D ⊂ ∩mk=1 Dom(Lk) be a core for (L,Dom(L))

and assume that limt→0 ∥
Fk(t)ϕ−ϕ

t − Lkϕ∥X = 0 for all ϕ ∈ D and all k ∈ {1, . . . ,m}.
Then the family (F (t))t≥0, where F (t) = F1(t) ○ ⋯ ○ Fm(t) is Chernoff equivalent to
the semigroup (T (t))t≥0. And hence the Chernoff approximation

Ttϕ = lim
n→∞

[F (t/n)]
n
ϕ ≡ lim

n→∞
[F1(t/n) ○ ⋯ ○ Fm(t/n)]

n
ϕ (2.1.1)

holds for each ϕ ∈X locally uniformly with respect to t ≥ 0.

13
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Proof. Since the families (Fk(t))t≥0, k = 1, . . . ,m, are Chernoff equivalent to the
semigroups (Tk(t))t≥0 respectively, we have Fk(0) = Id and ∥Fk(t)∥ ≤ eakt for
some ak > 0 for each k ∈ {1, . . . ,m}. Obviously, the family (F (t))t≥0 satisfies
then the conditions F (0) = Id and

∥F (t)∥ ≤ ∥F1(t)∥ ⋅ . . . ⋅ ∥Fm(t)∥ ≤ e(a1+⋯+am)t.

Further, for each ϕ ∈D, we have

lim
t→0

∥
F (t)ϕ − ϕ

t
−Lϕ∥

X

= lim
t→0

∥
F1(t) ○ ⋯ ○ Fm(t)ϕ − ϕ

t
−L1ϕ −⋯ −Lmϕ∥

X

= lim
t→0

∥F1(t) ○ ⋯ ○ Fm−1(t) (
Fm(t)ϕ − ϕ

t
−Lmϕ)

+ (F1(t) ○ ⋯ ○ Fm−1(t) − Id)Lmϕ +
F1(t) ○ ⋯ ○ Fm−1(t)ϕ − ϕ

t
−L1ϕ −⋯ −Lm−1ϕ∥

X

≤ lim
t→0

∥
F1(t) ○ ⋯ ○ Fm−1(t)ϕ − ϕ

t
−L1ϕ −⋯ −Lm−1ϕ∥

X

≤ ⋯ ≤ lim
t→0

∥
F1(t)ϕ − ϕ

t
−L1ϕ∥

X

= 0.

Therefore, all requirements of the Chernoff theorem 1.0.6 are fulfilled and hence
(F (t))t≥0 is Chernoff equivalent to (T (t))t≥0.

In several cases, it is too restrictive to assume that each Lk generates a strongly
continuous semigroup. For example, L1 can be a leading term (which generates
a strongly continuous semigroup) and L2, . . . , Lm can be L1-bounded additive
perturbations such that L ∶= L1 + L2 + ⋯ + Lm again generates a strongly con-
tinuous semigroup. Or even L can be a sum of operators Lk, none of which
generates a strongly continuous semigroup itself. Analyzing the proof of Theo-
rem 2.1.1, one immediately sees that the requirement on generation of a strongly
continuous semigroup by each of Lk can be relaxed in the following way:

Corollary 2.1.2. Let (Tt)t≥0 be a strongly continuous semigroup on a Banach space X
with generator (L,Dom(L)). Let D be a core for L. Let L = L1 + . . . + Lm for some
linear operators Lk, k = 1, . . . ,m, in X such that D ⊂ Dom(Lk) for all k = 1, . . . ,m.
Let (Fk(t))t≥0, k = 1, . . . ,m, be families of bounded linear operators on X such that for
all k ∈ {1, . . . ,m} holds: Fk(0) = Id, ∥Fk(t)∥ ≤ eakt for some ak > 0 and all t ≥ 0, as
well as limt→0 ∥

Fk(t)ϕ−ϕ
t − Lkϕ∥X = 0 for all ϕ ∈ D. Then the family (F (t))t≥0, where

F (t) ∶= F1(t) ○ ⋯ ○ Fm(t), is Chernoff equivalent to the semigroup (T (t))t≥0. And
hence the Chernoff approximation

Ttϕ = lim
n→∞

[F (t/n)]
n
ϕ ≡ lim

n→∞
[F1(t/n) ○ ⋯ ○ Fm(t/n)]

n
ϕ



Chapter 2. Lagrangian Feynman Formulae For Evolution Semigroups 15

holds for each ϕ ∈X locally uniformly with respect to t ≥ 0.

Remark 2.1.3. Obviously, the family (F (t))t≥0 is strongly continuous if and only
if all the families (Fk(t))t≥0, k = 1, . . . ,m, are strongly continuous.

Remark 2.1.4. Let all the assumptions of Corollary 2.1.2 be fulfilled. Consider
for simplicity the case m = 2. Let θ ∈ [0,1]. Similarly to the proof of Theo-
rem 2.1.1, one shows that the following families (F θ(t))t≥0 and (F sym(t))t≥0 are
Chernoff equivalent to the semigroup (Tt)t≥0 generated by L = L1 +L2:

F θ(t) ∶= F1(θt) ○ F2(t) ○ F1((1 − θ)t),

F sym(t) ∶=
1

2
(F1(t) ○ F2(t) + F2(t) ○ F1(t)).

Note that, for θ = 0, we have F 0(t) = F2(t) ○ F1(t), and, for θ = 1, we have
F 1(t) = F1(t) ○ F2(t). Hence the parameter θ corresponds to different orderings
of non-commuting terms F1(t) and F2(t). And F sym(t) = 1

2 (F 1(t) + F 0(t)).

Remark 2.1.5. Chernoff approximation (2.1.1) can be understood as an abstract
analogue of the operator splitting known in numerical methods of solving PDEs
(see MacNamara and Strang, 2016 and references therein). In particular, let
F1(t) ∶= etL1 , F2(t) ∶= etL2 and consider the families (F θ(t))t≥0 of Remark 2.1.4.
If θ = 0 and θ = 1, the families (F θ(t))t≥0 correspond to first order splitting
schemes. Whereas the family (F θ(t))t≥0 with θ = 1/2 corresponds to the sym-
metric Strang splitting and, together with (F sym(t))t≥0, represents second order
splitting schemes.

Let us apply Theorem 2.1.1, in order to extend the results of Examples 1.0.13 and
1.0.14 to the case of heat and Schrödinger type evolution equations containing
additionally a first order term in the right hand side (i.e., the so called gradient
perturbation of the Laplacian). To this aim consider first the following result
(cf. Example A.0.18 in Appendix A).

Lemma 2.1.6. Let X = C∞(Rd). Consider a non-zero vector field B ∶ Rd → Rd such
that B ∈ C2

b (Rd;Rd). Let D ⊆ C2
c (Rd) be a dense linear subspace of X . Assume that

the operator −B∇ defined on D via −B∇ϕ(x) ∶= −B(x) ⋅ ∇ϕ(x) is closable and its
closure generates a strongly continuous semigroup (T −B∇

t )t≥0 on X . Consider a family
(S(t))t≥0 of linear opertors on X defined by

S(t)ϕ(x) ∶= ϕ(x − tB(x)). (2.1.2)

Then the family (S(t))t≥0 is strongly continuous and is Chernoff equivalent to the
semigroup (T −B∇

t )t≥0.

Proof. Note, that if B is a constant vector field, the family (S(t))t≥0 is just the
translation semigroup (T −B∇

t )t≥0 (cf. Example A.0.18 in Appendix A). If B is
nonconstant, the family (S(t))t≥0 doesn’t posess the semigroup property. Nev-
ertheless, it is Chernoff equivalent to (T −B∇

t )t≥0. Indeed, it is obvious that S(0) =



16 Chapter 2. Lagrangian Feynman Formulae For Evolution Semigroups

Id, ∥S(t)∥ = 1. And for all ϕ ∈ C2
b (Rd) (in particular, for all ϕ belonging to the

core D)

lim
t→0

∥
S(t)ϕ − ϕ

t
+B∇ϕ∥

X

= lim
t→0

sup
x∈Rd

∣
ϕ(x − tB(x)) − ϕ(x)

t
+B(x) ⋅ ∇ϕ(x)∣

≤ lim
t→0

t × sup
x∈Rd, s∈[0,t]

∣B(x) ⋅Hessϕ(x − sB(x))B(x)∣

= 0.

Hence d
dtS(t)∣t=0

ϕ = −B∇ϕ for each ϕ ∈ D and all requirements of the Chernoff
theorem 1.0.6 are fullfilled. Moreover, the family (S(t))t≥0 is strongly continu-
ous since for all ϕ ∈ C1

∞(Rd) and all t ≥ 0

lim
h→0

∥S(t + h)ϕ − S(t)ϕ∥X = lim
h→0

sup
x∈Rd

∣ϕ(x + tB(x) + hB(x)) − ϕ(x + tB(x))∣

≤ lim
h→0

∣h∣∥∇ϕ∥∞∥B∥∞ = 0,

where the supremum norm of a vector field V ∶ Rd → Rd can be defined, e.g.,
by ∥V ∥∞ ∶= max1≤k≤d supx∈Rd ∣Vk(x)∣ . Since ∥S(t)∥ = 1, the 3ε-argument provides
that lim

h→0
∥S(t + h)ϕ − S(t)ϕ∥X = 0 for all ϕ ∈X .

Remark 2.1.7. An analogue of Lemma 2.1.6 holds true also in Lp-spaces (cf.
Plyashechnik, 2013a): Let X = Lp(Rd), p ∈ [1,∞). Consider a vector field B ∈

C1
b (Rd;Rd). Let D ⊆ C2

c (Rd) be a dense linear subspace of X . Assume that
the operator −B∇ defined on D via −B∇ϕ(x) ∶= −B(x) ⋅ ∇ϕ(x) is closable and
its closure generates a strongly continuous semigroup (T −B∇

t )t≥0 on X . Since
B ∈ C1

b (Rd;Rd), there exists δB > 0 such that for all t ∈ [0, δB] the mapping
Φ ∶ Rd → Rd, Φ(x) ∶= x− tB(x), is invertible. Define a function τ ∶ [0,∞)→ [0, δB]
as

τ(t) ∶= {
t, t ∈ [0, δB],
δB, t > δB.

Consider a family (S(t))t≥0 of linear opertors on X defined by

S(t)ϕ(x) ∶= ϕ(x − τ(t)B(x)).

Then the family (S(t))t≥0 is Chernoff equivalent to (T −B∇
t )t≥0.

Note, that the operators S(t) are not contractions any more. But it holds with
some constant c = c(B) > 0:

∥S(t)ϕ∥pX = ∫

Rd

∣ϕ(x − τ(t)B(x))∣pdx = ∣z ∶= Φ(x)∣ =

= ∫

Rd

∣ϕ(z)∣p det(Id−τ(t)∇⊗B(x))−1∣
x=Φ−1(z)dz ≤ ((1 + ct)∥ϕ∥X)

p
≤ (ect∥ϕ∥X)

p
.



Chapter 2. Lagrangian Feynman Formulae For Evolution Semigroups 17

The following result follows immediately from Theorem 2.1.1, Lemma 2.1.6,
Remark 2.1.7 and Example A.0.17.

Corollary 2.1.8 (Chernoff approximation for gradient and Schrödinger pertur-
bations). Let X = C∞(Rd) or X = Lp(Rd), p ∈ [1,∞). Let (Tt)t≥0 be a strongly con-
tinuous semigroup with a generator (L,Dom(L)) and a family (F (t))t≥0 be Chernoff
equivalent to (Tt)t≥0. Let a function C ∈ C(Rd) be such that infx∈Rd Re C(x) > −∞.
Let a vector field B be of class C2

b (Rd;Rd). Consider the operator L−B∇−C such that

(L −B∇−C)ϕ(x) ∶= Lϕ(x) −B(x) ⋅ ∇ϕ(x) −C(x)ϕ(x)

for all ϕ ∈ Dom(L − B∇ − C) ∶= Dom(L) ∩ Dom(−B∇) ∩ Dom(−C). Assume that
(the closure of) the operator (L − B∇ − C,Dom(L − B∇ − C)) generates a strongly
continuous semigroup (TL−B∇−Ct )t≥0 on X . Let a set D ⊂ Dom(L−B∇−C)∩C2

c (Rd)

be a core for (TL−B∇−Ct )t≥0 and assume that limt→0 ∥t−1(F (t)ϕ − ϕ) −Lϕ∥X = 0 for all
ϕ ∈D. Then the family

(e−tC ○ S(t) ○ F (t))t≥0

is Chernoff equivalent to the semigroup (TL−B∇−Ct )t≥0. And the Chernoff approxima-
tion

TL−B∇−Ct ϕ = lim
n→∞

[e−tC/n ○ S(t/n) ○ F (t/n)]
n
ϕ

is valid for all ϕ ∈X locally uniformly with respect to t ≥ 0.

Remark 2.1.9. (i) The assumption, that (L−B∇−C,Dom(L−B∇−C)) generates
a strongly continuous semigroup (TL−B∇−Ct )t≥0 on X , holds, e.g., if C ∈ Cb(Rd)

and the operator −B∇ is L-bounded (see Appendix D for the definition). In
particular, −B∇ is L-bounded for the case of Laplacian L = ∆ and fractional
Laplacian (see Appendix C for the definition) L = −(−∆)α/2, α ∈ (1,2], cf. Ex-
ample D.0.3. Some further sufficient conditions on the operator L −B∇ − C to
generate a strongly continuous semigroup can be found, e.g., in Wang, 2013;
Shigekawa, 2010.

(ii) Obviously, the family (e−tC ○S(t)○F (t))t≥0 is strongly continuous if and only
if so is the family (F (t))t≥0.

Example 2.1.10 (Lagrangian Feynman formula for gradient and Schrödinger
perturbations of the heat semigroup). LetX = C∞(Rd) orX = Lp(Rd), p ∈ [1,∞),
a vector field B be of class C2

b (Rd;Rd), C ∈ Cb(Rd). Consider the Laplace oper-
ator 1

2∆ on S(Rd). The closure of (1
2∆, S(Rd)) generates a strongly continuous

semigroup (Tt)t≥0 solving the Cauchy problem for the heat equation ∂f
∂t =

1
2∆f

(cf. Example 1.0.3); T0 ∶= Id and for all t ≥ 0 and ϕ ∈X

Ttϕ(x) = (2πt)(−d/2)∫
Rd
e−
∣x−y∣2

2t ϕ(y)dy.

Thus, by Corollary 2.1.2, the Lagrangian Feynman formula1 is valid for the
semigroup (TLt )t≥0 generated by the closure (L,Dom(L)) of (L,S(Rd)) with

1The order of integration in iterated integrals does not matter since the corresponding mul-
tiple integrals (of the absolute value of the integrand) exist and are finite due to Gaussian fall
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L ∶= 1
2∆ −B∇−C:

TLt ϕ(x0) = lim
n→∞

(2πt/n)(−dn/2) ∫
Rnd

e
− t
n

n

∑
k=1

C(xk−1)
e
−
n

∑
k=1

∣xk−1−B(xk−1)t/n−xk ∣2
2t/n

×

× ϕ(xn)dx1⋯dxn,

for all t > 0, ϕ ∈ X . And the convergence is in the norm of Banach space X
and uniform with respect to t ∈ (0, t∗] for all t∗ > 0. Since ∣x − B(x)t − y∣2 =

∣x − y∣2 − 2tB(x) ⋅ (x − y) + t2∣B(x)∣2 then

TLt ϕ(x0) = lim
n→∞∫

Rnd

e−
t
n ∑

n
k=1C(xk−1)e∑

n
k=1B(xk−1)⋅(xk−1−xk)×

× e−
t

2n ∑
n
k=1 ∣B(xk−1)∣2pBMt/n (x0 − x1)⋯p

BM
t/n (xn−1 − xn)ϕ(xn)dx1⋯dxn,

where pBMt (x) = (2πt)(−d/2) exp{ −
∣x∣2
2t

} and p(t, x, y) ∶= pBMt (x − y) is the transi-
tion density of Brownian motion. Moreover, one can show (cf. Simon, 1979,
Sec. V.15, and Lőrinczi, Hiroshima, and Betz, 2011, Sec. 3.5, for the case of
L2(Rd)), that the limit in the right hand side of the last formula coincides with
the path integral

Ex0 [e− ∫
t

0 C(ξτ )dτe− ∫
t

0 B(ξτ )dξτ e−
1
2 ∫

t
0 ∣B(ξτ )∣2dτf(ξt)] (2.1.3)

with respect to the Wiener measure concentrated on the paths starting at x0

(with ∫
t

0 B(ξτ)dξτ being the Itô stochastic integral). Hence, the machinery of
Feynman formulae provides another way to prove the Feynman–Kac formula
(2.1.3) and leads to the Cameron–Martin–Girsanov theorem.

Example 2.1.11 (Lagrangian Feynman formula for dynamics of a quantum par-
ticle in potential and magnetic fields). Let X = L2(Rd). Consider the operator
L = i

2∆ on C∞
c (Rd). According to Example 1.0.14 (cf. Thm. IX.27 in Reed and Si-

mon, 1975), the closure (L,Dom(L)) of (L,C∞
c (Rd)) generates the strongly con-

tinuous (semi)group (Tt ≡ e
it
2

∆)t≥0 solving the Cauchy problem for the Schrö-
dinger equation i∂f∂t = −

1
2∆f :

Ttϕ(x) = (2πit)(−d/2)∫
Rd

ei
∣x−y∣2

2t ϕ(y)dy,

where the right hand side is understood in a regularized sense. Consider a
vector field B of class C1

b (Rd;Rd) and a complex-valued function C ∈ Cb(Rd).
Then the closure of the operator L = i

2∆ − B∇ − iC, defined on C∞
c (Rd), gen-

erates (by Thm. X.22 in Reed and Simon, 1975, cf. Lőrinczi, Hiroshima, and
Betz, 2011, Lemma 3.64, and the Stone Theorem A.0.16) a strongly continu-
ous (semi)group (TLt )t≥0. Thus, the following Feynman formula is valid for the

off of the integrand with respect to each of the variable. Therefore, here and in the sequel, in
such case, we use multiple integrals in Feynman formulae.
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semigroup (TLt )t≥0 by Corollary 2.1.2:

TLt ϕ(x0) = lim
n→∞

[e−i
t
n
C ○ e−

t
n
B∇ ○ Tt/n]

n
ϕ(x0) =

= lim
n→∞

(2πit)(−dn/2)∫
Rd

. . .∫
Rd

e
−i t
n

n

∑
k=1

C(xk−1)
e
i
n

∑
k=1

∣xk−xk−1+ tnB(xk−1)∣2
2t/n ϕ(xn)dxn . . . dx1,

where the order of integration is from xn to x1, the integrals again must be
understood in a regularized sense, the convergence is in the norm of the space
L2(Rd) uniform with respect to t ∈ (0, t∗] for all t∗ > 0. Note that the expression
in the last line can be interpreted as a Feynman path integral over the set of
paths in the configuration space of the system whose quantization is described
by the Hamiltonian Ĥ = −1

2∆ − iB∇+C,

TLt ϕ(x0) ≡ e
−itĤϕ(x0) = ∫ e

−i
t

∫
0
[C(ξ(s))− 1

2
∣B(ξ(s))∣2]ds

e
i
t

∫
0
B(ξ(s))⋅dξ(s)

ϕ(ξ(t))Φx0(dξ),

where the integral is taken with respect to the Feynman pseudomeasure Φq0 ,
concentrated on paths starting at the point q0, and the heuristic “stochastic inte-

gral”
t

∫
0

B(ξ(s)) ⋅ dξ(s) requires a separate justification (compare Albeverio and

Brzeźniak, 1995, Thm.5.4, Obrezkov, 2005). Some other Feynman formulae (in
particular, for more general classes of potential and magnetic fields B(⋅) and
C(⋅)) can be found in Plyashechnik, 2012, Remizov, 2016.

2.2 Chernoff approximations for semigroups gene-
rated by multiplicatively perturbed operators

Let Q be a metric space2. Consider the Banach space X = Cb(Q) of bounded
continuous functions on Q with supremum-norm ∥f∥∞ = sup

q∈Q
∣f(q)∣. Let (Tt)t≥0

be a strongly continuous semigroup on X with generator (L,Dom(L)). Con-
sider a function a ∈ Cb(Q) such that a(q) > 0 for all q ∈ Q. Then the space X
is invariant under the multiplication operator a, i.e. a(X) ⊂ X . Consider the
operator ÌL, defined for all ϕ ∈ Dom(ÌL) and all q ∈ Q by

ÌLϕ(q) ∶= a(q)(Lϕ)(q), where Dom(ÌL) ∶= Dom(L). (2.2.1)

Assumption 2.2.1. We assume that (ÌL,Dom(ÌL)) generates a strongly continu-
ous semigroup (which is denoted by (ÌTt)t≥0) on the Banach space X .

2The metric space Q is not assumed to be neither linear, nor locally compact. So, Q can be,
e.g., a Hilbert space, a Euclidean space, a Riemannian manifold, a metric graph, or a subdomain
of any of them.
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The operator ÌL is called a multiplicative perturbation of the generator L and the
semigroup (ÌTt)t≥0, generated by ÌL, is called a semigroup with the multiplicatively
perturbed with the function a generator. Some conditions assuring the existence
and strong continuity of the semigroup (ÌTt)t≥0 are discussed in Appendix D.

Theorem 2.2.2. Let Assumption 2.2.1 hold. Let (F (t))t≥0 be a strongly continuous
family of bounded linear operators on the Banach spaceX , which is Chernoff equivalent
to the semigroup (Tt)t≥0. Consider the family of operators ( ÌF (t))t≥0 defined on X by

ÌF (t)ϕ(q) ∶= (F (a(q)t)ϕ)(q) for all q ∈ Q. (2.2.2)

The operators ÌF (t) act on the space X and the family ( ÌF (t))t≥0 is Chernoff equivalent
to the semigroup (ÌTt)t≥0 with multiplicatively perturbed with the function a generator,
i.e. the Chernoff approximation

ÌTtϕ = lim
n→∞

[ ÌF (t/n)]
n
ϕ

is valid for all ϕ ∈X locally uniformly with respect to t ≥ 0.

Proof. Since the strongly continuous family (F (t))t≥0 of bounded linear opera-
tors on the Banach space X is Chernoff equivalent to the semigroup (Tt)t≥0, we
have ∥F (t)∥ ≤ ekt for some k > 0 and all t ≥ 0 and, moreover, there exists a core
D for the generator L such that F ′(0)ϕ = Lϕ for all ϕ ∈ D. Let us show first that
the operators ÌF (t) act from X into X . Let ϕ ∈ X = Cb(Q). Let us check that,
for each t ≥ 0, the function ÌF (t)ϕ is bounded and continuous on Q. Denote the
distance in Q between points q and q0 as ρ(q, q0). Fix t ≥ 0 and q0 ∈ Q.

lim
ρ(q,q0)→0

∣ ÌF (t)ϕ(q) − ÌF (t)ϕ(q0)∣

= lim
ρ(q,q0)→0

∣F (a(q)t)ϕ(q) − F (a(q0)t)ϕ(q0)∣

≤ lim
ρ(q,q0)→0

(∣F (a(q)t)ϕ(q) − F (a(q0)t)ϕ(q)∣ + ∣F (a(q0)t)ϕ(q) − F (a(q0)t)ϕ(q0)∣)

≤ lim
ρ(q,q0)→0

(∥[F (a(q)t) − F (a(q0)t)]ϕ∥∞ + ∣F (a(q0)t)ϕ(q) − F (a(q0)t)ϕ(q0)∣).

The limit of the second term in the last line equals zero since, for each q0 ∈ Q, the
operator F (a(q0)t) acts from X into X , i.e. F (a(q0)t)ϕ is a continuous function
on Q (and hence at the point q0). Moreover,

lim
ρ(q,q0)→0

∥[F (a(q)t) − F (a(q0)t)]ϕ∥∞ = lim
τ→τ0∶=a(q0)t

∥F (τ)ϕ − F (τ0)ϕ∥∞ = 0

since the family (F (t))t≥0 is strongly continuous. Therefore, the function ÌF (t)ϕ
is continuous. Moreover, we have with a ∶= supq∈Q a(q):

∥ ÌF (t)ϕ∥∞ = sup
q∈Q

∣ ÌF (t)ϕ(q)∣ = sup
q∈Q

∣F (a(q)t)ϕ(q)∣ ≤ sup
q,q0∈Q

∣F (a(q0)t)ϕ(q)∣

≤ sup
q0∈Q

∥F (a(q0)t)ϕ∥∞ ≤ sup
q0∈Q

∥F (a(q0)t)∥ ⋅ ∥ϕ∥∞ = eakt∥ϕ∥∞ <∞.
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Hence the function ÌF (t)ϕ is also bounded, i.e. belongs to the space X . More-
over, it is shown that for each t ≥ 0 the estimate ∥ ÌF (t)∥ ≤ eakt is true. Note that
the condition ÌF (0) = Id is also fulfilled.

Let us find the derivative at zero of the family ( ÌF (t))t≥0 on the set D. For each
ϕ ∈D, we have

lim
t→0

∥
ÌF (t)ϕ − ϕ

t
− ÌLϕ∥

∞
= lim
t→0

sup
q∈Q

∣
F (a(q)t)ϕ(q) − ϕ(q)

t
− a(q)Lϕ(q)∣

≤ lim
t→0

sup
q0,q∈Q

∣
F (a(q0)t)ϕ(q) − ϕ(q)

t
− a(q0)Lϕ(q)∣

= lim
t→0

sup
q0∈Q

∥
F (a(q0)t)ϕ − ϕ

t
− a(q0)Lϕ∥

∞

= lim
t→0

sup
c∈[0,a]

∥
F (ct)ϕ − ϕ

t
− cLϕ∥

∞

≤ a ⋅ lim
z→0

∥
F (z)ϕ − ϕ

z
−Lϕ∥

∞

= 0.

Therefore, all conditions of the Chernoff Theorem 1.0.6 are fullfilled and hence
the family ( ÌF (t))t≥0 is Chernoff equivalent to the semigroup (ÌTt)t≥0.

Remark 2.2.3. The construction of the family ( ÌF (t))t≥0 (which is Chernoff equi-
valent to the semigroup (ÌTt)t≥0 with the multiplicatively perturbed generator)
in Theorem 2.2.2 requires an additional assumption that the original family
(F (t))t≥0 (Chernoff equivalent to the original semigroup with non-perturbed
generator) is strongly continuous. Therefore, in order to combine the technique
of Chernoff approximation of semigroups generated by multiplicative pertur-
bations of generators with some other techniques, one has to deal with strongly
continuous families (F (t))t≥0. Due to this reason, all the families (F (t))t≥0 con-
structed in this work will be checked additionally on strong continuity.

Lemma 2.2.4. The family ( ÌF (t))t≥0 constructed in Theorem 2.2.2 by formula (2.2.2)
is strongly continuous.

Proof. Since the original family (F (t))t≥0 is strongly continuous, the function
t↦ F (t)ϕ is uniformly continuous for each ϕ ∈X on each segment [0, T ]. There-
fore, we have for each t0 ≥ 0 and each ϕ ∈X

lim
t→t0

∥ ÌF (t)ϕ − ÌF (t0)ϕ∥∞ = lim
t→t0

sup
q∈Q

∣F (a(q)t)ϕ(q) − F (a(q)t0)ϕ(q)∣

≤ lim
t→t0

sup
q∈Q

∥F (a(q)t)ϕ − F (a(q)t0)ϕ∥∞ = lim
t→t0

sup
c∈[0,a]

∥F (ct)ϕ − F (ct0)ϕ∥∞ = 0.
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Remark 2.2.5. The statements of Theorem 2.2.2 and Lemma 2.2.4 remain true if,
instead of the Banach space Cb(Q) itself, one considers any Banach subspace X
of Cb(Q), invariant under multiplication operator a, and requires / proves that
( ÌF (t))t≥0 acts from X into X .

Proposition 2.2.6. The statements of Theorem 2.2.2 and Lemma 2.2.4 remain true for
the following Banach spaces:

a) X = C∞(Q) ∶= {ϕ ∈ Cb(Q) ∶ lim
ρ(q,q0)→∞

ϕ(q) = 0} , where q0 is an arbitrary fixed

point of Q and the metric space Q is unbounded with respect to its metric ρ;

b) X = C0(Q) ∶= {ϕ ∈ Cb(Q) ∶ ∀ ε > 0 ∃ a compact Kε
ϕ ⊂ Q such that ∣ϕ(q)∣ < ε

for all q ∉Kε
ϕ}, where the metric space Q is assumed to be locally compact3.

Proof. Let (F (t))t≥0 be a strongly continuous family of bounded linear operators
on X . Let us check that ( ÌF (t))t≥0 defined by (2.2.2) acts from X into X .

Case (a): It is sufficient to check that lim
ρ(q,q0)→∞

( ÌF (t)ϕ)(q) = 0 for each ϕ ∈ X and

each t > 0. Let us fix ϕ ∈X and t > 0. Let as before a ∶= supq∈Q a(q).

lim
ρ(q,q0)→∞

∣ ÌF (t)ϕ(q)∣ = lim
ρ(q,q0)→∞

∣(F (a(q)t)ϕ)(q)∣

≤ lim
ρ(q,q0)→∞

sup
q′∈Q

∣F (a(q′)t)ϕ(q)∣

= lim
ρ(q,q0)→∞

sup
τ∈[0,at]

∣F (τ)ϕ(q)∣.

Since the family (F (t))t≥0 acts from X into X , for any τ ∈ [0, at] and any ε > 0
there exists Rε,τ > 0 such that, for each q ∈ Q with ρ(q0, q) > Rε,τ , the inequality
∣F (τ)ϕ(q)∣ < ε/2 holds. Since the family (F (t))t≥0 is strongly continuous, the
mapping τ → F (τ)ϕ is uniformly continuous on the segment [0, at]. Therefore,
for each ε > 0 there exists δε > 0 such that, for all τ, τ ′ ∈ [0, at] satisfying the
condition ∣τ − τ ′∣ < δε, the inequality ∥F (τ)ϕ − F (τ ′)ϕ∥∞ < ε/2 holds.

Fix ε > 0. Consider a partition τ0 = 0 < τ1 < . . . < τN = at of the segment [0, at]
such that max

1≤k≤N
∣τk − τk−1∣ < δε. Then for each τ ∈ [0, at] there exists an element τk

of the partition (τi)Ni=0 such that ∣τ − τk∣ < δε. Let now Rε = max
0≤k≤N

Rε,τk . Then, for

any τ ∈ [0, at] and any q ∈ Q with ρ(q, q0) > Rε, we have:

∣F (τ)ϕ(q)∣ ≤ ∣F (τ)ϕ(q) − F (τk)ϕ(q)∣ + ∣F (τk)ϕ(q)∣

≤ ∥F (τ)ϕ − F (τk)ϕ∥∞ + ∣F (τk)ϕ(q)∣

≤
1

2
ε +

1

2
ε = ε.

3If Q = Rd, we have C∞(Q) = C0(Q), and we use the notation C∞(Rd) for this space. If
Q = (0,∞), we have C0(Q) = C∞(Q) ∩ {ϕ ∶ lim

x↘0
ϕ(x) = 0} and C∞((0,∞)) = C0([0,∞)). In

general, it is not assumed in the definition of C∞(Q) that Q is locally compact.



Chapter 2. Lagrangian Feynman Formulae For Evolution Semigroups 23

Therefore, lim
ρ(q,q0)→∞

sup
τ∈[0,at]

∣F (τ)ϕ(q)∣ = 0. And Case (a) is proved.

Case (b): Fix ϕ ∈X , t > 0 and ε > 0. It is sufficient to find a compact Kε
ϕ ⊂ Q such

that ∣ ÌF (t)ϕ(q)∣ < ε for all q ∉Kε
ϕ.

∣ ÌF (t)ϕ(q)∣ = ∣F (a(q)t)ϕ(q)∣ ≤ sup
q0∈Q

∣F (a(q0)t)ϕ(q)∣ = sup
τ∈[0,at]

∣F (τ)ϕ(q)∣.

Since the family (F (t))t≥0 acts from X into X , for each τ ∈ [0, at] there exists a
compact Kε

τ ⊂ Q such that ∣F (τ)ϕ(q)∣ < ε/2 for all q ∉ Kε
τ . Since the mapping

τ → F (τ)ϕ is uniformly continuous on the segment [0, at], for each ε > 0 there
exists δε > 0 such that, for all τ, τ ′ ∈ [0, at] with ∣τ − τ ′∣ < δε, the inequality
∥F (τ)ϕ − F (τ ′)ϕ∥∞ < ε/2 holds. Consider a partition τ0 = 0 < τ1 < . . . < τN = at
of the segment [0, at] such that max

1≤k≤N
∣τk − τk−1∣ < δε. Define Kε

ϕ ∶= ∪
N
i=0K

ε
τi

. Then

Kε
ϕ is a compact such that ∣F (τi)ϕ(q)∣ < ε/2 for all q ∉ Kε

ϕ and all i = 0,1, . . . ,N .
Since for each τ ∈ [0, at] there exists an element τk of the partition (τi)Ni=0 such
that ∣τ − τk∣ < δε, we have for all q ∉Kε

ϕ:

∣F (τ)ϕ(q)∣ ≤ ∥F (τ)ϕ − F (τk)ϕ∥∞ + ∣F (τk)ϕ(q)∣ <
1

2
ε +

1

2
ε = ε.

Therefore, ∣ ÌF (t)ϕ(q)∣ ≤ sup
τ∈[0,at]

∣F (τ)ϕ(q)∣ < ε for all q ∉ Kε
ϕ. And Case (b) is

proved.

Remark 2.2.7. Let all the operators Tt, t ≥ 0, satisfy the estimate ∥Tt∥ ≤ etk with
some k ≥ 0. Then one may take the semigroup (Tt)t≥0 itself (as the strongly
continuous family (F (t))t≥0), in order to construct the family ( ÌF (t))t≥0:

ÌF (t)ϕ(q) = (Ta(q)tϕ)(q), ∀ϕ ∈X, ∀ q ∈ Q.

Note, that such family ( ÌF (t))t≥0 is not a semigroup any more.

Corollary 2.2.8. Let (Xt)t≥0 be a Markov process with the state spaceQ and transition
probability P (t, q, dy). Let the corresponding semigroup (Tt)t≥0,

Ttϕ(q) = Eq [ϕ(Xt)] ≡ ∫
Q

ϕ(y)P (t, q, dy),

be strongly continuous on the Banach space X , where X = Cb(Q), X = C∞(Q) or
X = C0(Q), and Assumption 2.2.1 hold. Then by Theorem 2.2.7 and Proposition 2.2.6
the family ( ÌF (t))t≥0 defined by

ÌFtϕ(q) ∶= ∫
Q

ϕ(y)P (a(q)t, q, dy),
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is strongly continuous and is Chernoff equivalent to the semigroup (ÌTt)t≥0 with mul-
tiplicatively perturbed (with the function a) generator. Therefore, the following La-
grangian Feynman formula is true for all t > 0 and all q0 ∈ Q:

ÌTtϕ(q0) = lim
n→∞∫

Q

⋯∫
Q

ϕ(qn)P (a(q0)t/n,q0, dq1)P (a(q1)t/n, q1, dq2) ×⋯

× P (a(qn−1)t/n, qn−1, dqn),

(2.2.3)

where the order of integration is from qn to q1 and the convergence is uniform with
respect to q0 ∈ Q and locally uniform with respect to t ≥ 0.

Remark 2.2.9. Corollary 2.2.8 holds true if, e.g., (Xt)t≥0 is a Feller process (see
Chapter 3 for definition). In this caseQ = Rd and (Tt)t≥0 is a strongly continuous
contraction semigroup on C∞(Rd).

Remark 2.2.10. A multiplicative perturbation of the generator of a Markov pro-
cess is equivalent to some randome time change of the process (see Volkon-
skiı̆, 1958, Volkonskiı̆, 1960, Ethier and Kurtz, 1986). Note that ÌP (t, q, dy) ∶=

P (a(q)t, q, dy) is not a transition probability any more. Nevertheless, if the
transition probability P (t, q, dy) of the original process is known, formula 2.2.3
allows to approximate the unknown transition probability of the modified pro-
cess. Some explicilty known transitional densities can be found, e.g., in Borodin
and Salminen, 2002; Cont and Tankov, 2004.

Example 2.2.11 (Lagrangian Feynman formula for a diffusion with variable dif-
fusion coefficient). Consider the Banach space X = C∞(Rd). Consider a Brow-
nian motion in Rd. Its generator is the Laplace operator L = 1

2∆ and the corre-
sponding semigroup (Tt)t≥0 is given by (1.0.2). Its transition density p(t, x, y) is
given as p(t, x, y) ∶= pBMt (x − y) via the Gaussian exponent

pBMt (x) = (2πt)−d/2 exp{ −
∣x∣2

2t
}.

Consider a function a ∈ Cb(Rd), a > 0. Let (ÌTt)t≥0 be the semigroup on X with
multiplicatively perturbed with the function a generator L. This semigroup
corresponds to a diffusion process with the variable diffusion matrix

√
a Id. The

following Lagrangian Feynman formula is valid by Proposition 2.2.6 for any
ϕ ∈X and any t > 0:

ÌTtϕ(q0) = lim
n→∞∫

Rd

⋯∫

Rd

(2πa(q0)t/n)
−d/2 exp{ −

∣q0 − q1∣
2

2a(q0)t/n
} ×⋯

× (2πa(qn−1)t/n)
−d/2 exp{ −

∣qn−1 − qn∣2

2a(qn−1)t/n
}ϕ(qn)dqn⋯dq1,

where the order of integration is from qn to q1 and the convergence is uniform
with respect to q0 ∈ Q and t ∈ (0, t∗], t∗ > 0.
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Example 2.2.12 (Lagrangian Feynman formula for a Cauchy type Feller pro-
cess). Consider the Banach space X = C∞(Rd). Consider a Cauchy process in
Rd. It is a Lévy (and hence Feller) process (see Appendix C for all the details).
Its generator is given by the fractional Laplacian L = −

√
−∆ and its transition

density p(t, x, y) is given as p(t, x, y) ∶= pt(x − y) via

pt(x) = Γ(
d

2
+

1

2
)

t

[π∣x∣2 + t2](d+1)/2 ,

where Γ(⋅) is Euler’s Gamma function. Consider a function a ∈ Cb(Rd), a >

0. Let (ÌTt)t≥0 be the semigroup on X with multiplicatively perturbed with
the function a generator L. This semigroup corresponds to a Cauchy type
Feller process. The following Lagrangian Feynman formula is valid by Propo-
sition 2.2.6 for any ϕ ∈X and any t > 0:

ÌTtϕ(q0) = lim
n→∞∫Rd

⋯∫
Rd

[Γ(
d

2
+

1

2
)]

n
a(q0)t/n

[(a(q0)t/n)2 + (π∣q0 − q1∣)
2](d+1)/2 ×⋯

×
a(qn−1)t/n

[(a(qn−1)t/n)2 + (π∣qn−1 − qn∣)2](d+1)/2ϕ(qn)dqn⋯dq1, (2.2.4)

where the order of integration is from qn to q1 and the convergence is uniform
with respect to q0 ∈ Q and locally uniform with respect to t ≥ 0.

Some further examples are discussed in Chapter 6.

2.3 Lagrangian Feynman formulae for semigroups
generated by second order elliptic operators

In this Section, we generalize the results of Section 2.1 and Section 2.2 on Cher-
noff approximation of semigroups generated by additive and multiplicative
perturbations of the Laplace operator to the case of semigroups generated by
second order elliptic operators with variable coefficients. We consider the Ba-
nach space X = C∞(Rd) in this Section.

Assumption 2.3.1. Let A ∶ Rd → L(Rd) be a continuous mapping such that the
operator A(x) is symmetric for all x ∈ Rd, and let there exist a0,A0 ∈ R such that
0 < a0 ≤ A0 <∞ and for all x, z ∈ Rd

a0∣z∣
2 ≤ z ⋅A(x)z ≤ A0∣z∣

2. (2.3.1)

Consider the second order elliptic operator ∆A defined for each ϕ ∈ C2(Rd) by

∆Aϕ(x) ∶= tr(A(x)Hessϕ(x)) (2.3.2)



26 Chapter 2. Lagrangian Feynman Formulae For Evolution Semigroups

Assumption 2.3.2. We assume that the mapping A ∶ Rd → L(Rd) is such that
for some α ∈ (0,1] the operator (∆A,C

2,α
c (Rd)) is closable in X and the closure

(∆A,Dom(∆A)) generates a strongly continuous semigroup (T∆A
t )t≥0 on X .

Remark 2.3.3. If the mapping A is uniformly continuous (or it is of the class
C3
b (Rd;L(Rd))), Assumption 2.3.1 guarantees the existence of the strongly con-

tinuous semigroup (T∆A
t )t≥0 on X due to Theorem D.0.9, part (i) (or due to

Theorem D.0.10 respectively). Obviously, C2,α
c (Rd) ⊂ Dom(∆A). If A is a con-

stant matrix then the set C∞
c (Rd) (and hence C2,α

c (Rd)) is a core for ∆A due to
Theorem C.0.7.

Consider the family (FA(t))t≥0 of operators on X defined by FA(0) ∶= Id and
for all t > 0 with ϕ ∈X and x ∈ Rd

FA(t)ϕ(x) ∶=
1

√
(4πt)d detA(x)

∫

Rd

exp( −
A−1(x)(x − y) ⋅ (x − y)

4t
)ϕ(y)dy.

(2.3.3)

Lemma 2.3.4. Under Assumption 2.3.1, the family (FA(t))t≥0 is a strongly continu-
ous family of contractions on X .

Proof. Consider t > 0. The operators FA(t) are obviously linear. Let us show
that FA(t) ∶ Cc(Rd)→ C∞(Rd). Consider ϕ ∈ Cc(Rd). Then

sup
x∈Rd

∣FA(t)ϕ(x)∣ (2.3.4)

= sup
x∈Rd

∣
1

√
(4πt)d detA(x)

∫

Rd

exp(
−A−1(x)(x − y) ⋅ (x − y)

4t
)ϕ(y)dy∣

≤ ∥ϕ∥∞ sup
x∈Rd

[
1

√
(4πt)d detA(x)

∫

Rd

exp(
−A−1(x)(x − y) ⋅ (x − y)

4t
)dy]

= ∥ϕ∥∞,

i.e., the function FA(t)ϕ is well defined and bounded; ∥FA(t)ϕ∥∞ ≤ ∥ϕ∥∞. De-
fine pA(t, x, y) for all x, y ∈ Rd and all t > 0 via

pA(t, x, y) ∶=
1

√
(4πt)d detA(x)

exp( −
A−1(x)(x − y) ⋅ (x − y)

4t
). (2.3.5)

This function pA is continuous on (0,∞) ×Rd ×Rd and hence uniformly contin-
uous on each compact in (0,∞) ×Rd ×Rd. Therefore, for each fixed t > 0, for x,
x0 ∈ Rd, we have with Kϕ ∶= suppϕ

∣FA(t)ϕ(x) − FA(t)ϕ(x0)∣ ≤ ∥ϕ∥∞ sup
y∈Kϕ

∣pA(t, x, y) − pA(t, x0, y)∣∫
Kϕ

dy → 0, x→ x0,



Chapter 2. Lagrangian Feynman Formulae For Evolution Semigroups 27

i.e., the function FA(t)ϕ is continuous on Rd. Let us check that FA(t)ϕ(x) → 0
as ∣x∣→∞. Under Assumption 2.3.1 the inequality

exp( −
A−1(x)(x − y) ⋅ (x − y)

4t
) ≤ exp( −

∣x − y∣2

4tA0

)

holds for all x, y ∈ Rd, t ≥ 0. Since detA(x) ≥ ad0 due to Assumption 2.3.1, we
have

∣FA(t)ϕ(x)∣ ≤
∥ϕ∥∞

√
(4πta0)

d
∫
Kϕ

exp( −
∣x − y∣2

4tA0

)dy → 0 as ∣x∣→∞.

Therefore, FA(t) ∶ Cc(Rd) → C∞(Rd) with ∥FA(t)ϕ∥∞ ≤ ∥ϕ∥∞. Hence operators
FA(t) can be extended to contractions on C∞(Rd) by the B.L.T. Theorem A.0.19.
Besides, we have shown that ∫K pA(t, x, y)dy → 0 as ∣x∣ → ∞ for each t > 0 and
each compact K ⊂ Rd. Clearly, this convergence is uniform with respect to t on
each compact interval [t1, t2] ⊂ (0,∞).

Let us show now that the family (FA(t))t≥0 is strongly continuous. It is suf-
ficient to show that limt→t0 ∥F

A(t)ϕ − FA(t0)ϕ∥∞ = 0 for all ϕ ∈ Cc(Rd) and all
t0 ≥ 0 and to apply the 3ε-argument. So, fix ϕ ∈ Cc(Rd). Consider first t0 > 0.
Let t, t0 belong to a compact interval [t1, t2] ⊂ (0,∞). Then for each ε > 0 there
exists a compact Kε

t1,t2
⊂ Rd such that, for all x ∉Kε

t1,t2
and all t ∈ [t1, t2], we have

∫Kϕ pA(t, x, y)dy < ε. Therefore, we have for each ε > 0

∥FA(t)ϕ−FA(t0)ϕ∥∞

≤ ∥ϕ∥∞ sup
x∈Rd

[∫
Kϕ

(pA(t, x, y) − pA(t0, x, y))dy]

≤ ∥ϕ∥∞
⎛
⎜
⎝

sup
x∈Kε

t1,t2
,y∈Kϕ

∣pA(t, x, y) − pA(t0, x, y)∣∫
Kϕ

dy + 2ε
⎞
⎟
⎠

→ 2ε∥ϕ∥∞ as t→ t0,

since the function pA is uniformly continuous on each compact in (0,∞) ×Rd ×

Rd. Hence the mapping t → FA(t) is strongly continuous on (0,∞). Consider
now t0 = 0. Let ϕ ∈ C∞(Rd). Then ϕ is uniformly continuous, i.e., for each ε > 0
there exists δ > 0 such that for all x ∈ Rd and all z ∈ Rd with ∣z∣ ≤ δ the inequality



28 Chapter 2. Lagrangian Feynman Formulae For Evolution Semigroups

∣ϕ(x − z) − ϕ(x)∣ < ε holds. Then for each fixed ε > 0

∥FA(t)ϕ − ϕ∥∞ ≤ sup
x∈Rd
∫

Rd

pA(t, x, x − z)∣ϕ(x − z) − ϕ(x)∣dz

≤ sup
x∈Rd

⎛
⎜
⎝
ε ∫
∣z∣≤δ

pA(t, x, x − z)dz
⎞
⎟
⎠
+ sup
x∈Rd

⎛
⎜
⎝

2∥ϕ∥∞ ∫
∣z∣≥δ

pA(t, x, x − z)dz
⎞
⎟
⎠

≤ ε + 2∥ϕ∥∞(A0/a0)
d/2
∫

∣z∣≥δ

(4πtA0)
−d/2e

− ∣z∣2
4tA0 dz

→ ε, as t→ 0.

Hence the mapping t → FA(t) is strongly continuous on [0,∞) and Lemma is
proved.

Theorem 2.3.5. Under Assumptions 2.3.1 and 2.3.2, the family (FA(t))t≥0 is Chernoff
equivalent to the semigroup (T∆A

t )t≥0 on X . Hence

T∆A
t ϕ = lim

n→∞
[FA(t/n)]

n
ϕ

for all ϕ ∈ X locally uniformly with respect to t ≥ 0. Therefore, the following La-
grangian Feynman Formula holds for each t > 0, ϕ ∈X and each x0 ∈ Rd:

T∆A
t ϕ(x0) = lim

n→∞∫

Rnd

pA(t/n,x0, x1)⋯pA(t/n,xn−1, xn)ϕ(xn)dx1 . . . dxn, (2.3.6)

where pA(t, x, y) is given by (2.3.5). And the convergence is uniform with respect to
x0 ∈ Rd and t ∈ (0, t∗] for all t∗ > 0.

