PDE and Boundary-Value Problems (Winter Term 2013/2014) Assignment H7 - Homework

Problem 7.1 (The Exterior Dirichlet Problem - 10 Points)

What is the solution to the exterior Dirichlet problem

PDE	$\Delta u=0$,	$1<r<\infty$
BC	$u(1, \phi)=1+\cos \phi$	

Problem 7.2 (The Dirichlet Problem- 8 Points)

Solve the Dirichlet problem

$$
\begin{array}{lll}
\mathrm{PDE} & \Delta u=0, & 1<r<2 \\
\mathrm{BCs} & \left\{\begin{array}{l}
u(1, \theta)=\cos \theta \\
u(2, \theta)=\sin \theta
\end{array}\right.
\end{array}
$$

Problem 7.3 (Questionnaire - 10 Points)

1. The equation $u_{t t}=u_{x x}$ is commonly called the \qquad equation.
2. The term u_{x} in the equation $u_{t}=D u_{x x}-\nu u_{x}$ is related to the \qquad of the material.
3. The Legendre polynomials $\left\{P_{n}(x)\right\}$ are \qquad on the interval $[0,1]$.
4. In order for separation of variables to work, the PDE must be \qquad and \qquad .
5. An integral transform that we generally use on the time variable is due to \qquad .
6. The normal derivative at the boundary of a region is related to the \qquad of material across the boundary.
7. The ODE in r we must solve when solving the vibrating circular membrane is due to \qquad .
8. A useful way to solve the equation $u_{t}=D u_{x x}-\nu u_{x}$ is by \qquad coordinates.
9. The PDE $r^{2} R^{\prime \prime}+r R^{\prime}-\lambda^{2} R=0$ is called \qquad equation.
10. The PDE $u_{x x}+u_{y y}=f(x, y)$ is named after \qquad .

Deadline for submission: Friday, January 31, 12am

