PDE and Boundary-Value Problems (Winter Term 2013/2014) Assignment H6 - Homework

Problem 6.1 (Wave Problem in Polar Coordinates - 8+6=14 Points)

a) Solve the wave problem in polar coordinates

$$
\begin{aligned}
& \text { PDE: } u_{t t}=\Delta u, \quad 0<r<1, \quad 0 \leqslant \theta<2 \pi, \\
& \text { BC: } \quad u(1, \theta, t)=0, 0<t<\infty \\
& \text { ICs: }\left\{\begin{aligned}
u(r, \theta, 0)=J_{0}(2.4 r)-0.5 J_{0}(8.65 r)+0.25 J_{0}(14.93 r), & 0 \leqslant t<\infty \\
u_{t}(r, \theta, 0)=0, & 0 \leqslant r \leqslant 1
\end{aligned}\right.
\end{aligned}
$$

by using the method of separation of variables.
b) Sketch the nodal lines for fundamental vibrations U_{34}, U_{33}, and U_{24}.

Problem 6.2 (2-Dimensional Wave Equation - 5 Points)

Let $u(x, y, t)$ be the solution of the two-dimensional wave equation

$$
u_{t t}=c^{2}\left(u_{x x}+u_{y y}\right), \quad(x, y) \in \mathbb{R}^{2}, 0<t, \infty
$$

with initial conditions

$$
\begin{aligned}
u(x, y, 0) & \equiv 0 \\
u_{t}(x, y, 0) & =\left\{\begin{array}{l}
1, \text { if } x^{2}+y^{2} \leqslant 4 \\
0, \text { otherwise }
\end{array}\right.
\end{aligned}
$$

Find $u(0,0, t)$ for all $t>0$ and determine the behavior of $u(0,0, t)$ when $t \rightarrow \infty$.

Problem 6.3 (The Laplacian - 4 Points)

Transform the three-dimensional Laplacian into cylindrical coordinates and spherical coordinates, respectively.

Problem 6.4 (The Neumann problem - 4 Points)
Does the following Neumann problem have a solution inside the circle:

$$
\begin{aligned}
\text { PDE: } & \Delta u=0, \quad 0<r<1, \quad 0 \leqslant \theta<2 \pi \\
\mathrm{BC}: & \frac{\partial u}{\partial r}=\sin ^{2} \theta, \quad 0 \leqslant \theta<2 \pi
\end{aligned}
$$

Deadline for submission: Friday, January 24, 10am