Proof. Due to Lemma 2.3.4 and Assumption 2.3.2, it is sufficient to show for
each ϕ ∈ C2,α

c (Rd) that limt→0 ∥t−1(F (t)ϕ − ϕ) −∆Aϕ∥∞ = 0. So, fix ϕ ∈ C2,α
c (Rd).

Using the Taylor expansion for ϕ at a fixed point x, we have with some θ =

θ(z) ∈ [0,1]:

FA(t)ϕ(x) = ∫
Rd

pA(t, x, x − z)ϕ(x − z)dz

= ∫

Rd

pA(t, x, x − z) [ϕ(x) +∇ϕ(x) ⋅ z +
1

2
Hessϕ(x − θz)z ⋅ z]dz

= ϕ(x) + t tr(A(x)Hessϕ(x))+

+ ∫

Rd

pA(t, x, x − z)(Hessϕ(x − θz) −Hessϕ(x))z ⋅ zdz.

Here we have used the fact that for each positive definite matrix A and each
matrix M

∫

Rd

((4π)d detA)
−1/2

e−
A−1z⋅z

4 Mz ⋅ z dz = 2 tr(AM),
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and that the integral of an odd function over the whole space is zero. There-
fore, using the Hölder continuity of Hessϕ with index α, we obtain with some
constants K1 > 0 and K2 > 0

∥
FA(t)ϕ − ϕ

t
−∆Aϕ∥

∞

≤ sup
x∈Rd

1

t ∫
Rd

pA(t, x, x − z)∣(Hessϕ(x − θz) −Hessϕ(x))z ⋅ z∣dz

≤
K1

t ∫
Rd

(4πtA0)
−d/2e

− ∣z∣2
4tA0 ∣z∣2+αdz

=K2t
α/2 → 0, as t→ 0.

Therefore, all the assumptions of the Chernoff Theorem 1.0.6 are fulfilled and
the family (FA(t))t≥0 is Chernoff equivalent to the semigroup (T∆A

t )t≥0.

The requirement a0∣z∣2 ≤ z ⋅ A(x)z of Assumption 2.3.1 can be weaken using
the results of Section 2.2. Namely, the following is true due to Theorem 2.3.5,
Proposition 2.2.6 and Lemma 2.2.4.

Proposition 2.3.6. LetA be as in Assumption 2.3.1, let a ∈ Cb(Rd) be a scalar function
with a(x) > 0 for all x ∈ Rd. Consider ÌA ∶ Rd → L(Rd) such that ÌA(x) = a(x)A(x).
Consider also the operator ∆ ÌA defined (using notations of Section 2.2) for each ϕ ∈

C2(Rd) by

∆ ÌAϕ(x) ∶= tr( ÌA(x)Hessϕ(x)) = a(x)∆Aϕ(x) ≡ Í∆Aϕ(x). (2.3.7)

Let Assumption 2.3.2 and Assumption 2.2.1 with L ∶= ∆A be fullfilled. Consider the
family ( ÌFA(t))t≥0 of linear operators on X defined by ÌFA(0) ∶= Id and

ÌFA(t)ϕ(x) ∶=
1

√

(4πt)d det ÌA(x)
∫

Rd

exp(−
ÌA−1(x)(x − y) ⋅ (x − y)

4t
)ϕ(y)dy (2.3.8)

for all t > 0, ϕ ∈ X and x ∈ Rd. Then the family ( ÌFA(t))t≥0 is strongly continuous and
Chernoff equivalent to the semigroup (T

∆ ÌA
t )t≥0 on C∞(Rd) generated by the closure of

(∆ ÌA,C
2,α
c (Rd)). Therefore, the following Lagrangian Feynman Formula holds true for

all t > 0, ϕ ∈X and x0 ∈ Rd

T∆A
t ϕ(x0)

= lim
n→∞∫

Rd

⋯∫

Rd

pA(a(x0)t/n,x0, x1)⋯pA(a(xn−1)t/n,xn−1, xn)ϕ(xn)dxn . . . dx1,

where the order of integration is from xn to x1. And the convergence is uniform with
respect to x0 ∈ Rd and t ∈ (0, t∗] for all t∗ > 0.

Combining Proposition 2.3.6, Theorem 2.1.1 and Lemma 2.1.6, we immediately
obtain the following result (cf. Corollary 2.1.2).
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Proposition 2.3.7. LetA be as in Assumption 2.3.1, let a ∈ Cb(Rd) be a scalar function
with a(x) > 0 for all x ∈ Rd. Consider ÌA ∶ Rd → L(Rd) such that ÌA(x) = a(x)A(x).
Let a real-valued function C ∈ C(Rd) be such that infx∈Rd C(x) > −∞. Let a vector
field B be of class C2

b (Rd;Rd). Consider the operator ∆ ÌA − B∇ − C defined for all
ϕ ∈ C2,α

c (Rd) by

(∆ ÌA −B∇−C)ϕ(x) ∶= tr( ÌA(x)Hessϕ(x)) −B(x) ⋅ ∇ϕ(x) −C(x)ϕ(x). (2.3.9)

Assume that the operator (∆ ÌA−B∇−C,C
2,α
c (Rd)) is closable and the closure generates

a strongly continuous semigroup (T
∆ ÌA−B∇−C
t )t≥0 on C∞(Rd). Consider the families

( ÌFA(t))t≥0 and (S(t))t≥0 given by formula (2.3.8) and formula (2.1.2) respectively.
Consider the family (F (t))t≥0 with F (0) ∶= Id and F (t) ∶= e−tC ○ S(t) ○ ÌFA(t) for
t > 0. Hence for all t > 0, ϕ ∈ C∞(Rd) and x ∈ Rd

F (t)ϕ(x) ∶=
e−tC(x)

√

(4πt)d det ÌA(x − tB(x))
×

× ∫

Rd

exp( −
ÌA−1(x − tB(x))(x − tB(x) − y) ⋅ (x − tB(x) − y)

4t
)ϕ(y)dy. (2.3.10)

Then the family (F (t))t≥0 is strongly continuous and Chernoff equivalent to the semi-
group (T

∆ ÌA−B∇−C
t )t≥0. And the Chernoff approximation

T
∆ ÌA−B∇−C
t ϕ(x) = lim

n→∞
[F (t/n)]

n
ϕ(x)

(and hence the corresponding Lagrangian Feynman formula) is valid for all t > 0,
ϕ ∈ C∞(Rd) and x ∈ Rd uniformly with respect to x ∈ Rd and t ∈ (0, t∗] for all t∗ > 0.

Remark 2.3.8. Some sufficient conditions on the coefficients ÌA, B and C to en-
sure the existence of the strongly continuous semigroup (T

∆ ÌA−B∇−C
t )t≥0 on X

can be found, e.g., in Appendix D, Thm. D.0.9, Thm. D.0.10.

Remark 2.3.9. (i) Let ÌA,B andC be as before. Consider the family (F ÌA,B,C(t))t≥0

on C∞(Rd) such that F ÌA,B,C(0) = Id and for all t > 0 with ϕ ∈ C∞(Rd) and x ∈ Rd

F
ÌA,B,C(t)ϕ(x) ∶=

=
e−tC(x)

√

(4πt)d det ÌA(x)
∫

Rd

exp( −
ÌA−1(x)(x − tB(x) − y) ⋅ (x − tB(x) − y)

4t
)ϕ(y)dy.

(2.3.11)

These operators F ÌA,B,C differ from those in formula (2.3.10) by the argument of
ÌA and ÌA−1. Slightly modifying the proofs of Theorem 2.3.5 and Lemma 2.3.4,
one can easily show that, under assumptions of Proposition 2.3.7, the family
(F ÌA,B,C(t))t≥0 is also Chernoff equivalent to the semigroup (T

∆ ÌA−B∇−C
t )t≥0. This

result follows also from Theorem 3.2.6 (see formula (3.2.9) in Remark 3.2.7) of
Chapter 3.
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(ii) The family (F ÌA,B,C(t))t≥0 has been used in Butko, Grothaus, and Smolyanov,
2008, Butko, Grothaus, and Smolyanov, 2010 (to construct Feynman formulae
for solutions of Cauchy–Dirichlet problems for second order parabolic equa-
tions with variable coefficients in bounded and unbounded domains, cf. Chap-
ter 5). Later on, A. S. Plyashechnik has generalized this result (in Plyashechnik,
2013b, Plyashechnik, 2013a) by proving the Chernoff equivalence of the family
(F ÌA,B,C(t))t≥0 to the corresponding semigroup (T

∆ ÌA−B∇−C
t )t≥0 in Banach spaces

Lp(Rd), p ∈ [1,∞), and by including the case when the coefficients A, B and C
depend also on time (this requires a generalization of the Chernoff Theorem to
the case of two-parameter families of operators, see Obrezkov, Smolyanov, and
Trumen, 2005, Plyashechnik, 2012).

(iii) Let us investigate the family (F ÌA,B,C(t))t≥0 more carefully in the case a ≡ 1,
i.e. ÌA ≡ A. Following the strategy of Example 2.1.10, we have

FA,B,C(t)ϕ(x) = e−tC(x)
∫

Rd

e
A−1(x)B(x)⋅(x−y)

2 e−t
∣A−1/2(x)B(x)∣2

4 ϕ(y)pA(t, x, y)dy, (2.3.12)

where the function pA is given by (2.3.5). Therefore, under assumptions of
Proposition 2.3.7, the following Lagrangian Feynman formula holds for all t > 0,
ϕ ∈X and x0 ∈ Rd:

T∆A−B∇−C
t ϕ(x0) = lim

n→∞∫

Rdn

e
− t
n

n

∑
k=1

C(xk−1)
e

1
2

n

∑
k=1

A−1(xk−1)B(xk−1)⋅(xk−1−xk)
× (2.3.13)

× e
− t

4n

n

∑
k=1

∣A−1/2(xk−1)B(xk−1)∣2
ϕ(xn)pA(t/n,x0, x1) . . . pA(t/n,xn−1, xn)dx1⋯dxn.

And the convergence is uniform with respect to x0 ∈ Rd and t ∈ (0, t∗] for all
t∗ > 0. The limit in the right hand side of formula (2.3.13) coincides with the
following path integral (see the discussion in Remark 3.4.5):

T∆A−B∇−C
t ϕ(x0) =Ex0[ exp( −

t

∫
0

C(Xs)ds) exp( −
1

2

t

∫
0

A−1(Xs)B(Xs) ⋅ dXs))×

× exp( −
1

4

t

∫
0

A−1(Xs)B(Xs) ⋅B(Xs)ds)ϕ(Xt)].

Here the stochastic integral ∫
t

0 A
−1(Xs)B(Xs) ⋅ dXs is an Itô integral. And Ex0 is

the expectation of a (starting at x0) diffusion process (Xt)t≥0 with the variable
diffusion matrix A and without any drift, i.e the generator of (Xt)t≥0 is L = ∆A

and (Xt)t≥0 solves the stochastic differential equation

dXt =
√

2A(Xt)dBt

with a d-dimensional Brownian motion (Bt)t≥0.





Chapter 3

Hamiltonian and Lagrangian
Feynman formulae for semigroups
generated by pseudo-differential
operators related to Feller processes

Evolution of a classical physical system can be described with the help of its
Hamilton function (energy) H defined on the phase space Q × P of the system.
In quantum mechanical formalism, one should replace the phase space vari-
ables (q, p) ∈ Q × P by a couple of operators (q̂, p̂) acting in a Hilbert space of
some functions defined on Q by the formulae q̂ϕ(q) ∶= qϕ(q), p̂ϕ(q) ∶= −i∇ϕ(q).
To construct a quantum analogue of a given classical system one should con-
sider a Hamilton (energy) operator Ĥ which somehow corresponds to the given
Hamilton function H , e.g., Ĥ is formally given by H(q̂, p̂). Since q̂ and p̂ do not
commute, the formal expression H(q̂, p̂) can be interpreted in many different
ways. This gives rise to different matching procedures (quantizations) H ↦ Ĥ .
So, let us consider Q = P = Rd, a measurable function H ∶ Rd × Rd → C and
τ ∈ [0,1]. We define a pseudo-differential operator Ĥτ with τ -symbol H on a Banach
space (X, ∥ ⋅ ∥X) of some functions on Rd by

Ĥτϕ(q) ∶= (2π)−d∫
Rd
∫

Rd

eip⋅(q−q
′)H(τq + (1 − τ)q′, p)ϕ(q′)dq′ dp, q ∈ Rd (3.0.1)

where the domain Dom(Ĥτ) is the set of all ϕ ∈ X such that the right hand side
of the formula (3.0.1) is well defined as an element of (X, ∥ ⋅ ∥X).

The mapping H ↦ Ĥτ from the space of functions on Rd ×Rd into the space of
linear operators in (X, ∥ ⋅ ∥X) is called the τ -quantization, the operator Ĥτ itself
is called the τ -quantization of the function H . Note that if the symbol H is a sum
of functions depending only on one of the variables q or p then the pseudo-
differential operators Ĥτ coincide for all τ ∈ [0,1]. If H(q, p) = qp = pq, q, p ∈ R
then

Ĥτϕ(q) = −iτq
∂

∂q
ϕ(q) − i(1 − τ)

∂

∂q
(qϕ(q)).

33
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Therefore, different τ correspond to different orderings of non-commuting op-
erators such that we have the “qp”-quantization for τ = 1, the “pq”-quantiza-
tion for τ = 0 and the Weyl quantization for τ = 1/2. The operator Ĥτ is called
the Hamiltonian of the quantum system obtained by τ -quantization of a classical
system with the Hamilton function H1.

Motivated by the above mentioned quantum mechanical background, we con-
sider in this chapter evolution semigroups 2 generated by pseudo-differential
operators obtained by different τ -quantizations from a certain class of functions
(or symbols) defined on the phase space Rd ×Rd. This class contains Hamilton
functions of classical particles with variable mass in magnetic and potential
fields 3 and more general symbols4 given by the Lévy-Khintchine formula (see
formula (3.1.2) below) and hence related to Feller processes (see Section 3.1).

The aim of this chapter is to restore (for a given procedure of quantization) the
semigroup e−tĤ if the symbol −H of its generator is known. Our approach is to
approximate the semigroup e−tĤ by the family of pseudo-differential operators
ê−tH obtained by the same procedure of quantization from the symbol e−tH . It is
worth to emphasize that, if the function H depends on both variables q and p,
then e−tĤ ≠ ê−tH . Nevertheless, under certain conditions, one succeeds to prove

1 The question, which ordering of non-commuting operators q̂ and p̂ (and hence which
Hamiltonian) is more appropriate can be solved differently for different problems. For ex-
ample, pq-quantization (τ = 0) arises on physical grounds in the discussion of the Fokker-
Planck equation in Sect. 18.9 of Kleinert, 2006. For some other problems the Weyl quan-
tization (τ = 1/2) is used as it leads to symmetric operators Ĥ . However, in some cases,
one could obtain formally symmetric operators also by the rule Ĥ ∶= 1

2
(Ĥτ + Ĥ1−τ), τ ∈

[0,1]. In the case of a free one-dimensional particle with position-dependent mass, i.e.,
with H(q, p) = 1

2m(q)p
2, this rule produces a continuous analogue of the Hamiltonian Ĥ =

1
4
(mα(q)p̂mβ(q)p̂mγ(q) +mγ(q)p̂mβ(q)p̂mα(q)) which is often used in the literature (see, e.g.,

Ganguly et al., 2006, Bouchemla and Chetouani, 2009 and references therein). The parameters
α, β, γ with α+β+γ = −1 can be chosen differently for specific models. If the dependence of mass
on position is smooth, one can consider dynamics of a particle with position-dependent mass in
magnetic and potential fields in a flat space as dynamics of a particle with constant mass (also
in some magnetic and potential fields) in a space with curvature. Then the operator-ordering
problem solves naturally by means of geometrical principles (see Kleinert, 2006, Sect. 10.2.3).
If the mass is piecewise constant and has jumps, the corresponding geometry would be rather
singular. Moreover, the operators Ĥ would have different self-adjoint extensions depending on
matching conditions imposed at jumps, i.e. depending on the domain of definition (cf. Gadella,
Kuru, and Negro, 2007). In this context the operator-ordering problem appears again and inter-
plays with matching conditions at jumps. One way to solve this problem would be to consider
appropriate smooth approximations of discontinuous mass, which approximate also the im-
posed matching conditions.

2For some questions of Quantum Mechanics the object e−tĤ is as basic as the object e−itĤ

which describes the evolution of a quantum system with Hamiltonian Ĥ (cf. Sect. 1.17.1
of Kleinert, 2006 and Simon, 1979, p. 7).

3Such Hamilton functions are second order polynomials with respect to p with variable q-
dependent coefficients.

4This class includes, in particular, symbols corresponding to relativistic Hamiltonians and
fractional Laplacians.
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via the Chernoff Theorem that

e−tĤ = lim
n→∞

[
̂
e−

t
n
H]

n

. (3.0.2)

The limit in the right hand side is the limit of n-fold iterated integrals over
the phase space when n tends to infinity. This leads to a representation of the
considered semigroup e−tĤ in the form of a so-called Hamiltonian Feynman for-
mula. This terminology is motivated by the fact, that such representation is
further interpreted as a phase space (or, Hamiltonian) Feynman path integral

with exp(−
t

∫
0

H(q(s), p(s))ds) in the integrand (see Section 3.5 for all details

and definitions). Moreover, using connections between different procedures
of τ -quantization, one succeeds to obtain different Hamiltinoan Feynman for-
mulae and hence different phase space Feynman path integrals representing
the same semigroup. Further, in several cases, it is possible to convert the
pseudo-differential operators ê−tH into integral operators with ”nice” kernels
by interchanging the order of integration and by proceeding the integration
with respect to the variable p in the definition of pseudo-differential operators
ê−tH . This gives rise to a representation of the considered semigroup e−tĤ by
a so-called Lagrangian Feynman formula. The pre-limit expressions in the ob-
tained Lagrangian Feynman formula approximate a path integral with respect
to the probability measure corresponding to a Feller (or Feller type) process
with generator −Ĥ . Hence a Feynman–Kac type representation of the semi-
group e−tĤ arises. Finally, all these results establish a connection between some
phase space Feynman path integrals and some path integrals with respect to
probability measures.

3.1 Feller processes, Feller semigroups and their ge-
nerators

There is no standard usage of the term Feller semigroup in the literature and each
author exploits his or her own definition. In this section, we follow the termi-
nology and exposition of Böttcher, Schilling, and Wang, 2013, see also Jacob,
2001.

Definition 3.1.1. Let Q be a locally compact separable metric space. Let (Tt)t≥0

be a semigroup on the space Bb(Q) of bounded Borel measurable functions on
Q.

(i) The semigroup (Tt)t≥0 is called positivity preserving if

Ttϕ ≥ 0 for each ϕ ∈ Bb(Q) with ϕ ≥ 0.
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(ii) The semigroup (Tt)t≥0 is called sub-Markov semigroup if it is positivity pre-
serving and has the sub-Markov property

Ttϕ ≤ 1 for each ϕ ∈ Bb(Q) with ϕ ≤ 1.

(iii) The semigroup (Tt)t≥0 is called Markov semigroup if it is sub-Markov and
conservative, i.e. Tt1 = 1.

(iv) The semigroup (Tt)t≥0 is called Feller semigroup if it is sub-Markov, satisfies
the Feller property

Ttϕ ∈ C0(Q) for each ϕ ∈ C0(Q) and each t > 0,

and is strongly continuous in the Banach space C0(Q), i.e., for each ϕ ∈

C0(Q), holds limt→0 ∥Ttϕ − ϕ∥∞ = 0.

Note that a sub-Markov semigroup is automatically contractive, i.e. ∥Tt∥ ≤ 1,
and monotone, i. e. Ttϕ1 ≤ Ttϕ2 for all ϕ1 ≤ ϕ2, ϕ1, ϕ2 ∈ Bb(Q). Sometimes
a strongly continuous, positivity preserving, contractive semigroup on the Ba-
nach space C0(Q) is called a Feller semigroup, although it is only defined on
C0(Q). Using a version of the Riesz representation theorem (cf. Thm. 1.5 in
Böttcher, Schilling, and Wang, 2013), one can extend this semigroup ontoBb(Q)

to a sub-Markov semigroup in the sense of Definition 3.1.1.

Considering a Feller semigroup as a strongly continuous semigroup on C0(Q),
one defines its generator (L,Dom(L)) (which will be called Feller generator in
the sequel) in the usual way (cf. Definition 1.0.1 (iv)):

Dom(L) ∶= {ϕ ∈ C0(Q) ∣ lim
t→0

Ttϕ − ϕ

t
exists in C0(Q)} ,

Lϕ ∶= lim
t→0

Ttϕ − ϕ

t
∀ϕ ∈ Dom(L).

There exist also some other notions describing sub-Markovian semigroups hav-
ing image in the set of continuous functions. In particular, the following notion
will be used in Chapters 4 and 5.

Definition 3.1.2. A sub-Markov semigroup (Tt)t≥0 is called strong Feller semi-
group if Tt ∶ Bb(Q)→ Cb(Q) for all t > 0.

Note that a strong Feller semigroup need not be Feller and vice versa. Some
conditions on semigroups to be strong Feller can be found in Lemma 1.12, Theo-
rem 1.14 and Theorem 1.15 of Böttcher, Schilling, and Wang, 2013. Other related
notions and connections between them can be found in Böttcher, Schilling, and
Wang, 2013, p.7-11. Below, we describe the connection of Feller semigroups
with Feller processes.

Definition 3.1.3. Let (Ω,F ,P) be a probability space with a filtration (Ft)t≥0,
and let (ξt)t≥0 be a temporally homogeneous Markov process with state space
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(Q,B(Q)). The process (ξt)t≥0 is called Feller process if its transition semigroup
(Tt)t≥0,

Ttϕ(x) ∶= ∫
Q

ϕ(y)Px(ξt ∈ dy) = Ex[ϕ(ξt)],

is a Feller semigroup.

In this setting, a Feller process (ξt)t≥0 has infinite life-time, i.e. Px(ξt ∈ Q) = 1
for all t > 0 and all x ∈ Q. This means that the corresponding Feller semigroup
is conservative. On the other hand, consider a conservative Feller semigroup
(Tt)t≥0. Using the Riesz representation theorem, one can write Tt as an inte-
gral operator Ttϕ(x) ∶= ∫Qϕ(y)P (t, x, dy) where a family (P (t, x, ⋅))t≥0,x∈Q is a
uniquely defined transition kernel. By Kolmogorov’s standard procedure, one
constructs a probability space (Ω,F ,P) and a Markov process (ξt)t≥0 with state
space Q such that

Px(ξt ∈ B) ≡ P(ξt ∈ B ∣ ξ0 = x) = P (t, x,B) and Ex[ϕ(ξt)] = Ttϕ(x).

Therefore, conservative Feller semigroups and Feller processes with infinite
life-time are essentially in one-to-one correspondence. Let now (Tt)t≥0 be a
Feller semigroup which is not necessary conservative. Consider the one-point
compactification Q ∶= Q ∪ {∂} of Q and a family of operators (T t)t≥0 defined on
C0(Q) = Cb(Q) by T tϕ ∶= ϕ(∂)+Tt(ϕ−ϕ(∂)). Then (T t)t≥0 is a conservative Feller
semigroup on C0(Q) and hence corresponds to a Feller process (ξt)t≥0 with infi-
nite life-time and with the enriched state space Q (cf. Corollary 3.2.13 in Jacob,
2005 and discussion on pp.12-13 of Böttcher, Schilling, and Wang, 2013). Such
Feller process can be interpreted as a process with the state space Q and ran-
dom life-time, whereas the state ∂ can be interpreted as a ”cemetery” where the
process ξt stays beyond its life-time.

Proposition 3.1.4. Let (ξt)t≥0 be a Feller process on Q = Rd (or Q = [0,∞)). Let the
corresponding Feller semigroup (Tt)t≥0 be invariant under translations, i.e.

Θa(Ttϕ) = Tt(Θaϕ) ∀ t ≥ 0, a ∈ Q, where Θaϕ(x) ∶= ϕ(x + a), ∀x ∈ Q.

Then (ξt)t≥0 is a Lévy process.

Some basic facts about Lévy processes, their generators and other related ob-
jects are exposed in Appendix C. In the general situation, Feller processes on
Q = Rd can be considered as Lévy-type processes whose generators generalize
generators of Lévy processes to the case of ”variable coefficients” (i.e. vari-
able Lévy characteristics). Namely, the following characterization (cf. Theo-
rem C.0.6 in Appendix C) is true due to P. Courrège ( Courrège, 1965/1966,
Bony, Courrège, and Priouret, 1968) and W. von Waldenfels ( Waldenfels, 1961,
Waldenfels, 1965, Waldenfels, 1964).

Theorem 3.1.5 (Courrège, von Waldenfels). Let (L,Dom(L)) be a Feller generator
such thatC∞

c (Rd) ⊂ Dom(L). Then L∣
C∞
c (Rd) is a pseudo-differential operator with
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the 1-symbol5 −H ∶ Rd ×Rd → C, i.e. the operator −Ĥ1 defined by

Lϕ(q) ≡ −Ĥ1ϕ(q) ∶= −(2π)
−d
∫

Rd
∫

Rd

eip⋅(q−q
′)H(q, p)ϕ(q′)dq′dp, ϕ ∈ C∞

c (Rd);

(3.1.1)
the function H ∶ Rd ×Rd → C is measurable, locally bounded in both variables (q, p),
and satisfies for each fixed q ∈ Rd the following Lévy-Khintchine representation

H(q, p) = C(q) + iB(q) ⋅ p + p ⋅A(q)p + ∫
y≠0

(1 − eiy⋅p +
iy ⋅ p

1 + ∣y∣2
) N(q, dy), (3.1.2)

where (C(q),B(q),A(q),N(q, .)) for each fixed q ∈ Rd are the Lévy characteristics of
the continuous negative definite function H(q, .).

Observe that formula (3.1.2) automatically implies the continuity of the map-
ping p ↦ H(q, p) for each q ∈ Rd. Since no more smoothness of H is assumed,
such symbols H do not belong to any of the classical symbol classes of pseudo-
differential operators; consequently, we do not have a Hörmander or Maslov
symbolic calculus at our disposal.

Let −Ĥ1 be a pseudo-differential operator with the 1-symbol −H(q, p) as in
Theorem 3.1.5. Since H(q, p) is represented by the Lévy-Khintchine type for-
mula (3.1.2), we can use Fourier inversion in (3.1.1) and find that the integro-
differential operator

Lϕ(q) = −C(q)ϕ(q) −B(q) ⋅ ∇ϕ(q) + tr(A(q)Hessϕ(q))

+ ∫
y≠0

(ϕ(q + y) − ϕ(q) −
y ⋅ ∇ϕ(q)

1 + ∣y∣2
) N(q, dy)

(3.1.3)

extends (−Ĥ1,C∞
c (Rd)) to the set C2

∞(Rd) (cf. Theorem C.0.7 in Appendix C).
Note that Lemma 3.1.8 at the end of this Section together with the integration
properties of N(q, dy),

∫
y≠0

∣y∣2

1 + ∣y∣2
N(q, dy) <∞, ∀ q ∈ Rd,

ensure that the integral in (3.1.3) converges. From now on we will use the
pseudo-differential representation (3.1.1) and the integro-differential represen-
tation (3.1.3) simultaneously. Note that, in the case N ≡ 0, the operator L is just
a second order differential operator with variable coefficients. Also in the gen-
eral case, when the symbol −H depends on the state space variable q, we call
−Ĥ1 an operator with ”variable coefficients”. The role of coefficients is played by
the Lévy characteristics (C(q),B(q),A(q),N(q, .)). In abuse of notation we also
call −H the 1-symbol of a Feller process.

5Hence we consider the τ -quantization with τ equal to one.
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The generators with ”constant coefficients” correspond to Lévy processes, i.e.
to translation invariant Feller semigroups. In this case, their 1-symbols H do
not depend on q and H(q, p) ≡ ψ(p) for some continuous negative definite
function ψ. And conversely, each continuous negative definite symbol ψ corre-
sponds to the strongly continuous semigroup (which is a Feller semigroup, in-
variant under translations) generated by the closure of the pseudo-differential
operator with the 1-symbol −ψ. Therefore, there is a one-to-one correspon-
dence between continuous negative definite functions ψ, Lévy characteristics
(C,B,A,N), translation invariant Feller semigroups and Lévy processes (with
killing). This is no longer the case for general Feller semigroups and processes.
For every Feller semigroup (and Feller process), whose generator (L,Dom(L))
satisfies C∞

c (Rd) ⊂ Dom(L), holds that L∣
C∞
c (Rd) is a pseudo-differential opera-

tor −Ĥ1 whose 1-symbol H(q, ⋅) is a continuous negative definite function for
each q ∈ Rd. The converse statement is a difficult problem: When does a given q-
dependent function H , such that H(q, ⋅) is a continuous negative definite function for
each q ∈ Rd, give rise to a Feller semigroup (Feller process)? This question was first
asked by N. Jacob in Jacob, 1992. This problem has been discussed at length in
a series of papers see Jacob, 2002; Jacob and Schilling, 2001 and the literature
given there. An overview of recent developments can be founded in Böttcher,
Schilling, and Wang, 2013, where different strategies to obtain sufficient condi-
tions on the symbol −H , such that (−Ĥ1,C∞

c (Rd)) extends to the generator of a
Feller semigroup, are presented. The problem to find optimal (necessary and)
sufficient conditions remains open.

For a Lévy process (ξt)t≥0, its symbol −H coincides with −ψ, where ψ is the
characteristic exponent of the process (ξt)t≥0. Hence the symbol of the corre-
sponding Feller semigroup is given by e−tψ and the following holds:

−ψ(p) =
d

dt
e−tψ(p)∣

t=0
= lim
t→0

E[eip⋅ξt] − 1

t
= lim
t→0

Eq[eip⋅(ξt−q)] − 1

t
, ∀ q ∈ Rd.

In the general case of a Feller process (ξt)t≥0, it is still true that the corresponding
Feller semigroup (Tt)t≥0 consists of pseudo-differential operators Tt whose 1-
symbols λt(q, p) are given via

λt(q, p) ∶= Eq[eip⋅(ξt−q)].

Nevertheless, λt(q, p) ≠ e−tH(q,p) in general. The only connection between λt and
−H is given below.

Proposition 3.1.6. Let (ξt)t≥0 be a Feller process in Rd with generator (L,Dom(L))
such that C∞

c (Rd) ⊂ Dom(L). If the mapping q ↦ −H(q, p) is continuous for all
p ∈ Rd and the operator −Ĥ1 has ”bounded coefficients” then

−H(q, p) =
d

dt
λt(q, p)∣t=0

= lim
t→0

Eqeip⋅(ξt−q) − 1

t
.

Hence a natural problem arises: How to restore the symbol λt of the semigroup by
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the known symbol −H of the generator/process? The next sections of Chapter 3 are
devoted to the solution of this and some related problems by means of the Cher-
noff theorem. Before we proceed with the solution, let us present some prop-
erties of Feller generators which will be important in the sequel (cf. Thm 2.37,
Thm 2.30, Lemma 2.32, Thm 2.33 in Böttcher, Schilling, and Wang, 2013).

Proposition 3.1.7. Let (Tt)t≥0 be a Feller semigroup with generator (L,Dom(L)).
Assume that C∞

c (Rd) ⊂ Dom(L), i.e. L∣
C∞
c (Rd) is a pseudo-differential operator with

the 1-symbol −H ∶ Rd × Rd → C, such that H is given by the formula (3.1.2) with
some Lévy characteristics (C(q),B(q),A(q),N(q, ⋅)) for each fixed q ∈ Rd. Then the
following holds:

(a) L has a unique extension to C2
b (Rd), again denoted by L, satisfying

Lϕ(q) = lim
n→∞

L(ϕφn)(q), ∀ q ∈ Rd,

for any sequence (φn)n≥1 ⊂ C∞
c (Rd) with 1Bn(0) ≤ φn ≤ 1. This extension has

again the representation (3.1.2).

(b) There exists an absolute constant c <∞ such that

∣Lϕ(q)∣ ≤ cγ(q)∥ϕ∥(2), ∀ q ∈ Rd, ∀ϕ ∈ C2
b (Rd), where

γ(q) ∶= C(q) + ∣B(q)∣ + ∣A(q)∣ + ∫
y≠0

∣y∣2/(1 + ∣y∣2)N(q, dy).

(c) If H has ”bounded coefficients”, i.e. if the defined above γ is a bounded fucntion,
then C2

∞ ⊂ Dom(L), i.e. L ∶ C2
∞(Rd) → C∞(Rd), and for some c > 0 holds the

estimate
sup
q∈Rd

∣H(q, p)∣ ≤ c(1 + ∣p∣2), ∀p ∈ Rd. (3.1.4)

(d) If N(q, dy) satisfies the condition

sup
q∈Rd

N(q,Rd ∖Br(0)) = 0

for some r > 0 (hence the corresponding Feller process has uniformly bounded
jumps) then the mapping q ↦H(q, p) is continuous for all p ∈ Rd.

(e) The following two assertions are equivalent:

● q ↦H(q,0) is continuous;

● q ↦H(q, p) is continuous for all p ∈ Rd.

(f) Let the mapping q ↦H(q, p) be continuous for all p ∈ Rd. If the Feller semigroup
(Tt)t≥0 is conservative, then H(q,0) = c(q) ≡ 0. On the other hand, if the symbol
H(q, p) has bounded coefficients andH(q,0) = 0 then (Tt)t≥0 is conservative and
q ↦H(q, p) is continuous for all p ∈ Rd.
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Coming back to the justification of the integro-differential representation (3.1.3)
of a Feller generator L, we prove

Lemma 3.1.8. For all ϕ ∈ C2
b (Rd) we have

∣ϕ(q + y) − ϕ(q) −
y ⋅ ∇ϕ(q)

1 + ∣y∣2
∣ ≤ 2

∣y∣2

1 + ∣y∣2
∥ϕ∥(2). (3.1.5)

Proof. By Taylor’s formula, we get for all q, y ∈ Rd and some θq,y inbetween q
and y

∣(1 + ∣y∣2)(ϕ(q + y) − ϕ(q) −
y ⋅ ∇ϕ(q)

1 + ∣y∣2
) ∣

≤ ∣ϕ(q + y) − ϕ(q) − y ⋅ ∇ϕ(q)∣ + ∣y∣2 ∣ϕ(q + y) − ϕ(q)∣

≤
1

2

RRRRRRRRRRR

d

∑
j,k=1

yjyk∂j∂kϕ(θq,y)
RRRRRRRRRRR

+ 2∣y∣2∥ϕ∥∞

≤ 2∣y∣2
⎛

⎝
∥ϕ∥∞ +

¿
Á
ÁÀ

d

∑
j,k=1

∥∂j∂kϕ∥2
∞
⎞

⎠

≤ 2∣y∣2 ∥ϕ∥(2).

In the sequel, we need also the following Lemma (cf. the proof of Lemma 3.7.2
in Jacob, 2001 and Lemma 2.15 of Hoh, 1998).

Lemma 3.1.9. We have

∣y∣2

1 + ∣y∣2
= ∫

Rd

(1 − cos(y ⋅ p)) g(p)dp, y ∈ Rd,

where g(p) = 1
2 ∫

∞
0 (2πλ)−d/2 e−∣p∣

2/2λ e−λ/2 dλ is integrable and has absolute moments
of arbitrary order.

3.2 Feynman formulae for Feller semigroups

In this Section, we consider the case of τ -quantization with τ = 1. Therefore, we
omit the reference to τ , call the 1-symbol of a pseudo-differential operator just
”the symbol” and denote the pseudo-differential operator with 1-symbol H by
Ĥ .

So, let H ∶ Rd × Rd → C be a function which is measurable, locally bounded
in both variables (q, p), and satisfies for each fixed q ∈ Rd the Lévy-Khintchine
representation (3.1.2), i.e. H(q, ⋅) is a continuous negative definite function for
all q ∈ Rd.
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Assumption 3.2.1. Let the function H satisfy the following assertions:

sup
q∈Rd

∣H(q, p)∣ ≤ κ(1 + ∣p∣2) for all p ∈ Rd and some κ > 0, (3.2.1)

p↦H(q, p) is uniformly (w.r.t. q ∈ Rd) continuous at p = 0, (3.2.2)

q ↦H(q, p) is continuous for all p ∈ Rd. (3.2.3)

Consider the pseudo-differential operator Ĥ with the symbol H(q, p), i.e., for
each ϕ ∈ C∞

c (Rd), we have

Ĥϕ(q) = (2π)−d∫
Rd
∫

Rd

eip⋅(q−q
′)H(q, p)ϕ(q′)dq′dp = (2π)−d/2∫

Rd

eip⋅qH(q, p)ϕ̃(p)dp,

(3.2.4)
where ϕ̃ is the Fourier transform of ϕ. Note that (due to the estimate (3.1.4))
the condition (3.2.1) actually means that the pseudo-differential operator Ĥ is
an operator with ”bounded coefficients” (C(q),B(q),A(q),N(q, ⋅)).

Assumption 3.2.2. We assume that the function H(q, p) is such that the cor-
responding pseudo-differential operator (−Ĥ,C∞

c (Rd)) is closable and the clo-
sure (denoted by (L,Dom(L))) generates a strongly continuous semigroup on
C∞(Rd). This means, in particular, that the set C∞

c (Rd) is assumed to be an
operator core for the generator (L,Dom(L)).

Remark 3.2.3. Conditions on the function H(q, p) to fulfill Assumption 3.2.2
can be found, for example, in Vol. 2 of Jacob, 2002 (Thms. 2.6.4, 2.6.9, 2.7.9,
2.7.16, 2.7.19, 2.8.1) or in Jacob and Schilling, 2001. For all these constructions
C∞
c (Rd) is always an operator core. Note that Assumption 3.2.2 holds also for

generators of Lévy processes (cf. Theorem C.0.7 in Appendix C).

Consider now for each t ≥ 0 the pseudo-differential operator F (t) with the sym-
bol e−tH(q,p), i.e. for ϕ ∈ C∞

c (Rd)

F (t)ϕ(q) = (2π)−d∫
Rd
∫

Rd

eip⋅(q−q
′)e−tH(q,p)ϕ(q′)dq′dp

= (2π)−d/2∫
Rd

eip⋅qe−tH(q,p)ϕ̃(p)dp. (3.2.5)

Lemma 3.2.4. For each ϕ ∈ C∞
c (Rd), the function F (t)ϕ belongs to C∞(Rd).

Proof. The Fourier transform ϕ̃ of a test function ϕ ∈ C∞
c (Rd) belongs to the

Schwartz space S(Rd) of rapidly decreasing functions. Since q ↦ e−tH(q,p) is
continuous (by assumption (3.2.3)) and bounded (Re H ≥ 0 due to properties of
continuous negative definite functions, cf. Appendix C), Lebesgue’s dominated
convergence theorem shows that F (t) maps C∞

c (Rd) into C(Rd).
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Let us prove, that F (t)ϕ(q) → 0 when ∣q∣ → ∞. Since H(q, ⋅) is continuous
negative definite for all q ∈ Rd then e−tH(q,⋅) is continuous positive definite for
all q ∈ Rd and all t > 0 due to Theorem C.0.6 and Bochner’s theorem. Then the
function

[p↦ ht(q, p) ∶= e
−tH(q,0) − e−tH(q,p)]

is also continuous negative definite for all q ∈ Rd by Proposition C.0.5. Hence,
ht(q, ⋅) satisfies a Lévy-Khintchine representation

ht(q, p) = Ct(q) + iBt(q) ⋅ p + p ⋅At(q)p + ∫
y≠0

(1 − eiy⋅p +
iy ⋅ p

1 + ∣y∣2
) Nt(q, dy), (3.2.6)

where (Ct(q),Bt(q),At(q),Nt(q, ⋅)) for each q ∈ Rd are the Lévy characteristics
of ht(q, ⋅). Again, we can consider a pseudo-differential operator ĥt with the
symbol ht(q, p), i.e. for each ϕ ∈ C∞

c (Rd)

ĥtϕ(q) = (2π)−d/2∫
Rd
eip⋅qht(q, p)ϕ̃(p)dp

= Ct(q)ϕ(q) +Bt(q) ⋅ ∇ϕ(q) −
d

∑
j,k=1

Ajkt (q)∂j∂kϕ(q)

− ∫
y≠0

(ϕ(q + y) − ϕ(q) −
y ⋅ ∇ϕ(q)

1 + ∣y∣2
) Nt(q, dy)

(3.2.7)

Note, that

F (t)ϕ(q) = (2π)−d/2e−tH(q,0)
∫

Rd

eip⋅qϕ̃(p)dp − (2π)−d/2∫
Rd

eip⋅qht(q, p)ϕ̃(p)dp.

Since Re H ≥ 0 then sup
q∈Rd

∣e−tH(q,0)∣ ≤ 1, and the first integral in the above formula

tends to zero as ∣q∣ → ∞ by the Riemann–Lebesgue Theorem. Thus, we only
need to show that

[q ↦ (2π)−d/2∫
Rd

eip⋅qht(q, p)ϕ̃(p)dp] ∈ C∞(Rd).

As ϕ has compact support, there is some R > 0 such that suppϕ ⊂ BR(0). For all
∣q∣ > 2R formula 3.2.7 becomes

∣ĥtϕ(q)∣ =

RRRRRRRRRRRRR

∫
y≠0

ϕ(q + y)Nt(q, dy)

RRRRRRRRRRRRR

=

RRRRRRRRRRRRRR

∫

∣y∣>R

ϕ(q + y)Nt(q, dy)

RRRRRRRRRRRRRR

≤ 2∫
y≠0

∣y/R∣2

1 + ∣y/R∣2
Nt(q, dy) ⋅ ∥ϕ∥∞.

The last line follows from the elementary inequality 1
2 ≤ t2

1+t2 for ∣t∣ > 1 which
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applies if ∣y∣ > R, and from ϕ(q + y) = 0 if ∣q∣ > 2R and ∣y∣ ≤ R. We can now
use Lemma 3.1.9, the Lévy-Khintchine representation of ht(q, ⋅) and the esti-
mate (3.1.4) for a continuous negative definite function ht(q, ⋅

R) to get

∣ĥtϕ(q)∣ ≤ 2∥ϕ∥∞∫
y≠0

∫

Rd

(1 − cos
y ⋅ p

R
) g(p)dpNt(q, dy)

≤ 2∥ϕ∥∞∫
Rd

Re ht (q,
p

R
) g(p)dp

≤ 2∥ϕ∥∞∫
Rd

∣ht (q,
p

R
)∣ g(p)dp

≤ 2∥ϕ∥∞ sup
∣y∣≤1/R

∣ht(q, y)∣∫
Rd

(1 + ∣p∣2) g(p)dp.

Since g(p) has absolute moments of any order, we see that with some constant
cg > 0 holds

∣ĥtϕ(q)∣ ≤ cg∥ϕ∥∞ sup
q∈Rd

sup
∣y∣≤1/R

∣ht(q, y)∣ for all ∣q∣ > 2R.

As ht(q,0) = 0, the condition (3.2.2) tells us that lim∣q∣→∞ ĥtϕ(q) = 0. Therefore,
the function ĥtϕ ∈ C∞(Rd).

Lemma 3.2.5. The mapping F (t) can be extended to a contraction F (t) ∶ C∞(Rd) →

C∞(Rd) for each t ≥ 0.

Proof. Let us freeze the coefficients (see, e.g., Jacob and Potrykus, 2005). For
each t ≥ 0 and each q0 ∈ Rd, let us consider the pseudo-differential operator
F q0(t) with the symbol e−tH(q0,p), i.e., for any ϕ ∈ C∞

c (Rd), we have

F q0(t)ϕ(q) = (2π)−d/2∫
Rd

eip⋅qe−tH(q0,p)ϕ̃(p)dp.

Then F (t)ϕ(q) = F q(t)ϕ(q) for any ϕ ∈ C∞
c (Rd) and any q ∈ Rd. Since for

each q0 ∈ Rd the function H(q0, ⋅) is continuous negative definite then there ex-
ists a convolution semigroup (ηq0t )t≥0, such that F[ηq0t ] = (2π)−d/2e−tH(q0,⋅) and
F q0(t)ϕ(q) = ∫Rd ϕ(q − y)η

q0
t (dy) (cf. Theorem C.0.6). Hence, for each q0 ∈ Rd, the

family (F q0(t))t≥0 is a Feller semigroup, and for each q, q0 ∈ Rd we have

∣F q0(t)ϕ(q)∣ =

RRRRRRRRRRRRR

∫

Rd

ϕ(q − y)ηq0t (dy)

RRRRRRRRRRRRR

≤ ∥ϕ∥∞.

Then ∥F (t)ϕ∥∞ = supq∈Rd ∣F (t)ϕ(q)∣ = supq∈Rd ∣F
q(t)ϕ(q)∣ ≤ ∥ϕ∥∞ for any ϕ ∈

C∞
c (Rd). Hence the operators F (t) for all t ≥ 0 can be extended to a contraction

from C∞(Rd) into itself by the B.L.T. theorem A.0.19.
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Theorem 3.2.6. Let the function H ∶ Rd ×Rd → C be measurable and locally bounded
in both variables (q, p). Assume that H(q, ⋅) is continuous and negative definite for
all q ∈ Rd and that Assumptions 3.2.1 and 3.2.2 hold. Then the family (F (t))t≥0,
defined in (3.2.5), is a strongly continuous family on X and is Chernoff equivalent
to the strongly continuous semigroup (Tt)t≥0, generated by the closure of the pseudo-
differential operator −Ĥ with the symbol −H(q, p). Hence the Chernoff approximation

Ttϕ = lim
n→∞

[F (t/n)]
n
ϕ (3.2.8)

holds for each ϕ ∈ C∞(Rd) locally uniformly with respect to t ≥ 0.

Proof. By Lemma 3.2.5, each F (t) is a contraction operator on C∞(Rd). Let us
check the strong continuity of the family (F (t))t≥0 at the point t0 = 0. Due to the
estimate (3.2.1), we have for any ϕ ∈ C∞

c (Rd)

lim
t→0

∥F (t)ϕ − ϕ∥∞ = lim
t→0

sup
q∈Rd

RRRRRRRRRRRRR

(2π)−d/2∫
Rd

eip⋅qϕ̃(p) [e−tH(q,p) − 1]dp

RRRRRRRRRRRRR

≤ lim
t→0

(2π)−d/2∫
Rd

∣ϕ̃(p)∣ sup
q∈Rd

{∣
e−tH(q,p) − 1

−tH(q, p)
∣ ∣tH(q, p)∣}dp

≤ lim
t→0

(2π)−d/2∫
Rd

tκ(1 + ∣p∣2)∣ϕ̃(p)∣dp

= 0,

since ϕ̃ ∈ S(Rd). Hence, limt→0 ∥F (t)ϕ − ϕ∥∞ = 0 for all ϕ ∈ C∞
c (Rd). Due to the

fact that ∥F (t)∥ ≤ 1, the last equality is true for all ϕ ∈ C∞(Rd) by a 3-epsilon
argument. The strong continuity of the family (F (t))t≥0 at any other point t0 > 0
can be shown in a similar way.

