

PDE and Boundary-Value Problems (Winter Term 2013/2014) Assignment H7 - Homework

Problem 7.1 (The Exterior Dirichlet Problem - 10 Points)

What is the solution to the exterior Dirichlet problem

PDE
$$\Delta u = 0,$$
 $1 < r < \infty$
BC $u(1, \phi) = 1 + \cos \phi$

Problem 7.2 (The Dirichlet Problem- 8 Points)

Solve the Dirichlet problem

PDE
$$\Delta u = 0,$$
 $1 < r < 2$
BCs
$$\begin{cases} u(1, \theta) = \cos \theta \\ u(2, \theta) = \sin \theta \end{cases}$$

Problem 7.3 (Questionnaire - 10 Points)

1.	The equation $u_{tt} = u_{xx}$ is commonly called the equation.
2.	The term u_x in the equation $u_t = Du_{xx} - \nu u_x$ is related to the of the material.
3.	The Legendre polynomials $\{P_n(x)\}\$ are on the interval $[0,1]$.
4.	In order for separation of variables to work, the PDE must be and
5.	An integral transform that we generally use on the time variable is due to
6.	The normal derivative at the boundary of a region is related to the of material across the boundary.

- 7. The ODE in r we must solve when solving the vibrating circular membrane is due to _____.
- 8. A useful way to solve the equation $u_t = Du_{xx} \nu u_x$ is by ______ coordinates.
- 9. The PDE $r^2R'' + rR' \lambda^2R = 0$ is called ______ equation.
- 10. The PDE $u_{xx} + u_{yy} = f(x, y)$ is named after ______.

Deadline for submission: Friday, January 31, 12am