Calculus of Variations Summer Term 2014

Lecture 15
27. Juni 2014

Purpose of Lesson:

- To consider optimal control examples
- To introduce a terminology.

Formulation of control problems

We break a control problems into two parts
(1) The system state: $\mathbf{x}(t)=\left(x_{1}(t), x_{2}(t), \ldots, x_{n}(t)\right)^{t}$

The system state describes the system (e.g. position and velocity of the car in car parking example)
(2) The control: $\mathbf{u}(t)=\left(u_{1}(t), \ldots, u_{m}(t)\right)^{t}$

We apply the control to the system (e.g. force applied to the car).
The evolution of the system is governed by the set of DEs

$$
\dot{\mathbf{x}}(t)=\mathbf{g}(t, \mathbf{x}, \mathbf{u})
$$

In a control problem we want to get the system to a particular state $\mathbf{x}(t)$ at time t, given initial state $\mathbf{x}\left(t_{0}\right)$.

Optimal control problems

- In an optimal control problem we have still have the system equations

$$
\dot{\mathbf{x}}(t)=\mathbf{g}(t, \mathbf{x}, \mathbf{u})
$$

and we might wish to get to state $\mathbf{x}(t)$ given initial state $\mathbf{x}\left(t_{0}\right)$, but now we wish to do so while minimizing a functional

$$
J[\mathbf{x}, \mathbf{u}]=\int_{t_{0}}^{t_{1}} F(t, \mathbf{x}, \mathbf{u}) d t
$$

- That is, we wish to choose a function $\mathbf{u}(t)$ which minimizes the functional $J[\mathbf{x}, \mathbf{u}]$, while satisfying the end-point conditions $\mathbf{x}\left(t_{0}\right)=\mathbf{x}_{0}$ and $\mathbf{x}\left(t_{1}\right)=\mathbf{x}_{1}$, and the non-holonomic constaints

$$
\dot{\mathbf{x}}(t)=\mathbf{g}(t, \mathbf{x}, \mathbf{u})
$$

Optimal control problems

Optimization functional

$$
J[\mathbf{x}, \mathbf{u}]=\int_{t_{0}}^{t_{1}} F(t, \mathbf{x}, \mathbf{u}) d t
$$

Remarks

Note that

- $F(t, \mathbf{x}, \mathbf{u})$ has no dependence on $\dot{\mathbf{u}}$: this is typically because costs depend on the control, not how we change the control, but there might be counter-examples.
- $F(t, \mathbf{x}, \mathbf{u})$ has no dependence on $\dot{\mathbf{x}}$: this is common in control problems, but not universal (we have seen at least one counter example).

Terminal costs

- Sometimes in optimal control we don't fix the end-point $\mathbf{x}\left(t_{1}\right)$, but rather we assign a cost $\phi\left(t_{1}, \mathbf{x}\left(t_{1}\right)\right)$ to particular end-points.
- So now we wish to choose a control $\mathbf{u}(t)$ which minimizes the functional

$$
J[\mathbf{x}, \mathbf{u}]=\phi\left(t_{1}, \mathbf{x}\left(t_{1}\right)\right)+\int_{t_{0}}^{t_{1}} F(t, \mathbf{x}, \mathbf{u}) d t
$$

while satisfying the single end-point condition $x\left(t_{0}\right)=\mathbf{x}_{0}$, and the non-holonomic constraint $\dot{\mathbf{x}}(t)=\mathbf{g}(t, \mathbf{x}, \mathbf{u})$.

- $\phi\left(t_{1}, \mathbf{x}\left(t_{1}\right)\right)$ is called the terminal cost.

System Terminology

- linear: the state equations are a set of linear DEs.
- autonomous: time doesn't appear explicitly in the state equations (e.g. in $g(\mathbf{x}, \mathbf{u})$, or $F(\mathbf{x}, \mathbf{u})$).
- also called time-invariant.
- terminal cost: the term $\phi\left(t_{1}, \mathbf{x}\left(t_{1}\right)\right)$ is called the terminal cost.
- controllable: a solution to the control problem exists.
- stable: a stable equilibrium solution to the system DEs exists.
- often we are interested in problems that are unstable, or we wouldn't really need a control.