Further, we have for any ϕ ∈ C∞
c (Rd)

lim
t→0

∥
F (t)ϕ − ϕ

t
+ Ĥϕ∥

∞

= lim
t→0

sup
q∈Rd

RRRRRRRRRRRRR

(2π)−d/2∫
Rd

eip⋅qϕ̃(p) [
e−tH(q,p) − 1

t
+H(q, p)]dp

RRRRRRRRRRRRR

≤ lim
t→0

(2π)−d/2∫
Rd

∣ϕ̃(p)∣
tκ2(1 + ∣p∣2)2

2
dp

= 0.

Thus, all assumptions of the Chernoff theorem 1.0.6 are fulfilled, and the family
(F (t))t≥0 is Chernoff equivalent to the semigroup (Tt)t≥0 generated by −Ĥ .

Remark 3.2.7. (i) If we require in Assumption 3.2.2 the existence of not just a
strongly continuous but a Feller semigroup, we obtain by Theorem 3.2.6 an ap-
proximation for the corresponding Feller process (ξt)t≥0: for each fixed n ∈ N,
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the operator [F (t/n)]
n

in the Chernoff approximation (3.2.8) corresponds to the
approximation of the process ξt by a Markov chain {Y t/n(k)}

n

k=0
with Lévy in-

crements. This Markov chain is obtained by splitting the time interval [0, t]
onto n equal steps and “freezing” the coefficient q in the transition probabili-
ties of ξt at each step (cf. Böttcher and Schilling, 2009; Böttcher and Schnurr,
2011). Moreover, the transition kernel P (t/n, q, ⋅) of this Markov chain corre-
spond to the transition operator Wt/n, Wt/nϕ(q) ∶= ∫Rd ϕ(y)P (t/n, q, dy). Hence,
[F (t/n)]

n
= [Wt/n]

n
. This allows us to transform the obtained Chernoff approxi-

mation for the Feller semigroup (Tt)t≥0 associated with the process (ξt)t≥0 into a
Lagrangian Feynman formula Ttϕ(q) = limn→∞ [Wt/n]

n
ϕ(q). Let us demonstrate

it in the case when the considered symbol H satisfies the additional require-
ments: N(q, dy) ≡ 0 for all q ∈ Rd and there exist constants 0 < a0 ≤ A0 < ∞

such that a0∣p∣2 ≤ p ⋅ A(q)p ≤ A0∣p∣2 for all q, p ∈ Rd. In this case, we have for all
ϕ ∈ C∞

c (Rd) (cf. Formula (2.3.11) in Remark 2.3.9):

F (t)ϕ(q) = (2π)−d∫
Rd
∫

Rd

eip⋅(q−q
′)e−t(p⋅A(q)p+iB(q)⋅p+C(q))ϕ(q′)dq′dp

= (4πt)−d/2(detA(q))−1/2e−tC(q)
∫
Rd
e−
(q−q′−tB((q))⋅A−1(q)(q−q′−tB(q))

4t ϕ(q′)dq′. (3.2.9)

The last expression is well-defined for all ϕ ∈ C∞(Rd), t > 0 and provides the
mentioned in Lemma 3.2.5 extension of F (t) to a contraction F (t) ∶ C∞(Rd) →

C∞(Rd). Therefore, the Chernoff approximation (3.2.8) in this case is nothing
else but the Lagrangian Feynman formula (2.3.13).

(ii) The results of Section 3.2 have been published in Butko, Schilling, and
Smolyanov, 2010 (with stronger assumptions on the symbol H) and in Butko,
Schilling, and Smolyanov, 2012 (in the present form). Parallelly, it has been
shown in Böttcher and Schnurr, 2011 that the Markov chain approximation
{Y t/n(k)}

n

k=0
(which corresponds to the operator [F (t/n)]

n
in the Chernoff ap-

proximation (3.2.8)) can be interpreted as an Euler scheme for the Feller process
(ξt)t≥0. And this scheme converges weakly in the Skorokhod space.

Remark 3.2.8. (i) Let us assume additionally that H ∶ Rd × Rd → C satisfies the
following condition:

∃C > 0 such that ∥∂αq ∂
β
p e

−tH∥
L∞(Rd×Rd) ≤ C, (3.2.10)

where α, β ∈ Nd
0, α = 0 or 1, β = 0 or 1, ∂αq ∂

β
p are derivatives in the distribu-

tional sense. Note, that this condition is fulfilled, e.g. if H ∶ ∣H(q, p)∣ ≥ c∣p∣r for
∣p∣ ≫ 1, some c > 0 and some r ∈ (0,2). Then, by Theorem 2 of Hwang, 1987,
we have F (t) ∶ L2(Rd) → L2(Rd). In this case, operators (F (t))t≥0, which are
defined on C∞

c (Rd) by formula (3.2.5), are given by the same formula (3.2.5)
on the whole space L2(Rd). However, the integrals in (3.2.5) must be under-
stood in a regularized sense (in the same way as the Fourier transform extends
onto L2(Rd)). Therefore, the Chernoff approximation (3.2.8) obtained in Theo-
rem 3.2.6 can be written for each ϕ such that ϕ, Ttϕ ∈ C∞(Rd) ∩ L2(Rd) in the
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form of Hamiltonian Feynman formula:

(Ttϕ)(q0) (3.2.11)

= lim
n→∞

1

(2π)dn ∫
Rd

⋯∫

Rd

e
i
n

∑
k=1

pk ⋅(qk−1−qk)
e
− t
n

n

∑
k=1

H(qk−1,pk)
ϕ(qn)dqndpn⋯dq1dp1,

where the equality holds in L2-sense, all the integrals in the right hand side
must be considered in a regularized sense, and the order of integration is from
qn to p1. We refer to Hwang, 1987 for further conditions on H(q, p) ensuring
that F (t) ∶ L2(Rd)→ L2(Rd).

(ii) If the function H satisfies sufficient conditions for F (t)ϕ to be in S(Rd) for
each ϕ ∈ S(Rd) then, for any ϕ ∈ S(Rd), the equality in the Hamiltonian Feyn-
man formula (3.2.11) holds in each point q0 ∈ Rd, uniformly with respect to
q0 ∈ Rd and locally uniform with respect to t ≥ 0. Such conditions can be found
in the following lemma.

Lemma 3.2.9. Let H ∶ Rd ×Rd → C be such that the mapping p↦H(q, p) is negative
definite for each q ∈ Rd and H(⋅, ⋅) ∈ C∞(Rd ×Rd). Assume that, for each p ∈ Rd and
for each α, β ∈Nd

0, the following estimates hold:

sup
q∈Rd

∣∂αp ∂
β
qH(q, p)∣ ≤ fα,β(p), (3.2.12)

where all functions fα,β are continuous on Rd and have at most polynomial growth at
infinity. Then F (t)ϕ ∈ S(Rd) for each ϕ ∈ S(Rd).

Proof. By Lemma 3.2.5 we have F (t)ϕ ∈ C∞(Rd). Let us show that for all α, β ∈

Nd
0 the norm

∥F (t)ϕ∥α,β = sup
q∈Rd

∣qα∂βq [F (t)ϕ](q)∣

is finite. Note that the function ∂βq e−tH(q,p)+ip⋅q is continuous for any β ∈ Nd
0.

By (3.2.12) it is also majorized (uniformly for all q) by some continuous function
of p which has at most polynomial growth at infinity. Hence, by Lebesgue’s
dominated convergence theorem, we have

qα∂βq [F (t)ϕ](q) = (2π)−d/2∫
Rd

qα∂βq e
−tH(q,p)+ip⋅qϕ̃(p)dp

= (2π)−d/2 ∑
0≤γ≤β

∫

Rd

qα∂γq (e
ip⋅q)∂β−γq (e−tH(q,p))ϕ̃(p)dp.
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Since ∂γq (eip⋅q) = eip⋅qRγ(p), whereRγ is a polynomial of p, we can use integration
by parts and get

qα∂βq [F (t)ϕ](q) = (2π)−d/2 ∑
0≤γ≤β

∫

Rd

qαeip⋅q[Rγ(p)∂
β−γ
q (e−tH(q,p))ϕ̃(p)]dp

= (2π)−d/2 ∑
0≤γ≤β

i∣α∣∫
Rd

∂αp e
ip⋅q[Rγ(p)∂

β−γ
q (e−tH(q,p))ϕ̃(p)]dp

= (2π)−d/2 ∑
0≤γ≤β

(−i)∣α∣∫
Rd

eip⋅q∂αp [Rγ(p)∂
β−γ
q (e−tH(q,p))ϕ̃(p)]dp.

Since ∂αp [Rγ(p)∂
β−γ
q (e−tH(q,p))ϕ̃(p)] is bounded by an L1-function which is inde-

pendent of q, we can use (3.2.12) to see that the expression in the last line is
finite. Hence, the norm ∥F (t)ϕ∥α,β is finite.

Example 3.2.10. Let us consider the symbol Ha,α(q, p) ∶= a(q)∣p∣α, where α ∈

(0,2] and a(⋅) ∈ C∞(Rd) is a strictly positive and bounded function. Then
−Ĥa,α extends to the generator of a Feller semigroup (T a,αt )t≥0 (see Schilling and
Schnurr, 2010). If α = 2, this semigroup corresponds to the process of diffusion
with variable diffusion coefficient. All conditions of the Theorem 3.2.6 are ful-
filled, and, by the Hamiltonian Feynman formula (3.2.11) we have the following
Hamiltonian Feynman formula for the semigroup (T a,αt )t≥0:

(T a,αt ϕ)(q0)

= lim
n→∞

1

(2π)dn ∫
Rd

⋯∫

Rd

e
i
n

∑
k=1

pk ⋅(qk−1−qk)
e
− t
n

n

∑
k=1

a(qk−1)∣pk ∣α
ϕ(qn)dqndpn⋯dq1dp1,

where q0 ∈ Rd, t ≥ 0, ϕ ∶ ϕ, Ttϕ ∈ C∞(Rd) ∩ L2(Rd), the equality is in L2−sense,
and all integrals in the pre-limit expressions are understood in a regularized
sense. In the case α = 1, this Hamiltonian Feynman formula can be transformed
into the Lagrangian Feynman formula (2.2.4) of Example 2.2.12 by proceeding
the integration with respect to p−variable in formula (3.2.5) defining the family
(F (t))t≥0.

Example 3.2.11. Let us consider the symbol Hα,m(q, p) ∶=
√

∣p∣α +m2(q) −m(q),
where m(⋅) ∈ C∞(Rd) is a strictly positive and bounded function on Rd, α ∈

(0,2]. If additionally the function m(⋅) is such that the Assumption 3.2.2 holds
(e.g. if m ≡ const), then the following Hamiltonian Feynman formula is valid
for the corresponding semigroup (Tα,mt )t≥0:

(Tα,mt ϕ)(q0) = lim
n→∞

1

(2π)dn ∫
Rd

⋯∫

Rd

e
i
n

∑
k=1

pk ⋅(qk−1−qk)
e
− t
n

n

∑
k=1

√
∣pk ∣α+m2(qk−1)−m(qk−1)

×

× ϕ(qn)dqndpn⋯dq1dp1,

where q0 ∈ Rd, t ≥ 0, ϕ ∶ ϕ, Ttϕ ∈ C∞(Rd) ∩ L2(Rd), the equality is in L2−sense,
and all integrals in the pre-limit expressions are understood in a regularized
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sense. In the case α = 2 the operator −Ĥα,m can be considered as the Hamilto-
nian of a free relativistic (quasi-)particle with variable mass (cf. Gadèl′ya and
Smolyanov, 2008, Ichinose and Tamura, 1986).

Remark 3.2.12. Some other Feynman formulae for particular classes of Feller
semigroups, obtained by subordination, are constructed in Chapter 4.

3.3 Feynman formulae for semigroups on the space
C∞(Rd) generated by τ -quantizations of Lévy–
Khintchine type symbols

In this Section, we investigate the connection between different τ -quantizations
of a quadratic Hamilton function. Using this connection and results of Sec-
tion 3.2, we obtain Feynman Formulae for semigroups on C∞(Rd) generated by
the τ -quantization of some Lévy–Khintchine type symbols similar to (3.1.2) in
the case of arbitrary τ ∈ [0,1]. So, let us consider a quadratic Hamilton function
h ∶ Rd ×Rd → C with

h(q, p) ∶= C(q) + iB(q) ⋅ p + p ⋅A(q)p, (3.3.1)

where, for each q ∈ Rd, A(q) is a symmetric positive semidefinite matrix, B(q) ∈
Rd and C(q) ∈ R.

Remark 3.3.1. The function h can be considered both as a Hamilton function of
a particle with position-dependent mass in magnetic and potential fields in a
flat space and as a Hamilton function of a particle with constant mass in mag-
netic and potential fields in a space with curvature (namely, in a Riemannian
manifold). We follow the first interpretation (that reflects in Feynman path in-
tegrals in Section 3.5). In the context of second interpretation, some additional
potentials containing geometrical characteristics of the space may arise in the
effective action. This depends on the notion of distance being used: either it
is the metric of the manifold, where the particle evolves, or the metric of an
ambient manifold, or the distance in an ambient Euclidean space (see Refs.
Weizsäcker, Smolyanov, and Wittich, 2000; Smolyanov, Weizsäcker, and Wit-
tich, 2003; Smolyanov, Weizsäcker, and Wittich, 2007b for details).

Lemma 3.3.2. Let A ∈ C3(Rd; Mat(d × d)), B ∈ C2(Rd;Rd), C ∈ C1(Rd) and τ ∈

[0,1]. The pseudo-differential operator ĥτ is well-defined on C∞
c (Rd) and is given for

each ϕ ∈ C∞
c (Rd) and each q ∈ Rd by the fomula

ĥτϕ(q) = − tr(A(q)Hessϕ(q)) +Bτ(q) ⋅ ∇ϕ(q) +Cτ(q)ϕ(q), (3.3.2)
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where

Bτ(q) ∶= B(q) − 2(1 − τ)divA(q), (3.3.3)
Cτ(q) ∶= C(q) + (1 − τ)divB(q) − (1 − τ)2 tr(∇⊗∇A(q)), (3.3.4)

divA(q) is the vector in Rd with coordinates

(divA(q))j ∶=
d

∑
k=1

∂Akj(q)

∂qk
, j = 1, . . . , d

and

tr(∇⊗∇A(q)) ∶=
d

∑
k,j=1

∂2Akj(q)

∂qk∂qj
with A(q) = (Akj(q))k,j=1,...,d.

Therefore, the operator ĥτ coincides with the operator ĥτ1 which is the 1-quantization of
the quadratic Hamilton function

hτ(q, p) ∶= Cτ(q) + iBτ(q) ⋅ p + p ⋅A(q)p (3.3.5)

with Cτ and Bτ as above.

Proof. With A(q) = (Akj(q))k,j=1,...,d, Akj = Ajk, and B(q) = (B1(q), . . . ,Bd(q)),
we have for each ϕ ∈ C∞

c (Rd):

ĥτϕ(q) =
d

∑
k,j=1

(2π)−d∫
Rd
∫

Rd

eip⋅(q−q
′)Akj(τq + (1 − τ)q′)pkpjϕ(q

′)dq′dp

+ i
d

∑
k=1

(2π)−d∫
Rd
∫

Rd

eip⋅(q−q
′)Bk(τq + (1 − τ)q′)pkϕ(q

′)dq′dp

+ (2π)−d∫
Rd
∫

Rd

eip⋅(q−q
′)C(τq + (1 − τ)q′)ϕ(q′)dq′dp

Since the function fC,ϕ,q,τ(q′) ∶= C(τq+(1−τ)q′)ϕ(q′) belongs to the classC1
c (Rd),

we have inverting the Fourier transform

(2π)−d∫
Rd
∫

Rd

eip⋅(q−q
′)C(τq+(1−τ)q′)ϕ(q′)dq′dp = C(τq+(1−τ)q)ϕ(q) = C(q)ϕ(q).
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Analogously, using integration by parts and denoting ζ ∶= τq + (1 − τ)q′

i
d

∑
k=1

(2π)−d∫
Rd
∫

Rd

eip⋅(q−q
′)Bk(τq + (1 − τ)q′)pkϕ(q

′)dq′dp

= −
d

∑
k=1

(2π)−d∫
Rd
∫

Rd

[
∂

∂q′k
eip⋅(q−q

′)]Bk(τq + (1 − τ)q′)ϕ(q′)dq′dp

=
d

∑
k=1

(2π)−d∫
Rd
∫

Rd

eip⋅(q−q
′) ∂

∂q′k
[Bk(τq + (1 − τ)q′)ϕ(q′)]dq′dp

=
d

∑
k=1

(2π)−d∫
Rd
∫

Rd

eip⋅(q−q
′) [Bk(ζ)

∂ϕ

∂q′k
(q′) +

d

∑
k=1

∂Bk

∂q′k
(ζ)]ϕ(q′)dq′dp

= B(q) ⋅ ∇ϕ(q) + (1 − τ)divB(q)ϕ(q),

and

d

∑
k,j=1

(2π)−d∫
Rd
∫

Rd

eip⋅(q−q
′)Akj(τq + (1 − τ)q′)pkpjϕ(q

′)dq′dp

=
d

∑
k,j=1

(2π)−d∫
Rd
∫

Rd

[−
∂2

∂q′k∂q
′
j

eip⋅(q−q
′)]Akj(τq + (1 − τ)q′)ϕ(q′)dq′dp

= −
d

∑
k,j=1

(2π)−d∫
Rd
∫

Rd

eip⋅(q−q
′) ∂2

∂q′k∂q
′
j

[Akj(τq + (1 − τ)q′)ϕ(q′)]dq′dp

= − tr(A(q)Hessϕ(q)) − 2(1 − τ)divA(q) ⋅ ∇ϕ(q) − (1 − τ)2 tr(∇⊗∇A(q))ϕ(q).

Let us consider also a function r ∶ Rd → C given by the formula

r(p) = ∫
Rd∖{0}

(1 − eiy⋅p +
iy ⋅ p

1 + ∣y∣2
) N(dy), (3.3.6)

where N is a Radon measure on Rd ∖ {0} with ∫
Rd∖{0}

∣y∣2
1+∣y∣2N(dy) <∞. Note that

we consider the case when N does not depend on q ∈ Rd. We assume that for
q, p ∈ Rd we have

H(q, p) = h(q, p) + r(p) (3.3.7)

= C(q) + iB(q) ⋅ p + p ⋅A(q)p + ∫
Rd∖{0}

(1 − eiy⋅p +
iy ⋅ p

1 + ∣y∣2
) N(dy).

If C ≥ 0 then the Hamilton function H is continuous negative definite with
respect to the variable p ∈ Rd and the formula (3.3.7) is just a special case of
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the Lévy-Khintchine formula (3.1.2). We don’t assume in the sequel that C ≥ 0,
that’s why we call our symbol H a Lévy-Khintchine type function.

Remark 3.3.3. Functions of the form (3.3.6) contain in particular Hamilton func-
tions of a relativistic massive particle: r(p) = c

√
∣p∣2 +m2c2, of a massless par-

ticle: r(p) = c∣p∣, symbols of fractional Laplacians (arising, e.g., in anomalous
diffusions): r(p) = ∣p∣α, α ∈ (0,2), and some other functions used, e.g., for de-
scription of systems with long-range interactions (see Bouchaud and Georges,
1990, Metzler and Klafter, 2000).

Consider a pseudo-differential operator Ĥτ with the τ -symbol H for τ ∈ [0,1] in
C∞(Rd), i.e. for any function ϕ ∈ Dom(Ĥτ) ⊂ C∞(Rd)

Ĥτϕ(q) = (2π)−d∫
Rd
∫

Rd

eip⋅(q−q
′)H(τq + (1 − τ)q′, p)ϕ(q′)dq′ dp, q ∈ Rd. (3.3.8)

Note that, under assumptions of Lemma 3.3.2, the operator Ĥτ with τ -symbol
H , given by the formula (3.3.7), for each τ ∈ [0,1] can be extended to C2

∞(Rd) by
the formula

Ĥτϕ(q) =ĥ
τ
1ϕ(q) + r̂1ϕ(q) (3.3.9)
= − tr(A(q)Hessϕ(q)) + [B(q) − 2(1 − τ)divA(q)] ⋅ ∇ϕ(q)

+ [C(q) + (1 − τ)divB(q) − (1 − τ)2 tr(∇⊗∇A(q))]ϕ(q)

− ∫
y≠0

(ϕ(q + y) − ϕ(q) −
y ⋅ ∇ϕ(q)

1 + ∣y∣2
) N(dy),

i.e. Ĥτ is a sum of a second order differential operator with variable coeffi-
cients and an integro-differential operator generating a Lévy process. There-
fore, changing the parameter τ in τ -quantization of the symbol H as in (3.3.7)
leads only to corrections in the magnetic and potential fields B and C.

Theorem 3.3.4. (i) Let A ∈ C3
b (Rd; Mat(d × d)), B ∈ C2

b (Rd;Rd), C ∈ C1
b (Rd) and

τ ∈ [0,1]. Let the symbol H be given by formulae (3.3.8)-(3.3.9) and satisfy Assump-
tion 3.2.1. Assume that the closure of the pseudo-differential operator (−Ĥτ ,C∞

c (Rd))

generates a strongly continuous semigroup (T τt )t≥0 on the space C∞(Rd). Consider the
family (F τ

1 (t))t≥0 of linear operators in C∞(Rd) defined for all ϕ ∈ C∞
c (Rd) and all

t ≥ 0 by
F τ

1 (t)ϕ(x) = (2π)−d/2∫
Rd

eip⋅qe−t(h
τ (q,p)+r(p))ϕ̃(p)dp.

Then the operators F τ
1 (t) extend to bounded linear operators on C∞(Rd); the family

(F τ
1 (t))t≥0 (of these extensions) is strongly continuous and Chernoff equivalent to the

semigroup (T τt )t≥0. Hence the Chernoff approximation

T τt ϕ = lim
n→∞

[F τ
1 (t/n)]

n (3.3.10)

holds for each ϕ ∈ C∞(Rd) locally uniformly with respect to t ≥ 0.



Chapter 3. Hamiltonian and Lagrangian Feynman formulae for semigroups
generated by pseudo-differential operators related to Feller processes 53

(ii) If the symbol hτ + r satisfies the condition 3.2.10 of Remark 3.2.8, then the Cher-
noff approximation (3.3.10) converts into the following Hamiltonian Feynman formula
(where the equality holds in the L2-sense for all t ≥ 0 and all ϕ such that ϕ, Ttϕ ∈

C∞(Rd) ∩L2(Rd), and all integrals are understood in the regularized sense):

T τt ϕ(q0) = lim
n→∞

(2π)−dn∫
Rd

⋯∫

Rd

e
i
n

∑
k=1

pk ⋅(qk−1−qk)
×

× e
− t
n

n

∑
k=1

(hτ (qk−1,pk)+r(pk))
ϕ(qn)dqn dpn . . . dq1 dp1

= lim
n→∞

(2π)−dn∫
Rd

⋯∫

Rd

e
i
n

∑
k=1

pk ⋅(qk−1−qk)
e
−i t
n

n

∑
k=1

(B(qk−1)−2(1−τ)divA(qk−1)⋅pk
×

× e
− t
n

n

∑
k=1

(C(qk−1)+(1−τ)divB(qk−1)−(1−τ)2 tr(∇⊗∇A(qk−1)))
×

× e
− t
n

n

∑
k=1

pk ⋅A(qk−1)pk
e
− t
n

n

∑
k=1

r(pk)
ϕ(qn)dqn dpn . . . dq1 dp1.

(iii) If there exist constants 0 < a0 ≤ A0 <∞ such that inequalities a0∣p∣2 ≤ p ⋅A(q)p ≤
A0∣p∣2 hold for all q, p ∈ Rd, then the Chernoff approximation (3.3.10) converts for all
t > 0, all ϕ ∈ C∞(Rd) and all q0 ∈ Rd into the following Lagrangian Feynman formula

(T τt )ϕ(q0) = lim
n→∞∫

Rd

⋯∫

Rd

n

∏
k=1

((4πt/n)d detA(qk−1))
−1/2

× e
−
n

∑
k=1

A−1(qk−1)(qk−qk−1+zk+Bτ (qk−1)t/n)⋅(qk−qk−1+zk+Bτ (qk−1)t/n)
4t/n

× e
− t
n

n

∑
k=1

Cτ (qk−1)
ϕ(qn)dqn ηt/n(dzn) . . . dq1 ηt/n(dz1),

where (ηt)t≥0 is the convolution semigroup on Rd such that η̃t(p) = (2π)−d/2e−tr(p),
Bτ and Cτ are given by (3.3.3)-(3.3.4). The convergence in this Lagrangian Feynman
formula is uniform with respect to q0 ∈ Rd and with respect to t ∈ (0, t∗] for all t∗ > 0.

Proof. The statement (i) of the theorem follows immediately from Theorem 3.2.6
in the case Cτ(q) ≥ 0 for all q ∈ Rd. The assumption of non-negativity of Cτ
can be removed applying the technique of additive perturbations, see Theo-
rem 2.1.1, Corollary D.0.5 and Example A.0.17. The statement (ii) of the theorem
follows immediately from Remark 3.2.8. Let us justify the statement (iii). Under
assumption a0∣p∣2 ≤ p ⋅A(q)p ≤ A0∣p∣2 for all q, p ∈ Rd and some 0 < a0 ≤ A0 < ∞,
we have by the Fubini–Tonelli theorem and by the properties of the Fourier
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transform for all ϕ ∈ C∞
c (Rd)

F τ
1 (t)ϕ(q) = (2π)−d∫

Rd
∫

Rd

eip⋅(q−q
′)e−t(h

τ (q,p)+r(p))ϕ(q′)dq′dp

= (2π)−d∫
Rd

ϕ(q′)

⎡
⎢
⎢
⎢
⎢
⎣
∫

Rd

eip⋅(q−q
′)e−t(h

τ (q,p)+r(p)) dp

⎤
⎥
⎥
⎥
⎥
⎦

dq′

= ∫

Rd

ϕ(q′) [F−1 [(2π)−d/2e−t(h
τ (q,⋅))] ∗ ηt] (q − q

′)dq′

= ∫

R2d

(4πt)−d/2(detA(q))−1/2e−tCτ (q)e−
(z−q+q′+tBτ ((q))⋅A−1(q)(z−q+q′+tBτ (q))

4t ϕ(q′)dq′ηt(dz).

(3.3.11)

Moreover, the latter expression is well defined for all ϕ ∈ C∞(Rd) and provides
the extension of the operators F τ

1 (t) to bounded linear operators on C∞(Rd).

3.4 Feynman formulae for semigroups on the space
L1(Rd) generated by τ -quantizations of Lévy–
Khintchine type symbols

A Feller semigroup (Tt)t≥0 is, a priori, defined on the space Bb(Q). In some
cases (see, e.g., Proposition D.0.11), the operators Tt∣Cc(Q) can be extended onto
the spaces of integrable functions. Sub-Markovian semigroups on L2(Rd,R)

play an important role in the theory of Dirichlet forms, see, e.g., Fukushima,
1980, Fukushima, Ōshima, and Takeda, 1994, Bouleau and Hirsch, 1991, Ma
and Röckner, 1992. In general, Lp-theories lead to better regularity and em-
bedding results than the corresponding L2-theory. Therefore, semigroups in an
Lp-setting have been investigated, e.g., in Malliavin, 1997, Fukushima, 1977/78,
Farkas, Jacob, and Schilling, 2001, Arendt, 2004.

In this Section, we consider the space L1(Rd). We continue to deal with strongly
continuous semigroups (e−tĤτ )

t≥0
whose generators are pseudo-differential op-

erators −Ĥτ obtained by τ -quantization of symbols −H with H given by (3.3.1)
or (3.3.7). We approximate such semigroups by families (Fτ(t))t≥0 of pseudo-
differential operators Fτ(t) = (ê−tH)

τ
obtained by the same procedure of quan-

tization from the symbol e−tH . To handle the proofs we need to assume (some-
times different) boundedness and smoothness conditions on the symbol −H .
All the assumptions, we use in the sequel, are collected below.

Assumption 3.4.1. Let H be given by (3.3.7). We assume that:
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(i) There exist constants 0 < a0 ≤ A0 < +∞ such that for all p ∈ Rd and all q ∈ Rd

the following inequalities hold

a0∣p∣
2 ≤ p ⋅A(q)p ≤ A0∣p∣

2.

(ii) The coefficients A, B, C with all their derivatives up to the 4th order are
continuous and bounded.

(iii) The coefficients A, B, C are infinite differentiable and bounded with all
their derivatives.

(iv) The function H(q, ⋅) is of class C∞(Rd) for each q ∈ Rd.

Assumption 3.4.2. Let τ ∈ [0,1]. Let H be given by (3.3.7). We assume that
the coefficients A, B, C, N are such that Ĥτ is well defined on C∞

c (Rd), Ĥτ ∶

C∞
c (Rd) → L1(Rd) and the closure of (−Ĥτ ,C∞

c (Rd)) generates a strongly con-
tinuous semigroup (T τt )t≥0 on the space L1(Rd).

Remark 3.4.3. Let Assumption 3.4.1 (ii) be fullfilled. Then, due to the repre-
sentation (3.3.9) of Ĥτ , it is clear that Ĥτ ∶ C∞

c (Rd) → L1(Rd) for measures N
having compact supports (fast enough decay at infinity is also sufficient). In the
case N ≡ 0, the explicit conditions on A, B, C to fulfill the Assumption 3.4.2 are
given, e.g., in Fornaro and Lorenzi, 2007; Cannarsa and Vespri, 1988, Stannat,
1999. Then the case with nonzero coefficient N can be proceeded, e.g., by the
technique of relatively bounded perturbations of generators (see Theorem D.0.4
and Theorem C.0.7). Moreover, a sufficient condition for the generator of a pure
jump Lévy process (in particular, for the fractional Laplacian) with gradient
perturbation to generate a sub-Markovian strongly continuous semigroup on
L1(Rd) is given in Wang, 2013.

Consider now the family (Fτ(t))t≥0 of pseudo-differential operators with the
τ -symbol e−tH in the space L1(Rd), i.e. for ϕ ∈ Dom(Fτ(t))

Fτ(t)ϕ(q) = (2π)−d∫
Rd
∫

Rd

eip⋅(q−q
′)e−tH(τq+(1−τ)q′,p)ϕ(q′)dq′dp. (3.4.1)

Theorem 3.4.4. Consider the Banach space L1(Rd). Let τ ∈ [0,1] and H ≡ h, where
h is given by the formula (3.3.1) (i.e. N ≡ 0). Under Assumption 3.4.1 (i),(ii) and
Assumption 3.4.2, the family (Fτ(t))t≥0, given by the formula (3.4.1), extends to the
family of bounded linear operators on L1(Rd) which is strongly continuous and Cher-
noff equivalent to the strongly continuous semigroup (T τt )t≥0, generated by the closure
of the pseudo-differential operator (−Ĥτ ,C∞

c (Rd)) with the τ -symbol −H . Therefore,
the Chernoff approximation

(T τt )ϕ = lim
n→∞

(Fτ(t/n))
nϕ (3.4.2)

holds for all ϕ ∈ L1(Rd) in the norm of L1(Rd) locally uniformly with respect to t ≥ 0.
Moreover, this Chernoff approximation (3.4.2) converts for all t > 0 into the Lagrangian
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Feynman formula:

(T τt )ϕ(q0) = lim
n→∞∫

Rnd

ϕ(qn)
n

∏
k=1

g
τqk−1+(1−τ)qk
t/n (qk−1 − qk)dq1 . . . dqn, (3.4.3)

where the Gaussian type density gxt (z) is given by

gxt (z) = (4πt)−d/2(detA(x))−1/2e−tC(x)e−
(z−tB(x))⋅A−1(x)(z−tB(x))

4t , (3.4.4)

and the convergence is uniform with respect to t ∈ (0, t∗] for all t∗ > 0.

If, additionally, Assumption 3.4.1 (iii) holds, we have Fτ(t) ∶ S(Rd) → S(Rd). And
the Chernoff approximation (3.4.2) converts for all ϕ ∈ S(Rd) and all t ≥ 0 into the
Hamiltonian Feynman formula:

(T τt )ϕ(q0) = lim
n→∞

(2π)−nd∫
Rd

⋯∫

Rd

exp(i
n

∑
k=1

pk ⋅ (qk−1 − qk)) (3.4.5)

× exp(−
t

n

n

∑
k=1

H(τqk−1 + (1 − τ)qk, pk))ϕ(qn)dqndpn . . . dq1dp1.

The convergence in the Hamiltonian Feynman formula (3.4.5) is locally uniform with
respect to t ≥ 0.

Proof. Theorem 3.4.4 follows from the Chernoff Theorem 1.0.6 with the help of
Lemma 3.4.7, Remark 3.4.9 and Lemma 3.4.10 below.

Remark 3.4.5. Let τ = 1. One can show (e.g., combining the results of Frei-
dlin, 1985 §2.1, Thm.1.1, and Lunardi, 1995, Thm. 5.1.3) that, under Assump-
tions 3.4.1 (i), (ii) and Assumption 3.4.2 withN ≡ 0 and ϕ ∈ C∞

c (Rd), the function
T τt ϕ can be represented also by the following Feynman–Kac formula:

T τt ϕ(q0) = Eq0B [ exp( −

t

∫
0

C(ξs)ds)ϕ(ξt)], (3.4.6)

where Eq0B is the expectation of a (starting at q0) diffusion process (ξt)t≥0 with
the variable diffusion matrix A and the drift −B (i.e. satisfying the stochastic
differential equation dξt = −B(ξt)dt +

√
2A(ξt)dBt). Therefore, the Lagrangian

Feynman formula (3.4.3) gives approximations of a functional integral in the
Feynman–Kac formula (3.4.6) which are suitable for direct calculations.

Consider now the Lagrangian Feynman formula (3.4.3) for the case B = 0. Then
the limit in the right hand side of (3.4.3) coincide with the same path integral
as in (3.4.6) but with respect to the measure, generated by the diffusion process
(Xt)t≥0 with the variable diffusion matrix A and without any drift, and with
X instead of ξ in the integrand. Moreover, one can easily distinguish, which
parts of the integrands in the pre-limit expressions of the Lagrangian Feynman
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formula (3.4.3) are responsible for approximation of the integrand in (3.4.6) and
which parts serve to produce the path integral with respect to this measure,
generated by the diffusion process (Xt)t≥0, in the limit.

Further, let us analyze the pre-limit expressions in the right hand side of (3.4.3)
in the general case B ≠ 0. First, note that the formula (3.4.4) for the function gxt
can be also rearranged in the following way:

gxt (z) = (4πt)−d/2(detA(x))−1/2e−tC(x)e−
z⋅A−1(x)z

4t e
A−1(x)B(x)⋅z

2 e−t
A−1(x)B(x)⋅B(x)

4 .

Taking in mind this formula for the function gxt one can see that the parts of
the pre-limit expressions in the Lagrangian Feynman formula (3.4.3), which do
not contain B, are the same as in the case when B = 0, i.e. once again they
approximate an integrand as in (3.4.6) and a path integral with respect to the
measure, generated by the diffusion process (Xt)t≥0. The other parts (i.e. ex-
ponents containing B) can be interpreted as approximations for exponents of
some functionals of the diffusion process (Xt)t≥0. This heuristic suggests that,
in the general case B ≠ 0, the limit in the Lagrangian Feynman formula (3.4.3)
coincides with the following path integral, having a product of exponents as
the integrand; and this product of exponents is integrated with respect to the
law of the diffusion process (Xt)t≥0 without a drift (compare with the formula
(34) in Lunt, Lyons, and Zhang, 1998 and formula (3) in Lejay, 2004):

T τt ϕ(q0) =Eq0[ exp( −

t

∫
0

C(Xs)ds) exp( −
1

2

t

∫
0

A−1(Xs)B(Xs) ⋅ dXs))× (3.4.7)

× exp( −
1

4

t

∫
0

A−1(Xs)B(Xs) ⋅B(Xs)ds)ϕ(Xt)],

where Eq0 is the expectation of a diffusion process (Xt)t≥0 with the variable dif-

fusion matrix A and without any drift, the stochastic integral
t

∫
0

A−1(Xs)B(Xs) ⋅

dXs is an Itô integral. Since the functional integrals in formula (3.4.6) and
formula (3.4.7) coincide, one obtains the analogue of the Girsanov–Cameron–
Martin–Reimer–Maruyama formula for the case of diffusion processes with
variable diffusion matrices. Due to formula (3.3.9), the similar results are then
valid for all τ ∈ [0,1].

Theorem 3.4.6. Consider the Banach space L1(Rd). Let τ = 1 and H be given
by (3.3.7). Under Assumptions 3.4.1 (i),(iii),(iv) and Assumption 3.4.2, the family
(Fτ(t))t≥0, given by the formula (3.4.1), extends to the family of bounded linear op-
erators on L1(Rd). This family is strongly continuous and Chernoff equivalent to
the semigroup (T τt )t≥0, generated by the closure of the pseudo-differential operator
(−Ĥτ ,C∞

c (Rd)) with the τ -symbol −H . Therefore, the Chernoff approximation

(T τt )ϕ = lim
n→∞

(Fτ(t/n))
nϕ
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holds for all ϕ ∈ L1(Rd) in the norm of L1(Rd) locally uniformly with respect to t ≥ 0.
The obtained Chernoff approximation converts for all t > 0 also into the Lagrangian
Feynman formula

(T τt )ϕ(q0) = lim
n→∞∫

Rd

⋯∫

Rd

n

∏
k=1

((2πt/n)d detA(qk−1))
−1/2

(3.4.8)

× e
−
n

∑
k=1

A−1(qk−1)(qk−qk−1+zk+B(qk−1)t/n)⋅(qk−qk−1+zk+B(qk−1)t/n)
4t/n

× e
− t
n

n

∑
k=1

C(qk−1)
ϕ(qn)dqn ηt/n(dzn) . . . dq1 ηt/n(dz1),

where (ηt)t≥0 is the convolution semigroup on Rd such that η̃t(p) = (2π)−d/2e−tr(p).
And the convergence is uniform with respect to t ∈ (0, t∗] for all t∗ > 0.

With ϕ ∈ S(Rd), the obtained Chernoff approximation converts for all t ≥ 0 also into
the Hamiltonian Feynman formula

(T τt )ϕ(q0) = lim
n→∞

1

(2π)d ∫
Rd

⋯∫

Rd

exp(i
n

∑
k=1

pk ⋅ (qk−1 − qk)) (3.4.9)

× exp(−
t

n

n

∑
k=1

H(qk−1, pk))ϕ(qn)dqndpn . . . dq1dp1.

And the convergence is locally uniform with respect to t ≥ 0.

Proof. The statement of Theorem 3.4.6 is a straightforward consequence of the
Chernoff Theorem 1.0.6 and Lemma 3.4.7, Lemma 3.4.11, Lemma 3.4.12 below.
Note, that the Lagrangian Feynman formula (3.4.8) is obtained with the help of
the representation (3.4.15) below. Moreover, under Assumptions 3.4.1 (i), (iii),
(iv), due to Lemma (3.2.9), we have Fτ(t) ∶ S(Rd) → S(Rd). And, therefore, all
expressions in the right hand side of the Hamiltonian Feynman formula (3.4.9)
are well defined.

Lemma 3.4.7. Under Assumption 3.4.1 (i),(ii), we have Fτ(t)ϕ ∈ L1(Rd) for any
ϕ ∈ C∞

c (Rd) and any τ ∈ [0,1]. For all t ≥ 0, the operators Fτ(t) can be extended to
bounded mappings on the space L1(Rd), and there exists a constant k ≥ 0 such that for
all t ≥ 0 holds:

∥Fτ(t)∥ ≤ e
tk. (3.4.10)

Proof. Using the inequalities of Assumption 3.4.1 (i) and the fact, that the real
part of each continuous negative definite function is non-negative (see Ap-
pendix C or inequalities (3.123) and (3.117) in Jacob, 2001), we obtain the es-
timate

sup
q∈Rd

∣e−tH(q,p)∣ ≤ e−ta0p
2

exp(−tmin
q∈Rd

C(q)) . (3.4.11)

Hence, the function ft,q = (2π)−d/2e−tH(q,⋅) ∈ L1(Rd) for each q ∈ Rd and t > 0.
Moreover, ft,q(0) = (2π)−d/2e−tC(q). Therefore, the inverse Fourier transform
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of ft,q has the view e−tC(q)P q
t , where, for each q ∈ Rd and t > 0, the function

P q
t ∈ C∞(Rd) is a density of a probability measure. This follows from the

Bochner Theorem and the fact that the inverse Fourier transform maps L1(Rd)

into C∞(Rd).

Consider first the case τ = 0. Then we have for each ϕ ∈ C∞
c (Rd) by the Fubini–

Tonelli Theorem

F0(t)ϕ(q) =
1

(2π)d ∫
Rd
∫

Rd

eip⋅(q−q
′)e−tH(q′,p)ϕ(q′)dq′dp

= ∫

Rd

ϕ(q′)e−tC(q′)P q′
t (q − q′)dq′.

Again by the Fubini–Tonelli Theorem, for each ϕ ∈ C∞
c (Rd)

∥F0(t)ϕ∥1

= ∥∫

Rd

ϕ(q′)e−tC(q′)P q′
t (q − q′)dq′∥

1

≤ ∫

Rd
∫

Rd

∣ϕ(q′)∣e−tC(q′)P q′
t (q − q′)dq′dq

= ∫

Rd

∣ϕ(q′)∣e−tC(q′)[∫

Rd

P q′
t (q − q′)dq]dq′

≤ exp(−tmin
x∈Rd

C(x)) ∥ϕ∥1.

Therefore, for any ϕ ∈ C∞
c (Rd) we have F0(t)ϕ ∈ L1(Rd) and F0(t) is a bounded

operator from C∞
c (Rd) into L1(Rd). Then, due to the B.L.T. theorem A.0.19, the

operator F0(t) can be extended to a bounded operator on L1(Rd) with the same
norm. Hence, the statement of Lemma 3.4.7 is true for τ = 0.

Let us now prove the statement of Lemma 3.4.7 for the case τ ∈ (0,1]. Let us
now consider the functionH given by (3.3.7) as a sum of functions h and r given
by formulae (3.3.1) and (3.3.6)). Under Assumptions 3.4.1 (i),(ii), consider the
family (Gθ

A,B,C(t))t≥0 of operators on L1(Rd) defined for each fixed θ ∈ (0,1] by
the formula

Gθ
A,B,C(t)ϕ(q)

=
1

(2π)d ∫
Rd
∫

Rd

eip⋅(q−q
′)e−th(θq,p)ϕ(q′)dq′dp

=
e−tC(θq)

(4πt)d/2(detA(θq))1/2×

× ∫

Rd

exp(−
(q − q′ − tB(θq)) ⋅A−1(θq)(q − q′ − tB(θq))

4t
)ϕ(q′)dq′, q ∈ Rd.

(3.4.12)
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Each Gθ
A,B,C(t) is a integral operator with the kernel gxt (z) given by the for-

mula (3.4.4) with x = θq and z = q − q′. Note, that gxt is the inverse Fourier trans-
form of the function (2π)−d/2e−th(x,⋅). Due to Plyashechnik, 2013a (cf. Plyashech-
nik, 2013b), there is a constant k < ∞ such that the estimate ∥G1

A,B,C(t)∥ ≤ ekt

holds for θ = 1. For each fixed θ ∈ (0,1] the operator Gθ
A,B,C(t) equals the oper-

ator G1
Aθ,Bθ,Cθ

(t) with new coefficients Aθ(q) ∶= A(θq), Bθ(q) ∶= B(θq), Cθ(q) ∶=
C(θq) which remain as smooth and bounded as the original A, B and C are.
Therefore, the estimate ∥Gθ

A,B,C(t)∥ ≤ ekt still holds for each θ ∈ (0,1] and the
same k. Hence, by the Fubini–Tonelli Theorem for ϕ ∈ C∞

c (Rd) we have

Fτ(t)ϕ(q) (3.4.13)

= (2π)−d∫
Rd
∫

Rd

eip⋅(q−q
′)e−tH(τq+(1−τ)q′,p)ϕ(q′)dq′dp

= (2π)−d∫
Rd

ϕ(q′)[∫
Rd

eip⋅(q−q
′)e−th(τq+(1−τ)q

′,p)e−tr(p)dp]dq′

= ∫

Rd

ϕ(q′)[g
τq+(1−τ)q′
t ∗ ηt](q − q

′)dq′. (3.4.14)

Here the function in the squared brackets is for each fixed q, q′ ∈ Rd and τ ∈ (0,1]
the inverse Fourier transform of the product

((2π)−d/2e−th(τq+(1−τ)q
′,⋅)) ⋅ ((2π)−d/2e−tr(⋅)) ,

i.e. a convolution of a function g
τq+(1−τ)q′
t given by the formula (3.4.4) and the

probability measure ηt such that η̃t(p) = (2π)−d/2e−tr(p) (cf. formula (3.3.11)).
And this function is taken at the point (q − q′). Hence with y ∶= q + 1−τ

τ q
′ and

x ∶= q′/τ

∥Fτ(t)ϕ∥1
= ∫

Rd

∣∫

Rd

ϕ(q′)[g
τq+(1−τ)q′
t ∗ ηt](q − q

′)dq′∣dq

≤ ∫

Rd
∫

Rd

∣ϕ(q′)∣[g
τq+(1−τ)q′
t ∗ ηt](q − q

′)dq′dq

= ∫

Rd

[∫

Rd
∫

Rd

∣ϕ(q′)∣ g
τq+(1−τ)q′
t (q − q′ − z)dq′dq]ηt(dz)

≤ ∫

Rd

ηt(dz) ⋅ sup
z∈Rd

[τ d∫
Rd
∫

Rd

gτyt (y − z − x)∣ϕ(τx)∣dxdy]

= τ d sup
z∈Rd
∫

Rd

Gτ
A,B,C(t)∣ϕτ ∣(y − z)dy,

where ϕτ(q) ∶= ϕ(τq) and the operator Gτ
A,B,C is given by the formula (3.4.12)

for each τ ∈ (0,1]. Therefore, due to the estimate ∥Gτ
A,B,C(t)∥ ≤ ekt for each
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ϕ ∈ C∞
c (Rd), we have

∥Fτ(t)ϕ∥1
≤ τ d sup

z∈Rd
∫

Rd

Gτ
A,B,C(t)∣ϕτ ∣(y − z)dy

≤ τ dekt∥ϕτ∥1 = τ
dekt∫

Rd

∣ϕ(τq)∣dq = ekt∥ϕ∥1.

Once again by the B.L.T. theorem A.0.19, the estimate ∥Fτ(t)ϕ∥1
≤ ekt∥ϕ∥1 is true

for all ϕ ∈ L1(Rd).

Remark 3.4.8. Due to Lemma 3.2.5, the statement of Lemma (3.4.7) in the case
τ = 1 is also valid in the space X = C∞(Rd) with k = 0. Therefore, in the case
τ = 1, by the Riesz–Thorin theorem, the estimate (3.4.10) holds also in all spaces
Lp(Rd), p ≥ 1 (with some other constants k).

Remark 3.4.9. As it follows from the representation (3.4.13), the operators Fτ(t)
can be considered as integral operators acting on ϕ ∈ C∞

c (Rd) as

Fτ(t)ϕ(q) = ∫
Rd

ϕ(q1)[g
τq+(1−τ)q1
t ∗ ηt](q − q1)dq1, q ∈ Rd. (3.4.15)

The right hand side is, however, well defined for all ϕ ∈ L1(Rd) and provides
the extension of Fτ(t) to a bounded linear oprator on L1(Rd). Hence, this rep-
resentation can be used to construct a Lagrangian Feynman formula.

