PDE and Boundary-Value Problems (Winter Term 2012/2013)
 Assignment H1 - Homework

Problem 1.1 (Classification - 4 Points)

Classify the following equations:
(a) $u_{t}=u_{x x}+2 u_{x}+u$
(b) $u_{t}=u_{x x}+e^{-t}$
(c) $u_{x x}+3 u_{x y}+u_{y y}=\sin x$
(d) $u_{t t}=u u_{x x x x}+e^{-t}$

Problem 1.2 (Transformation into canonical form - 12 Points)

Transform into canonical form the following equations
(a) $u_{x x}-2 x u_{x y}-\frac{1}{x} u_{x}=0, \quad x>0$,
(b) $u_{x x}+2 u_{x y}+x^{2} u_{x}=e^{-x^{2} / 2}$.

Problem 1.3 (Solving PDE - 5 Points)

Can you find all functions $u(x, y)$ that satisfy to the equation

$$
\frac{\partial^{2} u(x, y)}{\partial x \partial y}=0 ?
$$

How many are there?

Problem 1.4 (Formulation of IBVP - 4 Points)

Suppose a laterally insulated metal rod of length $L=1$ has an initial temperature of $\sin (3 \pi x)$ and has its left and right ends fixed at temperatures zero and $10^{\circ} \mathrm{C}$. What would be the IBVP that describes this problem?

Deadline for submission: Thursday, October 31, (Room 433, Bilding E2 4)