Lemma 3.4.10. Let N ≡ 0 in the formula (3.3.6), i.e. H ≡ h. Under Assumption
3.4.1 (i), (ii) and Assumption 3.4.2, for any ϕ ∈ C∞

c (Rd), any τ ∈ [0,1] and any t0 ≥ 0,
we have

lim
t↘0

∥
Fτ(t)ϕ − ϕ

t
+ Ĥτϕ∥

1

= 0 and lim
t→t0

∥Fτ(t)ϕ − Fτ(t0)ϕ∥1 = 0.

Proof. Let ϕ ∈ C∞
c (Rd) ⊂ Dom(Ĥτ), t > 0. By Taylor’s formula with θ ∈ (0,1) we

have

∥
Fτ(t)ϕ − ϕ

t
+ Ĥτϕ∥

1

=
t

(2π)d ∫
Rd

RRRRRRRRRRRRR

∫

R2d

eip⋅(q−q
′)h2(τq + (1 − τ)q′, p)e−θth(τq+(1−τ)q

′,p)ϕ(q′)dq′dp

RRRRRRRRRRRRR

dq.

Here p↦ h2(τq+(1−τ)q′, p) is a 4th order polynomial with bounded coefficients
continuously depending on q and q′. Let us present the calculations for the case
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d = 1 and b = 0, c = 0 for simplicity. The general case can be handled similarly.

∥
Fτ(t)ϕ − ϕ

t
+ Ĥτϕ∥

1

=
t

2π ∫
R

RRRRRRRRRRRRR

∫

R2

eip⋅(q−q
′)A2(τq + (1 − τ)q′)p4e−θtA(τq+(1−τ)q′)p2

ϕ(q′)dq′dp

RRRRRRRRRRRRR

dq

=
t

2π ∫
R

RRRRRRRRRRRRR

∫

R2

∂4
q′ [e

ip⋅(q−q′)] [A2(τq + (1 − τ)q′)e−θtA(τq+(1−τ)q′)p2

ϕ(q′)]dq′dp

RRRRRRRRRRRRR

dq

=
t

2π ∫
R

RRRRRRRRRRRRR

∫

R2

[eip⋅(q−q
′)]∂4

q′ [A
2(τq + (1 − τ)q′)e−θtA(τq+(1−τ)q′)p2

ϕ(q′)]dq′dp

RRRRRRRRRRRRR

dq.

(3.4.16)

Consider first the case τ = 1. Then

∂4
q′ [A

2(τq + (1 − τ)q′)e−θtA(τq+(1−τ)q′)p2

ϕ(q′)] = A2(q)e−θtA(q)p2

ϕ(4)(q′)

and by the Fubini–Tonelli theorem

∥
F1(t)ϕ − ϕ

t
+ Ĥ1ϕ∥

1

= t∫
R

RRRRRRRRRRRR

(2π)−1
∫
R
∫
R

[eip⋅(q−q
′)] ⋅ [A2(q)e−θtA(q)p2

ϕ(4)(q′)]dq′dp

RRRRRRRRRRRR

dq

= t∫
R

RRRRRRRRRRRR

A2(q)∫
R

(4πθtA(q))−1/2e−
(q−q′)2
4θtA(q)ϕ(4)(q′)dq′

RRRRRRRRRRRR

dq

≤ tA2
0∫
R
∫
R

(4πθta0)
−1/2e

− (q−q
′)2

4θtA0 ∣ϕ(4)(q′)∣dq′dq = t(A
5/2
0 a

−1/2
0 )∥ϕ(4)∥1.

Consider now the case when τ ∈ [0,1). Then

∂4
q′ [A

2(τq + (1 − τ)q′)e−θtA(τq+(1−τ)q′)p2

ϕ(q′)]

= e−θtA(τq+(1−τ)q′)p2
4

∑
k=0

(θtp2)kψk(τq + (1 − τ)q′, q′),

where the functions (x, y) ↦ ψk(x, y) are just linear combinations of the prod-
ucts Ak(x)(A2)(m)(x)ϕ(n)(y) with m,n = 0, . . . ,4. Hence, ψk(x, ⋅) ∈ Cc(R) and
ψk(⋅, y) ∈ Cb(R) for all x, y ∈ R. Therefore, with the change of variables

√
θtp = ρ,
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q−q′√
θt
= y we have

∥
Fτ(t)ϕ − ϕ

t
+ Ĥτϕ∥

1

=
t

2π ∫
R

RRRRRRRRRRRRR

∫

R2

eip⋅(q−q
′)e−θtA(τq+(1−τ)q′)p2

4

∑
k=0

(θtp2)kψk(τq + (1 − τ)q′, q′)dq′dp

RRRRRRRRRRRRR

dq

=
t

2π ∫
R

RRRRRRRRRRRRR

∫

R2

eiρ⋅ye−A(q−
√
θt(1−τ)y)ρ2

4

∑
k=0

(ρ2)kψk(q −
√
θt(1 − τ)y, q −

√
θty)dρdy

RRRRRRRRRRRRR

dq

= t∫
R

∣∫
R

4

∑
k=0

(−1)k ∂2k
ξ

⎡
⎢
⎢
⎢
⎢
⎢
⎣

exp{−
ξ2

4A(q−
√
θt(1−τ)y)

}

(4πA(q −
√
θt(1 − τ)y))1/2

⎤
⎥
⎥
⎥
⎥
⎥
⎦

RRRRRRRRRRRRRRξ=y

× ψk(q −
√
θt(1 − τ)y, q −

√
θty)dy∣dq

≤ t∫
R

(4πa0)
−1/2e

− y2

4A0C5(1 + y
8)

4

∑
k=0

Ck ∫
R

∣ϕ(k)(q −
√
θty)∣dqdy

≤ t
4

∑
k=0

C ′
k∥ϕ

(k)∥1

with some positive constants Ck <∞ and C ′
k <∞. Analogously, for ϕ ∈ C∞

c (Rd)

by Taylor’s formula with θ ∈ (0,1) and t, t0 ≥ 0, t→ t0 we have

∥Fτ(t)ϕ − Fτ(t0)ϕ∥1 = ∣t − t0∣(2π)
−d

× ∫

Rd

RRRRRRRRRRRRR

∫

R2d

eip⋅(q−q
′)h(τq + (1 − τ)q′, p)e−[t0+θ(t−t0)]h(τq+(1−τ)q

′,p)ϕ(q′)dq′dp

RRRRRRRRRRRRR

dq.

Once again let us present the calculations for the case d = 1 and b = 0, c = 0 for
simplicity. For any fixed t0 > 0 take t ∈ (t0/2,2t0). Hence, α(t) ∶= t0 + θ(t − t0) ∈
(t0/2,2t0) and

∥Fτ(t)ϕ − Fτ(t0)ϕ∥1 = ∣t − t0∣(2π)
−1

× ∫
R

∣∫

R2

eip⋅(q−q
′)A(τq + (1 − τ)q′)p2e−α(t)A(τq+(1−τ)q′)p2

ϕ(q′)dq′dp∣dq

= ∣t − t0∣∫
R

∣∫
R

(4πα(t)A(τq + (1 − τ)q′))−1/2

× ∂2
ξ

⎡
⎢
⎢
⎢
⎢
⎣

e
− ξ2

4α(t)A(τq+(1−τ)q′) ]∣
ξ=q−q′

ϕ(q′)dq′
RRRRRRRRRRR

dq

≤ ∣t − t0∣∫
R
∫
R

(2πt0a0)
−1/2e

− (q−q
′)2

8t0A0 C(t0)(1 + (q − q′)2)∣ϕ(q′)∣dq′dq

≤ ∣t − t0∣C
′(t0)∥ϕ∥1
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with some positive constants C < ∞ and C ′ < ∞ depending only on t0. In the
case t0 = 0, we have F (t0) = Id. And we proceed as before

∥Fτ(t)ϕ − ϕ∥1

=
t

2π ∫
R

RRRRRRRRRRRRR

∫

R2

eip⋅(q−q
′)A(τq + (1 − τ)q′)p2e−θtA(τq+(1−τ)q′)p2

ϕ(q′)dq′dp

RRRRRRRRRRRRR

dq

=
t

2π ∫
R

RRRRRRRRRRRRR

∫

R2

∂2
q′ [e

ip⋅(q−q′)]A(τq + (1 − τ)q′)e−θtA(τq+(1−τ)q′)p2

ϕ(q′)dq′dp

RRRRRRRRRRRRR

dq

=
t

2π ∫
R

RRRRRRRRRRRRR

∫

R2

eip⋅(q−q
′)∂2

q′ [A(τq + (1 − τ)q′)e−θtA(τq+(1−τ)q′)p2

ϕ(q′)]dq′dp

RRRRRRRRRRRRR

dq

≤ t
2

∑
k=0

Ck∥ϕ
(k)∥1,

where the integrals in the penultimate line can be handled as in (3.4.16). A 3-ε–
argument concludes the proof of lim

t→t0
∥Fτ(t)ϕ − Fτ(t0)ϕ∥1 = 0 for all ϕ ∈ L1(Rd).

Lemma 3.4.11. Let τ = 1. Let f, g ∶ Rd → C be bounded continuous functions and
λ ∶ Rd ×Rd → C be the 1-symbol of the pseudo-differential operator λ̂1. Let H(q, p) =
f(q)g(p)λ(q, p), q, p ∈ Rd. Then

Ĥ1ϕ = (f̂ ○ λ̂1 ○ ĝ)ϕ

for all ϕ ∈ S(Rd) ∩Dom(Ĥ1) ∩Dom(f̂ ○ λ̂1 ○ ĝ).

Proof. Let ϕ ∈ S(Rd)∩Dom(Ĥ1)∩Dom(f̂ ○λ̂1○ĝ). Let F and F−1 stand for Fourier
transform and its inverse respectively. Then

Ĥ1ϕ(q) = (2π)−d∫
Rd
∫

Rd

eip⋅(q−q
′)H(q, p)ϕ(q′)dq′ dp

= (2π)−d/2∫
Rd

eip⋅qf(q)g(p)λ(q, p)F[ϕ](p)dp,

and

(f̂ ○ λ̂1 ○ ĝ)ϕ(q) = (f̂ ○ λ̂1)F
−1[gF[ϕ]](q)

= f(q)(2π)−d/2∫
Rd

eip⋅qλ(q, p)F[F−1[gF[ϕ]]](p)dp

= (2π)−d/2∫
Rd

eip⋅qf(q)g(p)λ(q, p)F[ϕ](p)dp.
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Lemma 3.4.12. Let the symbol H = h + r be given by the formula (3.3.7) and τ = 1.
Under Assumption 3.4.1 (i), (iii), (iv) and Assumption 3.4.2 for any ϕ ∈ C∞

c (Rd) and
t0 ≥ 0, we have

lim
t↘0

∥
Fτ(t)ϕ − ϕ

t
+ Ĥτϕ∥

1

= 0

and
lim
t→t0

∥Fτ(t)ϕ − Fτ(t0)ϕ∥1 = 0.

Proof. Fix t0 ≥ 0 and let t ∈ [0, t0 + 1]. By Taylor’s formula with θ in between t
and t0, by the Fubini–Tonelli theorem, by Lemma 3.4.11 and Lemma 3.4.7 with
the probability measure ηθ = (2π)−d/2F−1[e−θr(p)], for each ϕ ∈ C∞

c (Rd), we have

∥F1(t)ϕ − F1(t0)ϕ∥1 =

XXXXXXXXXXXXX

t − t0
(2π)d ∫

Rd
∫

Rd

eip⋅(q−q
′)H(q, p)e−θH(q,p)ϕ(q′)dq′dp

XXXXXXXXXXXXX1

= ∣t − t0∣ ∥(Ĥe−θH)
1
ϕ∥

1
≤ ∣t − t0∣ [∥(ĥe−θH)

1
ϕ∥

1
+ ∥(r̂e−θH)

1
ϕ∥

1
]

= ∣t − t0∣ [∥(ĥe−θh)
1
○ (ê−θr)ϕ∥

1
+ ∥(ê−θH)

1
○ r̂ ϕ∥

1
]

≤ ∣t − t0∣ [∥(ĥe−θh)
1
(ηθ ∗ ϕ)∥

1
+ ∥F1(θ)∥ ∥r̂ ϕ∥1]

≤ ∣t − t0∣ [
2

∑
k=0

Ck(t0)∥(ηθ ∗ ϕ)
(k)∥1 + e

kθ∥r̂ ϕ∥1]

≤ ∣t − t0∣ [
2

∑
k=0

Ck(t0)ηθ(Rd)∥ϕ(k)∥1 + e
kθ∥r̂ ϕ∥1]

= ∣t − t0∣K(t0, ϕ) (3.4.17)

with some constants Ck(t0) < ∞, depending only on t0, and K(t0, ϕ) < ∞, de-
pending only on t0 and ϕ. These constants Ck(t0) arise from the calculations
with the operator (ĥe−θh)

1
obtained in the Lemma 3.4.12. Note, that all calcu-

lations in Lemma 3.4.12 remain true for any ϕ ∈ S(Rd). Moreover, by Assump-
tion 3.4.1 (iv), we have r ∈ C∞(Rd) and, as a negative definite function, r grows
at infinity with all its derivatives not faster than a polynomial (cf. Lemma 3.6.22
and Theo.3.7.13 in Jacob, 2001). Therefore, r̂mϕ, (r̂me−θr)ϕ ∈ S(Rd) for any
ϕ ∈ C∞

c (Rd) ⊂ S(Rd) and any m ∈ N∪{0}. In the same way by Lemma 3.4.11 and
Lemma 3.4.12 with [0,1] ∋ t→ 0 and θ ∈ (0, t), we obtain

∥
F1(t)ϕ − ϕ

t
+ Ĥ1ϕ∥

1

= t ∥(Ĥ2e−θH)
1
ϕ∥

1
≤ t ∥(ĥ2e−θh)

1
○ (ê−θr)ϕ∥

1

+ t ∥2 (ĥe−θh)
1
○ (r̂e−θr)ϕ + (ê−θh)

1
○ (r̂2e−θr)ϕ∥

1

= t ∥(ĥ2e−θh)
1
(ηθ ∗ ϕ) + 2 (ĥe−θh)

1
(ηθ ∗ [r̂ϕ]) + F1(θ)(ηθ ∗ [r̂2ϕ])∥

1

≤ tηθ(Rd) [
4

∑
k=0

Ck∥ϕ
(k)∥1 + 2

2

∑
k=0

C ′
k∥(r̂ϕ)

(k)∥1 + e
kθ ∥(̂r2)ϕ∥

1
] = tK ′(ϕ).
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3.5 Phase space Feynman path integrals related to
Feller Processes

The notion of the path integral has been introduced by Richard Feynman in
the middle of XX century in Feynman, 1948, Feynman, 1951. And now the
apparatus of Feynman path integrals is one of important tools in Quantum
Physics. There is a great deal of contributions to the development of the the-
ory of such integrals since the time of R. Feynman till nowadays (see, e.g., Al-
beverio and Mazzucchi, 2016; Albeverio, Høegh-Krohn, and Mazzucchi, 2008;
Berezin, 1980; Berezin, 1971; Bock and Grothaus, 2011; Butko, Grothaus, and
Smolyanov, 2016; Cartier and DeWitt-Morette, 2006; Daubechies and Klauder,
1985; DeWitt-Morette, Maheshwari, and Nelson, 1979; Elworthy and Truman,
1984; Garrod, 1966; Grosche, 2013; Grosche and Steiner, 1998; Ichinose, 2010;
Ichinose, 2006; Ichinose, 2000; Johnson and Lapidus, 2000; Kitada and Kumano-
go, 1981; Kleinert, 2009; Kumano-go and Fujiwara, 2008; Kumano-Go, 1996;
Nelson, 1964; Simon, 1979; Smolyanov and Shavgulidze, 1990; Smolyanov,
Tokarev, and Truman, 2002 and references therein). However, the subject is still
far from being exhausted. There exist substantially different approaches to the
definition and dealing with Feynman path integrals; in particular, to the defi-
nition and dealing with Feynman path integrals over sets of paths in the phase
space of a physical system (the so-called phase space Feynman path integrals).
Some phase space Feynman path integrals are defined via the Fourier trans-
form and via Parseval’s equality (see Smolyanov and Shavgulidze, 1990, cf. Al-
beverio, Høegh-Krohn, and Mazzucchi, 2008; see Elworthy and Truman, 1984;
Smolyanov and Shamarov, 2010; Cartier and DeWitt-Morette, 2006; DeWitt-
Morette, Maheshwari, and Nelson, 1979 and references therein); some are de-
fined via an analytic continuation of a Gaussian measure on the set of paths in
a phase space (Smolyanov and Shavgulidze, 1990), some — via regularization
procedures, e.g., as limits of integrals with respect to Gaussian measures with a
diverging diffusion constant (Daubechies and Klauder, 1985); the integrands of
some phase space Feynman path integrals are realized as Hida distributions in
the setting of White Noise Analysis (Bock and Grothaus, 2011; Bock, Grothaus,
and Jung, 2012; Bock and Grothaus, 2015). A variety of approaches treats Feyn-
man path integrals as limits of integrals over some finite dimensional subspaces
of paths when the dimension tends to infinity. Such path integrals are some-
times called sequential and are most convenient for direct calculations. The
general definition of a sequential Feynman pseudomeasure (Feynman path in-
tegral) in an abstract space (on a set of paths in a phase space, in particular)
can be found in Smolyanov and Shavgulidze, 1990. Some concrete realizations
are e.g. presented in Albeverio, Guatteri, and Mazzucchi, 2002; Garrod, 1966;
Ichinose, 2000; Kitada and Kumano-go, 1981; Kumano-go and Fujiwara, 2008;
Kumano-Go, 1996. In the present Section we treat a sequential approach based
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on Feynnman formulae (cf. Butko, Grothaus, and Smolyanov, 2016; Böttcher
et al., 2011; Butko, Schilling, and Smolyanov, 2011; Smolyanov, Tokarev, and
Truman, 2002).

Different methods of constructing path integrals in the frame of sequential ap-
proach produce actually different approximations of such integrals. In his pa-
per, Berezin, 1980, Berezin has remarked that the Feynman path integral is
“very sensitive to the choice of approximations, and nonuniqueness appear-
ing due to this dependence has the same character as nonuniqueness of quan-
tization”. In other words, the Feynman path integral is different for different
procedures of quantization. This difference may appear both in integrands and
in the set of paths over which the integration takes place. Berezin has posed
the problem of distinguishing the procedure of quantization in the language
of Feynman path integrals. In the paper Berezin, 1980, Berezin has considered
the case of the Weyl quantization and his calculations have lead to a quite odd
expression in the integrand of his Feynman path integral. The question, how to
distinguish the procedure of quantization on the language of Feynman path in-
tegrals, remained open. The present Section is an attempt to answer Berezin’s
problem using the method of Feynman formulae. Namely, we consider the
Hamiltonian Feynman formulae, obtained in Sections 3.2-3.4. These Hamil-
tonian Feynman formulae represent evolution semigroups e−tĤ generated by
different, parameterized by τ ∈ [0,1], quantizations of a given symbol H . We
show that these Hamiltonian Feynman formulae can be interpreted as sequen-
tial phase space Feynman path integrals. To this aim, a family of phase space
Feynman pseudomeasures corresponding to different procedures of quantiza-
tion is introduced and the considered evolution semigroups are represented
as phase space Feynman path integrals with respect to these Feynman pseu-
domeasures. In this way, one obtains the same integrands but different domains
of integration (and different pseudomeasures) for the Feynman path integrals
corresponding to the semigroups e−tĤ generated by different quantizations of
H . Moreover, the obtained in Sections 3.2-3.4 Lagrangian Feynman formulae
for the same semigroups allow to connect Feynman path integrals with some
functional integrals with respect to probability measures and hence provide a
tool also to calculate these phase space Feynman path integrals by means of
stochastic analysis.

To obtain Hamiltonian Feynman formulae of Sections 3.2, 3.4, we have approx-
imated the semigroup e−tĤ (for a given procedure of quantization, for a given
symbol) by the family of pseudo-differential operators ê−tH obtained by the
same procedure of quantization from the function e−tH . Note again, that if the
function H depends on both variables q and p, then e−tĤ ≠ ê−tH . Nevertheless,
we have succeeded to prove that

e−tĤ = lim
n→∞

[
̂
e−

t
n
H]

n

. (3.5.1)

The limit in the right hand side is actually the limit of n-fold iterated integrals
over the phase space when n tends to infinity, i.e. the identity (3.5.1) leads to
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a Hamiltonian Feynman formula. This limit can be interpreted also as a phase

space Feynman path integral with exp(−
t

∫
0

H(q(s), p(s))ds) in the integrand.

On a heuristic level, the same approach was used already in Berezin’s papers
Berezin, 1971, Berezin, 1980 for investigation of Schrödinger groups e−itĤ . In
his works, Berezin has just assumed the identity

e−itĤ = lim
n→∞

[
̂
e−i

t
n
H]

n

(3.5.2)

and then has interpreted the pre-limit expressions in the right hand side of the
identity (3.5.2) as approximations to a phase space Feynman path integral. The
rigorous justification of this approach was first obtained only in Smolyanov,
Tokarev, and Truman, 2002. The main technical tool suggested in this paper
was the Chernoff Theorem. Recall that the Chernoff theorem is a wide gen-
eralization of the classical Daletskii–Lie–Trotter formula which has been used
for handling of Feynman path integrals over paths in configuration space of a
system (see, e.g., Nelson, 1964).

Before introducing the explicit family of phase space Feynman pseudomeasures
corresponding to different procedures of τ -quantization, let us outline some
general concepts of the construction of Feynman pseudomeasure, in particu-
lar, phase space Feynman path integrals (cf., e.g., Smolyanov and Shavgulidze,
1990 and Smolyanov and Shavgulidze, 2015).

A Feynman pseudomeasure on a (usually infinite dimensional) vector space is a
continuous linear functional on a locally convex space of some functions de-
fined on this vector space. The value of this functional on a function belonging
to its domain is called Feynman integral with respect to this Feynman pseu-
domeasure. If the considered vector space is itself a set of functions taking val-
ues in classical configuration or phase space then the corresponding Feynman
integral is called configuration or phase space Feynman path integral.

For a locally convex space Y denote the set of all continuous linear functionals
on Y by Y ∗. Let E be a real vector space and for all x ∈ E and any linear func-
tional g on E let φg(x) = eig(x). Let FE be a locally convex set of some complex
valued functions on E. Elements of the set F ∗

E are called F ∗
E-distributions on E

or just distributions on E (if we don’t specify the space F ∗
E exactly). Let G be a

vector space of some linear functionals on E distinguishing elements of E and
let φg ∈ FE for all g ∈ G. Then G-Fourier transform of an element η ∈ F ∗

E is a
function on G denoted by η̃ or F[η] and defined by the formula

η̃(g) ≡ F[η](g) ∶= η(φg).

If a set {φg ∶ g ∈ G} is total in FE (i.e. its linear span is dense in FE) then any
element η is uniquely defined by its Fourier transform.

Definition 3.5.1. Let b be a quadratic functional on G, a ∈ E and α ∈ C. Then
Feynman α-pseudomeasure on E with correlation functional b and mean a is a



Chapter 3. Hamiltonian and Lagrangian Feynman formulae for semigroups
generated by pseudo-differential operators related to Feller processes 69

distribution Φb,a,α on E whose Fourier transform is given by the formula

F[Φb,a,α](g) = exp(
αb(g)

2
+ ig(a)).

If α = −1 and b(x) ≥ 0 for all x ∈ G then Feynman α-pseudomeasure is a Gaussian
G-cylindrical measure on E (which however can be not σ−additive). If α = i
then we have a “standard” Feynman pseudomeasure which is usually used for
solving Schrödinger type equations. In the sequel we will consider only these
“standard” Feynman i−pseudomeasures with a = 0.

Definition 3.5.2 (Hamiltonian (or phase space) Feynman pseudomeasure). Let
E = Q × P , where Q and P are locally convex spaces, Q = P ∗, P = Q∗ (as vector
spaces) with the duality ⟨⋅, ⋅⟩; the space G = P × Q is identified with the space
of all linear functionals on E in the following way: for any g = (pg, qg) ∈ G
and x = (q, p) ∈ E let g(x) = ⟨q, pg⟩ + ⟨qg, p⟩. Then Hamiltonian (or symplectic, or
phase space) Feynman pseudomeasure on E is a Feynman i-pseudomeasure Φ on
E whose correlation functional b is given by the formula b(pg, qg) = 2⟨qg, pg⟩ and
mean a = 0, i.e.

F[Φ](g) = exp (i⟨qg, pg⟩)).

Definition 3.5.3. Assume that there exists a linear injective mapping B ∶ G→ E
such that b(g) = g(B(g)) for all g ∈ G (B is called correlation operator of Feynman

pseudomeasure). A function Dom(B−1) ∋ x ↦ f(x) = e
α−1B−1(x)(x)

2 is called the
generalized density of Feynman α−pseudomeasure (cf. Weizsäcker, Smolyanov,
and Wittich, 2000; Garsia-Narankho, Montal′di, and Smolyanov, 2016).

Example 3.5.4. (i) If E = Rd = G then the Feynman i-pseudomeasure on E with
correlation operator B can be identified with a complex-valued measure (with
unbounded variation) on a δ-ring of bounded Borel subsets of Rd whose den-
sity with respect to the Lebesgue measure is f(x) = e−

i
2
(B−1x,x). In this case the

generalized density coincides with the density in usual sense.

(ii) If we consider the Hamiltonian Feynman pseudomeasure on E = Q×P then
take B ∶ (p, q) ∈ G ⊂ E∗ → (q, p) ∈ E. Then we have g(B(g)) = g(B(pg, qg)) =

g(qg, pg) = 2⟨qg, pg⟩ = b(g). Moreover, B−1 ∶ E → E∗ is defined by the formula
B−1(q, p) = (p, q) and hence the generalized density of the Hamiltonian Feyn-
man pseudomeasure is given by the formula f(q, p) = exp{i⟨q, p⟩}.

The concepts given above allow to introduce the following definition of a Feyn-
man pseudomeasure in the frame of sequential approach (in the sequel we
assume any standard regularization of oscillating integrals, e.g., ∫

E

f(z)dz =

lim
ε→0
∫
E

f(z)e−ε∣z∣
2
dz).

Definition 3.5.5 (Sequential Feynman pseudomeasure). Let {En}n∈N be an in-
creasing sequence of finite dimensional subsets of Dom(B−1). Then the value
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of a sequential Feynman α−pseudomeasure Φ
{En}
B,α (with mean a = 0) associated

with the sequence {En}n∈N on a function f ∶ E → C (this value is called sequen-
tial Feynman integral of f ) is defined by the formula

Φ
{En}
B,α (f) = lim

n→∞
(∫
En

e
α−1B−1(x)(x)

2 dx)

−1

∫
En

f(x)e
α−1B−1(x)(x)

2 dx,

where one integrates with respect to the Lebesgue measure on En, if the limit
in the r.h.s. exists.

The fact that the function f belongs to the domain of the functional Φ{En} de-
pends only on restrictions of this function to the subspaces En. In the particular
case of Hamiltonian Feynman pseudomeasure, Definition 3.5.5 can be read as
follows:

Definition 3.5.6. Let {En = Qn × Pn}n∈N be an increasing sequence of finite di-
mensional vector subspaces of E = Q × P , where Qn and Pn are vector sub-
spaces of Q and P respectively. The value Φ{En}(G) of the Hamiltonian Feyn-
man pseudomeasure Φ{En}, associated with the sequence {En}n∈N, on a function
f ∶ E → C, i.e. a Feynman path integral of f , is defined by the formula

Φ{En}(f) = lim
n→∞

(∫
En

ei⟨q,p⟩ dq dp)
−1

∫
En

f(q, p)ei⟨q,p⟩ dq dp, (3.5.3)

if this limit exists. In this formula (as well as before) all integrals must be con-
sidered in a suitably regularized sense.

Let us now present the construction of the Hamiltonian Feynman pseudomea-
sure for a particular family of spaces Ex,τ

t with τ ∈ [0,1] (cf. Butko, Grothaus,
and Smolyanov, 2016; Böttcher et al., 2011; Smolyanov, Tokarev, and Truman,
2002). For any t > 0, let PC([0, t],Rd) be the vector space of all functions on
[0, t] taking values in Rd whose distributional derivatives are measures with
finite support. Let PC l([0, t],Rd) denote the space of all left continuous func-
tions from PC([0, t],Rd). Let PCτ([0, t],Rd) be the collection of functions f
from PC([0, t],Rd) such that for all s ∈ (0, t)

f(s) = τf(s + 0) + (1 − τ)f(s − 0). (3.5.4)

We call the elements of PCτ([0, t],Rd) τ -continuous functions. For each x ∈ Rd let

Qx,τ
t = {f ∈ PCτ([0, t],Rd) ∶ f(0) = lim

s→+0
f(s), f(t) = x},

Pt = {f ∈ PC l([0, t],Rd) ∶ f(0) = lim
s→+0

f(s)},

and Ex,τ
t = Qx,τ

t × Pt. The spaces Qx,τ
t and Pt are taken in duality by the form:

⟨q(⋅), p(⋅)⟩↦

t

∫
0

p(s)q̇(s)ds,
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where q̇(s)ds denotes the measure which is the distributional derivative of q(⋅).
We will consider the elements of Ex,τ

t as functions taking values in Rd ×Rd.

Let t0 ∶= 0 and for any n ∈ N and any k ∈ N, k ≤ n, let tk ∶= k
nt. Let Fn ⊂

PC([0, t],Rd) be the space of functions, whose restrictions to each of the inter-
vals (tk−1, tk) are constant functions. Let Qτ

n = Fn ∩Q
x,τ
t , Pn = Fn ∩ Pt. Let Jτn be

the mapping of Eτ
n = Q

τ
n × Pn to (Rd ×Rd)n, defined by

Jτn(q, p) ∶= (q( tn − 0), p( tn), . . . , q(
(n−1)t
n − 0), p( (n−1)t

n ), q(ntn − 0), p(ntn ))

= (q1, p1, ....., qn, pn).

The map Jτn is a one-to-one correspondence of Eτ
n and (Rd ×Rd)n. Therefore, in

this particular case Definition 3.5.6 can be rewritten in the following way:

Definition 3.5.7. The Hamiltonian (or phase space) Feynman path integral

Φτ
x(f) ∶= ∫

Ex,τt

f(q(s), p(s))e
i
t

∫
0
p(s)q̇(s)ds t

∏
τ=0

dq(s)dp(s) ∶= ∫
Ex,τt

f(q, p)Φτ
x(dq, dp)

of a function f ∶ Qx,τ
t × Pt → R is defined as a limit:

Φτ
x(f) = lim

n→∞

1

(2π)dn ∫

(Rd×Rd)n

f((Jτn)
−1(q1, p1, ....., qn, pn))×

× exp [i
n

∑
k=1

pk ⋅ (qk+1 − qk)]dq1 dp1.......dqn dpn,

(3.5.5)

where qn+1 ∶= x in each pre-limit expression. And again all integrals must be
considered in a suitably regularized sense.

Remark 3.5.8. The generalized density of the pseudomeasure Φτ
x can be defined

through the formula

∫

Ex,τt

f(q(s), p(s))Φτ
x(dq dp) ∶=

lim
n→∞

Cn ∫
Qτn×Pn

f(q(s), p(s)) exp

⎡
⎢
⎢
⎢
⎢
⎣

i

t

∫
0

p(s)q̇(s)ds

⎤
⎥
⎥
⎥
⎥
⎦

νn(dq)νn(dp),

where (Cn)−1 = ∫Qτn×Pn
exp [i ∫

t

0 p(s)q̇(s)ds]νn(dq)νn(dp) and νn is the Lebesgue
measure on Rnd.

Remark 3.5.9. Let us discuss the actual meaning of the words “suitably reg-
ularized sense” in Definition (3.5.7). One of the standard regularizations of a
multiple integral of an oscillating function g (where g is, e.g., the integrand in
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the right hand side of formula (3.5.5)) is given, e.g., by

∫

(Rd×Rd)n

g(q1, p1, ....., qn, pn)dq1 dp1.......dqn dpn ∶=

∶= lim
ε→0

∫

(Rd×Rd)n

g(q1, p1, ....., qn, pn) exp{−ε
n

∑
k=1

(∣qk∣
2 + ∣pk∣

2)}dq1 dp1.......dqn dpn.

Such type of regularizations is quite restrictive and the limit in the right hand
side of the fourmula above does not exist for many interesting cases. Let us
weaken the procedure of regularization in the following way: we do not assume
the existence of multiple integrals regularized as above. Instead, we assume the
existence of iterated integrals

∫

Rd

⋯∫

Rd

g(q1, p1, ....., qn, pn)dq1 dp1.......dqn dpn,

where the order of integration is “chronological” and a standard regularization
is used at each iteration. With such interpretation of regularization, Defini-
tion (3.5.7) has the following view (cf. Smolyanov and Shamarov, 2010):

Definition 3.5.10. The Hamiltonian (or phase space) Feynman path integral

Φτ
x(f) ∶= ∫

Ex,τt

f(q(s), p(s))e
i
t

∫
0
p(s)q̇(s)ds t

∏
τ=0

dq(s)dp(s) ∶= ∫
Ex,τt

f(q, p)Φτ
x(dq, dp)

of a function f ∶ Qx,τ
t × Pt → R is defined as a limit:

Φτ
x(f) = lim

n→∞

1

(2π)dn ∫
Rd

⋯∫

Rd

f((Jτn)
−1(q1, p1, ....., qn, pn))×

× exp [i
n

∑
k=1

pk ⋅ (qk+1 − qk)]dq1 dp1.......dqn dpn,

(3.5.6)

where qn+1 ∶= x, the order of integration is from q1 to pn, and each integration is
regularized in a standard way.

Let us now show that the Hamiltonian Feynman formulae obtained in Sec-
tions 3.2-3.4 can be interpreted as phase space Feynman path integrals. There-
fore, these phase space Feynman path integrals do exist and coincide with some
functional integrals with respect to countably additive (probability) measures
associated with some Feller type processes. Feynman path integrals for the dy-
namics governed by Hamiltonians, whose symbols are of type (3.3.7) (however
not depending on position variable), have been considered by different authors
in different contexts. For example, in Chapter 20 of the book Kleinert, 2009 such
integrals appear for applications in financial markets; in works Laskin, 2012;
Laskin, 2007; Laskin, 2000, they serve to generalize the quantum-mechanical
apparatus to the so called fractional quantum mechanics.
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Theorem 3.5.11. Let τ ∈ [0,1] and H = h, where h is given by the formula (3.3.1).
Let Assumption 3.4.1 (i), (iii) and Assumption 3.4.2 be fulfilled. Let (T τt )t≥0 be the
semigroup generated by the closure (Lτ ,Dom(Lτ)) of the pseudo-differential operator
(−Ĥτ ,C∞

c (Rd)) with the τ -symbolH . Then the Hamiltonian Feynman formula (3.4.5)
can be interpreted for each ϕ ∈ S(Rd) and each x ∈ Rd as the following phase space
Feynman path integral:

T τt ϕ(x) = ∫
Ex,τt

e
−
t

∫
0
H(q(s),p(s))ds

ϕ(q(0))Φτ
x(dqdp). (3.5.7)

And the equality holds in the sense of L1(Rd).

Proof. The Hamiltonian Feynman formula (3.4.5) holds true under the assump-
tions of Theorem 3.5.11. Let us change the notations for the variables in the
iterated integrals of the prelimit expression in (3.4.5) using the opposite order-
ing, i.e. (qk, pk) ↦ (qn−k+1, pn−k+1), k = 1, . . . , n. Then the Hamiltonian Feynman
formula (3.4.5) has the following view for each ϕ ∈ S(Rd) and each x ∈ Rd:

(T τt ϕ)(x) = lim
n→∞

(2π)−dn∫
Rd

⋯∫

Rd

exp(i
n

∑
k=1

pk ⋅ (qk+1 − qk)) (3.5.8)

× exp(−
t

n

n

∑
k=1

H(τqk+1 + (1 − τ)qk, pk))ϕ(q1)dq1 dp1⋯dqn dpn,

where, in each pre-limit expression, we have qn+1 ∶= x. Moreover, we have
q1 = q(t/n − 0)→ q(0) as n→∞ due to the definition of the space Qx,τ

t and

t

n

n

∑
k=1

H(τqk+1 + (1 − τ)qk, pk) =
n

∑
k=1

H(q(tk), p(tk))(tk − tk−1)

→

t

∫
0

H(q(s), p(s))ds, n→∞,

since any path (q(s), p(s)) ∈ Ex,τ
t is piecewise continuous and has a finite num-

ber of bounded jumps, H is a continuous function. Therefore, using Defini-
tion 3.5.10, we get

(T τt ϕ)(x) = ∫

Ex,τt

e
−
t

∫
0
H(q(s),p(s))ds

ϕ(q(0))Φτ
x(dqdp).

Remark 3.5.12. (i) The pre-limit expression in the Hamilton Feynman formula
(3.5.8) shows that different procedures of quantization correspond to different
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choice of basis-points in the time-slicing procedures for path integrals (cf. Klein-
ert, 2009, Section 18.12). Namely, instead of midpoints 1/2(qk + qk+1) of Strato-
novich calculus or left-side points qk of Itô calculus, the linear combinations
τqk+1 + (1 − τ)qk are used.

(ii) Note, that the integrand in the Feynman path integral (3.5.7) is the same
for all τ ∈ [0,1], only the space Ex,τ

t , defining the sequential pseudomeasure
Φτ
x is different; this space contains those paths q(s) which are “τ -continuous”

(consider the formula (3.5.4) as the definition). In accordance with Berezin’s
comment in Berezin, 1980, (phase space) Feynman path integrals over different
sets of paths can be used to represent the same solution of a given evolution
equation (cf. Smolyanov and Shavgulidze, 1992). And the quality (degree of
smoothness) of paths in the configuration space is in inverse proportion with
the quality of paths in the momentum space. This reflects Heisenberg’s uncer-
tainty principle. In many works continuous paths in the configuration space
and discontinuous paths in the momentum space are considered, cf. Albeve-
rio, Guatteri, and Mazzucchi, 2002; Bock and Grothaus, 2011; Ichinose, 2000;
Kumano-Go, 1996. In our approach, the picture is symmetric: paths have the
same quality in both spaces; they are piecewise constant and only their one-side
continuity is different for configuration and momentum spaces.

(iii) Our Feynman path integral suits for the interpretation of the function h as
a Hamilton function of a particle with position-dependent mass in a flat space.
Namely, the integration is proceeded with respect to the Feynman pseudomea-
sure on the paths in the flat phase space. In the frame of the interpretation of the
function h as a Hamilton function of a particle with constant mass in a curvilin-
ear space, both the integrand and the pseudomeasure must be modified. One
can find such Feynman path integrals, e.g., in Bouchemla and Chetouani, 2009,
or in Chapter 10 of Kleinert, 2009.

Remark 3.5.13. Under Assumptions 3.4.1 (i), (ii), Assumption 3.4.2 and due to
the formula (3.3.9), we know that Ĥτϕ(x) = Ĥτ

1ϕ(x), where Ĥτ
1ϕ(x) is a pseudo-

differential operator with 1-symbol

Hτ(q, p) ∶= Cτ(q) + iBτ(q) ⋅ p + p ⋅A(q)p, q, p ∈ Rd,

and Bτ , Cτ are given by (3.3.3) and (3.3.4) respectively. Therefore, due to The-
orem 3.4.4 and Theorem 3.5.11, there is a kind of “change of variable formula”
for the case of the quadratic Hamiltonian H(q, p) = c(q) + ib(q) ⋅ p + p ⋅A(q)p:

T τt ϕ(x) = ∫

Ex,1t

exp

⎡
⎢
⎢
⎢
⎢
⎣

−

t

∫
0

Hτ(q(s), p(s))ds

⎤
⎥
⎥
⎥
⎥
⎦

ϕ(q(0))Φ1
x(dq dp)

= ∫

Ex,τt

exp [ −

t

∫
0

H(q(s), p(s))ds]ϕ(q(0))Φτ
x(dqdp).
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i.e.,

T τt ϕ(x) = ∫
Ext

exp

⎡
⎢
⎢
⎢
⎢
⎣

−

t

∫
0

p(s) ⋅A(q(s))p(s)ds

⎤
⎥
⎥
⎥
⎥
⎦

× exp

⎡
⎢
⎢
⎢
⎢
⎣

−

t

∫
0

[C(q(s)) + (1 − τ)divB(q(s)) − (1 − τ)2 tr(HessA(q(s)))]ds

⎤
⎥
⎥
⎥
⎥
⎦

× exp

⎡
⎢
⎢
⎢
⎢
⎣

−i

t

∫
0

[(B(q(s)) − 2(1 − τ)divA(q(s))) ⋅ p(s)]ds

⎤
⎥
⎥
⎥
⎥
⎦

ϕ(q(0))Φ1
x(dq dp)

= ∫

Ex,τt

e
−
t

∫
0
p(s)⋅A(q(s))p(s)ds−i

t

∫
0
B(q(s))⋅p(s)ds−

t

∫
0
C(q(s))ds

ϕ(q(0))Φτ
x(dqdp).

Similarly to Theorem 3.5.11, one shows the following result.

Theorem 3.5.14. Let τ = 1. Let the function H ∶ Rd ×Rd → C be measurable and lo-
cally bounded in both variables (q, p). Assume that H(q, ⋅) is continuous and negative
definite for all q ∈ Rd. Let H(q, ⋅) be given by (3.1.2) with some Lévy characteristics
(A(q),B(q),C(q),N(q, ⋅)) for all q ∈ Rd.

(1) Let X = C∞(Rd). Let Assumptions 3.2.1, 3.2.2 and the estimates 3.2.12 of
Lemma 3.2.9 hold. Let (T 1

t )t≥0 be the strongly continuous semigroup on X gen-
erated by the closure of the pseudo-differential operator (−Ĥ1,C∞

c (Rd)) with the
1-symbol −H(q, p). Then the Hamiltonian Feynman formula (3.2.11) for the
semigroup (T 1

t )t≥0 can be interpreted for each ϕ ∈ S(Rd) and each x ∈ Rd as the
Feynman path integral (3.5.9) below. And the equality in formula (3.5.9) holds
pointwise.

(2) LetX = L1(Rd). LetH have the view (3.3.7). Let Assumptions 3.4.1 (i), (iii), (iv)
and Assumption 3.4.2 hold. Let (T 1

t )t≥0 be the strongly continuous semigroup
onX generated by the closure of the pseudo-differential operator (−Ĥ1,C∞

c (Rd))

with the 1-symbol −H(q, p). Then the Hamiltonian Feynman formula (3.4.9) for
the semigroup (T 1

t )t≥0 can be interpreted for each ϕ ∈ S(Rd) and each x ∈ Rd

as the Feynman path integral (3.5.9) below. And the equality in formula (3.5.9)
holds in the sense of L1(Rd).

T 1
t ϕ(x) = ∫

Ex,1t

e
−
t

∫
0
H(q(s),p(s))ds

ϕ(q(0))Φ1
x(dq dp). (3.5.9)

Remark 3.5.15. (i) If the Hamilton function H doesn’t depend on the position
variables q, the Feynman path integral (3.5.7) (with the proper choice of ϕ) is
just exactly of the same art as in the formula (20.161) of Kleinert, 2009.

(ii) Lagrangian Feynman formula (3.4.3) (resp. (3.4.8)) actually provides a tool
to compute Feynman path integral (3.5.7) (resp. (3.5.9)). The limits in both
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Lagrangian Feynman formulae coincide with functional integrals over proba-
bility measures generated by the corresponding Feller (Feller type) stochastic
processes (see, in particular, Remark 3.4.5). Therefore, the obtained Feynman
path integrals (3.5.7) and (3.5.9) do actually coincide with these functional inte-
grals over probability measures.

Remark 3.5.16. Let now α > 0 and all the assumptions of Theorem 3.5.14 be
fulfilled. Due to formulae (3.4.9), (3.5.9) and Definition 3.5.7, we have a kind
of time-rescaling formula for the semigroup (T 1

t )t≥0 (in both cases (1) and (2) of
Theorem 3.5.14):

(T 1
αtϕ)(q0) = lim

n→∞
(2π)−dn∫

Rd

⋯∫

Rd

exp(i
n

∑
k=1

pk ⋅ (qk+1 − qk))×

× exp(−
αt

n

n

∑
k=1

H(qk+1, pk))ϕ(q1)dq1 dp1⋯dqn dpn =

= ∫

E
q0,1
t

e
−α

t

∫
0
H(q(s),p(s))ds

ϕ(q(0))Φ1
q0(dq dp).

(3.5.10)

Assume now that H is such that (T 1
t )t≥0 is (extendable to) a symmetric Feller

semigroup (see Definitions 4.1.4 and 4.6.23 in Jacob, 2001). Then it is an analytic
semigroup (by Thm. 4.2.12 and Thm. 4.6.25 of Jacob, 2001). And the function
t→ T 1

t has an analytic extension to the sector S = {z ∈ C∖ {0}, ∣arg z∣ < π
2} which

is continuous on S. Then, for each ϕ ∈ S(Rd), the left hand side of (3.5.10) is
well defined for α = i: T 1

it = lim
[0,π/2)∋θ→π

2

T 1
eiθt

. Therefore, by passing to the limit

[0, π/2) ∋ θ → π
2 with α = eiθ in the formula (3.5.10), the following Feynman path

integral is also well defined:

∫

E
q0,1
t

e
−i

t

∫
0
H(q(s),p(s))ds

ϕ(q(0))Φ1
q0(dq dp) ∶= T

1
itϕ(q0).

This expression can be considered as a solution of the Schrödinger type equa-
tion

i
∂f

∂t
(t, x) = Ĥ1f(t, x)

with the initial condition ϕ.



Chapter 4

Chernoff approximations for
subordinate semigroups

One of the ways to construct strongly continuous semigroups is given by the
procedure of subordination. From two ingredients: an original strongly contin-
uous contraction semigroup (Tt)t≥0 and a convolution semigroup (ηt)t≥0 sup-
ported by [0,∞) (see all definitions in Section 4.1), this procedure produces the
strongly continuous contraction semigroup (T ft )t≥0 with T ft ∶= ∫

∞
0 Tsηt(ds). If

the semigroup (Tt)t≥0 corresponds to a stochastic process (Xt)t≥0, then subordi-
nation is a random time-change of (Xt)t≥0 by an independent increasing Lévy
process (subordinator) related to (ηt)t≥0. If (Tt)t≥0 and (ηt)t≥0 both are known
explicitly, so is (T ft )t≥0. But if, e.g., (Tt)t≥0 is not known, neither (T ft )t≥0 itself,
nor even the generator of (T ft )t≥0 are known explicitly any more. This impedes
the construction of a family (F (t))t≥0 with a prescribed (but unknown explic-
itly) derivative at t = 0. This difficulty is overwhelmed in the present Chapter
by construction of families (F(t))t≥0 and (Fµ(t))t≥0 (they are defined in Sec-
tions 4.2, 4.3) which incorporate approximations of the generator of (T ft )t≥0 it-
self. In this Chapter, we consider the semigroup (T ft )t≥0 which is subordinate
to a given semigroup (Tt)t≥0 with respect to a given subordinator. It is assumed
that the subordinator is known explicitly, i.e. either its transition probability
is known, or its Lévy measure is known and bounded. Chernoff approxima-
tions of the subordinate semigroup (T ft )t≥0 are constructed in the case, when
the semigroup (Tt)t≥0 is not known explicitly but is already Chernoff approxi-
mated by a given family (F (t))t≥0. This condition is fulfilled, e.g., for evolution
semigroups corresponding to Feller (and other Markov) processes in Rd con-
structed in Chapters 2, 3, as well as for evolution semigroups corresponding
to killed Feller processes and to (Feller) diffusions in Riemannian manifolds
and on metric graphs constructed in Chapters 5 and 6. Therefore, the Cher-
noff approximations obtained in Sections 4.2 and 4.3 can be applied further to
construct explicit approximations for semigroups corresponding to subordina-
tion of Feller processes, and (Feller type) diffusions in Euclidean spaces, metric
graphs and Riemannian manifolds. This, in turn, can allow to establish some
new Feynman and Feynman–Kac formulae for the corresponding semigroups.
Further, the technique of Chernoff approximation of subordinate semigroups
can be combined with the technique of Chernoff approximation of semigroups
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generated by additive and multplicative perturbations (of generators of some
original semigroups), developed in Chapter 2, and with the technique of Cher-
noff approximation of semigroups corresponding to killed Feller processes, de-
veloped in Chapter 5, in order to obtain Chernoff approximations for semi-
groups constructed by several iterative procedures of perturbation, killing and
subordination.

4.1 Subordinate semigroups

We follow the exposition of the book Jacob, 2001 in this section. Let (ηt)t≥0

be a convolution semigroup on Rd (cf. Definition C.0.1). Let us denote the
corresponding (backward) strongly continuous contraction semigroup on the
Banach space C∞(Rd) as (Sηt )t≥0. Recall that (Sηt )t≥0 is defined by the rule (see
formula (C.0.5))

Sηt ϕ(x) ∶= ∫
Rd

ϕ(x + y)ηt(dy), ∀ϕ ∈ C∞(Rd). (4.1.1)

Let now d = 1, i.e. (ηt)t≥0 be a convolution semigroup of measures on R. It is
said to be supported by [0,∞) if supp ηt ⊂ [0,∞) for all t ≥ 0. Each convolution
semigroup (ηt)t≥0 supported by [0,∞) corresponds to a Bernstein function f via
the Laplace transform L: L[ηt](x) = e−tf(x) for all x > 0 and t > 0. Each Bernstein
function f is uniquely defined by a triplet (σ,λ,µ) with constants σ,λ ≥ 0 and a
Radon measure µ on (0,∞), such that ∫

∞
0+

s
1+sµ(ds) < ∞, through the represen-

tation

f(z) = σ + λz +

∞

∫
0+

(1 − e−sz)µ(ds), ∀ z ∶ Re z ≥ 0. (4.1.2)

Note that ηt(R) = 1 for all t ≥ 0 if and only if σ = 0 (i.e. there is no "killing", cf.
Böttcher, Schilling, and Wang, 2013).

Consider a strongly continuous contraction semigroup (Tt)t≥0 on a Banach spa-
ce (X, ∥ ⋅ ∥X). Let (ηt)t≥0 be a convolution semigroup on R supported by [0,∞)

with the associated Bernstein function f . The family of operators (T ft )t≥0 de-
fined on X by the Bochner integral

T ft ϕ ∶=

∞

∫
0

Tsϕηt(ds), ϕ ∈X, (4.1.3)

is again a strongly continuous contraction semigroup on X . The semigroup
(T ft )t≥0 is called subordinate (in the sense of Bochner) to (Tt)t≥0 with respect to
(ηt)t≥0.

Recall that each convolution semigroup (ηt)t≥0 corresponds to a Lévy process
(ξt)t≥0 with ηt(ds) = P(ξt+h − ξh ∈ ds), ∀ t, h ≥ 0. If a convolution semigroup
(ηt)t≥0 is supported by [0,∞) then the corresponding (one-dimensional) Lévy
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process (ξt)t≥0 has non-decreasing paths almost surely and is called a subordina-
tor. Such processes can be used for a time-change of other processes. Namely,
if (Xt)t≥0 is a (decent) Markov process then the subordinate process (Xξt)t≥0 (such
that Xξt(ω) ∶= Xξt(ω)(ω) for each ω ∈ Ω) is again a (decent) Markov process.
Moreover, if (Xt)t≥0 is a Feller process then (Xξt)t≥0 is again a Feller process.
If (Tt)t≥0 is the (backward) strongly continuous contraction semigroup corre-
sponding to (Xt)t≥0, i.e. Ttϕ(x) = Ex[ϕ(Xt)], and (ηt)t≥0 is the convolution
semigroup of the subordinator (ξt)t≥0 then the subordinated semigroup (T ft )t≥0,
defined in (4.1.3), corresponds to the subordinate process (Xξt)t≥0. Many inter-
esting processes are obtained from a Brownian motion via subordination (see
§4.4 of Cont and Tankov, 2004).

Consider the operator semigroup (Sηt )t≥0 given by (4.1.1), corresponding to a
convolution semigroup (ηt)t≥0 supported by [0,∞). Assume that the related
Bernstein function is given by a triplet (0,0, µ). The generator (Lη,Dom(Lη))
of (Sηt )t≥0 has then the following properties: C∞

c (R) ⊂ Dom(Lη) and for all ϕ ∈

Dom(Lη)

Lηϕ(x) =

∞

∫
0+

(ϕ(x + s) − ϕ(x))µ(ds). (4.1.4)

Let now (Tt)t≥0 be a strongly continuous contraction semigroup with the gen-
erator (L,Dom(L)) and f be a Bernstein function given by the representation
(4.1.2) with an associated convolution semigroup (ηt)t≥0 supported by [0,∞).
Then the set Dom(L) is a core for the generator Lf of the subordinate semi-
group (T ft )t≥0 and, for ϕ ∈ Dom(L), the operator Lf has the representation

Lfϕ = −σϕ + λLϕ +

∞

∫
0+

(Tsϕ − ϕ)µ(ds). (4.1.5)

Note that if a linear subspace D ⊂ X is a core for L, then D is also a core for Lf
(see Sato, 1999, Prop. 32.5, p. 215).The representation (4.1.5) allows, in particu-
lar, to obtain the fractional Laplacian Lf ∶= −(−∆)α, α ∈ (0,1), via subordination
of a Brownian motion (with L ∶= ∆) with respect to an α-stable subordinator.

For each convolution semigroup (ηt)t≥0 on Rd, the corresponding operator semi-
group (Sηt )t≥0 extends to a contraction semigroup (S̄ηt )t≥0 on the space Bb(Rd)

of all bounded Borel functions on Rd. This semigroup belongs to the class of
strong Feller semigroups (see Definition 3.1.2) if and only if all the measures ηt
admit densities of the classL1(Rd) with respect to the Lebesgue measure (cf. Ex-
amle 4.8.21 of Jacob, 2001). One may consider a strong Feller semigroup (S̄ηt )t≥0

as a semigroup on the space Cb(Rd) of all bounded continuous functions and
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define its Cb-generator (L̄η,Dom(L̄η)) for each x ∈ Rd by

L̄ηϕ(x) ∶= lim
t→0

S̄ηt ϕ(x) − ϕ(x)

t
, Dom(L̄η) ∶= {ϕ ∈ Cb(Rd) ∣

lim
t→0

S̄ηt ϕ(x) − ϕ(x)

t
exists uniformly on compact subsets of Rd}.

Moreover, the operator (L̄η,Dom(L̄η)) in the space Cb(Rd) is an extension of the
generator (Lη,Dom(Lη)) of the semigroup (Sηt )t≥0 onC∞(Rd), and, in particular,
the inclusion C2

b (Rd) ⊂ Dom(L̄η) holds (cf. Example 4.8.26 of Jacob, 2001).

4.2 Chernoff approximation for subordinate semi-
groups in the case when transitional probabili-
ties of subordinators are known

In this section, we consider the semigroup (T ft )t≥0 subordinate to a given semi-
group (Tt)t≥0 with respect to a given convolution semigroup (ηt)t≥0 associated
to a Bernstein function f which is defined by a triplet (σ,λ,µ). We assume that
the corresponding convolution semigroup (η0

t )t≥0, associated to the Bernstein
function f0 wth the triplet (0,0, µ), is known explicitly and corresponds to a
strong Feller semigroup (S̄η

0

t )t≥0. This is the case of inverse Gaussian (includ-
ing 1/2-stable) subordinator, Gamma subordinator and some others (see, e.g.,
Burridge et al., 2014 for examples). We are interested in approximation of the
subordinate semigroup (T ft )t≥0 when the semigroup (Tt)t≥0 is not known ex-
plicitly but is Chernoff-approximated by a given family (F (t))t≥0.

Theorem 4.2.1. Let f be a Bernstein function given by a triplet (σ,λ,µ) through
the representation (4.1.2) with associated convolution semigroup (ηt)t≥0 supported by
[0,∞). Let (η0

t )t≥0 be the convolution semigroup (supported by [0,∞)) associated to
the Bernstein function f0 defined by the triplet (0,0, µ). Assume that the correspond-
ing operator semigroup (S̄η

0

t )t≥0 is strong Feller. Let (Tt)t≥0 be a strongly continuous
contraction semigroup on a Banach space (X, ∥ ⋅ ∥X) with the generator (L,Dom(L)).
Let (F (t))t≥0 be a family of contractions on (X, ∥ ⋅ ∥X) which is Chernoff equivalent to
(Tt)t≥0, i.e. F (0) = Id, ∥F (t)∥ ≤ 1 for all t ≥ 0 and there is a set D ⊂ Dom(L), which is
a core for L, such that limt→0 ∥

F (t)ϕ−ϕ
t −Lϕ∥

X
= 0 for each ϕ ∈D. Let m ∶ (0,∞)→ N0

be a monotone function such that m(t) → +∞ as t → 01. Let, for each t > 0 and
each ϕ ∈ X , the mapping [F (⋅/m(t))]m(t)ϕ ∶ [0,∞) → X be Bochner measurable as
the mapping from ([0,∞),B([0,∞)), η0

t ) to (X,B(X)). Let (T ft )t≥0 be the semigroup
subordinate to (Tt)t≥0 with respect to (ηt)t≥0 and Lf be its generator. Consider the
family (F(t))t≥0 of operators on (X, ∥ ⋅ ∥X) defined by F(0) ∶= Id and

F(t)ϕ ∶= e−σt ○ F (λt) ○F0(t)ϕ, t > 0, ϕ ∈X, (4.2.1)

1 One can take, e.g., m(t) ∶= ⌊1/t⌋ = the largest integer n ≤ 1/t. Recall that N0 ∶= N ∪ {0}.
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with F0(0) = Id and2

F0(t)ϕ ∶=

∞

∫
0+

[F (s/m(t))]
m(t)

ϕη0
t (ds), t > 0, ϕ ∈X. (4.2.2)

The family (F(t))t≥0 is Chernoff equivalent to the semigroup (T ft )t≥0, and hence

T ft ϕ = lim
n→∞

[F(t/n)]
n
ϕ

for all ϕ ∈X locally uniformly with respect to t ≥ 0.

Before we proceed with the proof, let us illustrate the result of Theorem 4.2.1 by
means of the following Example 4.2.2. Some further examples can be found in
Chapter 6.

Example 4.2.2. Let X ∶= C∞(Rd). Let a ∈ C(Rd) be a bounded and strictly pos-
itive function. Consider the operator (L,D) with D ∶= C∞

c (Rd) and Lϕ(x) ∶=
a(x)∆ϕ(x) for all ϕ ∈D and all x ∈ Rd. Due to Example 2.2.11 and Lemma 2.3.4,
the family (F (t))t≥0 of contractions on X , given for all ϕ ∈X and all x ∈ Rd by

F (t)ϕ(x) ∶= (2πta(x))−d/2∫
Rd

ϕ(y)e−
∣x−y∣2
2ta(x)dy,

is a strongly continuous family. And this family is Chernoff equivalent to the
strongly continuous semigroup (Tt)t≥0 generated by the closure of (L,D). In
particular, limt→0 ∥

F (t)ϕ−ϕ
t − Lϕ∥

X
= 0 for each ϕ ∈ D. Consider now a 1/2-stable

subordinator (ξt)t≥0. The corresponding convolution semigroup (ηt)t≥0 is given
by

ηt(ds) ∶= 1(0,∞)(s)
t

√
4πs3

e−
t2

4sds

and hence admits densities of the class L1(R) with respect to the Lebesgue mea-
sure ds. The corresponding Bernstein function is f(x) =

√
x with the triplet

(0,0, µ), where µ(ds) ∶= s−3/2
2Γ(1/2)ds. Take a function m as in Theorem 4.2.1. Then

the family (F0(t))t≥0, given for all ϕ ∈ C∞(Rd) and all x0 ∈ Rd by

F0(t)ϕ(x0) ∶=

∞

∫
0+
∫

Rdm(t)

⎛

⎝

m(t)

∏
k=1

2πsa(xk−1)

m(t)

⎞

⎠

− d
2

e
−
m(t)
∑
k=1

∣xk−xk−1 ∣2m(t)
2sa(xk−1) ×

× ϕ (xm(t))
t

√
4πs3

e−
t2

4sdx1 . . . dxm(t)ds,

is Chernoff equivalent to the semigroup (T ft )t≥0 subordinate to (Tt)t≥0 with re-
spect to (ηt)t≥0. Since all operators F0(t) are integral operators with elementary

2For any bounded operator B, its zero degree B0 is considered to be the identity opera-
tor. For each t > 0, a non-negative integer m(t) and a bounded Bochner measurable mapping
[F (⋅/m(t))]m(t)ϕ ∶ [0,∞) → X , the integral in the right hand side of formula (4.2.2) is well
defined.
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kernels, the corresponding Chernoff approximation T ft ϕ = lim
n→∞

[F0(t/n)]nϕ is
just a Feynman formula.

Proof. We return now to the proof of Theorem 4.2.1. Let us prove that the fam-
ily (F0(t))t≥0 is Chernoff equivalent to the semigroup (T f0

t )t≥0 subordinate to
(Tt)t≥0 with respect to (η0

t )t≥0. The generator Lf0 of this semigroup for each
ϕ ∈ Dom(L) is given by

Lf0ϕ =

∞

∫
0+

(Tsϕ − ϕ)µ(ds), (4.2.3)

and D ⊂ Dom(L) is a core for Lf0 . The statement of Theorem 4.2.1 then follows
immediately from Theorem 2.1.1 (or Corollary 2.1.2) since F (λt) is Chernoff
equivalent to Tλt ≡ e(tλ)L ≡ et(λL) for each λ > 0. The proof, that the family
(F0(t))t≥0 is Chernoff equivalent to the semigroup (T f0

t )t≥0, is the subject of the
following five Lemmata.

Lemma 4.2.3. Operators F0(t) are contractions on X for all t > 0.

Proof. Taking into account that all operators F (t) are contractions onX and that
η0
t (R) = 1, one has for each t > 0

∥F(t)ϕ∥X =

XXXXXXXXXXXX

∞

∫
0+

[F (s/m(t))]
m(t)

ϕη0
t (ds)

XXXXXXXXXXXXX

≤

∞

∫
0+

∥[F (s/m(t))]
m(t)

ϕ∥
X
η0
t (ds)

≤

∞

∫
0+

∥[F (s/m(t))]∥
m(t)

∥ϕ∥X η0
t (ds)

≤ ∥ϕ∥X .

Lemma 4.2.4. The family (F0(t))t≥0 is strongly continuous at t = 0.

Proof. Let us check that the family (F0(t))t≥0 is strongly continuous at zero. For
each ϕ ∈X we have

lim
t→0

∥F0(t)ϕ − ϕ∥X = lim
t→0

XXXXXXXXXXXX

∞

∫
0+

[F (s/m(t))]
m(t)

ϕη0
t (ds) − ϕ

XXXXXXXXXXXXX

≤ lim
t→0

XXXXXXXXXXXX

∞

∫
0+

[F (s/m(t))]
m(t)

ϕη0
t (ds) − T

f0

t ϕ

XXXXXXXXXXXXX

+ lim
t→0

∥T f0

t ϕ − ϕ∥X
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= lim
t→0

XXXXXXXXXXXX

∞

∫
0+

([F (s/m(t))]
m(t)

ϕ − Tsϕ) η
0
t (ds)

XXXXXXXXXXXXX

≤ lim
t→0

∞

∫
0+

∥[F (s/m(t))]
m(t)

ϕ − Tsϕ∥
X
η0
t (ds)

≤ lim
t→0

1

∫
0+

∥[F (s/m(t))]
m(t)

ϕ − Tsϕ∥
X
η0
t (ds) + lim

t→0
2∥ϕ∥X

∞

∫
1

η0
t (ds)

≤ lim
t→0

sup
s∈[0,1]

∥[F (s/m(t))]
m(t)

ϕ − Tsϕ∥
X

= 0,

since the convergence of ∥[F (s/m(t))]
m(t)

ϕ − Tsϕ∥
X

to zero as t → 0 is uniform
w.r.t. s on compact intervals due to the Chernoff Theorem, and since η0

t weakly
converges to the Dirac delta-measure δ0 as t→ 0.

Remark 4.2.5. The family (F0(t))t≥0 (and hence (F(t))t≥0, constructed in Theo-
rem 4.2.1) can not be strongly continuous for all t ∈ [0,∞) since the function m,
used in the construction of this family, is not continuous. Therefore, the fam-
ily (F(t))t≥0 can not be further used for establishing Chernoff approximations
for semigroups, generated by multiplicative perturbations of the operator Lf ,
via Theorem 2.2.2 (or Proposition 2.2.6). However, combination of the family
(F(t))t≥0 with other thechniques of Chernoff approximation, developed in this
work, are safely possible. Moreover, under additional assumptions on the func-
tion m and the family (F (t))t≥0, assuring that the mapping F(⋅)ϕ ∶ [0,∞) → X
is Bochner measurable for each ϕ ∈ X , the family (F(t))t≥0, constructed in The-
orem 4.2.1, can be used to approximate solutions of time-fractional evolution
equations as in Theorem (6.3.3).

Lemma 4.2.6. For a fixed ϕ ∈ D define the function Ψt ∶ [0,∞) → [0,∞) by Ψt(s) ∶=
∥Fm(t)(s/m(t))ϕ − Tsϕ∥X . The estimate

Ψt(s)

s
≤ ∥

Tsϕ − ϕ

s
−Lϕ∥

X

+ ∥
F (s/m(t))ϕ − ϕ

s/m(t)
−Lϕ∥

X

+ ∥(
1

m(t)
[Fm(t)−1(s/m(t)) + Fm(t)−2(s/m(t)) + . . . + F (s/m(t)) + Id] − Id)Lϕ∥

X

holds for each t > 0 and each s > 0.
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Proof. Denote B ∶= Fm(t)−1(s/m(t))+Fm(t)−2(s/m(t))+ . . .+F (s/m(t))+Id. Then
Fm(t)(s/m(t))ϕ − ϕ = B(F (s/m(t)) − Id)ϕ and ∥B∥ ≤m(t). Therefore, one has

Ψt(s)

s
= ∥

Fm(t)(s/m(t))ϕ − Tsϕ

s
∥
X

≤ ∥
Fm(t)(s/m(t))ϕ − ϕ

s
−Lϕ∥

X

+ ∥
Tsϕ − ϕ

s
−Lϕ∥

X

and

∥
Fm(t)(s/m(t))ϕ − ϕ

s
−Lϕ∥

X

= ∥
(m−1(t)B)(F (s/m(t))ϕ − ϕ)

s/m(t)
− (m−1(t)B)Lϕ + (m−1(t)B)Lϕ −Lϕ∥

X

≤ ∥
F (s/m(t))ϕ − ϕ

s/m(t)
−Lϕ∥

X

+ ∥(m−1(t)B)Lϕ −Lϕ∥
X
.

Lemma 4.2.7. Let Ψt be as in Lemma 4.2.6. For each ε > 0 there exist tε > 0 and sε > 0
such that the estimate

Ψt(s)

s
< ε

holds for all t ∈ (0, tε] and all s ∈ (0, sε].

Proof. Fix ε > 0. Choose s1 > 0 such that ∥
Tsϕ−ϕ
s −Lϕ∥

X
< ε/3 for all s ∈ (0, s1].

This can be done since ϕ ∈ D ⊂ Dom(L). Choose then t1 > 0 such that for all
s ∈ (0, s1] one has

∥
F (s/m(t1))ϕ − ϕ

s/m(t1)
−Lϕ∥

X

< ε/3.

This can be done due to the assumption: limt↘0 ∥
F (t)ϕ−ϕ

t − Lϕ∥
X

= 0 for each
ϕ ∈D. Since s/m(t) ≤ s1/m(t1) for all s ∈ (0, s1] and t ∈ (0, t1], one has also

∥
F (s/m(t))ϕ − ϕ

s/m(t)
−Lϕ∥

X

< ε/3

for such s and t. Since the semigroup (Tt)t≥0 is strongly continuous choose
s2 ∈ (0, s1] such that

∥TτLϕ −Lϕ∥X < ε/9

for all τ ∈ (0, s2]. Due to the Chernoff Theorem it is possible to choose K ∈ N
such that the inequality

∥F k−1(τ/(k − 1))Lϕ − TτLϕ∥X < ε/9
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holds for all k ≥ K and all τ ∈ [0, s2/m(t1)]. Choose t2 ∈ (0, t1] such that m(t2) >
K. Thus, the following estimate is true for s ∈ (0, s2] and t ∈ (0, t2]:

XXXXXXXXXXX

1

m(t)

m(t)

∑
k=1

F k−1(s/m(t))Lϕ −Lϕ
XXXXXXXXXXXX

≤
1

m(t)

m(t)

∑
k=1

∥F k−1 (
(k − 1)s/m(t)

k − 1
)Lϕ − T(k−1)s/m(t)Lϕ∥

X

+
1

m(t)

m(t)

∑
k=1

∥T(k−1)s/m(t)Lϕ −Lϕ∥X

≤
1

m(t)

m(t)

∑
k=K

∥F k−1 (
(k − 1)s/m(t)

k − 1
)Lϕ − T(k−1)s/m(t)Lϕ∥

X

+
2K∥Lϕ∥X
m(t)

+ ε/9

≤ 2K∥Lϕ∥Xm
−1(t) + 2ε/9.

Due to our assumptions, the function m ∶ (0,∞)→ N0 is monotone with m(t)→

∞ as t → 0. Therefore, one can choose t3 ∈ (0, t2] with m(t3) >
18K∥Lϕ∥X

ε . Then
we obtain, due to Lemma 4.2.6 with tε ∶= t3 and sε ∶= s2, that

Ψt(s)

s
< ε.

Lemma 4.2.8. It holds for each ϕ ∈D:

lim
t→0

∥
F0(t)ϕ − ϕ

t
−Lf0ϕ∥

X

= 0.

Proof. With the function Ψt defined in Lemma 4.2.6, one has

lim
t→0

∥
F0(t)ϕ − ϕ

t
−Lf0ϕ∥

X

≤ lim
t→0

∥
F0(t)ϕ − T

f0

t ϕ

t
∥
X

+ lim
t→0

∥
T f0

t ϕ − ϕ

t
−Lf0ϕ∥

X

= lim
t→0

1

t

XXXXXXXXXXXX

∞

∫
0

(Fm(t)(s/m(t))ϕ − Tsϕ)η
0
t (ds)

XXXXXXXXXXXXX

≤ lim
t→0

1

t

∞

∫
0

Ψt(s)η
0
t (ds).

Fix an arbitrary ε > 0. Take tε and sε as in Lemma 4.2.7. Let rε ∶= min(sε,1). Take
Rε > 0 such that ∫

∞
Rε
µ(ds) < ε. For k = 1,2,3 choose functions χk ∈ C2

b (R) with
0 ≤ χk ≤ 1 such that suppχ1 ⊂ (−1, rε), suppχ3 ⊂ (Rε,∞), suppχ2 ⊂ (rε/2,2Rε)



86 Chapter 4. Chernoff approximations for subordinate semigroups

and ∑3
k=1 χk(s) = 1 for all s ≥ 0. Then by Lemma 4.2.7

lim
t→0

1

t

∞

∫
0

Ψt(s)η
0
t (ds) ≤ lim

tε>t→0

ε

t

rε

∫
0

sχ1(s)η
0
t (ds)

+ lim
t→0

sup
s∈[rε/2,2Rε]

Ψt(s) ⋅
1

t

2Rε

∫

rε/2

χ2(s)η
0
t (ds) + lim

t→0

2∥ϕ∥X
t

∞

∫
Rε

χ3(s)η
0
t (ds).

Due to the Chernoff theorem limt→0 sup
s∈[rε/2,2Rε]

Ψt(s) = 0 for any fixed rε and Rε.

Define also χ4 such that χ4(s) ∶= sχ1(s) for all s ∈ R. Since the semigroup (S̄η
0

t )t≥0

is strong Feller, χk ∈ C2
b (R) ⊂ Dom(L̄η

0
) and χk(0) = 0 for k = 2,3,4, one has

lim
t→0

1

t

∞

∫
0+

χk(s)η
0
t (ds) = lim

t→0

S̄η
0

t χk − χk
t

(0) = (L̄ηχk) (0) =

∞

∫
0+

χk(s)µ(ds).

Therefore,
∞

∫
0+
χ2(s)µ(ds) =

2Rε

∫
rε/2

χ2(s)µ(ds) ≤ µ[rε/2,2Rε] < ∞ (cf. Lemma 2.16 of

Böttcher, Schilling, and Wang, 2013). And hence

lim
t→0

sup
s∈[rε/2,2Rε]

Ψt(s) ⋅
1

t

2Rε

∫

rε/2

χ2(s)η
0
t (ds) = 0.

Similarly,

lim
t→0

2∥ϕ∥X
t

∞

∫
Rε

χ3(s)η
0
t (ds) = 2∥ϕ∥X

∞

∫
Rε

χ3(s)µ(ds) < 2ε∥ϕ∥X .

And, further, with K ∶= ∫
1

0 sµ(ds) <∞

lim
tε>t→0

ε

t

rε

∫
0

sχ1(s)η
0
t (ds) = ε

rε

∫
0

sχ1(s)µ(ds) ≤ ε

1

∫
0

sµ(ds) =Kε.

Thus, it is shown that for each fixed ε > 0

lim
t→0

∥
F0(t)ϕ − ϕ

t
−Lf0ϕ∥

X

≤ ε(K + 2∥ϕ∥X).

Therefore, the statement of Lemma is true.

Hence the family (F0(t))t≥0 is Chernoff equivalent to the semigroup (T f0

t )t≥0

subordinate to (Tt)t≥0 with respect to (η0
t )t≥0. And Theorem 4.2.1 is proved.
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Remark 4.2.9. Let (Tt)t≥0, (ηt)t≥0 and (F (t))t≥0 be as before, and let (F (t))t≥0 be
strongly continuous. Let X = Cb(Q) or X = C∞(Q), where Q is a metric space.
Let σ, λ be not constants but continuous functions on Q such that λ is bounded
and strictly positive and σ is bounded from below. Assume that the operator
Lf defined as in (4.1.5) (but with variable σ and λ) with the domain D (here D
is as in Theorem 4.2.1) is closable and the closure generates a strongly contin-
uous semigroup (T ft )t≥0 on X . Then, due to Theorem 2.1.1 (or Corollary 2.1.2),
Theorem 2.2.2, Proposition 2.2.6 and Lemmas 4.2.3 – 4.2.8, the family ( ÌF(t))t≥0

of operators on (X, ∥ ⋅ ∥∞) defined by ÌF(0) ∶= Id and

ÌF(t)ϕ ∶= e−σt ○ ÌF (t) ○F0(t)ϕ, t > 0, ϕ ∈X, (4.2.4)

with (F0(t))t≥0 as in Theorem 4.2.1 and with ( ÌF (t))t≥0 such that

ÌF (t)ϕ(x) ∶= (F (λ(x)t)ϕ) (x), ∀ϕ ∈X, ∀x ∈ Q, (4.2.5)

is Chernoff equivalent to the semigroup (T ft )t≥0.

Remark 4.2.10. Some other approximations for subordinate semigroups (in the
case of known transitional probabilities of subordinators) are given also in Re-
mark 6.3.5.

4.3 Chernoff approximation for subordinate semi-
groups in the case when Lévy measures of su-
bordinators are known and bounded

In this section we again consider the semigroup (T ft )t≥0 subordinate to a given
semigroup (Tt)t≥0 with respect to a given convolution semigroup (ηt)t≥0, asso-
ciated to a Bernstein function f which is defined by a triplet (σ,λ,µ). We as-
sume that the corresponding convolution semigroup (η0

t )t≥0, associated to the
Bernstein function f0 defined by the triplet (0,0, µ), is not known explicitly.
In this case, the family (F0(t))t≥0 of Theorem 4.2.1 is not known explicitly as
well, and hence the formula (4.2.4) is not proper for direct computations any
more. Let us assume that the Lévy measure µ of (η0

t )t≥0 is given explicitly and
is bounded (and nonzero). In this case the generator Lη0 of the corresponding
semigroup Sη

0

t is a bounded linear operator given as in (4.1.4). The genera-
tor Lf0 of the semigroup (T f0

t )t≥0 subordinate to (Tt)t≥0 with respect to (η0
t )t≥0

is given by (4.2.3) and is also bounded. Therefore, the semigroup (T f0

t )t≥0 can
be constructed, e.g., via Taylor series representation (which, however, contains
powers of the operator Lf0 , and Lf0 is not known explicitly). We use another
approach below: we construct a Chernoff approximation for the semigroup
(T f0

t )t≥0. This Chernoff approximation can be used further as a building block
for constructing Chernoff approximations for semigroups obtained by iterative
prosedures of subordination and perturbations (of generators).
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Theorem 4.3.1. Let f be a Bernstein function given by a triplet (σ,λ,µ) through
the representation (4.1.2) with associated convolution semigroup (ηt)t≥0 supported by
[0,∞). Assume that the measure µ is bounded. Let (Tt)t≥0 be a strongly continuous
contraction semigroup on a Banach space (X, ∥ ⋅ ∥X) with the generator (L,Dom(L)).
Let (F (t))t≥0 be a family of contraction operators on (X, ∥ ⋅ ∥X) which is Chernoff
equivalent to (Tt)t≥0, i.e. F (0) = Id, ∥F (t)∥ ≤ 1 for all t ≥ 0 and there is a set D ⊂

Dom(L), which is a core for L, such that limt→0 ∥
F (t)ϕ−ϕ

t − Lϕ∥
X
= 0 for each ϕ ∈ D.

Let m ∶ (0,∞) → N0 be a monotone function with m(t) → +∞ as t → 0. Let, for
each t > 0 and each ϕ ∈ X , the mapping [F (⋅/m(t))]m(t)ϕ ∶ [0,∞) → X be Bochner
measurable as the mapping from ([0,∞),B([0,∞)), µ) to (X,B(X)). Let (T ft )t≥0 be
the semigroup subordinate to (Tt)t≥0 with respect to (ηt)t≥0 and Lf be its generator.
Consider a family (Fµ(t))t≥0 of operators on (X, ∥ ⋅ ∥X) defined for all ϕ ∈ X and all
t ≥ 0 by

Fµ(t)ϕ ∶= e
−σtF (λt)

⎛

⎝
ϕ + t

∞

∫
0+

(Fm(t)(s/m(t))ϕ − ϕ)µ(ds)
⎞

⎠
. (4.3.1)

The family (Fµ(t))t≥0 is Chernoff equivalent to the semigroup (T ft )t≥0, and hence

T ft ϕ = lim
n→∞

[Fµ(t/n)]
n
ϕ

for all ϕ ∈X locally uniformly with respect to t ≥ 0.

Proof. Let us prove that the family (Fµ(t))t≥0, defined for all ϕ ∈ X and all t ≥ 0
by

Fµ(t)ϕ ∶= ϕ + t

∞

∫
0+

(Fm(t)(s/m(t))ϕ − ϕ)µ(ds), (4.3.2)

is Chernoff equivalent to the semigroup (T f0

t )t≥0 which is subordinate to (Tt)t≥0

with respect to (η0
t )t≥0, associated to the Bernstein function f0 which is defined

by the triplet (0,0, µ). Then the statement of Theorem 4.3.1 follows immediately
from Theorem 2.1.1 (or Corollary 2.1.2). So, let K ∶= µ(R) <∞. Then, clearly, we
have Fµ(0) = Id and

∥Fµ(t)ϕ∥X

≤ ∥ϕ∥X + tK sup
s∈(0,∞)

∥Fm(t)(s/m(t))ϕ − ϕ∥
X
≤ ∥ϕ∥X(1 + 2tK) ≤ e2tK∥ϕ∥X ,

and

∥Fµ(t)ϕ − ϕ∥X ≤ tK sup
s∈(0,∞)

∥Fm(t)(s/m(t))ϕ − ϕ∥
X
≤ 2tK∥ϕ∥X → 0, t→ 0.
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Further, for an arbitrary ε > 0 choose Rε such that ∫
∞
Rε
µ(ds) < ε. Then for each

ϕ ∈D

lim
t→0

∥
Fµ(t)ϕ − ϕ

t
−Lf0ϕ∥

X

= lim
t→0

XXXXXXXXXXXX

∞

∫
0+

(Fm(t)(s/m(t))ϕ − Tsϕ)µ(ds)

XXXXXXXXXXXXX

≤ lim
t→0

⎡
⎢
⎢
⎢
⎢
⎣

Rε

∫
0+

∥Fm(t)(s/m(t))ϕ − Tsϕ∥Xµ(ds) +

∞

∫
Rε

∥Fm(t)(s/m(t))ϕ − Tsϕ∥Xµ(ds)

⎤
⎥
⎥
⎥
⎥
⎦

≤ 2ε∥ϕ∥X +K lim
t→0

sup
s∈[0,Rε]

∥Fm(t)(s/m(t))ϕ − Tsϕ∥X = 2ε∥ϕ∥X

due to the Chernoff Theorem. Therefore,

lim
t→0

∥
Fµ(t)ϕ − ϕ

t
−Lf0ϕ∥

X

= 0

which proves the Chernoff equivalence of the family (Fµ(t))t≥0 to the semi-
group (T ft )t≥0.

Remark 4.3.2. Again, the family (Fµ(t))t≥0 (and hence (Fµ(t))t≥0, constructed
in Theorem 4.3.1) can not be strongly continuous for all t ∈ [0,∞) since the
function m, used in the construction of this family, is not continuous. There-
fore, the family (Fµ(t))t≥0 also can not be used for establishing Chernoff ap-
proximations for semigroups, generated by multiplicative perturbations of the
operator Lf , via Theorem 2.2.2 (or Proposition 2.2.6). Nevertheless, combina-
tion of the family (F(t))t≥0 with other thechniques of Chernoff approximation,
developed in this work, are safely possible. Moreover, under additional as-
sumptions on the function m and the family (F (t))t≥0, assuring that the map-
ping Fµ(⋅)ϕ ∶ [0,∞) → X is Bochner measurable for each ϕ ∈ X , the family
(Fµ(t))t≥0, constructed in Theorem 4.3.1, can be used to approximate solutions
of time-fractional evolution equations as in Theorem (6.3.3).

Remark 4.3.3. The choise of the family Fµ(t) is motivated by the fact that, for
each bounded linear operator A, the family FA(t) ∶= Id+tA is obviously Cher-
noff equivalent to the semigroup etA (cf. Example 1.0.8). We have, however, the
family FA(t) ∶= Id+tA(t), where operators A(t) are bounded and tend to the
generator A as t → 0. The natural question arises: if it is possible to find the
family FA(t) ∶= Id+tA(t), where operators A(t) are bounded and tend to the
unbounded generator A of the semigroup etA as t → 0, such that FA(t) would
be Chernoff equivalent to etA? In this case it would be possible to generalize
Theorem 4.3.1 to the case of unbounded Lévy measure µ, e.g., by approximat-
ing µ with bounded measures µt ∶= 1[α(t),∞)µ for some proper function α(t) → 0
as t → 0. However, the answer is NO, since the norm estimate ∥FA(t)∥ ≤ ect for
all t ≥ 0 and some c ∈ R (or the equivalent one ∥F k

A(t)∥ ≤Meckt for all k ∈ N, t ≥ 0
and some c ∈ R, M ≥ 1, cf. Pazy, 1983), required in the Chernoff Theorem, fails.
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Remark 4.3.4. The analogue of Remark 4.2.9 holds true also for the family
( ÌFµ(t))t≥0,

ÌFµ(t)ϕ ∶= e
−σt ÌF (t)

⎛

⎝
ϕ + t

∞

∫
0+

(Fm(t)(s/m(t))ϕ − ϕ)µ(ds)
⎞

⎠
,

with ÌF (t) as in (4.2.5).



Chapter 5

Chernoff approximation of
semigroups generated by killed
Feller processes

5.1 Killed Feller processes and their generators

In this Section, we follow the exposition of Böttcher, Schilling, and Wang, 2013
and Baeumer, Luks, and Meerschaert, 2016. Let (ξt)t≥0 be a Feller process on
Rd, (Tt)t≥0 be the corresponding Feller semigroup and (L,Dom(L)) be its Feller
generator. The pointwise generator (Lp,Dom(Lp)) of (Tt)t≥0 is defined via

Dom(Lp) ∶= {ϕ ∈ C∞(Rd) ∣ ∃ g ∈ C∞(Rd) ∶ lim
t→0

Ttϕ(x) − ϕ(x)

t
= g(x) ∀x ∈ Rd} ,

Lpϕ(x) ∶= lim
t→0

Ttϕ(x) − ϕ(x)

t
= g(x) ∀ϕ ∈ Dom(Lp), x ∈ Rd. (5.1.1)

Then (L,Dom(L)) = (Lp,Dom(Lp)) by Theorem 1.33 of Böttcher, Schilling, and
Wang, 2013. Recall that if C∞

c (Rd) ⊂ Dom(L), then Lϕ(x) is given by the
formula (3.1.3) for each ϕ ∈ C2

∞(Rd) and each x ∈ Rd, i.e. L is an integro-
differential operator onC2

∞(Rd). The process (ξt)t≥0 (resp., the semigroup (Tt)t≥0

with Ttϕ(x) ∶= Ex[ϕ(ξt)]) is called doubly Feller if it is both Feller and strong
Feller (cf. Definitions 3.1.1, 3.1.2).

Let G ⊂ Rd be a bounded domain (connected open set) and let Y ∶= C0(G) be
the set of all continuous functions on G that tend to zero as x ∈ G approaches
the boundary ∂G. Then Y is a Banach space with the supremum norm ∥ ⋅ ∥Y ,
∥ϕ∥Y ∶= supx∈G ∣ϕ(x)∣. For a Feller process (ξt)t≥0 on Rd, we define the first exit
time from G by

τG ∶= inf{t > 0 ∶ ξt ∉ G}.

Let (ξot )t≥0 denote the killed process on G, i.e.,

ξot = {
ξt, t < τG,
∂, t ≥ τG,
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where ∂ denotes a cemetery point. We say that a boundary point x ∈ ∂G is
regular for G if Px(τG = 0) = 1. We say that G is regular if every point x ∈ ∂G is
regular.1 Let (ξt)t≥0 be a doubly Feller process on Rd and G be regular. Then
(T ot )t≥0, such that

T ot ϕ(x) ∶= Ex [ϕ (ξot )] ≡ Ex [ϕ (ξt)1{t<τG}] , x ∈ G, ϕ ∈ Y, ϕ(∂) ∶= 0,

is a Feller semigroup on Y (cf. Lemma 2.2 in Baeumer, Luks, and Meerschaert,
2016). Let (Lo,Dom(Lo)) be the Feller generator of (T ot )t≥0 on Y . The oper-
ator (Lo,Dom(Lo)) is described in Proposition 5.1.1 below (cf. Thm. 2.3 and
Lemma 2.6 in Baeumer, Luks, and Meerschaert, 2016). Note that each element
ϕ ∈ Y can be extended by zero outside G; this extension is again denoted by ϕ
and belongs to the space X ∶= C∞(Rd).

Proposition 5.1.1. Let (ξt)t≥0 be a doubly Feller process on Rd, (Tt)t≥0 be the corre-
sponding Feller semigroup and (L,Dom(L)) be its Feller generator. Let G ⊂ Rd be a
bounded regular domain. The generator of the killed Feller process (ξot )t≥0 is character-
ized as follows

(i) Dom(Lo) = {ϕ ∈ Y ∶ Lpϕ ∈ Y }, where Lp is given by (5.1.1), Lpϕ ∈ Y means
that Lp is applied to the zero extension of ϕ on Rd, Lpϕ(x) exists for each x ∈ G
and the function [x ↦ Lpϕ(x)] belongs to Y . Moreover, it holds that Loϕ(x) =
Lpϕ(x) for all ϕ ∈ Dom(Lo) and the limit in (5.1.1) exists locally uniformly on
G (i.e., uniformly with respect to x ∈K for each compact K ⊂ G).

(ii) Assume that C∞
c (Rd) ⊂ Dom(L). Then, for each ϕ ∈ C∞(Rd) ∩C2(G), we have

Lpϕ(x) = Lϕ(x), ∀x ∈ G,

where L is the integro-differential operator given by the formula (3.1.3).

Remark 5.1.2. (i) The abstract Cauchy problem in Y for the evolution equation
df
dt = Lof with an initial condition f0 ∈ Dom(Lo) can be interpreted as the follow-
ing Cauchy–Dirichlet type initial–exterior value problem2:

∂f

∂t
(t, x) = Lf(t, x), t > 0, x ∈ G,

f(0, x) = f0(x), x ∈ G, (5.1.2)

f(t, x) = 0, t > 0, x ∈ Rd ∖G.

And the function f(t, x) ∶= T ot f0(x), extended by zero outside G, solves the
problem for each f0 ∈ Dom(Lo) by Theorem 1.0.2.

(ii) Let, additionally, the operator (L,Dom(L)) in X be a local operator outside G,
i.e. for each x ∈ Rd ∖G and each ϕ1, ϕ2 ∈ Dom(L) such that ϕ1 and ϕ2 coincide

1Due to Theorem 2.2. of Chen and Song, 1997, if a boundary point x ∈ ∂G satisfies the
external cone condition, then it is regular for the case when (ξt)t≥0 is symmetric α-stable. In
particular, any Lipschitz domain is regular in this case.

2Such problems are discussed, e.g., in Felsinger, Kassmann, and Voigt, 2015, see also Hoh
and Jacob, 1996 for the stationary case.
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on G and on some neighbourhood of x, one has Lϕ1(x) = Lϕ2(x). For example,
consider the integro-differential operator L given by (3.1.3) with N(x, dy) such
that

N(x, dy) = {
10<∣y∣≤dist(x,∂G)(y)N(x, dy), x ∈ G,
0, x ∈ Rd ∖G.

(5.1.3)

The integral part of such operator L gives rise to the so-called censored processes
in G, cf. Bogdan, Burdzy, and Chen, 2003; Rossi and Topp, 2016. If L is local
outsideG, the abstract Cauchy problem in Y for the evolution equation df

dt = Lof
can be interpreted as the following Cauchy–Dirichlet problem:

∂f

∂t
(t, x) = Lf(t, x), t > 0, x ∈ G,

f(0, x) = f0(x), x ∈ G, (5.1.4)
f(t, x) = 0, t > 0, x ∈ ∂G.

And again the function f(t, x) ∶= T ot f0(x) solves this problem for each f0 ∈

Dom(Lo) by Theorem 1.0.2.

5.2 Chernoff approximation of semigroups genera-
ted by some killed Feller processes

Let X = C∞(Rd). Let (ξt)t≥0 be a doubly Feller process on Rd, (Tt)t≥0 be the
corresponding (doubly Feller) semigroup and (L,Dom(L)) be its Feller gen-
erator. Let a family (F (t))t≥0 of bounded linear operators on X be Chernoff
equivalent to the semigroup (Tt)t≥0. Therefore, ∥F (t)∥ ≤ ekt for some k ∈ R
and all t ≥ 0, and there exists a core D for the operator (L,Dom(L)) such that
limt→0 ∥

F (t)ϕ−ϕ
t −Lϕ∥

X
= 0 for all ϕ ∈ D. Let us fix this core D. Let G ⊂ Rd

be a bounded regular domain. Let (T ot )t≥0 be the strongly continuous semi-
group on Y ∶= C0(G) generated by the killed Feller process (ξot )t≥0 on G. Let
(Lo,Dom(Lo)) be the Feller generator of (T ot )t≥0. Our aim is to construct a fam-
ily (Fo(t))t≥0 of bounded linear operators on Y which is Chernoff equivalent to
(T ot )t≥0. The family (Fo(t))t≥0 will be constructed by a proper modification of
the family (F (t))t≥0 which is Chernoff equivalent to the semigroup (Tt)t≥0 on
X . To this aim, we need some preparations.

Assumption 5.2.1. We assume that there exists a set Do ⊂ Dom(Lo)∩C2
b (G) and

a mapping E ∶ Y → Cc(Rd) ⊂X such that

(i) Do is a core for Lo;

(ii) E(ϕ)∣
G
= ϕ for all ϕ ∈ Y ;

(iii) the mapping E is linear;
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(iv) the mapping E preserves the supremum norm, i.e. ∥ϕ∥Y = ∥E(ϕ)∥X for all
ϕ ∈ Y ;

(v) E ∶ Do →D, where D is a fixed core for (L,Dom(L));

(vi) L(E(ϕ))(x) = Loϕ(x) for each ϕ ∈Do and each x ∈ G.

Remark 5.2.2. The space Y can be naturally embedded into X by assigning to
each ϕ ∈ Y zero values outside the domain G. However, such embedding pro-
duces from smooth functions in G only continuous functions in Rd. This may
violate the requirement (v) of Assumption 5.2.1. Note that Dom(Lo) typically
contains functions whose zero extensions do not belong to Dom(L). Moreover,
there is no reason to expect the existence of a core Do such that the zero exten-
sions of its elements belong to Dom(L). In particular, the sets of sufficiently
smooth functions with compact supports in G can not serve as a core even for
the Laplacian ∆ in Y 3! Indeed, assume that there exists a core Do ⊂ Cc(G) for
(∆,Dom(∆)) in Y . Then for each ϕ ∈ Dom(∆) there exists a sequence (ϕn)n∈N ⊂

Do such that ∥ϕn−ϕ∥Y → 0 and ∥∆ϕn−∆ϕ∥Y → 0 as n→∞. By Theorem D.0.9 (ii),
Dom(∆) is continuously embedded in C1(G). Hence ∥

∂ϕn
∂xi

−
∂ϕ
∂xi

∥
Y
→ 0 as n→∞

for all i = 1, . . . , d. Therefore, ∇ϕ∣
∂G

= 0 for each ϕ ∈ Dom(∆). This is however

wrong since, e.g., the function ϕ(x) ∶= sinx belongs to Dom(∆) = Dom ( d2

dx2) for

G ∶= (0, π) and dϕ
dx (x) = cosx is not equal to zero on ∂G.

Remark 5.2.3. Let the generator L of a Feller semigroup (Tt)t≥0 be given by
formula (2.3.9), Assumption 2.3.1 be fulfilled, coefficients A, B and C be of the
class C2,α

b (Rd) for some α ∈ (0,1) and a ≡ 1. Let D ∶= C2,α
c (Rd) ⊂ X be a core

for L in X . Consider Do ∶= {ϕ ∈ C2,α(G) ∶ ϕ,Lϕ ∈ Y } . If the boundary ∂G is of
the class C4,α then there exists a strongly continuous semigroup (T ot )t≥0 on Y
generated by the closure of (Lo,Do) in Y , and there exists a mapping E such
that Assumption 5.2.1 is fulfilled with respect to L, D, Do and E due to Thm. 2.2
and Thm. 3.4 in Baur, Conrad, and Grothaus, 2011.

Remark 5.2.4. Let again the boundary ∂G be of the classC4,α for some α ∈ (0,1).
Let C∞

c (Rd) ⊂ Dom(L) and L be given by formula (3.1.3). Consider L as the sum
L ∶= L1 + L2, where L1 is the differential operator given by formula (2.3.9) and
L2 is the integral part

L2ϕ(x) ∶= ∫
y≠0

(ϕ(x + y) − ϕ(x) −
y ⋅ ∇ϕ(x)

1 + ∣y∣2
)N(x, dy), ∀ϕ ∈ C2

∞(Rd), ∀x ∈ Rd.

Let L1 be as in Remark 5.2.3, i.e. Assumption 2.3.1 be fulfilled, coefficients A, B
and C be of the class C2,α

b (Rd) for some α ∈ (0,1), a ≡ 1. LetD ∶= C2,α
c (Rd) ⊂X be

the core for L1. Then, due to Remark 5.2.3, there exists an extension E satisfying
Assumption 5.2.1 (ii)-(v) with respect to L1 and cores D = C2,α

c (Rd) and Do =

{ϕ ∈ C2,α(G) ∶ ϕ,L1ϕ ∈ Y }. Let U ⊂ Rd be another bounded domain such that

3This fact together with its proof have been communicated to the author by Professor
Alessandra Lunardi.
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G ⊂ U . One may consider, e.g., U ≡ Uε ∶= {x ∈ Rd ∶ dist(x,G) < ε} for some small
constant ε > 0. Multiplying the extension E with a proper cut-off function, one
obtains another extension EU , satisfying Assumption 5.2.1 (ii)-(v) with respect
to L1 and the condition EU ∶ Y → Cc(U). Assume that N(x, dy) is such that
(L2,D) is L1-bounded and the closure of (L,D), L = L1+L2, generates a doubly
Feller semigroup on X . Let there exist a core Doo ⊂ {ϕ ∈ C2,α(G) ∶ ϕ, L1ϕ ∈ Y }

for the corresponding “killed‘” generator (Lo,Dom(Lo)). Then the extension
EU satisfies Assumption 5.2.1 (ii)-(v) with respect to L, D and Doo. Since L is a
non-local operator, Assumption 5.2.1 (vi) is not fulfilled automatically. And, for
each ϕ ∈Doo and each x ∈ G, we have

L(EU(ϕ))(x) −Loϕ(x) = ∫
y≠0

(EU(ϕ)(x + y) − ϕ(x + y))N(x, dy)

= ∫

y∈(−x+U∖G)

EU(ϕ)(x + y)N(x, dy).

Let L2 satisfy the additional condition: there exists a bounded domain U ⊃ G
such that for each x ∈ G holds

∫

y∈(−x+U∖G)

N(x, dy) = 0. (5.2.1)

Then the extension EU satisfies Assumption 5.2.1. The condition (5.2.1) actually
means that the process (ξt)t≥0 is allowed to leave the domain G either contin-
uously, or by a sufficiently large jump which brings the process even out of
U . Note that if N(x, dy) corresponds to censored processes (i.e., N(x, dy) sat-
isfies (5.1.3)), then the condition (5.2.1) is fulfilled. The condition (5.2.1) is also
fulfilled if, e.g., suppN(x, ⋅) ⊂ Rd ∖K for all x ∈ G and some compact K such
that ∪x∈G (−x +U ∖G) ⊂ K. One can take as K, e.g., a ball BR(x0) such that its
center x0 ∈ G and its raduius R > 2 diamU .

Consider now a continuous monotone function s ∶ (0,∞)→ (0,∞) such that

lim
t→0

s(t)

t
= 0.

Define the set Gs(t) ⊂ G by

Gs(t) ∶= {x ∈ G ∶ dist(x, ∂G) > s(t)}.

Let (φs(t))t>0
be a family of functions φs(t) ∶ Rd → [0,1] such that all φs(t) ∈

C∞
c (G), we have φs(t)(x) = 1, ∀x ∈ Gs(t), ∀ t > 0, and lim t→t∗ ∥φs(t) − φs(t∗)∥X = 0

for each t∗ > 0. Note that functions φs(t) converge pointwise to the indicator 1G
of the domain G when t → 0. Consider the family (Fo(t))t≥0 of operators on Y
defined by Fo(0) ∶= Id and for each t > 0, each ϕ ∈ Y and each x ∈ G

Fo(t)ϕ(x) ∶= φs(t)(x)[F (t)E(ϕ)](x) (5.2.2)
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where the given family (F (t))t≥0 is Chernoff equivalent to the semigroup (Tt)t≥0

on X generated by (L,Dom(L)) and F ′(0)ϕ = Lϕ for all ϕ ∈D.

Lemma 5.2.5. The family (Fo(t))t≥0 acts on Y and ∥Fo(t)∥ ≤ ∥F (t)∥. If the family
(F (t))t≥0 is strongly continuous on X then the family (Fo(t))t≥0 is strongly continu-
ous on Y .

Proof. The family (Fo(t))t≥0 acts on Y since, if ϕ ∈ Y = C0(G), then E(ϕ) ∈

Cc(Rd) ⊂ C∞(Rd) =X , F (t)E(ϕ) ∈X and φs(t)[F (t)E(ϕ)] ∈ Y . Moreover,

∥F0(t)ϕ∥Y = sup
x∈G

∣φs(t)(x)[F (t)E(ϕ)](x)∣

≤ ∥F (t)E(ϕ)∥X ≤ ∥F (t)∥∥E(ϕ)∥X = ∥F (t)∥∥ϕ∥Y .

Let us show the strong continuity of the family (Fo(t))t≥0 under assumption
that the family (F (t))t≥0 is strongly continuous on X . First, for each ϕ ∈ Y

lim
t→0

∥Fo(t)ϕ − ϕ∥Y = lim
t→0

sup
x∈G

∣φs(t)(x)[F (t)E(ϕ)](x) − ϕ(x)∣

= lim
t→0

sup
x∈G

∣φs(t)(x)([F (t)E(ϕ)](x) − E(ϕ)(x)) + ϕ(x)[φs(t)(x) − 1]∣

≤ lim
t→0

∥F (t)E(ϕ) − E(ϕ)∥X + lim
t→0

sup
x ∈G∖Gs(t)

∣ϕ(x)∣

= 0

due to strong continuity at zero of the family (F (t))t≥0 on X and uniform con-
tinuity of ϕ on the compact G ∖Gs(t). Second, for each t∗ > 0 and each ϕ ∈ Y

lim
t→t∗

∥Fo(t)ϕ − Fo(t
∗)ϕ∥Y

= lim
t→t∗

sup
x∈G

∣φs(t)(x)[F (t)E(ϕ)](x) − φs(t∗)(x)[F (t∗)E(ϕ)](x)∣

= lim
t→t∗

sup
x∈G

∣φs(t)(x)([F (t)E(ϕ)](x) − [F (t∗)E(ϕ)](x))+

+ (φs(t)(x) − φs(t∗)(x))[F (t∗)E(ϕ)](x)∣

≤ lim
t→t∗

∥φs(t)∥Y ⋅ ∥[F (t)E(ϕ)] − [F (t∗)E(ϕ)]∥X + ∥F (t∗)E(ϕ)∥X ⋅ ∥φs(t) − φs(t∗)∥Y

= 0

due to strong continuity of the family (F (t))t≥0 on X and propersties of the
family (φs(t))t>0

. Hence Lemma is proved.

Theorem 5.2.6. Under Assumption 5.2.1, the family (Fo(t))t≥0 is Chernoff equivalent
to the semigroup (T ot )t≥0, i.e.

T ot ϕ = lim
n→∞

[Fo(t/n)]
n
ϕ

for each ϕ ∈ Y locally uniformly with respect to t ≥ 0.
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Proof. Due to Lemma 5.2.5, we have ∥Fo(t)∥ ≤ ∥F (t)∥ ≤ ekt for some k ∈ R and
all t ≥ 0. Hence it is sufficient to show that limt→0 ∥t−1(Fo(t)ϕ−ϕ)−Loϕ∥Y = 0 for
all ϕ ∈Do. Due to Assumption 5.2.1

∥
Fo(t)ϕ − ϕ

t
−Loϕ∥

Y

= sup
x∈G

∣
φs(t)(x)[F (t)E(ϕ)](x) − ϕ(x)

t
−Loϕ(x)∣

≤ sup
x∈G

[∣φs(t)(x)∣∣
F (t)E(ϕ)(x) − E(ϕ)(x)

t
−LE(ϕ)(x)∣

+ (∣ϕ(x)/t∣ + ∣Loϕ(x)∣)∣1 − φs(t)(x)∣]

≤ ∥
F (t)E(ϕ) − E(ϕ)

t
−LE(ϕ)∥

X

+ sup
x∈G∖Gs(t)

(∣ϕ(x)/t∣ + ∣Loϕ(x)∣)

→ 0, as t→ 0.

Indeed, limt→0 ∥
F (t)E(ϕ)−E(ϕ)

t −LE(ϕ)∥
X
= 0 since E(ϕ) ∈ D and F ′(0) = L on D

by our assumptions. Further, ϕ ∈ Do ⊂ C2
b (G) ∩ Y . Hence ϕ is Lipschitz on G,

i.e. there exists a constant M > 0 such that the inequality ∣ϕ(x)−ϕ(z)∣ ≤M ∣x− z∣
holds for all x, z ∈ G. Moreover, for each x ∈ G ∖Gs(t), there exists at least one
point zx ∈ ∂G such that dist(x, zx) ≤ s(t). Therefore, ∣ϕ(x)∣ = ∣ϕ(x) − ϕ(zx)∣ ≤
Ms(t) for each x ∈ G ∖Gs(t). And

lim
t→0

sup
x∈G∖Gs(t)

∣ϕ(x)∣

t
≤ lim
t→0

M
s(t)

t
= 0.

Besides, since ϕ ∈Do ⊂ Dom(Lo), we have Loϕ ∈ Y = C0(G). Hence

lim
t→0

sup
x∈G∖Gs(t)

∣Loϕ(x)∣ = 0

due to uniform continuity of the function Loϕ on compacts G ∖Gs(t). Thus,
Theorem is proved.

Remark 5.2.7. Analogues of Theorem 5.2.6 are also valid in unbounded do-
mains G ⊂ Rd, in domains G of a locally compact metric space Q and in other
couples of Banach spaces X and Y (e.g., X ∶= Lp(Rd) and Y ∶= Lp(G), p ∈ [1,∞))
under corresponding modifications of Assumption 5.2.1 and properties of the
family (φs(t))t>0

, as well as under additional assumption on the existence of the
semigroup (T ot )t≥0.
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5.3 Lagrangian Feynman formulae for semigroups
generated by some killed Feller processes

Let (Tt)t≥0 be a doubly Feller semigroup on X whose generator (L,Dom(L))
is such that the set D ∶= C∞

c (Rd) is a core for L. Hence Lϕ is given by for-
mula (3.1.3) for each ϕ ∈ C2

∞(Rd). Assume that the coefficients A, B, C in
formula (3.1.3) are bounded and continuous. Let there exist a0, A0 ∈ R with
0 < a0 ≤ A0 < ∞ such that condition (2.3.1) holds. Let the measure N(x, dy) in
formula (3.1.3) do not depend on x, i.e. N(x, dy) ∶= N(dy) for all x ∈ Rd. Let
(ηt)t≥0 be the convolution semigroup on Rd corresponding4 to N(dy). Then, by
Theorem 3.2.6 and Theorem 3.3.4 (iii), the following family (F (t))t≥0 on X is
Chernoff equivalent to (Tt)t≥0: F (0) = Id and for all t > 0, all ϕ ∈X and all x ∈ Rd

F (t)ϕ(x) ∶=
e−tC(x)

√
(4πt)d detA(x)

∫

Rd
∫

Rd

e−
A−1(x)(z−x+tB(x)+y)⋅(z−x+tB(x)+y)

4t ϕ(y)dy ηt(dz).

(5.3.1)

Moreover, the family (F (t))t≥0 is a strongly continuous family of contractions.
Note also that, for g(x) ≡ 1, we have F (t)g(x) = exp{−tC(x)} ≤ 1 for all x ∈ Rd.

Let G ⊂ Rd be a regular bounded domain. Consider the corresponding Feller
semigroup (T ot )t≥0 on Y . Let Assumption 5.2.1 be fulfilled for some core Do

of the generator of (T ot )t≥0 and for some extension E ∶ Y → X with respect
to Do and D ∶= C∞

c (Rd). Then, by Theorem 5.2.6, the family (Fo(t))t≥0, con-
structed from the family (F (t))t≥0 in (5.3.1) through the formula (5.2.2), is Cher-
noff equivalent to the semigroup (T ot )t≥0. Hence Fo(0) = Id and for all t > 0 and
all ϕ ∈ Y

Fo(t)ϕ(x) ∶=
φs(t)(x)e−tC(x)

√
(4πt)d detA(x)

× (5.3.2)

× ∫

Rd
∫

Rd

exp{−
A−1(x)(z − x + tB(x) + y) ⋅ (z − x + tB(x) + y)

4t
}E(ϕ)(y)dy ηt(dz).

Therefore, we have uniformly with respect to x0 ∈ G and uniformly with respect
to t ∈ (0, t∗] for all t∗ > 0

T ot ϕ(x0) = lim
n→∞

F n
o (t/n)ϕ(x0) = lim

n→∞∫

Rd
∫

Rd

. . .∫
Rd
∫

Rd

(
n

∏
k=1

φs(t/n)(xk−1))E(ϕ)(xn)×

×Ψx0
t,n(x1, . . . , zn)dxnηt/n(dzn)⋯dx1ηt/n(dz1),

(5.3.3)

4I.e. the Fourier transforms F[ηt] of sub-probability measures ηt for all t ≥ 0 are given
by F[ηt](x) = (2π)−d/2e−tr(x), where the function r ∶ Rd → C is defined by r(x) ∶=
∫Rd∖{0} (1 − eiy⋅x + iy⋅x

1+∣y∣2 )N(dy).
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where

Ψx0
t,n(x1, . . . , zn) ∶= (

n

∏
k=1

(4πt/n)−d/2(detA(xk−1))
−1/2) exp{−

t

n

n

∑
k=1

C(xk−1)}×

× exp{−
n

∑
k=1

A−1(xk−1)(zk − xk−1 + tB(xk−1) + xk) ⋅ (zk − xk−1 + tB(xk−1) + xk)

4t/n
} .

Since all φs(t) are smooth functions with compact supports in G and E(ϕ) is a
continuous function with compact support K ∶= suppE(ϕ), the 2n-fold iterated
integrals over Rd in (5.3.3) coincide with the following 2n-fold multiple integral

Φϕ
n(t, x0) ∶= ∫

Gn−1×K×Rnd

(
n

∏
k=1

φs(t/n)(xk−1))E(ϕ)(xn)×

×Ψx0
t,n(x1, . . . , zn)dx1⋯dxnηt/n(dz1)⋯ηt/n(dzn).

Consider also

Θϕ
n(t, x0) ∶= ∫

Gn×Rnd

ϕ(xn)Ψ
x0
t,n(x1, . . . , zn)dx1⋯dxnηt/n(dz1)⋯ηt/n(dzn).

Let us show that for all t > 0 and all x0 ∈ G holds

T ot ϕ(x0) = lim
n→∞

Θϕ
n(t, x0). (5.3.4)

And the convergence in (5.3.4) is locally uniform with respect to x0 ∈ G and
uniform with respect to t ∈ (0, t∗] for all t∗ > 0. So, consider a number t∗ > 0 and
a compact Υ ⊂ G. Let x0 ∈ Υ and t ∈ (0, t∗]. Then

∣Φϕ
n(t, x0) −Θϕ

n(t, x0)∣ ≤ ∫

Gn−1×K×Rnd

(
n

∏
k=1

∣φs(t/n)(xk−1) − 1G(xk−1)∣) ∣E(ϕ)(xn)∣×

×Ψx0
t,n(x1, . . . , zn)dx1⋯dxnηt/n(dz1)⋯ηt/n(dzn)

+ ∫

Gn−1×Rnd

⎛

⎝
∫

K∖G

∣E(ϕ)(xn)∣Ψ
x0
t,n(x1, . . . , zn)dxn

⎞

⎠
dx1⋯dxn−1ηt/n(dz1)⋯ηt/n(dzn).

Let us estimate each of the summands separately. Denote the first summand by
Iϕn (t, x0) and the second by Jϕn (t, x0). We have with g(x) ≡ 1

Iϕn (t, x0)

≤ ∥ϕ∥Y ∣φs(t/n)(x0) − 1G(x0)∣∫

Rd

. . .∫
Rd

Ψx0
t,n(x1, . . . , zn)dxnηt/n(dzn)⋯dx1ηt/n(dz1)

= ∥ϕ∥Y ∣φs(t/n)(x0) − 1G(x0)∣ (F
n(t/n)g(x0)) ≤ ∥ϕ∥Y ∣φs(t/n)(x0) − 1G(x0)∣.
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By the construction of the sets Gs(t), there exists N ∈ N such that Υ ⊂ Gs(t∗/N).
Hence for all n ≥ N , x0 ∈ Υ, t ∈ (0, t∗] holds ∣φs(t/n)(x0) − 1G(x0)∣ = 0. Therefore,

lim
n→∞

Iϕn (t, x0) = 0 uniformly with respect to x0 ∈ Υ, t ∈ (0, t∗].

Consider now the second summand Jϕn (t, x0). Due to condition (2.3.1), we have
for all x ∈ G, y ∈K, z ∈ Rd, t ∈ (0, t∗] and n ∈ N

e−tC(x)/n
√

(4πt/n)d detA(x)
exp{−

A−1(x)(z − x + tB(x)/n + y) ⋅ (z − x + tB(x)/n + y)

4t/n
}

≤M(A0/a0)
d/2(4A0πt/n)

−d/2 exp{−
∣x − y∣2

4A0t/n
} ,

where

M ∶= sup
x∈G,y∈K,z∈Rd, t∈(0,t∗],n∈N

exp{−
∣z + tB(x)/n∣2 + 2(z + tB(x)/n) ⋅ (y − x)

4A0t/n
} <∞.

Therefore, with c ∶=M(A0/a0)
d/2 and pA0(t, x, y) ∶= (4A0πt)−d/2 exp{−

∣x−y∣2
4A0t

}

Jϕn (t, x0) ≤ c
⎛

⎝
sup
x∈G
∫

K∖G

pA0(t/n,x, y)∣E(ϕ)(y)∣dy
⎞

⎠
(F n−1(t/n)g(x0))

≤ c
⎛

⎝
sup
x∈G
∫

K∖G

pA0(t/n,x, y)∣E(ϕ)(y)∣dy
⎞

⎠
.

Denote by Gδ the δ-neighborhood of G in Rd, i.e. Gδ ∶= {x ∈ Rd ∶ dist(x,G) < δ},
δ > 0. Fix any ε > 0. Since E(ϕ) is a continuous function on Rd which equals zero
on ∂G, there exists δ > 0 such that ∣E(ϕ)∣ ≤ ε/2 on Gδ ∖G. Hence

sup
x∈G
∫

K∖G

pA0(t/n,x, y)∣E(ϕ)(y)∣dy ≤ sup
x∈G
∫

Gδ∖G

pA0(t/n,x, y)∣E(ϕ)(y)∣dy

+ sup
x∈G
∫

K∖Gδ

pA0(t/n,x, y)∣E(ϕ)(y)∣dy ≤
ε

2
+ ∥ϕ∥Y sup

x∈G
∫

K∖Gδ

pA0(t/n,x, y)dy.

Due to Gaussian fall off of pA0 there exists N ∈ N such that for all n ≥ N and all
t ∈ (0, t∗] holds

∥ϕ∥Y sup
x∈G
∫

K∖Gδ

pA0(t/n,x, y)dy ≤
ε

2
.

Consequently, since ε > 0 has been chosen arbitrary,

lim
n→∞

Jϕn (t, x0) = 0 uniformly with respect to x0 ∈ Υ, t ∈ (0, t∗].

Therefore, the following statement is proved.
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Proposition 5.3.1. Under all assumptions of this Section, the following Feynman for-
mula holds for the semigroup (T ot )t≥0:

T ot ϕ(x0) = lim
n→∞

Θϕ
n(t, x0) = lim

n→∞ ∫

Gn×Rnd

ϕ(xn)(
n

∏
k=1

(4πt/n)−d/2(detA(xk−1))
−1/2)×

× exp{−
n

∑
k=1

A−1(xk−1)(zk − xk−1 + tB(xk−1) + xk) ⋅ (zk − xk−1 + tB(xk−1) + xk)

4t/n
}×

× exp{−
t

n

n

∑
k=1

C(xk−1)}dx1⋯dxnηt/n(dz1)⋯ηt/n(dzn), ∀ϕ ∈ Y, ∀x0 ∈ G.

(5.3.5)

And the convergence in this Feynman formula is locally uniform with respect to x0 ∈ G
and uniform with respect to t ∈ (0, t∗] for all t∗ > 0.

As a particular case, we have the following result.

Corollary 5.3.2. Let all the assumptions of this Section be fulfilled. Let N(dy) ≡ 0,
i.e. ηt = δ0 for all t ≥ 0. Then the family (F (t))t≥0 given in (5.3.1) coincides with
the family in formula (2.3.12) (and in formula (3.2.9)), i.e. (F (t))t≥0 has the following
view: F (0) ∶= Id and for all t > 0 and all ϕ ∈X

F (t)ϕ(x) ∶ =
e−tC(x)

√
(4πt)d detA(x)

∫

Rd

e−
A−1(x)(x−tB(x)−y)⋅(x−tB(x)−y)

4t ϕ(y)dy

≡ e−tC(x)
∫

Rd

e
A−1(x)B(x)⋅(x−y)

2 e−t
∣A−1/2(x)B(x)∣2

4 ϕ(y)pA(t, x, y)dy,

where pA(t, x, y) is given for all x, y ∈ Rd by formula (2.3.5). This family (F (t))t≥0

is a strongly continuous family of contractions on X which is Chernoff equivalent to
the semigroup (Tt)t≥0. Moreover, the corresponding semigroup (T ot )t≥0 can be approx-
imated via the following Feynman formula:

T ot ϕ(x0) = lim
n→∞∫

Gn

exp( −
t

n

n

∑
j=1

(C(xj−1) +
1

4
∣A−1/2(xj−1)B(xj−1)∣

2
))

× exp( −
1

2

n

∑
j=1

A−1(xj−1)B(xj−1) ⋅ (xj − xj−1))ϕ(xn)

× pA(t/n,x0, x1)⋯pA(t/n,xn−1, xn)dx1 . . . dxn, (5.3.6)

for each ϕ ∈ Y , each x0 ∈ G and each t > 0. The convergence in the Feynman for-
mula (5.3.6) is locally uniform with respect to x0 ∈ G and uniform with respect to
t ∈ (0, t∗] for all t∗ > 0.

Remark 5.3.3. It is assumed in this Subsection thatC∞
c (Rd) is a core for L. If L is

given by formula (2.3.9) (with a ≡ 1) with continuous and bounded coefficients
A, B, C, then C∞

c (Rd) ⊂ C2,α
c (Rd) ⊂ Dom(L) and hence C2,α

c (Rd) is also a core for
L. Therefore, one may consider D ∶= C2,α

c (Rd) (or any other bigger core for L)
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and find corresponding Do and E such that Assumption 5.2.1 holds. In princi-
ple, the bigger D is chosen, the easier is to find E satisfying the condition (v) of
Assumption 5.2.1 that E(Do) ⊂D. As it follows from the proof of Theorem 2.3.5,
the family (F (t))t≥0 given in (2.3.12) satisfies the condition

lim
t→0

∥
F (t)ϕ − ϕ

t
−Lϕ∥

X

= 0 for all ϕ ∈ C2,α
c (Rd), α ∈ (0,1).

Therefore, it is sufficient to assume that the setC2,α
c (Rd) is a core for the operator

L in Corollary 5.3.2.

Remark 5.3.4. Under assumptions of Corollary 5.3.2, the function f(t, x) ∶=

T ot f0(x) (with (T ot )t≥0 from Corollary 5.3.2) solves the Cauchy–Dirichlet initial-
boundary value problem (5.1.4) with the operator L given by formula (2.3.9)
(with a ≡ 1) and f0 ∈ Dom(Lo). The Feynman formula (5.3.6) holds for each
f0 ∈ Y . Generally, the function f(t, x) ∶= T ot f0(x), f0 ∈ Y , is only a mild (but
not classical) solution to the Cauchy–Dirichlet problem (5.1.4) because it might
not be differentiable. However, under assumptions of Corollary 5.3.2, (T ot )t≥0

is analytic due to Theorem D.0.9. Hence T ot f0 is differentiable for all f0 ∈ Y .
Therefore, we can represent a classical solution to the Cauchy–Dirichlet prob-
lem (5.1.4) for the second order parabolic equation with L given by (2.3.12) by
formula (5.3.6) even for all f0 ∈ Y = C0(G).

Remark 5.3.5. Let f0 ∈ D(Lo) and 0 < T < ∞. A (local in time) solution of
the the Cauchy–Dirichlet initial-boundary value problem (5.1.4) for the second
order parabolic equation with L given by (2.3.9) (with a ≡ 1) can be represented
by the Feynman–Kac formula (see Zhang and Jiang, 2001, Lem. 3.1, Thm. 3.3,
cf. Pinsky, 1995, Thm. 3.4.1.):

f(t, x) = Ex[ exp( −

t

∫
0

C(ξs)ds)f0(ξt)1{t<τG}], x ∈ G, t ∈ (0, T ), (5.3.7)

where Ex is the law of the (starting in x ∈ G) diffusion process (ξt)t∈[0,T ] with
the variable diffusion matrix A and drift −B, τG is the first exit time of (ξt)t∈[0,T ]
from G. Hence, finite-dimensional integrals in the Feynman formula (5.3.6)
give us an approximation to the functional integral in the Feynman–Kac for-
mula (5.3.7) and this approximation contains only integrals of elementary func-
tions and does not contain transitional densities of the diffusion process.



Chapter 6

Applications

This Chapter illustrates a range of applications of the results of Chapters 2 — 5
and presents some explicit formulae, suitable for numerical methods. In Sec-
tions 6.1, 6.2, we apply the results of Chapters 2, 4, namely, the technique of
Chernoff approximation for semigroups generated by subordination as well
as by additive and multiplicative perturbations (of generators) of some origi-
nal semigroups, in order to approximate solutions of some evolution equations
on different geometrical structures. Further, Section 6.3 demonstrates how the
Chernoff approximations obtained in Chapters 2 — 5 and in Sections 6.1, 6.2
of the present Chapter can be used for constructing some approximations for
solutions of time-fractional evolution equations.

6.1 Chernoff approximations for some subordinate
diffusions in a star graph

In the recent years, there was a growing interest in metric graphs because of
their wide range of important applications (see, e.g., Exner et al., 2008, Berko-
laiko and Kuchment, 2013 and references therein). The simplest metric graphs
are star or single vertex graphs. We consider a star graph Γ with vertex v and
d ∈ N external edges l1, . . . , ld. Let ρ be the metric on Γ induced by the isomor-
phism lk ≅ [0,+∞). Thus (Γ, ρ) is a locally compact metric space. Consider also
Γo ∶= Γ ∖ {v} = ⊔dk=1l

o
k, where lok ≅ (0,+∞). Each point χ ∈ Γo is in one-to-one cor-

respondence with its local coordinates (k, x), where k ∈ {1, . . . , d} is the index
of the edge χ belongs to, x = ρ(χ, v) > 0. For each function ϕ ∶ Γ → C denote its

restriction to the edge lok by ϕk(x) ∶= ϕ(χ)∣χ∈lo
k

. Define ∫
Γ

ϕ(χ)dχ ∶=
d

∑
k=1

∞

∫
0

ϕk(x)dx.

Let C∞(Γ) be the Banach space of continuous functions on Γ vanishing at infin-
ity equipped with the sup-norm ∥ ⋅ ∥∞. Consider the set

C2
∞(Γ) ∶= {ϕ ∈ C∞(Γ) ∣ ϕ ∈ C2

∞(Γo), ϕ′′ extends to Γ as a function inC∞(Γ)} .

It holds for each ϕ ∈ C2
∞(Γ) due to Lemma 1.3 in Kostrykin, Potthoff, and

Schrader, 2012a: ϕ′ vanishes at infinity and the limits ϕ′k(0) ∶= limχ→v,χ∈lo
k
ϕ′(χ)

103
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exist for all k ∈ {1, . . . , d}. However, we have in general ϕ′k(0) ≠ ϕ
′
j(0) for k ≠ j.

In contrast, it holds limχ→v,χ∈lo
k
ϕ′′(χ) = ϕ′′(v) for all k ∈ {1, . . . , d}.

Let δv be the Dirac delta-measure concentrated at the vertex v. Let 1k be the
indicator of the edge lok for each k ∈ {1, . . . , d}, i.e. 1k(χ) = 1 if χ ∈ lok, and
1k(χ) = 0 if χ ∉ lok. Consider also the Gaussian kernel g(t, z) = (2πt)−1/2 exp (−z

2

2t ).
Define

ρv(χ, ζ) ∶= ρ(χ, v) + ρ(v, ζ)

for all χ, ζ ∈ Γ. Then ρv(χ, ζ) is the distance between χ and ζ via the vertex v;
and if χ and ζ do not belong to the same edge, then ρv(χ, ζ) = ρ(χ, ζ). Define
the following kernels on Γ for t > 0, χ, ζ ∈ Γ

p(t, χ, ζ) ∶=
d

∑
k=1

1k(χ)1k(ζ)g(t, ρ(χ, ζ)),

pv(t, χ, ζ) ∶=
d

∑
k=1

1k(χ)1k(ζ)g(t, ρv(χ, ζ))

Hence in local coordinates χ = (k, x), ζ = (m,y), x, y ≥ 0, k,m ∈ {1, . . . , d}, these
kernels read

p(z, (k, x), (m,y)) = (2πt)−1/2 exp(
−(x − y)2

2t
) δkm,

pv(z, (k, x), (m,y)) = (2πt)−1/2 exp(
−(x + y)2

2t
) δkm.

Define also the Dirichlet kernel pD on Γ for t > 0, χ, ζ ∈ Γ by

pD(t, χ, ζ) ∶= p(t, χ, ζ) − pv(t, χ, ζ).

It is the transition density of a strong Markov process with state space Γo ∪
{∂} which on every edge of Γo is equivalent to a Brownian motion until the
moment of reaching the vertex when it is killed, and ∂ denotes a cemetery state
considered adjoint to Γ as an isolated point.

Let now a, c, bk ∈ [0,1], k ∈ {1, . . . , d}, a ≠ 1 and a + c +
d

∑
k=1

bk = 1. We consider the

(half of) Laplacian L0 on Γ with Wentzell boundary conditions at the vertex v
determined by constants a, c, bk. Namely,

Dom(L0) ∶= {ϕ ∈ C2
∞(Γ) ∣ aϕ(v) +

c

2
ϕ′′(v) =

d

∑
k=1

bkϕ
′
k(v)} ⊂ C∞(Γ),

L0ϕ ∶=
1

2
ϕ′′ for all ϕ ∈ Dom(L0).

Due to results of Kostrykin, Potthoff, and Schrader, 2012a; Kostrykin, Potthoff,
and Schrader, 2012b, the following statement is true.
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Proposition 6.1.1. The operator (L0,Dom(L0)) is the generator of a strongly contin-
uous semigroup (T 0

t )t≥0 on the space C∞(Γ) and for each ϕ ∈ C∞(Γ) one has

T 0
t ϕ(χ) = ∫

Γ

ϕ(ζ)P (t, χ, dζ),

where the transition kernel P (t, χ, dζ) is given explicitly by the following formulae:

(i) for the case a + c ∈ (0,1) with wk ∶=
bk

1−a−c , β ∶= a
1−a−c , γ ∶= c

1−a−c and

gβ,γ(t, z) ∶=
1

γ2
(2πt)−1/2

t

∫
0

s + γz

(t − s)3/2 exp( −
(s + γz)2

2γ2(t − s)
)e−βs/γds,

one has

P (t, χ, dζ) = (6.1.1)

= pD(t, χ, ζ)dζ +
d

∑
k,j=1

1k(χ)1j(ζ)2wjgβ,γ(t, ρv(χ, ζ))dζ + γgβ,γ(t, ρ(χ, v))δv(dζ);

(ii) for the case a + c = 0 with wk ∶= bk, one has

P (t, χ, ζ) = pD(t, χ, ζ)dζ +
d

∑
k,j=1

1k(χ)1j(ζ)2wjg(t, ρv(χ, ζ))dζ; (6.1.2)

(iii) for the case a + c = 1 with a = β
1+β and c = 1

1+β , one has

P (t, χ, ζ) = pD(t, χ, ζ)dζ −
⎛

⎝

t

∫
0

e−β(t−s)
ρ(χ, v)
√

2πs3
exp(−

ρ(χ, v)2

2s
)ds,

⎞

⎠
δv(dζ).

(6.1.3)

Remark 6.1.2. The case (ii) corresponds to the so-called Walsh process. Starting
at χ ∈ Γo, this process moves as a Brownian motion on the edge containing χ
until it hits the vertex, and then performs Brownian excursions from the vertex
v into the edges lk, k ∈ {1, . . . , d}, whereby the edge lk is selected with proba-
bility wk. The case (iii) describes the process which, starting at χ ∈ Γo, moves
as a Brownian motion on the edge containing χ until it hits the vertex; then the
process is killed after an exponential holding time (independent of the Brown-
ian motion) with the rate β ≥ 0. If β = 0, then the process is simply a Brownian
motion on (0,+∞) with absorption at the origin. In the case (i), the heat ker-
nel P (t, χ, dζ) is the transition kernel of the process of Brownian motion on Γ
constructed by killing (after an exponential holding time with the rate β at the
vertex) the Walsh process with sticky vertex with stickness parameter γ (see
Kostrykin, Potthoff, and Schrader, 2012a; Kostrykin, Potthoff, and Schrader,
2012b for the detailed exposition).
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Consider now a function A(⋅) ∈ C(Γ) such that there exist a0,A0 ∈ (0,+∞) with
a0 ≤ A(χ) ≤ A0 for all χ ∈ Γ. Then the operator (ÌL0,Dom(L0)), such that

ÌL0ϕ(χ) = A(χ)ϕ′′(χ)

for all ϕ ∈ Dom(L0), generates a strongly continuous semigroup (ÌT 0
t )t≥0 on X =

C∞(Γ) by Theorem D.0.7. Consider the family ( ÌF 0(t))t≥0 on X defined by

ÌF 0(t)ϕ(χ) ∶= ∫
Γ

ϕ(ζ)P (2A(χ)t, χ, dζ) (6.1.4)

with P (t, χ, dζ) as in Proposition 6.1.1 (formulae (6.1.1), (6.1.2), (6.1.3)). The
family ( ÌF 0(t))t≥0 is strongly continuous and Chernoff equivalent to the semi-
group (ÌT 0

t )t≥0 by Theorem 2.2.2, Proposition 2.2.6 and Lemma 2.2.4.

Consider a function B ∶ Γ → R such that B(v) = 0 and B ∈ C2
b (Γ), where

C2
b (Γ) ∶= {ϕ ∈ Cb(Γ) ∣ ϕ ∈ C2

b (Γ
o), ϕ′′ extends to Γ as a function inCb(Γ)}. Define

the operator −B∇ with Dom(−B∇) ∶= C2
∞(Γ) by

−B∇ϕ(χ) ∶= {
−B(χ)ϕ′(χ), χ ∈ Γo,
0, χ = v,

for all ϕ ∈ Dom(−B∇).

Since B ∈ Cb(Γ), B(v) = 0 and ϕ′k(0), k ∈ {1, . . . , d}, are bounded for each ϕ ∈

C2
∞(Γ), it holds that −B∇ ∶ Dom(−B∇)→ C∞(Γ). Moreover, we have

Lemma 6.1.3. The operator (ÍL0 −B∇,C2
∞(Γ)) generates a strongly continuous con-

traction semigroup on X .

Proof. First, the operator (−B∇,C2
∞(Γ)) is dissipative due to Remark A.0.14.

Indeed, for each ϕ ∈ C2
∞(Γ) take lχ0 ∈ J (ϕ) such that lχ0 = ϕ(χ0)δχ0 , where

χ0 ∶ ∣ϕ(χ0)∣ = ∥ϕ∥X . Then

Re ⟨−B∇ϕ, lχ0⟩ = Re
⎛

⎝
−∫

Γ

B∇ϕ(χ)ϕ(χ0)δχ0(dχ)
⎞

⎠

= {
0, χ0 = v,
−B(χ0)Re (ϕ′(χ0)), χ0 ≠ v.

If χ0 = (k, x0) ∈ lok for some k ∈ {1, . . . , d} then ϕ′(χ0) = ϕ′k(x0) = 0 since x0 is a
local maximum for ∣ϕ′k∣. Therefore, Re ⟨−B∇ϕ, lχ0⟩ = 0 and hence (−B∇,C2

∞(Γ))

is dissipative. Moreover, the operator (−B∇,C2
∞(Γ)) is ÍL0-bounded. Indeed,

using Example D.0.2, we have for each ϕ ∈ Dom(ÍL0) ≡ Dom(L0) and each α > 0
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with some k0 ∈ {1, . . . , d} and some β ≥ 0

∥ −B∇ϕ∥X ≤ ∥B∥∞ max
1≤k≤d

sup
x∈(0,+∞)

∣ϕ′k(x)∣

= ∥B∥∞ sup
x∈(0,+∞)

∣ϕ′k0
(x)∣ ≤ ∥B∥∞ (α sup

x∈(0,+∞)
∣ϕ′′k0

(x)∣ + β sup
x∈(0,+∞)

∣ϕk0(x)∣)

≤ (α∥B∥∞)∥ϕ′′∥X + (β∥B∥∞)∥ϕ∥X .

Hence the operator (ÍL0 − B∇,C2
∞(Γ)) generates a strongly continuous semi-

group on X by Theorem D.0.4 and Corollary D.0.5 (cf., e.g., Pazy, 1983, Corol-
lary III.3.3.).

Let us construct an analogue of the family (S(t))t≥0 of Lemma 2.1.6. Namely,
define the family (St)t≥0 on C∞(Γ) by

Stϕ(χ) ∶= ϕ(χ − tB(χ)) ∶=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

ϕk(x − tBk(x)), χ = (k, x), x − tBk(x) > 0,
ϕ(v), χ = (k, x), x − tBk(x) ≤ 0,
ϕ(v), χ = v.

(6.1.5)

Lemma 6.1.4. Let the family (St)t≥0 be defined by (6.1.5). Then the following holds:

(i) Stϕ ∈ C∞(Γ) for each ϕ ∈ C∞(Γ);

(ii) the family (St)t≥0 is a strongly continuous family of linear contractions on X =

C∞(Γ);

(iii) lim
t→0

∥
Stϕ−ϕ
t +B∇ϕ∥

X
= 0 for all ϕ ∈ C2

∞(Rd).

Proof. Obviously, St are linear operators and S0 = Id. Let us check that, for
each fixed ϕ ∈ X and each fixed t > 0, Stϕ is continuous at each point χ0 ∈ Γ.
Consider the case χ0 = (k, x0) ∈ lok, k ∈ {1, . . . , d}. If x0 − tBk(x0) > 0 then there
exists a neigbourhood U(χ0) ⊂ lok such that for all χ = (k, x) ∈ U(χ0) holds
x − tBk(x) > 0 due to continuity of B. Hence, for χ ∈ U(χ0), we have Stϕ(χ) =
ϕk(x − tBk(x)) → ϕk(x0 − tBk(x0)) = Stϕ(χ0) as ρ(χ,χ0) → 0. If x0 − tBk(x0) < 0
then there exists a neigbourhood U(χ0) ⊂ lok such that for all χ = (k, x) ∈ U(χ0)

holds x − tBk(x) < 0. Hence, for χ ∈ U(χ0), we have Stϕ(χ) = ϕ(v) = Stϕ(χ0). If
x0 − tBk(x0) = 0 then Stϕ(χ0) = ϕ(v). Fix an arbitrary ε > 0. Due to continuity of
ϕ, for each ε > 0, there exists δ > 0 such that for all η ∈ Γ with ρ(η, v) < δ holds
∣ϕ(η) − ϕ(v)∣ < ε. Since B ∈ Cb(Γ), for each δ > 0 there exists γ > 0 such that for
all χ = (k, x) ∈ lok with ρ(χ,χ0) < γ holds ∣x − tBk(x)∣ < δ. Then, for such χ, we
have Stϕ(χ) = ϕ(η) with ρ(η, v) < δ, where η = v or η = x − tBk(x) depending on
the sign of x − tBk(x). Therefore, ∣Stϕ(χ) − Stϕ(χ0)∣ < ε. The case χ0 = v can be
considered analogously. Hence Stϕ is a continuous on Γ function. Obviously,
for χ = (k, x) ∈ Γ with ρ(χ, v) > t∥B∥∞, we have Stϕ(χ) = ϕk(x − tBk(x)) → 0 as
x→∞ for each ϕ ∈ C∞(Γ). And Stϕ ∈ C∞(Γ), i.e. St ∶ C∞(Γ)→ C∞(Γ).
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Obviously, ∥St∥ ≤ 1. So, let us check now that the family (St)t≥0 is strongly
continuous. Consider the continuity at t0 = 0. We have for each ϕ ∈ C∞(Γ) and
some k0 ∈ {1, . . . , d}:

∥Stϕ − ϕ∥X = max
1≤k≤d

sup
x∈(0,∞)

∣(Stϕ)k(x) − ϕk(x)∣ = sup
x∈(0,∞)

∣(Stϕ)k0(x) − ϕk0(x)∣

= sup
⎛

⎝
sup

x>0, x−tBk0
(x)≤0

∣ϕk0(0) − ϕk0(x)∣; sup
x>0, x−tBk0

(x)>0

∣ϕk0(x − tBk0(x)) − ϕk0(x)∣
⎞

⎠
.

Further, let ∥ϕ′∥∞ ∶= sup
χ∈Γo

∣ϕ′(χ)∣. We have with some zx in between x and x −

tBk0(x)

sup
x>0, x−tBk0

(x)>0

∣ϕk0(x − tBk0(x)) − ϕk0(x)∣ ≤ sup
x>0

∣ϕ′(zx)tBk0(x)∣ ≤ t∥B∥∞∥ϕ′∥∞.

In the case x − tBk0(x) ≤ 0, we have ∣x∣ ≤ t∥B∥∞. And hence it holds with some
zx ∈ (0, x)

sup
x>0, x−tBk0

(x)≤0

∣ϕk0(0) − ϕk0(x)∣ ≤ sup
0<x≤t∥B∥∞

∣xϕ′(zx)∣ ≤ t∥B∥∞∥ϕ′∥∞.

Therefore, ∥Stϕ − ϕ∥X ≤ t∥B∥∞∥ϕ′∥∞ → 0 as t → 0. The continuity at t0 > 0 can
be shown in a similar way. Hence the family (St)t≥0 is a strongly continuous
family of cantractions on X .

Let us check finally that lim
t→0

∥
Stϕ−ϕ
t +B∇ϕ∥

X
= 0 for all ϕ ∈ C2

∞(Rd). First, we
have for each ϕ ∈ C2

∞(Rd) and for each k ∈ {1, . . . , d}

sup
x>0, x−tBk(x)>0

∣
(Stϕ)k(x) − ϕk(x)

t
+Bk(x)ϕ

′
k(x)∣

= sup
x>0, x−tBk(x)>0

∣
ϕk(x − tBk(x)) − ϕk(x) + tBk(x)ϕ′k(x)

t
∣

≤ t∥ϕ′′∥∞∥B∥2
∞ → 0, t→ 0.
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Second, we have for each ϕ ∈ C2
∞(Rd) and for each k ∈ {1, . . . , d} with some

zx ∈ (0, x)

sup
x>0, x−tBk(x)≤0

∣
(Stϕ)k(x) − ϕk(x)

t
+Bk(x)ϕ

′
k(x)∣

= sup
0<x≤tBk(x)

∣
ϕk(0) − ϕk(x) + tBk(x)ϕ′k(x)

t
∣

= sup
0<x≤tBk(x)

∣
−xϕ′(x) + x2ϕ′′(zx) + tBk(x)ϕ′k(x)

t
∣

≤ t∥B∥2
∞∥ϕ′′∥∞ + sup

0<x≤tBk(x)
(
∣x − tBk(x)∣

t
) ∥ϕ′∥∞

≤ t∥B∥2
∞∥ϕ′′∥∞ + sup

0<x≤t∥B∥∞
(2∣Bk(x)∣) ∥ϕ

′∥∞ → 0, t→ 0,

since B(v) = 0 and B ∈ Cb(Γ). Therefore,

lim
t→0

∥
Stϕ − ϕ

t
+B∇ϕ∥

X

= lim
t→0

max
1≤k≤d

sup
x∈(0,∞)

∣
(Stϕ)k(x) − ϕk(x)

t
+Bk(x)ϕ

′
k(x)∣ = 0.

Consider now C ∈ Cb(Γ) such that C(χ) ≥ 0 for all χ ∈ Γ. Let as before a, c,

bk ∈ [0,1], k ∈ {1, . . . , d}, a ≠ 1 and a+ c+
d

∑
k=1

bk = 1. Consider the operator L in the

space X = C∞(Γ) defined by

Dom(L) ∶= {ϕ ∈ C2
∞(Γ) ∣ aϕ(v) +

c

2
ϕ′′(v) =

d

∑
k=1

bkϕ
′
k(v)} ,

Lϕ(χ) ∶= A(χ)ϕ′′(χ) −B∇ϕ(χ) −C(χ)ϕ(χ) for all ϕ ∈ Dom(L). (6.1.6)

Then the operator (L,Dom(L)) is the generator of a strongly continuous con-
traction semigroup (Tt)t≥0 on the space X by Lemma 6.1.3 and Corollary D.0.5
as a bounded additive perturbation of ÍL0 −B∇.

Let now the semigroup (T ft )t≥0 be subordinate to the semigroup (Tt)t≥0 with
respect to a given convolution semigroup (ηt)t≥0 associated to a Bernstein func-
tion f defined by a triplet (σ,λ,µ). The statement (i) of Theorem 6.1.5 below
follows immediately from Lemma 6.1.4, Proposition 6.1.1 and Corollary 2.1.2.
The statements (ii) and (iii) follow from Theorem 4.2.1 and Theorem 4.3.1 re-
spectively.
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Theorem 6.1.5. (i) Let A(⋅) ∈ C(Γ) be such that there exist a0,A0 ∈ (0,+∞) with
a0 ≤ A(χ) ≤ A0 for all χ ∈ Γ. Let B ∶ Γ → R be such that B(v) = 0 and B ∈ C2

b (Γ).
Let C ∈ Cb(Γ) and C(χ) ≥ 0 for all χ ∈ Γ. Let (Tt)t≥0 be the strongly continuous
contraction semigroup generated by (L,Dom(L)) which is given by (6.1.6). Consider
the family (F (t))t≥0 of bounded linear contrations on X = C∞(Γ) defined by

F (t) ∶= e−tC ○ St ○ ÌF 0(t) ∀ t ≥ 0; i.e. for all ϕ ∈X

F (t)ϕ(χ) ∶= e−tC(χ)
∫
Γ

ϕ(ζ)P (2A(χ − tB(χ))t, χ − tB(χ), dζ), ∀χ ∈ Γ, (6.1.7)

where the operators ÌF 0(t) and St are given by (6.1.4) and (6.1.5) respectively. Then
the family (F (t))t≥0 is strongly continuous and Chernoff equivalent to the semigroup
(Tt)t≥0.

(ii) Under assumptions and notations of Theorem 4.2.1, the family (F(t))t≥0, con-
structed with the help of (F (t))t≥0 given by (6.1.7), is Chernoff equivalent to the semi-
group (T ft )t≥0. The operators F(t) have the following explicit view:

F(0) ∶= Id

and and for all t > 0, ϕ ∈X , χ ∈ Γ

F(t)ϕ(χ) ∶= e−σt∫
Γ

∞

∫
0+
∫
Γ

⋯∫
Γ

exp
⎛

⎝
−λtC(χ) −

s

m(t)

m(t)

∑
k=1

C(χk+1)
⎞

⎠
ϕ(χ1)

×

m(t)

∏
k=1

P (2A(χk+1 − (s/m(t))B(χk+1))s/m(t), χk+1 − (s/m(t))B(χk+1), dχk)

× η0
t (ds)P (2A(χ − tλB(χ))tλ,χ − tλB(χ), dχm(t)+1).

(iii) Under assumptions and notations of Theorem 4.3.1, the family (Fµ(t))t≥0, con-
structed with the help of (F (t))t≥0 given by (6.1.7), is Chernoff equivalent to the semi-
group (T ft )t≥0. The operators Fµ(t) have the following explicit view: Fµ(0) ∶= Id and
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for all t > 0, ϕ ∈X , χ ∈ Γ

Fµ(t)ϕ(χ) ∶=

= e−σt−λtC(χ)
∫
Γ

⎡
⎢
⎢
⎢
⎢
⎣

ϕ(χm(t)+1) + t

∞

∫
0+

⎛

⎝
∫
Γ

⋯∫
Γ

exp( −
s

m(t)

m(t)

∑
k=1

C(χk+1))ϕ(χ1)

×

m(t)

∏
k=1

P (2A(χk+1 − (s/m(t))B(χk+1))s/m(t), χk+1 − (s/m(t))B(χk+1), dχk)

− ϕ(χm(t)+1)
⎞

⎠
µ(ds)

⎤
⎥
⎥
⎥
⎥
⎦

P (2A(χ − tλB(χ))tλ,χ − tλB(χ), dχm(t)+1).

6.2 Chernoff approximation of subordinate diffu-
sions in a Riemannian manifold

Theory of diffusions on manifolds is a classical topic with many contributions
(see works of H. Airault, S. Albeverio, V. I. Bogachev, Z. Brzeźniak, Ya. I. Be-
lopolskaya, A. B. Cruzeiro, Yu. L. Daletskii, R. W. R. Darling, B. K. Driver,
K. D. Elworthy, M. Emery, S. Fang, A. A. Grigor’yan, L. Gross, E. P. Hsu, N. Ike-
da, K. Itô, W. S. Kendall, W. S. H. Kunita, P. Malliavin, P. A. Meyer, J. R. Norris,
M. Röckner, L. Schwartz, I. Shigekawa, D. W. Stroock, A. Thalmaier, Sh. Wata-
nabe, K. Yosida and many many others; some expositions can be found, e.g.,
in Hackenbroch and Thalmaier, 1994; Driver, 2004; Émery, 1989; Elworthy,
1982; Ikeda and Watanabe, 1989).

Let Γ be a compact connected Riemannian manifold of classC∞ without bound-
ary, dim Γ = d. Let ρΓ be the distance in Γ generated by the Riemannian metric
of Γ. Let volΓ be the corresponding Riemannian volume measure on Γ. Assume
also that Γ is isometrically embedded into a Riemannian manifold G (of some
higher dimension) and into some Euclidean space RD, Φ is a C∞-smooth iso-
metric embedding of Γ into RD and ΦG is a C∞-smooth isometric embedding
of Γ into G. Let ρG be the distance in G generated by the Riemannian met-
ric of G. Consider (a non-positive version of) the Laplace–Beltrami operator
∆Γ, ∆Γϕ ∶= div gradϕ, ϕ ∈ C2(Γ). The closure of (∆Γ,C3(Γ)) generates the heat
semigroup, i.e. the strongly continuous contraction semigroup (e

t
2

∆Γ)t≥0 on the
space C(Γ). Due to Section 5 of Smolyanov, Weizsäcker, and Wittich, 2007b, the
following is true.
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Proposition 6.2.1. For all t > 0 and all x, y ∈ Γ consider the following (pseudo-)
Gaussian kernels

K1(t, x, y) ∶= (2πt)−d/2 exp(−
ρΓ(x, y)2

2t
) ,

K2(t, x, y) ∶= (2πt)−d/2 exp(−
ρG(ΦG(x),ΦG(y))2

2t
) ,

K3(t, x, y) ∶= (2πt)−d/2 exp(−
∣Φ(x) −Φ(y)∣2

2t
) .

For each kernel Ki, i = 1,2,3, define the family (F 0
i (t))t≥0, i = 1,2,3, of contractions

on C(Γ) by

F 0
i (0) ∶= Id and for each ϕ ∈ C(Γ) and each t > 0

F 0
i (t)ϕ(x) ∶=

∫ΓKi(t, x, y)ϕ(y)volΓ(dy)

∫ΓKi(t, x, y)volΓ(dy)
. (6.2.1)

Then each family (F 0
i (t))t≥0, i = 1,2,3, is strongly continuous and Chernoff equivalent

to the heat semigroup (e
t
2

∆Γ)t≥0 on the space C(Γ) with limt→0 ∥
F 0
i (t)ϕ−ϕ

t − 1
2∆Γϕ∥∞ = 0

for all ϕ ∈ C3(Γ).

Remark 6.2.2. Instead of operators F 0
i (t), one may consider just integral oper-

ators with kernels Ki composed with a proper function of the form e−tfi(x) (for
certain functions fi containing geometrical characteristics of Γ and of the ambi-
ent space G or RD) which compensates the normalization procedure in the con-
struction of F 0

i (t) (i.e. etfi(x) is the leading term in the short-time asymptotics
of ∫ΓKi(t, x, y)volΓ(dy)). In this case, one obtains families of integral operators
which are also Chernoff equivalent to the heat semigroup (e

t
2

∆Γ)t≥0. Note, how-
ever, that these operators do not need to be contractions any more. For example,
using the kernel K3, one obtains in this way the following family (F 0

4 (t))t≥0 (see
Cor. 6 in Smolyanov, Weizsäcker, and Wittich, 2007b):

F 0
4 (t)ϕ(x) ∶= e

t
4

scal(x)− t
8
∣τΦ(x)∣2

∫
Γ

K3(t, x, y)ϕ(y)volΓ(dy), (6.2.2)

where scal is the scalar curvature of Γ and τΦ is the tension vector field of the
embedding Φ. Some further examples of such families can be found in Section 5
of Smolyanov, Weizsäcker, and Wittich, 2007b.

Consider now a function a(⋅) ∈ C(Γ) such that there exist a0,A0 ∈ (0,+∞) with
a0 ≤ a(x) ≤ A0 for all x ∈ Γ. Then the closure of the operator (ÌL0,C3(Γ)), such
that

ÌL0ϕ(x) = a(x)∆Γϕ(x)

for all ϕ ∈ C3(Γ), generates a strongly continuous semigroup (ÌT 0
t )t≥0 on X =
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C(Γ) by Theorem D.0.7. Consider the families ( ÌF 0
i (t))t≥0, i = 1,2,3, of contrac-

tions on X defined by

ÌF 0
i (t)ϕ(x) ∶= (F 0

i (2a(x)t)ϕ)(x). (6.2.3)

Hence the families ( ÌF 0
i (t))t≥0, i = 1,2,3, are strongly continuous and Chernoff

equivalent to the semigroup (ÌT 0
t )t≥0 by Theorem 2.2.2 and Lemma 2.2.4.

Let now B(⋅) ∶ Γ → TΓ be a bounded vector field of class C2(Γ). Denote the
inner product (defined by the Riemannian metric) of vectors u(x) and v(x) in
the tangent space TxΓ as u(x) ⋅ v(x). For each point x ∈ Γ let γx(⋅) ∶ [0,∞) → Γ
be a geodesic with the starting point x (i.e. γx(0) = x) and the direction vector
−B(x) (i.e. γ̇x(0) = −B(x)). This geodesic is uniquely defined and depends
smoothly on x and B(x) (e.g., due to Thm. 1.4.2 and Thm. 1.4.7 in Jost, 19981).
Define the family (St)t≥0 on C(Γ) by

Stϕ(x) ∶= ϕ(γ
x(t)). (6.2.4)

Since the manifold is smooth and compact, and the vector fieldB is smooth, the
family (St)t≥0 is well defined as a family of strongly continuous contractions on
C(Γ) and it holds, in particular,

lim
t→0

∥t−1(Stϕ − ϕ) +B ⋅ ∇Γϕ∥∞ = 0

for all ϕ ∈ C3(Γ). Here ∇Γϕ is the gradient of f .

Further, let C(⋅) ∈ C(Γ) be a nonnegative function. Consider the operator L
defined on the set C3(Γ) by

Lϕ(x) ∶= a(x)∆Γϕ(x) −B(x) ⋅ ∇Γϕ(x) −C(x)ϕ(x). (6.2.5)

Using the similar argumentation as in Section 6.1, one can show that the closure
of (L,C3(Γ)) generates a strongly continuous contraction semigroup (Tt)t≥0 on
C(Γ). Let now the semigroup (T ft )t≥0 be subordinate to the semigroup (Tt)t≥0

with respect to a given convolution semigroup (ηt)t≥0 associated to a Bernstein
function f defined by a triplet (σ,λ,µ). The statement below follows imme-
diately from Proposition 6.2.1, Theorems 2.2.2, 4.2.1, 4.3.1, Lemma 2.2.4 and
Corollary 2.1.2.

Theorem 6.2.3. Let a function a(⋅) ∈ C(Γ) be such that there exist a0,A0 ∈ (0,+∞)

with a0 ≤ a(x) ≤ A0 for all x ∈ Γ, let B(⋅) ∶ Γ → TΓ be a bounded vector field of class
C2(Γ) and let C(⋅) ∈ C(Γ) be a nonnegative function. Let (Tt)t≥0 be a strongly con-
tinuous semigroup on X = C(Γ) generated by the closure of the operator (L,C3(Γ))

given by (6.2.5).

1Note that γx(t) = expx(−tB(x)) in the normal coordinates with center x on Γ (cf. Def. 1.4.4
in Jost, 1998).
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(i) Define the families (Fi(t))t≥0, i = 1,2,3, by

Fi(t)ϕ(x) ∶ = (e−tC ○ St ○ ÌF 0
i (t))ϕ(x)

=
∫Γ e

−tC(x)Ki(2a(γx(t))t, γx(t), y)ϕ(y)volΓ(dy)

∫ΓKi(2a(γx(t))t, γx(t), y)volΓ(dy)
,

where the families (F 0
i (t))t≥0 and (St)t≥0 are given by (6.2.1) and (6.2.4) respectively.

Then the families (Fi(t))t≥0, i = 1,2,3, are strongly continuous and Chernoff equiva-
lent to the semigroup (Tt)t≥0 on X .

(ii) Under assumptions and notations of Theorem 4.2.1 the families (F i(t))t≥0, k =

1,2,3, constructed as in Theorem 4.2.1 with the help of (Fi(t))t≥0 given above, are
Chernoff equivalent to the semigroup (T ft )t≥0 and have the following explicit view:
F i(0) ∶= Id and for all t > 0, ϕ ∈X , x ∈ Γ

F i(t)ϕ(x) = e−σt∫
Γ

∞

∫
0+
∫

Γm(t)

exp( − λtC(x) −
s

m(t)

m(t)

∑
k=1

C(xk+1))ϕ(x1)

×

m(t)

∏
k=1

Ki(2a(γxk+1(s/m(t)))s/m(t), γxk+1(s/m(t)), xk)

∫ΓKi(2a(γxk+1(s/m(t)))s/m(t), γxk+1(s/m(t)), xk)volΓ(dxk)

m(t)

∏
k=1

volΓ(dxk)

× η0
t (ds) ×

Ki(2a(γx(λt))λt, γx(λt), xm(t)+1)

∫ΓKi(2a(γx(λt))λt, γx(λt), xm(t)+1)volΓ(dxm(t)+1)
volΓ(dxm(t)+1).

(iii) Under assumptions and notations of Theorem 4.3.1 tha families (F iµ(t))t≥0, k =

1,2,3, constructed as in Theorem 4.2.1 with the help of (Fi(t))t≥0 given above, are
Chernoff equivalent to the semigroup (T ft )t≥0 and have the following explicit view:
F iµ(0) ∶= Id and for all t > 0, ϕ ∈X , x ∈ Γ

F iµ(t)ϕ(x)

= e−σt−λtC(x)
∫
Γ

⎛

⎝
ϕ(xm(t)+1) + t

∞

∫
0+

⎡
⎢
⎢
⎢
⎢
⎣
∫

Γm(t)

exp( −
s

m(t)

m(t)

∑
k=1

C(xk+1))ϕ(x1)

×

m(t)

∏
k=1

Ki(2a(γxk+1(s/m(t)))s/m(t), γxk+1(s/m(t)), xk)

∫ΓKi(2a(γxk+1(s/m(t)))s/m(t), γxk+1(s/m(t)), xk)volΓ(dxk)

m(t)

∏
k=1

volΓ(dxk)

− ϕ(xm(t)+1)

⎤
⎥
⎥
⎥
⎥
⎦

µ(ds)
⎞

⎠

Ki(2a(γx(λt))λt, γx(λt), xm(t)+1)volΓ(dxm(t)+1)

∫ΓKi(2a(γx(λt))λt, γx(λt), xm(t)+1)volΓ(dxm(t)+1)
.

Remark 6.2.4. By Theorem 6.2.3 and Remark 6.2.2, the solution f(t, x) of the
evolution equation ∂f

∂t (t, x) = Lf(t, x) with L given by (6.2.5) and an initial con-
dition ϕ ∈ Dom(L) can be found through the Chernoff approximations

f(t, x0) = Ttϕ(x0) = lim
n→∞

[Fi(t/n)]
n
ϕ(x0), i = 1,2,3,4, x0 ∈ Γ, (6.2.6)
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with Fi(t) ∶= e−tC ○St ○ ÌF 0
i (t), i = 1,2,3,4. Consider the case a(x) ≡ 1

2 for all x ∈ Γ.
Using the Chernoff approximation (6.2.6) with i = 4 and the same strategy as in
Example 2.1.10, one can show (cf. Butko, 2008) that the limit in the right hand
side of (6.2.6) coincides with the following Feynman formula

f(t, x0) = lim
n→∞∫

Γn

e−
t
n ∑

n
k=1C(xk−1)e

t
4n ∑

n
k=1 scal(xk−1)− t

8n ∑
n
k=1 ∣τΦ(xk−1)∣2

× e∑
n
k=1BΦ(xk−1)⋅(Φ(xk−1)−Φ(xk))e−

t
2n ∑

n
k=1∣BΦ(xk−1)∣2ϕ(xn) (6.2.7)

×K3(t/n,x0, x1) . . .K3(t/n,xn−1, xn)volΓ(dx1) . . .volΓ(xn),

where, for each x ∈ Γ, the vector −BΦ(x) ∈ RD is the direction vector of the
smooth curve Φ(γx(⋅)) ∶ [0,∞) → RD at the point 0. The prelimit expressions
in the right hand side of (6.2.7), in turn, can be interpreted (cf. Smolyanov,
Weizsäcker, and Wittich, 2007b; Butko, 2008) as the following path integral with
respect to the Wiener measure corresponding to a Brownian motion (ξt)t≥0 in a
Riemannian manifold Γ starting at the point x0 ∈ Γ 2:

f(t, x0) = Ex0 [e− ∫
t

0 (C(ξs)+ 1
2
∣B(ξs)∣2)ds−∫

t
0 BΦ(ξs)⋅dξΦ

s ϕ(ξt)] ,

where ∫
t

0 BΦ(ξs)⋅dξΦ
s is the Itô stochastic integral and (ξΦ

t )t≥0 is the process in RD

obtained by the horizontal lifting of (ξt)t≥0 via the isometry Φ. For the stochastic
derivation of this Feynman-Kac formula see Chapter IX, §11 of Elworthy, 1982.

6.3 Approximation of solutions of distributed order
time-fractional evolution equations

Fractional derivatives are natural extensions of their integer-order analogues
(see, e.g., Miller and Ross, 1993, Samko, Kilbas, and Marichev, 1993). Evo-
lution equations with partial derivatives of fractional order (fractional evolu-
tion equations), in particular, time- (and, possibly, space-) fractional diffusion
equations (modelling anomalous diffusion) have been applied to problems in
physics, chemistry, biology, medicine, finance, hydrology and other areas (see,
e.g., Meerschaert and Sikorskii, 2012, Metzler and Klafter, 2000, Metzler and
Klafter, 2004, Miller and Ross, 1993, Samko, Kilbas, and Marichev, 1993 and
references therein). Many time-fractional evolution equations serve as govern-
ing equations for stochastic processes. However, the processes, whose marginal
density function evolves in time according to a given time-fractional evolution
equation, are usually non-Markovian (and hence, there is no semigroup struc-
ture behind the equation) and are non-uniquely defined by this marginal den-
sity function (therefore, very different stochastic representations for a solution
of a given fractional evolution equation are possible, see, e.g., Baeumer et al.,

2Note that each compact Riemannian manifold is always martingale-complete, i.e. martin-
gales cannot explode in finite “intrinsic time” (see, e.g., Chapter 5 of Émery, 1989).



116 Chapter 6. Applications

2016, Hahn and Umarov, 2011, Mura, Taqqu, and Mainardi, 2008). The ab-
sence of the semigroup property for solutions of time-fractional evolution equa-
tions does not allow to apply the method of Chernoff approximation for such
equations directly. Nevertheless, several relations exist between time-fractional
and ”standard” (time-non-fractional) evolution equations: via a kind of sub-
ordination (see, e.g., Prüss, 1993, Saichev and Zaslavsky, 1997, Metzler and
Klafter, 2000, Baeumer and Meerschaert, 2001, Mura, Taqqu, and Mainardi,
2008) and via higher order operators (see, e.g., Orsingher and Beghin, 2004,
Orsingher and Beghin, 2009, Baeumer, Meerschaert, and Nane, 2009, Orsingher
and D’Ovidio, 2012, Garra, Orsingher, and Polito, 2015). These relations allow
to construct some approximations for solutions of such time-fractional evolu-
tion equations via Chernoff approximations for solutions of some related ”stan-
dard” evolution equations. Below we present approximations for solutions of
(a class of) time-fractional evolution equations using their connection to time-
non-fractional equations via a kind of subordination.

Let us introduce some needed definitions and facts about time-fractional evo-
lution equations. First, note that there exist many different notions of fractional
derivatives. We discuss only two versions of them. One defines the Caputo (or
Caputo-Dzhrbashyan) fractional derivative of order β, β ∈ (0,1), for a (sufficiently
good) function u by

∂β

∂tβ
u(t) ∶=

1

Γ(1 − β)

t

∫
0

u′(r)

(t − r)β
dr,

where Γ is the Euler’s Gamma-function. Let U be the Laplace transform of u,
i.e. U(s) ∶= ∫

∞
0 e−stu(t)dt. Then the Laplace transform of the Caputo derivative

∂β

∂tβ
u of u can be calculated as follows:

∞

∫
0

e−st
∂β

∂tβ
u(t)dt = sβU(s) − sβ−1u(0+).

The Riemann–Liouville fractional derivative of order β, β ∈ (0,1), for a (sufficiently
good) function u is defined by

(
d

dt
)

β

u(t) ∶=
1

Γ(1 − β)

d

dt

t

∫
0

u(r)

(t − r)β
dr.

Then the Laplace transform of the Riemann-Liouville derivative ( d
dt
)
β
u of u can

be calculated as follows:
∞

∫
0

e−st (
d

dt
)

β

u(t)dt = sβU(s).

Comparing both Laplace transforms and taking into account that the Laplace
transform of t−β is sβ−1Γ(1 − β), one sees that if u is absolutely continuous on
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bounded intervals then the Riemann-Liouville and Caputo derivatives of u are
related by

∂β

∂tβ
u(t) = (

d

dt
)

β

u(t) −
t−βu(0+)

Γ(1 − β)
. (6.3.1)

The Riemann-Liouville fractional derivative is more general since it does not
require the first derivative of u to exist. Therefore, one may adopt the right
hand side of the formula (6.3.1) to define the Caputo derivative. The further
generalization is to consider the so-called distributed order fractional derivative
Dµ with the order µ determined by a finite Borel measure µ defined on the
interval (0,1) and such that µ(0,1) > 0 (cf. Kochubei, 2008; Mainardi et al., 2008;
Meerschaert and Scheffler, 2006; Umarov and Gorenflo, 2005a):

Dµu(t) ∶=

1

∫
0

∂β

∂tβ
u(t)µ(dβ) =

1

∫
0

[(
d

dt
)

β

u(t) −
t−βu(0)

Γ(1 − β)
]µ(dβ).

If µ is the Dirac delta-measure δβ0 concentrated at a point β0 ∈ (0,1), we return
to Caputo fractional derivative of β0−th order.

We are interested now in distributed order time-fractional evolution equations
of the form

Dµf(t, x) = Lf(t, x), (6.3.2)

where Dµ is the distributed order fractional derivative with respect to the time
variable t and L is the generator of a strongly continuous semigroup (Tt)t≥0

on some Banach space (X, ∥ ⋅ ∥X) of functions of the space variable x. Equa-
tions of such type are called time-fractional Fokker–Planck–Kolmogorov equations
and arise in the framework of continuous time random walks (CTRWs) and
fractional kinetic theory (Gillis and Weiss, 1970; Montroll and Shlesinger, 1984;
Metzler and Klafter, 2000; Zaslavsky, 2002). As it is shown in papers Hahn and
Umarov, 2011; Hahn, Kobayashi, and Umarov, 2012; Mijena and Nane, 2014
(see also papers Gorenflo and Mainardi, 1998; Baeumer and Meerschaert, 2001;
Meerschaert and Scheffler, 2008; Umarov and Gorenflo, 2005b; Meerschaert and
Straka, 2013 for the case µ = δβ0 , β0 ∈ (0,1)), such time-fractional Fokker–Planck–
Kolmogorov equations are governing equations for stochastic processes which
are weak limits of certain sequences or triangular arrays of CTRWs. These limit
processes are actually time-changed Lévy processes, where the time-change
arises as the first hitting time of level t > 0 (or, equivalently, as the inverse
process) for a mixture of independent stable subordinators with some mixing
measure µ.

Recall that a process (Dβ
t )t≥0 with β ∈ (0,1) is β-stable subordinator if it is a one-

dimensional Lévy proces with almost surely non-decreasing paths such that
the corresponding Bernstein function is f(s) ∶= sβ (see, e.g., Section 3.9 of Jacob,
2001 for the definitions). For a given finite Borel measure µ with suppµ ∈ (0,1),
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consider the function fµ given by

fµ(s) ∶=

1

∫
0

sβµ(dβ), s > 0.

It is a Bernstein function given by (cf. formula (3.246) of Jacob, 2001):

fµ(s) =

∞

∫
0+

(1 − e−ts)m(dt), where m(dt) ∶=
⎛

⎝

1

∫
0

βt−β−1

Γ(1 − β)
µ(dβ)

⎞

⎠
dt.

Let (Dµ
t )t≥0 be a subordinator corresponding to the Bernstein function fµ. This

process represents a mixture of independent stable subordinators with a mixing
measure µ. Define now the process (Eµ

t )t≥0 by

Eµ
t ∶= inf {τ ≥ 0 ∶ Dµ

τ > t} .

The process (Eµ
t )t≥0 is the first hitting time of the level t of the process (Dµ

τ )τ≥0

or, equivalently, the inverse to (Dµ
t )t≥0. This process (Eµ

t )t≥0 is sometimes called
inverse subordinator. However, note that it is not a Markov process. It is known
that (Eµ

t )t≥0 possesses a marginal density function pµ(t, x) (with respect to the
Lebesgue measure dx), i.e. P(Eµ

t ∈ B) = ∫B p
µ(t, x)dx for all B ∈ B(R), and

pµ(t, x) = 0 for all x < 0. The marginal density function pµ(t, x) has many nice
properties (see Lemma 2.4 and Lemma 2.5 in Hahn, Kobayashi, and Umarov,
2011; for the case µ = δβ0 , β0 ∈ (0,1), see also Meerschaert and Scheffler, 2004;
D’Ovidio, 2010). In particular, pµ ∈ C∞((0,∞) × (0,∞)). In the sequel, we need
the following simple property of pµ:

Lemma 6.3.1. For each ε > 0 and each T > 0 there exists RT,ε > 0 such that for all
t ∈ [0, T ] holds

∞

∫
RT,ε

pµ(t, x)dx < ε.

Proof. Choose arbitrary ε > 0 and T > 0. Consider R > 0. We have for all
t ∈ [0, T ]:

∞

∫
R

pµ(t, x)dx = P (Eµ
t ≥ R) = P (Dµ

R ≤ t)

≤ P (Dµ
R ≤ T ) = P (Eµ

T ≥ R) =

∞

∫
R

pµ(T,x)dx

< ε

for sufficiently large R since ∫
∞

0 pµ(T,x)dx = 1.
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The marginal density function pµ(t, x) allows to represent solutions of Cauchy
problems for distributed order time-fractional evolution equations of the form
(6.3.2) in the following way (cf. Thm. 3.2 in Hahn, Kobayashi, and Umarov,
2012 and Thm. 4.2 in Mijena and Nane, 2014):

Proposition 6.3.2. Let (X, ∥ ⋅ ∥X) be a Banach space. Let (L,Dom(L)) be the gen-
erator of a uniformly bounded3, strongly continuous semigroup (Tt)t≥0 on X . Let
f0 ∈ Dom(L). Let µ be a finite Borel measure with suppµ ∈ (0,1). Then the fam-
ily of linear operators (Tt)t≥0 from X into X given by

Ttϕ ∶=

∞

∫
0

Tτϕp
µ(t, τ)dτ, ∀ϕ ∈X, (6.3.3)

is uniformly bounded and strongly analytic in a sectorial region. Furthermore, the
family (Tt)t≥0 is strongly continuous and the function f(t) ∶= Ttf0 is a solution of the
Cauchy problem

Dµf(t) = Lf(t), t > 0,

f(0) = f0. (6.3.4)

This result shows that solutions of time-fractional evolution equations are a
kind of subordination of solutions of the corresponding time-non-fractional
evolution equations with respect to “subordinators” (Eµ

t )t≥0. And respectively,
if a time-non-fractional evolution equation is a governing equation for some
Markov process then the related time-fractional evolution equation is a gov-
erning equation for a (already non-markovian) process which is a “subordi-
nation”, i.e. a time-change of this Markov process by means of (Eµ

t )t≥0. The
non-Markovity of the resulting process corresponds to the fact that the family
(Tt)t≥0 is not a semigroup any more. Note also that some other types of time-
fractional evolution equations have a similar “subordination-like” structure of
solutions (see Prüss, 1993; Mura, Taqqu, and Mainardi, 2008).

Assume now that the semigroup (Tt)t≥0 is not known explicitly but is already
Chernoff approximated. We have no chances to construct Chernoff approxima-
tions for the family (Tt)t≥0 which is not a semigroup. Nevertheless, the follow-
ing is true.

Theorem 6.3.3. Let (X, ∥ ⋅∥X) be a Banach space. Let (L,Dom(L)) be the generator of
a strongly continuous contraction semigroup (Tt)t≥0 on X . Let f0 ∈ Dom(L). Let the
family (F (t))t≥0 of contractions on X be Chernoff equivalent to (Tt)t≥0. Let, for each
f0 ∈ Dom(L), the mapping F (⋅)f0 ∶ [0,∞) → X be Bochner measurable as a map-
ping from ([0,∞),B([0,∞)), dx) to (X,B(X)). Let µ be a finite Borel measure with
suppµ ∈ (0,1) and the family (Tt)t≥0 be given by formula (6.3.3). Let f ∶ [0,∞) → X

3This means that ∥Tt∥ ≤M for some M > 0 and all t ≥ 0.
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be defined via f(t) ∶= Ttf0. For each n ∈ N define the mappings fn ∶ [0,∞)→X by

fn(t) ∶=

∞

∫
0

F n(τ/n)f0 p
µ(t, τ)dτ. (6.3.5)

Then it holds locally uniformly with respect to t ≥ 0 that

∥fn(t) − f(t)∥X → 0, n→∞.

Proof. Take any T > 0 and any ε > 0. Due to Lemma 6.3.1, there exists RT,ε > 0
such that

∞

∫
RT,ε

pµ(t, τ)dτ < ε

for all t ∈ [0, T ]. Then it holds for t ∈ [0, T ]

∥fn(t) − f(t)∥X =

XXXXXXXXXXXX

∞

∫
0

F n(τ/n)f0 p
µ(t, τ)dτ −

∞

∫
0

Tτf0 p
µ(t, τ)dτ

XXXXXXXXXXXXX

≤

∞

∫
0

∥Tτf0 − F
n(τ/n)f0∥X p

µ(t, τ)dτ

≤

RT,ε

∫
0

∥Tτf0 − F
n(τ/n)f0∥X p

µ(t, τ)dτ +

∞

∫
RT,ε

∥Tτf0 − F
n(τ/n)f0∥X p

µ(t, τ)dτ

≤ sup
τ∈[0,RT,ε]

∥Tτf0 − F
n(τ/n)f0∥X

RT,ε

∫
0

pµ(t, τ)dτ + 2ε∥f0∥X

→ 2ε∥f0∥X , n→∞,

due to the fact that the convergence in the Chernof theorem is locally uniform
with respect to the time variable. Since ε > 0 was chosen arbitrary, the statement
follows.

Remark 6.3.4. Consider a time-fractional Fokker–Planck–Kolmogorov equation
of the form (6.3.2). Assume that the semigroup (Tt)t≥0, whose generator L
stands in the right hand side of the equation, corresponds to a Markov pro-
cess (ξ(t))t≥0. Then this time-fractional Fokker–Planck–Kolmogorov equation
is a governing equation for the stochastic process (ξ(Eµ

t ))t≥0 which is the time-
change of (ξ(t))t≥0 by means of the inverse subordinator (Eµ

t )t≥0. And the func-
tion

f(t, x) ∶= E [f0 (ξ (E
µ
t )) ∣ ξ(Eµ

0 ) = x] (6.3.6)
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solves the Cauchy problem (6.3.4) (cf. Theorem 3.6 in Hahn, Kobayashi, and
Umarov, 2012, see also Baeumer and Meerschaert, 2001; Meerschaert and Schef-
fler, 2004). Since the process (ξ(Eµ

t ))t≥0 is not Markov, its marginal density func-
tion (together with the initial distribution) does not determine all finite dimen-
sional distributions of the process. And there exist many different processes
with the same marginal density function. Hence there exist many other stochas-
tic representations for the function f(t, x) in formula (6.3.6) (see, e.g., Thm 3.3
in Baeumer et al., 2016, Cor. 3.4 in Baeumer, Meerschaert, and Nane, 2009
and results of Orsingher and Beghin, 2009). Furthermore, the considered time-
fractional Fokker–Planck–Kolmogorov equations (with µ = δβ0 , β0 ∈ (0,1)) are
related to some time-non-fractional evolution equations of hihger order (see,
e.g., Baeumer, Meerschaert, and Nane, 2009; Orsingher and D’Ovidio, 2012).
Therefore, the approximations fn constructed in Theorem 6.3.3 can be used si-
multaneousely to approximate path integrals appearing in different stochastic
representations of the same function f(t, x) and to approximate solutions of
corresponding time-non-fractional evolution equations of hihger order.

Remark 6.3.5. Obviously, approximations fn similar to those of Theorem 6.3.3
can be constructed also for subordinate semigroups discussed in Section 4.2.
Namely, assume that a semigroup (T ft )t≥0 is subordinate to a given semigroup
(Tt)t≥0 on a Banach space (X, ∥ ⋅ ∥X) with respect to a given convolution semi-
group (ηt)t≥0 associated to a Bernstein function f , i.e. T ft ϕ = ∫

∞
0 Tsϕηt(ds) for

all ϕ ∈ X ; the convolution semigroup (ηt)t≥0 is known explicitly; a given fam-
ily (F (t))t≥0 (of contractions) is Chernoff equivalent to (Tt)t≥0 and the mapping
F (⋅)ϕ ∶ [0,∞) → X is, for each ϕ ∈ X and each t ≥ 0, Bochner measurable as a
mapping from ([0,∞),B([0,∞)), ηt) to (X,B(X)). Then, similarly to the proof
of Theorem 6.3.3, one shows that the functions fn(t),

fn(t) ∶=

∞

∫
0

F n(s/n)ϕηt(ds), (6.3.7)

approximate the function T ft ϕ in the norm ∥ ⋅ ∥X locally uniformly with re-
spect to t ≥ 0 for all ϕ ∈ X . Note that such approximations fn are much sim-
pler than Chernoff approximations based on the family (F(t))t≥0 constructed
in Theorem 4.2.1. However, the Chernoff approximations, based on the fam-
ilies (F(t))t≥0 which are presented in Theorem 4.2.1, can be used as a build-
ing block for further purposes. First, families (F(t))t≥0 can be used to obtain
Chernoff approximations for semigroups, constructed by several iterative pro-
cedures of subordination, killing of an underlying process upon leaving a given
domain, additive and multiplicative perturbations (of generators) of some orig-
inal semigroups. Second, such Chernoff approximations, in turn, can be used to
obtain approximations for solutions of the corresponding time-fractional evo-
lution equations. Whereas the approximations fn in formula (6.3.7) can be used
only to approximate T ft f0 and not for further purposes.
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Example 6.3.6 (Feynman formula solving the Cauchy problem for a class of
time-fractional diffusion equations). Let (Tt)t≥0 be a Feller semigroup4 whose
generator (L,Dom(L)) is given for all ϕ ∈ C2

∞(Rd) by formula (2.3.9). Let coef-
ficients A, B, C be bounded and continuous and (2.3.1) hold. Let C2,α

c (Rd) be
a core for (L,Dom(L)). Consider the family (F (t))t≥0 of bounded linear opera-
tors on X given by formula (2.3.12). Under the assumptions above, this family
is strongly continuous and Chernoff equivalent to the semigroup (Tt)t≥0. And
all operators F (t) are contractions since C(x) ≥ 0 for all x ∈ Rd. Let f0 ∈ Dom(L).
Due to Proposition 6.3.2, the function

f(t, x) ∶=

∞

∫
0

Tτf0(x)p
µ(t, τ)dτ

solves the Cauchy problem for the distributed order time-fractional diffusion
equation

Dµf(t, x) = −C(x)f(t, x) −B(x) ⋅ ∇f(t, x) + tr(A(x)Hess f(t, x)) (6.3.8)

with the initial condition f(0, x) = f0(x). Due to Theorem 6.3.3, the follow-
ing functions fn(t, x) approximate the solution f(t, x) in supremum norm with
respect to x ∈ Rd uniformly with respect to t ∈ (0, t∗] for all t∗ > 0 as n→∞:

fn(t, x0) ∶=

∞

∫
0

∫

Rnd

e
− τ
n

n

∑
j=1

(C(xj−1)+ 1
4
∣A−1/2(xj−1)B(xj−1)∣

2)
e

1
2

n

∑
j=1

A−1(xj−1)B(xj−1)⋅(xj−1−xj)

× pA(τ/n,x0, x1)⋯pA(τ/n,xn−1, xn)f0(xn)p
µ(t, τ)dx1 . . . dxndτ.

Since for each x0 ∈ Rd the solution f(t, x0) is the limit of fn(t, x0), i.e. the limit
of (n+1)−fold iterated integrals as n→∞, the approximations fn(t, x0) provide
us just a Feynman formula for f(t, x0). Namely, the following statement holds.

Proposition 6.3.7. Under assumptions of Example 6.3.6, the function f(t, x0), given
by the Feynman formula (6.3.9) below, solves the Cauchy problem for the distributed
order time-fractional diffusion equation (6.3.8) with the initial condition f0.

f(t, x0)

= lim
n→∞

∞

∫
0

∫

Rnd

e
− τ
n

n

∑
j=1

(C(xj−1)+ 1
4
∣A−1/2(xj−1)B(xj−1)∣

2)
e

1
2

n

∑
j=1

A−1(xj−1)B(xj−1)⋅(xj−1−xj)

× pA(τ/n,x0, x1)⋯pA(τ/n,xn−1, xn)f0(xn)p
µ(t, τ)dx1 . . . dxndτ,

(6.3.9)

where pA is given by (2.3.5). And the convergence is uniform with respect to x0 ∈ Rd

and with respect to t ∈ (0, t∗] for all t∗ > 0.

4Hence all Tt are contractions.
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In particular, consider a 1/2-stable inverse subordinator (E
1/2
t )t≥0. Its marginal

probability density is known explicitly (see Cor. 3.1 in Meerschaert and Schef-
fler, 2004 and the discussion after Lemma 3 in D’Ovidio, 2010)

p1/2(t, τ) =
1

√
πt
e−

τ2

4t .

Therefore, in the case whenDµ is the Caputo derivative of 1/2-th order, the func-
tion f(t, x0), represented (uniformly with respect to x0 ∈ Rd and with respect to
t ∈ (0, t∗] for all t∗ > 0) by the following Feynman formula (6.3.10), solves the
Cauchy problem for the time-fractional diffusion equation (6.3.8) with initial
condition f0:

f(t, x0)

= lim
n→∞

∞

∫
0

∫

Rnd

e
− τ
n

n

∑
j=1

(C(xj−1)+ 1
4
∣A−1/2(xj−1)B(xj−1)∣

2)
e

1
2

n

∑
j=1

A−1(xj−1)B(xj−1)⋅(xj−1−xj)

× pA(τ/n,x0, x1)⋯pA(τ/n,xn−1, xn)f0(xn)
1

√
πt
e−

τ2

4t dx1 . . . dxndτ.

(6.3.10)

Analogous results hold true also for distributed order time-fractional Fokker–
Planck–Kolmogorov equations with operators L considered in Chapters 2—4
and in Sections 6.1, 6.2 of the present Chapter.

Example 6.3.8 (Feynman formula solving the Cauchy–Dirichlet problem for
a class of time-fractional diffusion equations). We keep on working in the
situation of Example 6.3.6. Let additionally (Tt)t≥0 be doubly Feller, A, B, C
be of the class C2,α

b (Rd) for some α ∈ (0,1). Let G ⊂ Rd be a bounded domain
with the boundary ∂G of the class C4,α for some α ∈ (0,1). Then we have by
Theorem 5.2.6 and Remark 5.2.3 for the corresponding semigroup (T ot )t≥0 on Y

T ot ϕ(x) = lim
n→∞

((Fo(t/n))
n
ϕ)(x) for all ϕ ∈ C0(G),

uniformly in x ∈ G and locally uniformly in t ∈ [0,∞). Here the family (Fo(t))t≥0

has been constructed from the family (F (t))t≥0 given in (2.3.12) by the for-
mula (5.2.2). Let f0 ∈ Dom(Lo). Due to Proposition 6.3.2 and Remark 5.1.2,
the function

f(t, x) ∶=

∞

∫
0

T oτ f0(x)p
µ(t, τ)dτ (6.3.11)
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solves the following Cauchy–Dirichlet problem for the distributed order time-
fractional diffusion equation

Dµf(t, x) = −C(x)f(t, x) −B(x) ⋅ ∇f(t, x) + tr(A(x)Hess f(t, x)), t > 0, x ∈ G,
(6.3.12)

f(0, x) = f0(x), x ∈ G,

f(t, x) = 0, t > 0, x ∈ ∂G.

Due to Theorem 6.3.3, the following functions fn(t, x) approximate the solution
f(t, x) in supremum norm with respect to x ∈ G uniformly with respect to t ∈
(0, t∗] for all t∗ > 0:

fn(t, x0) ∶=

∞

∫
0

F n
o (τ/n)f0(x0)p

µ(t, τ)dτ

=

∞

∫
0

∫

Rnd

e
− τ
n

n

∑
j=1

(C(xj−1)+ 1
4
∣A−1/2(xj−1)B(xj−1)∣

2)
e

1
2

n

∑
j=1

A−1(xj−1)B(xj−1)⋅(xj−1−xj)
E(f0)(xn)

× (
n

∏
j=1

φs(τ/n)(xj−1))pA(τ/n,x0, x1)⋯pA(τ/n,xn−1, xn)p
µ(t, τ)dx1 . . . dxndτ.

For each τ ∈ [0,∞), each x0 ∈ G and each n ∈ N, let us define Θf0
n (τ, x0) by

Θf0
n (τ, x0) ∶= ∫

Gn

e
− τ
n

n

∑
j=1

(C(xj−1)+ 1
4
∣A−1/2(xj−1)B(xj−1)∣

2)
e

1
2

n

∑
j=1

A−1(xj−1)B(xj−1)⋅(xj−1−xj)

× f0(xn)pA(τ/n,x0, x1)⋯pA(τ/n,xn−1, xn)dx1 . . . dxn.

Then we have supx0∈G ∣Θf0
n (τ, x0)∣ ≤ ∥f0∥Y for all τ ∈ [0,∞) and n ∈ N. Let us

show that the functions

gn(t, x0) ∶=

∞

∫
0

Θf0
n (τ, x0)p

µ(t, τ)dτ

approximate the function f(t, x0) in formula (6.3.11) solving the Cauchy–Di-
richlet problem (6.3.12) as n → ∞ locally uniformly with respect to x0 ∈ G and
uniformly with respect to t ∈ (0, t∗] for all t∗ > 0. So, fix any ε > 0, T > 0 and
a compact K ⊂ G. Let x0 ∈ K and t ∈ [0, T ]. Due to Lemma 6.3.1, there exists

RT,ε > 0 such that
∞

∫
RT,ε

pµ(t, τ)dτ < ε for all t ∈ [0, T ]. Then, similarly to the proof
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of Theorem 6.3.3,

∣gn(t, x0) − f(t, x0)∣ ≤ ∣gn(t, x0) − fn(t, x0)∣ + ∣fn(t, x0) − f(t, x0)∣

≤

RT,ε

∫
0

∥Θf0
n (τ, ⋅) − F n

o (τ/n)f0∥C(K)p
µ(t, τ)dτ + 2ε∥f0∥Y + ∥fn(t, ⋅) − f(t, ⋅)∥Y

≤ sup
τ∈[0,RT,ε]

∥Θf0
n (τ, ⋅) − F n

o (τ/n)f0∥C(K) + 2ε∥f0∥Y + ∥fn(t, ⋅) − f(t, ⋅)∥Y

→ 2ε∥f0∥Y as n→∞,

since the convergence of Θf0
n (τ, x0) to F n

o (τ/n)f0(x0) is locally uniform with
respect to x0 ∈ G and uniform with respect to t ∈ (0, t∗] for all t∗ > 0 (cf. Corol-
lary 5.3.2) and due to Theorem 6.3.3. Therefore, since ε > 0 is arbitrary, the
following statement is proved.

Proposition 6.3.9. Let (Tt)t≥0 be a doubly Feller semigroup on X = C∞(Rd) whose
generator (L,Dom(L)) is given for all ϕ ∈ C2

∞(Rd) by the formula (2.3.9). Let the
coefficientsA,B,C in (2.3.9) be of the classC2,α

b (Rd) for some α ∈ (0,1). Let there exist
a0,A0 ∈ R such that (2.3.1) holds. Assume that the coefficientsA,B,C are such that the
set C2,α

c (Rd) is a core for the generator L in X . Let G ⊂ Rd be a bounded domain with
the boundary ∂G of the class C4,α. Let (T ot )t≥0 be the corresponding Feller semigroup
on Y = C0(G) with the generator (Lo,Dom(Lo)). Let f0 ∈ Dom(Lo). Let µ be a
finite Borel measure with suppµ ∈ (0,1). Then the function f(t, x0), which is given
for all t > 0 and all x0 ∈ G by the Feynman formula (6.3.13) below, solves the Cauchy–
Dirichlet problem (6.3.12). And the convergence in the Feynman formula (6.3.13) is
locally uniform with respect to x0 ∈ G and uniform with respect to t ∈ (0, t∗] for all
t∗ > 0:

f(t, x0)

= lim
n→∞

∞

∫
0

∫
Gn

e
− τ
n

n

∑
j=1

(C(xj−1)+ 1
4
∣A−1/2(xj−1)B(xj−1)∣

2)
e

1
2

n

∑
j=1

A−1(xj−1)B(xj−1)⋅(xj−1−xj)

× pA(τ/n,x0, x1)⋯pA(τ/n,xn−1, xn)f0(xn)p
µ(t, τ)dx1 . . . dxndτ,

(6.3.13)

where pA is given by (2.3.5).

Analogous results hold true also for distributed order time-fractional Fokker–
Planck–Kolmogorov equations with non-local operators L considered in Sec-
tion 5.3. Other representations for solutions of some distributed order time-
fractional Fokker–Planck–Kolmogorov equations in bounded domains can be
found, e.g., in Meerschaert, Nane, and Vellaisamy, 2011; Chen, Meerschaert,
and Nane, 2012.





Appendix A

Essentials of the Semigroup Theory

Some classical results of the Semigroup Theory are summarized in this Ap-
pendix. The standard references are Pazy, 1983, Goldstein, 1985, Engel and
Nagel, 2000, Jacob, 2001. Other sources are cited directly in the text.

Proposition A.0.1. Let X be a Banach space endowed with a norm ∥ ⋅ ∥X . Let (Tt)t≥0

be a strongly continuous semigroup on X with generator (L,Dom(L)). Then the
following is true.

(a) There exist constants ω > 0 and M ≥ 1 such that ∥Tt∥ ≤Meωt for all t ≥ 0.

(b) For any numbers α > 0, β ∈ C, the rescaled semigroup (Ut)t≥0, defined by Ut ∶=
eβtTαt, is again strongly continuous on X .

Remark A.0.2 (cf. Ethier and Kurtz, 1986, Rem.1.3). Let constants ω > 0 and
M ≥ 1 be such that a strongly continuous semigroup (Tt)t≥0 satisfies the estimate
∥Tt∥ ≤ Meωt for all t ≥ 0. Consider the rescaled semigroup (Ut)t≥0, Ut ∶= e−ωtTt.
Then ∥Ut∥ ≤ M for all t ≥ 0. Define a new norm ∣∣∣ ⋅ ∣∣∣X on X via ∣∣∣ϕ∣∣∣X ∶=

supt≥0 ∥Ttϕ∥X . Hence it holds ∥ϕ∥X ≤ ∣∣∣ϕ∣∣∣X ≤ M∥ϕ∥X , i.e., two norms ∥ ⋅ ∥X
and ∣∣∣ ⋅ ∣∣∣X are equivalent. Moreover, the semigroup (Ut)t≥0 is a contraction
semigroup with respect to the norm ∣∣∣ ⋅ ∣∣∣X .

Proposition A.0.3. Let (Tt)t≥0 be a strongly continuous semigroup on a Banach space
X with generator (L,Dom(L)). Then the following is true.

(a) For every ϕ ∈X , the mapping t→ Ttϕ is a continuous function from [0,∞) into
X .

(b) For each ϕ ∈X , it holds limh→0
1
h ∫

t+h
t Tsϕds = Ttϕ.

(c) For each ϕ ∈X , it holds ∫
t

0 Tsϕds ∈ Dom(L) and L (∫
t

0 Tsϕds) = Ttϕ − ϕ.

(d) For each ϕ ∈ Dom(L), it holds Ttϕ ∈ Dom(L) and d
dtTtϕ = LTtϕ = TtLϕ.

(e) For each ϕ ∈ Dom(L), it holds Ttϕ − Tsϕ = ∫
t

s TτLϕdτ = ∫
t

s LTτϕdτ.

Proposition A.0.4. Let (T1(t))t≥0 and (T2(t))t≥0 be two strongly continuous semi-
groups on X such that T1(t) ○ T2(t) = T2(t) ○ T1(t) for all t ≥ 0. Then the operators
Ut ∶= T1(t) ○ T2(t) form a strongly continuous semigroup (Ut)t≥0, called the product
semigroup of (T1(t))t≥0 and (T2(t))t≥0.
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Definition A.0.5. Let X , Y be Banach spaces, A ∶X → Y be a linear operator.

(i) A is a closed operator if its graph G(A) ∶= {(ϕ,Aϕ), ϕ ∈ Dom(A)} ⊂ X ⊕ Y
is closed in X ⊕ Y ; in other words, if the sequence (ϕn)n∈N satisfies that
Aϕn → φ and ϕn → ϕ as n → ∞, then ϕ ∈ Dom(A) and, moreover, φ = Aϕ
holds.

(ii) A is closable if there exists a closed extension of A, i.e., a closed operator
B ∶ X → Y such that A ⊂ B (⇔ Dom(A) ⊂ Dom(B) and B∣

Dom(A) = A).

(iii) The closure of A, denoted by A, is the smallest closed extension of A, i.e.
A ⊂ A and if B is another closed extension of A, then A ⊂ B.

(iv) A subspace D ∈ X is a core of A if A∣
D
= A; in other words, if for every ϕ ∈

Dom(A) there is a sequence (ϕn)n∈N ⊂ D such that ϕn → ϕ and Aϕn → Aϕ
as n→∞.

Proposition A.0.6. (a) If (L,Dom(L)) is the generator of a strongly continuous
semigroup on X then Dom(L) is dense in X and L is a closed linear operator.

(b) Let (T1(t))t≥0 and (T2(t))t≥0 be two strongly continuous semigroups on X with
generators (L1,Dom(L1)) and (L2,Dom(L2)) respectively. If L1 = L2 then
T1(t) = T2(t), t ≥ 0.

Proposition A.0.7 (A core criterium, cf. Sato, 1999, Lemma 31.6). Let (Tt)t≥0

be a strongly continuous contraction semigroup on a Banach space X with generator
(L,Dom(L)). If D0 and D are linear subspaces of X such that

D0 ⊂D ⊂ Dom(L), D0 is dense in X

and
ϕ ∈D0 implies Ttϕ ∈D for any t > 0,

then D is a core for L.

Obviously, if D is a core for L then any subspace D′ with D ⊂ D′ ⊂ Dom(L)
is also a core for L. It follows immediately from the Core Criterium A.0.7 and
Proposition A.0.3, part (d), that Dom(Lk), k ∈ N, and D∞ ∶= ∩k∈N Dom(Lk) are
cores for L since D∞ is dense in X by Theorem 1.2.7 in Pazy, 1983.

Definition A.0.8. Let (Tt)t≥0 be a strongly continuous semigroup on a Banach
space X with generator (L,Dom(L)). Let a Banach space Y be continuously
embedded in X . The part of L in Y is the operator LY defined by

LY ϕ ∶= Lϕ, Dom(LY ) ∶= {ϕ ∈ Dom(L) ∩ Y ∶ Lϕ ∈ Y } .

Proposition A.0.9. Let (T (t))t≥0 be a strongly continuous semigroup on a Banach
spaceX with generator (L,Dom(L)). Let a Banach space Y be continuously embedded
in X . Let Y be (T (t))t≥0-invariant, i.e. T (t)Y ⊂ Y for all t ≥ 0.
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(a) If Y is a closed subspace of X then the restrictions TY (t) ∶= T (t)∣
Y

form a strongly
continuous semigroup (TY (t))t≥0, called the subspace semigroup on the Banach
space Y .

(b) If the restricted semigroup TY (t) ∶= T (t)∣
Y

is strongly continuous on Y then the
generator of (TY (t))t≥0 is the part (LY ,Dom(LY )) of L in Y .

Definition A.0.10. Let (L,Dom(L)) be a closed linear operator inX . If for some
λ ∈ C, the operator λ −L is one-to-one, Range(λ −L) =X and RL(λ) ∶= (λ −L)−1

is a bounded linear operator on X , then λ is said to belong to the resolvent set
ρ(L) of L and RL(λ) is called the resolvent of L at λ.

Theorem A.0.11 (Hille–Yosida). A linear operator (L,Dom(L)) is the generator of
a strongly continuous semigroup (Tt)t≥0 on X satisfying ∥Tt∥ ≤Meωt, if and only if

(i) L is closed and Dom(L) is dense in X .

(ii) The resolvent set ρ(L) of L contains the ray (ω,∞) and

∥RL(λ)
n∥ ≤

M

(λ − ω)n
for λ > ω, n ∈ N.

Definition A.0.12. A linear operator L ∶ Dom(L) → X , Dom(L) ⊂ X , is called
X-dissipative, if

∥λϕ −Lϕ∥X ≥ λ∥ϕ∥X

holds for all λ > 0 and all ϕ ∈ Dom(L).

Theorem A.0.13 (Lumer–Phillips). A linear operator (L,Dom(L)) is the generator
of a strongly continuous contraction semigroup (Tt)t≥0 on X , if and only if

(i) Dom(L) is dense in X .

(ii) L is X-dissipative.

(iii) The operator λ −L is surjective for some λ > 0.

Remark A.0.14 (cf. Prop. II.3.23, Example II.3.26 in Engel and Nagel, 2000). Let
X ′ be dual to X . For every ϕ ∈X , the following set, called its duality set,

J (ϕ) ∶= {l ∈X ′ ∶ ⟨ϕ, l⟩ = ∥ϕ∥2
X = ∥l∥2

X′}

is nonempty. Then an operator (L,Dom(L)) is dissipative if and only if for
every ϕ ∈ Dom(L) there exists l ∈ J (ϕ) such that

Re ⟨Lϕ, l⟩ ≤ 0.

In paticular, consider X ∶= C0(Q), Q locally compact. Then for any 0 ≠ ϕ ∈X

{ϕ(q0)δq0 ∶ q0 ∈ Q and ∣ϕ(q0)∣ = ∥ϕ∥X} ⊂ J (ϕ).
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Definition A.0.15. Let (L,Dom(L)) be a densely defined linear operator on a
Hilbert space X . The operator (L∗,Dom(L∗)) in X defined by

Lx ⋅ y = x ⋅L∗y, ∀x ∈ Dom(L), y ∈ Dom(L∗)

is called the adjoint to (L,Dom(L)). The operator (L,Dom(L)) is called selfad-
joint if (L,Dom(L)) = (L∗,Dom(L∗)), i.e. L = L∗ and Dom(L) = Dom(L∗).

Theorem A.0.16 (Stone Theorem). A family of bounded linear operators (Tt)t∈R on
a Hilbert space X is a strongly continuous unitary group if and only if there exists a
self-adjoint operator A in X such that Tt = eitA for all t ∈ R.

Finally, let us consider a few basic examples of strongly continuous semigroups.
Recall that the heat semigroup is discussed in Example 1.0.3.

Example A.0.17 (Multiplication semigroup). (i) Consider the spacesX = Lp(Rd)

with p ∈ [1,∞). Let C ∶ Rd → C be a Borel function such that ess infx∈Rd Re C(x) >
−∞. Define a multiplication operator −C ∶ X →X via

−Cϕ(x) ∶= −C(x)ϕ(x), x ∈ Rd, Dom(−C) ∶= {ϕ ∈X ∶ −Cϕ ∈X} .

Then the operator (−C,Dom(−C)) is closed, densely defined and generates a
strongly continuous semigroup (T −C

t )t≥0 (on X) which is called multiplication
semigroup and is given by

T −C
t ϕ(x) ∶= e−tC(x)ϕ(x), x ∈ Rd.

If ess supx∈Rd ∣C(x)∣ <∞ then the operator −C is bounded and Dom(−C) = X . If
C ∈ C(Rd) then the set Cc(Rd) is a core for −C by the Core Criterium A.0.7.

(ii) Analogously, consider the space X = C∞(Rd) and let C ∶ Rd → C be a contin-
uous function such that infx∈Rd Re C(x) > −∞. Then the multiplication operator
(−C,Dom(−C)) (as above) is closed, densely defined and generates a strongly
continuous multiplication semigroup (T −C

t )t≥0 (as above) on X . Once again,
Cc(Rd) is a core for −C by the Core Criterium A.0.7. Moreover, a set C∞

c (Rd) is
also a core for −C.

Indeed, let ϕ ∈ Dom(−C). Then for each ε > 0 there exists a compact Kε ⊂

Rd such that ∣ϕ(x)∣ < ε and ∣C(x)ϕ(x)∣ < ε for all x ∉ Kε. Take any sequence
(ϕn)n∈N ⊂ C∞

c (Rd) converging to ϕ in X such that ∣ϕn(x)∣ ≤ ∣ϕ(x)∣ for all x ∈ Rd

and all n ∈ N. Then one has for each ε > 0:

lim
n→∞

∥ −Cϕn +Cϕ∥∞ ≤

≤ lim
n→∞

(sup
x∈Kε

∣C(x)∣∥ϕn − ϕ∥∞ + sup
x∉Kε

∣C(x)ϕn(x)∣ + sup
x∉Kε

∣C(x)ϕ(x)∣) < 2ε,

i.e., the sequence (−Cϕn)n∈N converges to −Cϕ in X . Therefore, C∞
c (Rd) is a

core for −C by definition.
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Example A.0.18 (Translation semigroup). (i) Let X = Lp(Rd), p ∈ [1,∞), or X =

C∞(Rd). Let B ∈ Rd. For t ≥ 0, consider translation operators T −B∇
t given by

T −B∇
t ϕ(x) ∶= ϕ(x − tB).

It is easy to check that (T −B∇
t )t≥0 is a strongly continuous contraction semigroup

on X and its generator L is given by Lϕ(x) ∶= −B ⋅ ∇ϕ(x) on a proper domain.
This statement also follows immediately from Theorem C.0.7.

Since the action of the translation operators T −B∇
t doesn’t change the rate of

smoothness of ϕ ∈ X and preserves compactness of support, it follows imme-
diately from the Core Criterium A.0.7 that all spaces S(Rd), C∞

c (Rd), Ck
c (Rd),

Ck,λ
c (Rd), k ∈ N, λ ∈ (0,1), are cores for L.

(ii) Let now X = C∞(Rd) and B be a vector field of the class C1
b (Rd;Rd). Con-

sider the operator (−B∇,C1
c (Rd)) such that

−B∇ϕ(x) = −B(x) ⋅ ∇ϕ(x) ≡ −
d

∑
k=1

Bk(x)
∂ϕ

∂xk
(x)

for all ϕ ∈ C1
c (Rd). Then (−B∇,C1

c (Rd)) is dissipative and its closure generates
a strongly continuous semigroup (T −B∇)t≥0 on X due to Section II.3.28 in Engel
and Nagel, 2000.

Some other examples of strongly continuous semigroups are presented in Ap-
pendices C and D. Finally, let us remind the following classical theorem about
a bounded linear transformation (B.L.T.).

Theorem A.0.19 (the B.L.T. theorem; cf. Reed and Simon, 1980, Thm. I.7). Let T
be a bounded linear transformation from a normed linear space (V1, ∥ ⋅ ∥1) to a Banach
space (V2, ∥ ⋅ ∥2). Then T can be uniquely extended to a bounded linear tranformation
(with the same bound) from the completion ov V1 to (V2, ∥ ⋅ ∥2).
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Markov processes

A probability space or a probability triple is a mathematical construct that models
a real-world process (or “experiment”) consisting of states that occur randomly.
A probability space consists of three parts: a sample space Ω which is the set of
all possible outcomes, a σ-algebra F which is a collection of all possible events1

and a probability measure P, i.e. a map P ∶ F → [0,1] such that P(∅) = 0, P(Ω) =

1 and P(∪∞n=1Bn) = ∑
∞
n=1 P(Bn) for all pairwise disjoint events Bn ∈ F , n ∈ N. Let

(Ω,F ,P) be a probability space. Let Q be a Borel subset of a complete separable
metric space and B(Q) be the (induced) Borel σ-algebra of Q. A family (ξt)t≥0

of measurable functions ξt ∶ (Ω,F) → (Q,B(Q)) is called a stochastic process
(with continuous time) with state space Q. A family F ∶= (Ft)t≥0 of σ-algebras
Ft such that Fs ⊂ Ft ⊂ F for all 0 ≤ s ≤ t is called a filtration on (Ω,F ,P). A
filtration represents the information available up to and including each time t.
Let a filtration F be given. A stochastic process (ξt)t≥0 is called to be adapted to
the filtration F if ξt is Ft-measurable for each t ≥ 0. In other words, Ft contains
all the information about the progress of the process ξ up to time t inclusively.
An important class of adapted processes is given by Markov processes.

Definition B.0.1. Let (Ω,F ,P) be a probability space endowed with a filtration
F ∶= (Ft)t≥0. Let Q be a Borel subset of a complete separable metric space and
(ξt)t≥0 be an adapted process with the state space Q. The process (ξt)t≥0 is called
Markov process if2

P{ξt+s ∈ B ∣ Ft} = P{ξt+s ∈ B ∣ ξt} for all s, t ≥ 0, B ∈ B(Q).

In other words, a Markov process is an adapted process that has no memory,
i.e. one can make predictions for the future of the process based solely on its
present state just as well as one could knowing the process’s full history. Or,
equivalently, conditional on the present state of the system, its future and past
are independent. Note that all Rd-valued processes (ξt)t≥0 with independent
increments (e.g., Brownian motion and Poisson process) are Markov processes.

1Each event is a subset of Ω; F includes the empty subset and Ω itself, is closed under
complement, and is closed under countable unions and countable intersections.

2Conditional probability of an event must be understood as the conditional expectation of
the indicator of this event, i.e., P{ξt+s ∈ B ∣ Ft} ∶= E [1{ξt+s∈B} ∣ Ft] and P{ξt+s ∈ B ∣ ξt} ∶=
E [1{ξt+s∈B} ∣ σ(ξt)], where σ(ξt) is the σ-algebra generated by ξt.
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Markov processes are closely related to the notion of Markovian kernel (this no-
tion is defined below only in the time homogeneous case).

Definition B.0.2. Let (Q,B(Q)) be as above. A map P ∶ [0,+∞) ×Q × B(Q) →

[0,1] is called a sub-Markovian kernel if

(i) P (⋅, ⋅,B) ∶ (t, x)↦ P (t, x,B) is (Borel) measurable for all B ∈ B(Q),

(ii) P (t, x, ⋅) ∶ B ↦ P (t, x,B) is a sub-probability measure (i.e. P (t, x,Q) ≤ 1)
for all t ∈ [0,+∞) and all x ∈ Q,

(iii) P (0, x,{x}) = 1 for all x ∈ Q,

(iv) the Chapman–Kolmogorov equations

P (t + s, x,B) = ∫
Q

P (s, y,B)P (t, x, dy)

hold for all s, t ≥ 0, x ∈ Q, B ∈ B(Q).

A sub-Markovian kernel P is called a Markovian kernel if P (t, x,Q) = 1 for all
t ≥ 0 and all x ∈ Q.

Definition B.0.3. Let (ξt)t≥0 be a Markov process on a filtered probability space
(Ω,F ,P) with a filtration F ∶= (Ft)t≥0. Let (Q,B(Q)) be the state space of (ξt)t≥0.
Let P ∶ [0,+∞) ×Q × B(Q)→ [0,1] be a Markovian kernel. We say that the pro-
cess (ξt)t≥0 is a time-homogeneous Markov process and P is a transition kernel
of (ξt)t≥0 if for all s, t ≥ 0, B ∈ B(Q)

P{ξt+s ∈ B ∣ ξt} = P (s, ξt,B) almost sure (B.0.1)
or, equivalently,

P{ξt+s ∈ B ∣ ξt = x} = P (s, x,B) for Pξt almost all x ∈ Rd, (B.0.2)

where Pξt is the distribution of the random variable ξt, i.e. Pξt(B) ∶= P(ξ−1
t (B)).

In general, the value P{ξu ∈ B ∣ ξt = x}, u ≥ t ≥ 0, depends on t, u, x, B and
describes the probability of a transition of the Markov process (ξt)t≥0 from the
point x at the time t to the set B at the time u. In the sequel, we consider only
time-homogeneous Markov processes: P{ξu ∈ B ∣ ξt = x} = P (u− t, x,B), i.e. the
probability of a transition of the process depends on u and t only through the
length u−t of the time interval. In principle, any Markov process can be reduced
to a time-homogeneous Markov process by a proper extension of its state space
(cf. Wentzell, 1979, 8.5.5.).

If a Markov process posesses a transition kernel P , the properties (i)-(iv) of
Definition B.0.2 for P can be derived from (B.0.1). In particular, the Chapman–
Kolmogorov equations

P (t + s, ξu,B) = ∫
Q

P (s, y,B)P (t, ξu, dy), s, t, u ≥ 0, B ∈ B(Q),
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hold almost surely due to the tower property of conditional expectation. Con-
verse, let P ∶ [0,+∞)×Q×B(Q)→ [0,1] be a Markovian kernel. The construction
of Kolmogorov assures the existence of a Markov process with the state space
(Q,B(Q)) such that P is its transition kernel. Approximating measurable func-
tions with step functions, one can show that (B.0.1) is equivalent to the equality

E [ϕ(ξt+s) ∣ Ft] = ∫
Q

ϕ(y)P (s, ξt, dy) almost sure

for all t, s ≥ 0 and all ϕ ∶ Q → R with E[∣ϕ(ξt)∣] < ∞, ∀ t ≥ 0. Moreover, it is
sufficient to know the initial state of a Markov process and its transition kernel
to determine all finite dimensional distributions of the process. Indeed, let 0 <

t1 < . . . < tn < ∞ and B1, . . . ,Bn ∈ B(Q). Then, using the notation Ex[...] ∶=
E[... ∣ ξ0 = x], one has

P{ξt1 ∈ B1, . . . , ξtn ∈ Bn ∣ ξ0 = x}

= E [1{∩n
k=1{ξtk ∈Bk}}

∣ ξ0 = x]

= Ex [1{∩n−1
k=1 {ξtk ∈Bk}}

⋅E [1{ξtn∈Bn} ∣ Fn−1]]

= Ex [1{∩n−1
k=1 {ξtk ∈Bk}}

⋅ P (tn − tn−1, ξtn−1 ,Bn)]

= Ex [1{∩n−2
k=1 {ξtk ∈Bk}}

⋅E [1{ξtn−1∈Bn−1} ⋅ P (tn − tn−1, ξtn−1 ,Bn) ∣ Fn−2]]

= Ex
⎡
⎢
⎢
⎢
⎢
⎢
⎣

1{∩n−2
k=1 {ξtk ∈Bk}}

⋅ ∫
Bn−1

P (tn − tn−1, xn−1,Bn)P (tn−1 − tn−2, ξtn−2 , dxn−1)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

= . . .

= Ex
⎡
⎢
⎢
⎢
⎢
⎢
⎣

∫
B1

⋯ ∫
Bn−1

P (tn − tn−1, xn−1,Bn)P (tn−1 − tn−2, xn−2, dxn−1)⋯P (t1, ξ0, dx1)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

= ∫
B1

⋯ ∫
Bn−1

P (tn − tn−1, xn−1,Bn)P (tn−1 − tn−2, xn−2, dxn−1)⋯P (t1, x, dx1).

Let now P ∶ [0,+∞) ×Q × B(Q) → [0,1] be a sub-Markovian kernel. Consider
the one-point compactification Q ∶= Q ∪ {∂}, where ∂ is a point not belonging
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to Q (and is an isolated point if Q is compact). On Q we consider the Borel σ-
algebra B(Q). We extend the sub-Markovian kernel P to a kernel P ∶ [0,+∞) ×

Q × B(Q)→ [0,1] by

P (t, x,B) ∶=

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

P (t, x,B), for x ∈ Q, B ∈ B(Q),
1 − P (t, x,B), for x ∈ Q, B = {∂},
0, for x = ∂, B ∈ B(Q),
1, for x = ∂, B = {∂}.

Then P is a Markovian kernel, and there exists a Markov process with the ex-
tended state space (Q,B(Q)) having P as a transition kernel. An interpretation
of this extension procedure is discussed in Section 3.1 of Chapter 3. Further the-
ory of Markov processes can be found, e.g., in Dynkin, 1965; Ethier and Kurtz,
1986; Jacob, 2005; Casteren, 2011.



Appendix C

Convolution semigroups,
continuous negative definite
functions as well as Lévy processes
and their generators

Our standard references for this Appendix are Jacob, 2001, Sato, 1999, Böttcher,
Schilling, and Wang, 2013 and Applebaum, 2009.

Definition C.0.1. A family (ηt)t≥0 of bounded Borel measures on Rd is called a
convolution semigroup on Rd if the following conditions are fulfilled

(i) ηt(Rd) ≤ 1 for all t ≥ 0, i.e. all ηt are sub-probability measures;

(ii) ηt ∗ ηs = ηt+s for all t, s ≥ 0 and η0 = δ0 , where δ0 is the Dirac delta-measure
concentrated at zero and ηt ∗ ηs denotes the convolution of measures ηt
and ηs;

(iii) ηt → δ0 vaguely as t → 0, i.e. limt→0 ∫Rd ϕ(x)ηt(dx) = ∫Rd ϕ(x)δ0(dx) ≡ ϕ(x)
for all ϕ ∈ Cc(Rd) and all x ∈ Rd.

As it follows from Lemma 3.6.3 of Jacob, 2001, ηt → ηt0 weakly as t → t0 ≥ 0 for
any convolution semigroup (ηt)t≥0. The semigroup property (ii) implies that ηt
is an infinitely divisible measure, i.e., for each n ∈ N, ηt is the n-th convolution
power of another measure (which is ηt/n):

ηt = η
∗n
t/n or η̃t = (2π)d(n−1)/2(η̃t/n)

n,

where η̃s(p) ∶= (2π)−d/2 ∫Rd e
−ix⋅pηs(dx) is the Fourier transform of the measure

ηs. Conversely, each infinitely divisible measure η, η(Rd) ≤ 1, generates a con-
volution semigroup (ηt)t≥0 with ηt∣t=1

∶= η.

Definition C.0.2. A stochastic process (ξt)t≥0 (on a probability space (Ω,F ,P),
adapted to a (right-continuous and complete) filtration (Ft)t≥0) with values in
Rd is called a Lévy process if

(0) ξ0 = 0 almost surely;
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(i) (ξt)t≥0 has stationary increments, i.e. for all x ∈ Rd, B ∈ B(Rd), 0 ≤ s < t

P(ξt − ξs ∈ B) = P(ξt−s ∈ B);

(ii) (ξt)t≥0 has independent increments, i.e. the random variable ξt − ξs is in-
dependent from Fs for all t > s ≥ 0;

(iii) (ξt)t≥0 is stochastically continuous, i.e. limt→s P{∣ξt − ξs∣ > ε} = 0 for all ε > 0
and all s ≥ 0.

Note that each Lévy process has a modification with càdlàg paths, i.e. the map-
ping t→ ξt(ω) is almost surely right-continuous with finite left limits.

Proposition C.0.3 (cf. Sato, 1999, Thm. 7.10 and Thm. 10.5). (a) Let (ξt)t≥0 be a
Lévy process. Then, for any t ≥ 0, the distribution Pξt of the random variable ξt
is an infinitely divisible probability measure and, with η ∶= Pξ1 , we have Pξt = ηt,
where (ηt)t≥0 is the convolution semigroup generated by η. Conversely, if η is an
infinitely divisible probability measure, then there is a Lévy process (ξt)t≥0 such
that Pξ1 = η.

(b) Let (ξt)t≥0 be a Lévy process and η ∶= Pξ1 be the corresponding infinitely divisible
probability measure. Define P (t, x,B) for each t ≥ 0, x ∈ Rd, B ∈ B(Rd) by

P (t, x,B) ∶= ηt(B − x).

Then P (t, x,B) is a temporally and spatially homogeneous transition kernel and
(ξt)t≥0 is a Markov process with this transition kernel.

Therefore, there is a one-to-one correspondence between convolution semi-
groups of probability measures (ηt)t≥0, infinitely divisible probability measures
η ∶= η1 and sets of Lévy processes (ξt)t≥0 with Pξ1 = η. This correspondence
extends to arbitrary convolution semigroups (ηt)t≥0. Then the corresponding
stochastic processes (ξt)t≥0 are Lévy processes with killing. And the condition
ηt(Rd) ≡ P(ξt ∈ Rd) < 1 means that the process (ξt)t≥0 ”dies”, i.e. leaves the
state space Rd. The use of the one-point compactification Rd of Rd (the added
point is called cemetery; the process arrives there immediately by leaving the
state space) and a proper extention of the kernel P (t, x,B) ∶= ηt(B − x) allow to
convert (ξt)t≥0 into a Markov process with the enriched state space Rd.

Consider a convolution semigroup (ηt)t≥0. By the Bochner Theorem, Fourier
tranforms η̃t of measures ηt are positive definite functions. Recall that a func-
tion u ∶ Rd → C is called positive definite if for any choice of k ∈ N and vectors
p1, . . . , pk ∈ Rd the matrix (u(pi − pj))i,j=1,...,k is positive Hermitian, i.e. for all
λ1, . . . , λk ∈ C we have ∑ki,j=1 u(pi − pj)λiλj ≥ 0. Positive definite functions are
closely related to negative definite ones. Negative definite functions have been
introduced by I.J. Schönberg in connection with isometric embeddings of metric
spaces into a Hilbert space. His original definition is the following.
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Definition C.0.4. A function ψ ∶ Rd → C is called negative definite if for any m ∈ N
and all p1, . . . , pm ∈ Rd the m ×m matrix (ψ(pj) + ψ(pk) − ψ(pj − pk))

j,k=1,...,m
is

positive hermitian, i.e., if for all λ1, . . . , λm ∈ C

m

∑
j,k=1

(ψ(pj) + ψ(pk) − ψ(pj − pk)) λjλk ≥ 0.

It is not hard to see from Definition C.0.4 that a negative definite function ψ

has a non-negative real part Re ψ ≥ 0, satisfies ψ(p) = ψ(−p) and that
√

∣ψ∣ is
subadditive, i.e.,

√
∣ψ(p1 + p2)∣ ≤

√
∣ψ(p1)∣ +

√
∣ψ(p2)∣, p1, p2 ∈ Rd.

If ψ is continuous, repeated applications of the subadditivity estimate yield the
following growth bound

∣ψ(p)∣ ≤ 2 sup
∣y∣≤1

∣ψ(y)∣ (1 + ∣p∣2) , p ∈ Rd. (C.0.1)

A negative definite function is NOT the negative of a positive definite function.
However, we have

Proposition C.0.5. If u ∶ Rd → C is a positive definite function, then the function
[p↦ u(0) − u(p)] is negative definite.

The deeper connection between positive definite and negative definite func-
tions can be seen from the following Theorem (cf. Jacob, 2001, Thm. 3.6.16,
Thm. 3.7.7 and Thm. 3.7.8).

Theorem C.0.6. (i) For any convolution semigroup (ηt)t≥0 on Rd there exists a
uniquely determined continuous negative definite function ψ ∶ Rd → C such
that

η̃t(p) = (2π)−d/2e−tψ(p), for all t ≥ 0, p ∈ Rd. (C.0.2)

Conversely, given a continuous negative definite function ψ ∶ Rd → C, there
exists a unique convolution semigroup (ηt)t≥0 on Rd such that (C.0.2) holds.

(ii) Let ψ ∶ Rd → C be a continuous negative definite function. Then there exist
a constant C ≥ 0, a vector B ∈ Rd, a symmetric positive semidefinite matrix
A ∈ Rd×d and a Radon measureN on Rd∖{0} with ∫y≠0 ∣y∣

2(1+∣y∣2)−1N(dy) <∞
such that ψ is given by the Lévy-Khintchine formula

ψ(p) = C + iB ⋅ p + p ⋅Ap + ∫
y≠0

(1 − eiy⋅p +
iy ⋅ p

1 + ∣y∣2
) N(dy). (C.0.3)

The characteristics (C,B,A,N) are uniquely determined by ψ. Moreover, for
any given quadruple (C,B,A,N), the right-hand side of (C.0.3) is well-defined
and is a continuous negative definite function.
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The function ψ is called the characteristic exponent, C = ψ(0) is the killing rate
since ηt(Rd) = (2π)d/2η̃t(0) = e−tψ(0), (B,A,N) is the Lévy triplet, B is the drift
coefficient, A is the covariance matrix and N is usually called the Lévy measure.
Note, that there are different forms of the Lévy-Khintchine formula in the lit-
erature (see Jacob, 2001, Rem. 3.7.10) since there are different ways to choose
the measure N in (C.0.3). Different choises of N cause changings of the drift
coefficient B in (C.0.3).

Let (ηt)t≥0 be the convolution semigroup associated with the continuous nega-
tive definite function ψ by (C.0.2) and (ξt)t≥0 be a corresponding Lévy process
(with killing) such that Pξt = ηt. Consider the measures (η♯t)t≥0 obtained from
measures ηt by reflection at the origin η♯t(B) ∶= ηt(−B), B ∈ B(Rd). Then (η♯t)t≥0

is again a convolution semigroup and the associated continuous negative def-
inite function ψ♯ is obtained by reflection of the function ψ at the origin, i.e.
ψ♯(p) ∶= ψ(−p), p ∈ Rd. On the Schwartz space S(Rd), we can1 define pseudo-
differential operators T bwt , t ≥ 0, with symbols e−tψ♯ , i.e.

T bwt ϕ(x) = (2π)−d∫
Rd
∫

Rd

eip⋅(x−q)e−tψ
♯(p)ϕ(q)dqdp = (F−1 ○ e−tψ

♯
○F)ϕ(x), (C.0.4)

where F and F−1 denote the Fourier and the inverse Fourier transforms, ϕ ∈

S(Rd). The convolution theorem yelds

T bwt ϕ(x) = ϕ ∗ η♯t(x) = ∫
Rd

ϕ(x − y)η♯t(dy)

= ∫

Rd

ϕ(x + y)ηt(dy) = ∫
Rd

ϕ(y)P (t, x, dy) = Ex[ϕ(ξt)]. (C.0.5)

The family (T bwt )t≥0 extends to a semigroup on the space Bb(Rd). This semi-
group is called backward semigroup associated to the Lévy process (with killing)
(ξt)t≥0. Analogousely, one can consider pseudo-differential operators (T fwt )t≥0

with symbols e−tψ on S(Rd). Then

T fwt ϕ(x) = (2π)−d∫
Rd
∫

Rd

eip⋅(x−q)e−tψ(p)ϕ(q)dqdp = ϕ ∗ ηt(x) = Ex[ϕ(−ξt)]. (C.0.6)

The family (T fwt )t≥0 has similar properties as (T bwt )t≥0 and is called forward semi-
group associated to the process (ξt)t≥0. Note, that (T bwt )t≥0 is simultaneousely the
forward semigroup for the Lévy process (with killing) (−ξt)t≥0. It can be easy
checked that (extensions of) operators T fwt and T bwt are adjoint to each other on
L2(Rd). The further properties of (T fwt )t≥0 (and, therefore, of (T bwt )t≥0) are sum-
marized in the following theorem (cf. Sato, 1999, Thm. 31.5, Applebaum, 2009,
Thm. 3.4.2., Jacob, 2001, Thm. 4.4.3).

1Indeed, since Re ψ ≥ 0, we have e−tψ
♯F[ϕ] ∈ L1(Rd) for each ϕ ∈ S(Rd). Hence T bwt ϕ ∈

C∞(Rd).
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Theorem C.0.7. (i) The family (T fwt )t≥0 of pseudo-differential operators given on
S(Rd) by (C.0.6) extends to a strongly continuous contraction semigroup (de-
noted again by (T fwt )t≥0) on each of the spaces C∞(Rd), Lp(Rd), p ∈ [1,∞).

(ii) Let (Lfw,Dom(Lfw)) be the generator of the semigroup (T fwt )t≥0 on the space
C∞(Rd). Then C∞

c (Rd) is a core for Lfw, C2
∞(Rd) ⊂ Dom(Lfw) and

Lfwϕ(x) = −Cϕ(x) −B ⋅ ∇ϕ(x) + tr(AHessϕ(x))

+ ∫
y≠0

(ϕ(x + y) − ϕ(x) −
y ⋅ ∇ϕ(x)

1 + ∣y∣2
) N(dy) (C.0.7)

for ϕ ∈ C2
∞(Rd), where (C,B,A,N) are the characteristics of the continuous

negative definite function ψ as in Theorem C.0.6.

It is easy to see that the operator (Lfw,C2
∞(Rd)) given by (C.0.7) extends the

pseudo-differential operator with symbol −ψ defined on S(Rd). So, let us note,
that symbols of the (restricted to S(Rd)) operators Lfw and T fwt = etL

fw are con-
nected in the natural manner: they are −ψ and e−tψ respectively.

Example C.0.8. Let us present some important continuous negative definite
functions ψ ∶ Rd → C and the related objects.

(a) ψ(p) = C ≥ 0. Hence Lfw is multiplication with the constant −C.

(b) ψ(p) = iB ⋅ p for some B ∈ Rd. Then Lfw = −B ⋅ ∇ and the correspond-
ing semigroup is the translation semigroup (T −B∇

t )t≥0 discussed in Ex-
ample A.0.18. This semigroup is the forward semigroup for the process
(ξt)t≥0 which is the deterministic drift ξt = Bt in the direction B/∣B∣ with
speed ∣B∣. The corresponding convolution semigroup is given by ηt ∶= δtB,
where δtB is the Dirac delta measure concentrated at the point tB ∈ Rd.

(c) ψ(p) = 1
2 ∣p∣

2. Then Lfw = 1
2∆, the corresponding convolution semigroup is

given by ηt(dx) = (2πt)−d/2 exp{−
∣x∣2
2t }, and (ξt)t≥0 is a standard Brownian

motion. In this case, we have also T fwt = T bwt on L2(Rd) and the generator

(L,Dom(L)) ∶= (Lfw,Dom(Lfw)) = (Lbw,Dom(Lbw)) = (1
2∆, S(Rd))

L2(Rd)
is

a self-adjoint operator.

(d) ψ(p) = ∣p∣α with α ∈ (0,2). Then the Lévy characteristics are C = 0, B =

0, A = 0 and N(dy) = kα∣y∣−d−αdy with kα = α2α−1π−d/2Γ (α+d
2

) /Γ (1 − α
2
)

and Euler Gamma-function Γ. The corresponding generator L is called
fractional Laplacian and is denoted as −(−∆)α/2. A corresponding Lévy
process (ξt)t≥0 is a (symmetric) α-stable process; in particular, ξat has the
same law as a1/αξt for all a > 0, t ≥ 0. The corresponding convolution
semigroup (ηt)t≥0 is known in closed form only for the case α = 1. In this
case, it is given by the Cauchy distribution ηt(dx) ∶= Γ (d+1

2
) t
π(∣x∣2+t2)(d+1)/2 .

(e) ψ(p) = 1 − eia⋅p, with some fixed a ∈ Rd. Then the Lévy characteristics
are C = 0, A = 0, B = − a

1+∣a∣2 , N = δa. A corresponding process (ξt)t≥0
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is a Poisson process with the jump ”size” −a (and the intensity of jumps
1): P(ξt = −an) = e−ttn/(n!). The (forward) Poisson semigroup (Tt)t≥0 on
C∞(Rd) is defined via Ttϕ(x) ∶= e−t∑∞

n=0ϕ(x+na)t
n/(n!) and its (bounded)

generator L is given by Lϕ(x) = ϕ(x + a) − ϕ(x).

(f) ψ(p) =
√

∣p∣2 +m2 for some m > 0. This function is the symbol of a rela-
tivistic Hamiltonian. The corresponding convolution semigroup (ηt)t≥0 is
known in explicit form, see formula (3.251) on page 182 of Jacob, 2001.
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Some results on generation of
strongly continuous semigroups on
different Banach spaces

Definition D.0.1. Let (A,Dom(A)) and (B,Dom(B)) be two linear operators in
X such that Dom(A) ⊂ Dom(B) and for some α ∈ [0,1) and β ≥ 0

∥Bϕ∥X ≤ α∥Aϕ∥X + β∥ϕ∥X

holds for all ϕ ∈ Dom(A). Then the operator B is called A-bounded and α is
called an A-bound for B.

Example D.0.2 (Example III.2.2. of Engel and Nagel, 2000). Let I ⊆ R be an
interval, Xp ∶= Lp(I), p ∈ [1,∞], and X0 ∶= C0(I). Consider the operators A and
B in Banach spaces Xp and X0 such that

A ∶=
d2

dx2
with

Dom(A) ∶=W 2,p(I) ⊂Xp or Dom(A) ∶= {ϕ ∈ C2
0(I) ∣ϕ

′, ϕ′′ ∈ C0(I)} ⊂X0,

and

B ∶=
d

dx
with

Dom(B) ∶=W 1,p(I) ⊂Xp or Dom(B) ∶= {ϕ ∈ C1
0(I) ∣ϕ

′ ∈ C0(I)} ⊂X0.

Then B is A-bounded with A-bound α = 0.

Example D.0.3. Consider the Banach space L2(Rd). Let ψ be a continuous neg-
ative definite function and (L,S(Rd)) be the corresponding pseudo-differential
operator, i.e. Lϕ = [F−1 ○ (−ψ) ○F]ϕ for all ϕ ∈ S(Rd) (this operator is well-
defined on S(Rd) via Berg and Forst, 1973, cf. Thm. 3.4.4 in Applebaum, 2009).
Due to (C.0.1), we have for each ϕ ∈ S(Rd) with C ∶= 2 sup∣y∣≤1 ∣ψ(y)∣

∥Lϕ∥2 ≤ ∥F−1∥ ⋅ ∥(−ψ)F[ϕ]∥2 ≤ C∥(1 + ∣p∣2)F[ϕ](p)∥2 ≤ C (∥ϕ∥2 + ∥∆ϕ∥2) .
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Consider now the particular case ψ(p) ∶= iB ⋅ p for a given B ∈ Rd, i.e. Lϕ =

−B ⋅ ∇ϕ, ϕ ∈ S(Rd). Since ∣p∣ ≤ (1 + ∣p∣2)/2, we have (with C ∶= ∣B∣/2)

∥Lϕ∥2 ≤ ∥ ∣B∣ ⋅ ∣p∣F[ϕ](p)∥2

≤
∣B∣

2
(∥F[ϕ](p)∥2 + ∥∣p∣2F[ϕ](p)∥2) =

∣B∣

2
(∥ϕ∥2 + ∥∆ϕ∥2) .

Take now any a > 0 and consider the function ϕ̃a defined by the equality ϕ̃a(p) =
a1+d/2F[ϕ](ap) for all p ∈ Rd. Then

∥ ∣B∣ ⋅ ∣p∣F[ϕ](p)∥2 = ∥ ∣B∣ ⋅ ∣p∣ ϕ̃a(p)∥2

≤
∣B∣

2
(∥ϕ̃a(p)∥2 + ∥ ∣p∣2ϕ̃a(p)∥2)

=
∣B∣

2
(a∥F[ϕ](p)∥2 + a

−1∥ ∣p∣2F[ϕ](p)∥2)

=
∣B∣

2
(a∥ϕ∥2 + a

−1∥∆ϕ∥2) .

Therefore, the operator L = −B ⋅∇ is ∆-bounded, and its ∆-bound is any number
from the interval (0,1). Similarly, using the inequality ∣p∣ ≤ (1 + ∣p∣α) for all
α ∈ (1,2], one obtains that the operator L = −B ⋅ ∇ is − (−∆)

α/2-bounded, and its
− (−∆)

α/2-bound is any number from the interval (0,1).

The following result can be found in Ethier and Kurtz, 1986, Thm. 1.7.1, and
Jacob, 2001, Thm. 4.4.3.

Theorem D.0.4. Let (A,Dom(A)) be closable and its closure be the generator of a
strongly continuous contraction semigroup on X . If (B,Dom(B)) is an A-bounded
dissipative operator onX , then the operator (A+B,Dom(A)) is closable and its closure
generates a strongly continuous contraction semigroup on X . Moreover, A +B = A +

B; and if A is closed then Dom(A +B) = Dom(A).

Corollary D.0.5. Let (A,Dom(A)) be the generator of a strongly continuous semi-
group (Tt)t≥0 on X , satisfying ∥Tt∥ ≤ Meωt. If B is a bounded linear operator on X ,
then the operator (A+B,Dom(A)) is the generator of a strongly continuous semigroup
(Ut)t≥0, satisfying ∥Ut∥ ≤Me(ω+M∥B∥)t.

Theorem D.0.6 (Pazy, 1983, Cor. III.3.5). Let X be a reflexive Banach space and an
operator (A,Dom(A)) be the generator of a strongly continuous contraction semigroup
on X . Let an operator (B,Dom(B)) be dissipative such that Dom(B) ⊃ Dom(A) and

∥Bϕ∥X ≤ ∥Aϕ∥X + β∥ϕ∥X

for all ϕ ∈ Dom(A) and some β ≥ 0. Then the closure of (A + B,Dom(A)) also
generates a strongly continuous contraction semigroup on X .

Some other results on additive perturbations can be found in Lumer, 1989a.
Some generation results in the case of relatively bounded but not dissipative



Appendix D. Some results on generation of strongly continuous semigroups
on different Banach spaces 145

perturbations are discussed in Lasiecka and Triggiani, 1985. Perturbation the-
ory for analytic semigroups is available, e.g., in Kato, 1966. Perturbations of
positive semigroups are discussed in Arendt and Rhandi, 1991 (see also ref-
erences therein). Generalizing the techniques of Dyson–Phillips perturbation
series, some generation results (in particular, for gradient perturbations and
perturbations by singular potentials) are obtained in the series of works Bog-
dan, Hansen, and Jakubowski, 2008; Bogdan and Jakubowski, 2012; Bogdan,
Hansen, and Jakubowski, 2013; Bogdan and Szczypkowski, 2014; Bogdan and
Sydor, 2015; Bogdan, Butko, and Szczypkowski, 2016. Perturbation theory in
Lp for sub-Markovian generators can be founded, e.g., in Liskevich, Perelmuter,
and Semenov, 1996.

Theorem D.0.7 (Dorroh, 1966). LetQ be a set. LetX be a complex Banach space (un-
der the supremum norm) of bounded complex valued functions on Q, a be a bounded
positive function on Q which is bounded away from zero, aX ⊂ X , and (L,Dom(L))
be the generator of a strongly continuous contraction semigroup on X . Then the op-
erator (ÌL,Dom(L)) with ÌLϕ(q) ∶= a(q)Lϕ(q) for all ϕ ∈ Dom(L), q ∈ Q, is also the
generator of a strongly continuous contraction semigroup on X .

Theorem D.0.8 (Lumer, 1973). Let Q be a separable locally compact metric space.
Let X = C0(Q). Let a ∈ Cb(Q) and a > 0 on Q. Let (L,Dom(L)) be the generator of
a strongly continuous contraction semigroup on X . Then the closure of (ÌL,Dom(L))
with ÌLϕ(q) ∶= a(q)Lϕ(q) for all ϕ ∈ Dom(L), q ∈ Q, is also the generator of a strongly
continuous contraction semigroup on X . The same statement holds in the case when
X is a Banach subspace of C0(Q), invariant under the function a.

Further results on multiplicative perturbations can be found in Lumer, 1989b.
For the case of Banach spaces Lp(Q), see, e.g., Dorroh and Holderrieth, 1993.
Multiplicative perturbations of the Laplace operator are considered also in Al-
tomare, Milella, and Musceo, 2011.

Let now G be either Rd or an open bounded domain in Rd with uniformly C2

boundary ∂G. Consider a second order differential operator L,

Lϕ(x) ∶ = tr(A(x)Hessϕ(x)) −B(x) ⋅ ∇ϕ(x) −C(x)ϕ(x)

≡
d

∑
i,j=1

aij(x)
∂2ϕ

∂xi∂xj
(x) −

d

∑
i=1

Bi(x)
∂ϕ

∂xi
(x) −C(x)ϕ(x).

We assume that the coefficients aij , Bi, C are real, bounded and continuous on
Rd, the matrix A = (aij)i,j=1,...,d is symmetric and satisfies for some a0 > 0 the
uniform ellipticity condition

A(x)z ⋅ z ≥ a0∣z∣
2, ∀x ∈ G,z ∈ Rd.

The following Theorem summarizes the results of Cor. 3.1.9 (iii), Thm. 3.1.7,
Cor. 3.1.21 (i) and (ii), Rem. 2.1.5. in Lunardi, 1995.
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on different Banach spaces

Theorem D.0.9. Let the coefficients aij , Bi, C be uniformly continuous on G.

(i) Let G = Rd and X = C∞(Rd). Define

Dom(L) ∶= {ϕ ∈ ∩p≥1W
2,p
loc (R

d) ∶ ϕ,Lϕ ∈X} .

Then (L,Dom(L)) generates a strongly continuous semigroup on X . Moreover, this
semigroup is analytic. And Dom(L) is continuously embedded in C1,α(Rd) for every
α ∈ (0,1).

(ii) Let G be an open bounded domain in Rd with uniformly C2 boundary ∂G. Let
Y = C0(G). Define

Dom(L) ∶= {ϕ ∈ ∩p≥1W
2,p
loc (G) ∶ ϕ,Lϕ ∈ Y } .

Then (L,Dom(L)) generates a strongly continuous semigroup on Y . Moreover, this
semigroup is analytic. And Dom(L) is continuously embedded in C1,α(G) for every
α ∈ (0,1).

Theorem D.0.10 (Jacob, 2002, Thm. 2.1.43.). Let G = Rd. Let aij ∈ C3
b (Rd), Bi ∈

C2
b (Rd) and C ∈ C1

b (Rd). Then the closure of the operator (L,W 3,p(Rd)), p > d,
generates a strongly continuous semigroup on X = C∞(Rd).

More results on generation of strongly continuous semigroups on the spaces
of continuous functions (in particular, Feller semigroups generated by second
order elliptic operators) can be found in Arendt and Schätzle, 2014; Arendt and
Bénilan, 1999; Fornaro and Lorenzi, 2007; Da Prato and Goldys, 2001; Cerrai,
2000; Roth, 1978; Roth, 1977; Roth, 1976.

Let Q be a locally compact separable space. Let (Tt)t≥0 be a Feller semigroup
on C∞(Q) (see Section 3.3 for the definition). This semigroup is, a priori, de-
fined on (or can be extended onto) the space Bb(Q). In several situations, the
operators Tt∣Cc(Q) can be extended onto spaces of integrable functions Lp(Q,m),
where m is a positive Radon measure with full topological support (i.e. m(U) >

0 for any open sets U ⊂ Q). We call the operators Tt m-symmetric if

∫
Q

Ttϕ(x) ⋅ u(x)m(dx) = ∫
Q

ϕ(x) ⋅ Ttu(x)m(dx), ∀ ϕ,u ∈ Cc(Q).

Denote by T ∗
t the formal adjoint of Tt with respect to L2(Q,m), i.e. the linear

operator defined by

∫
Q

Ttϕ(x) ⋅ u(x)m(dx) = ∫
Q

ϕ(x) ⋅ (T ∗
t u)(dx), ∀ ϕ,u ∈ Cc(Q).

Note that (T ∗
t u) is a bounded Radon measure since the set of all bounded Radon

measures is the topological dual of C∞(Q).

Proposition D.0.11 (cf. Böttcher, Schilling, and Wang, 2013, Lemma 1.45). Let
(Tt)t≥0 be a Feller semigroup and assume that the operators Tt are m-symmetric or that
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the operators
T⊛
t ∶= T ∗

t ∣L1(Q,m)

map L1(Q,m) into itself and are sub-Markovian, i.e. 0 ≤ T⊛
t ϕ ≤ 1 for all ϕ ∈ L1(Q,m)

with 0 ≤ ϕ ≤ 1. Then (Tt)t≥0 has for every 1 ≤ p < ∞ an extension (T
(p)
t )t≥0 to a

strongly continuous, positivity preserving, sub-Markovian contraction semigroup on
Lp(Q,m).
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