Control Terminology

- control (driver or automatic)
- planned (open loop)
- feedback (closed loop) control depends on current state
- type of control
- movement from A to B
- continuous operations (maintain equilibrium)
- type of cost functional J
- minimum time
- minimum fuel
- quadratic costs
- admissible controls
- unbounded / bounded / bang-bang

Cost functional examples

- minimum time: choose the fastest possible control

$$
J[x, u]=\int_{t_{0}}^{t_{1}} d t
$$

- minimum fuel: fuel is expended by the controller, and we wish to minimize this

$$
J[x, u]=\int_{t_{0}}^{t_{1}}|u(t)| d t
$$

- quadratic costs:

$$
J[x, u]=\int_{t_{0}}^{t_{1}}\left(x^{2}(t)+\alpha u^{2}(t)\right) d t
$$

Boundary conditions

- End time t_{1} : can be fixed or free
- End position $\mathbf{x}\left(t_{1}\right)$: can be fixed or free

In the cases with free boundary conditions, we introduce natural, or transversal boundary conditions.

Example 15.1 Dynamic production

- A producer in purely competitive market
- A large numbers of independent producers
- Standardized product, e.g. potatoes
- Firms are „price takers", i.e. they have no significant control over product price
- Free entry and exit
- Free flow of information
- wants to find optimal production path $x(t), 0 \leqslant t \leqslant T$.
- production target $x(T)=x_{T}$
- profit at time t is $\pi(x, \dot{x}, t)$
- maximize profit functional $J[x]=\int_{0}^{T} \pi(x, \dot{x}, t) d t$.

Example 15.1 Dynamic production-2

Profit calculation

- quadratic production costs $C_{1}=a_{1} x^{2}+b_{1} x+c_{1}$
- labor
- raw materials
- production increase costs $C_{2}=a_{2}(\dot{x})^{2}+b_{2} \dot{X}+c_{2}$
- new bildings
- recruiting and training costs
- revenue $r=p x$ where p is the constant price per unit
- $p=$ const due to purely competitive market
- profit at time t is

$$
\pi(x, \dot{x}, t)=p x-C_{1}(x)-C_{2}(\dot{x})
$$

Example 15.1 Dynamic production-3

Problem formulation: maximize total profit

$$
J[x]=\int_{0}^{T}\left(p x-C_{1}(x)-C_{2}(\dot{x})\right) d t
$$

subject to $x(0)=0$ and $x(T)=x_{T}$.

- notice that the control, and rate of change of state are the same (i.e., $u=\dot{x}$) but we write it as above for simplicity
- autonomous problem
- the control is planned, and has quadratic costs
- admissible controls are unbounded

Example 15.1 Dynamic production-4
Euler-Lagrange equations

$$
\begin{aligned}
\frac{\partial \pi}{\partial x}-\frac{d}{d t} \frac{\partial \pi}{\partial \dot{x}} & =0 \\
p-\frac{\partial C_{1}}{\partial x}+\frac{d}{d t} \frac{\partial C_{2}}{\partial \dot{x}} & =0 \\
p-2 a_{1} x-b_{1}+\frac{d}{d t}\left[2 a_{2} \dot{x}+b_{2}\right] & =0 \\
2 a_{2} \ddot{x}-2 a_{1} x+p-b_{1} & =0 \\
\ddot{x}-\frac{a_{1}}{a_{2}} x & =\frac{b_{1}-p}{2 a_{2}}
\end{aligned}
$$

for $a_{2} \neq 0$.

Example 15.1 Dynamic production-5

Solution (for $a_{1}, a_{2} \neq 0$)

$$
x(t)=A e^{\sqrt{\frac{a_{1}}{a_{2}}} t}+B e^{-\sqrt{\frac{a_{1}}{a_{2}}} t}+\frac{b_{1}-p}{2 a_{2}}
$$

where A and B are determined by the fixed end points $x(0)=x_{0}$ and $x(T)=x_{T}$.

This gives the optimal production schedule

- no dependence on c_{1} or c_{2} (these are constant costs and so shouldn't effect production strategy)
- no dependence on b_{2} because this is a linear cost in increasing production, and so occurs regardless of how we increase over time (to get to the final production target $x(T)=x_{T}$).

Example 15.1 Dynamic production-6

What happens if we make the end point $x(T)$ free, i.e. we don't have a production target at time T ?

Then we get a natural boundary condition

$$
\left.\frac{\partial \pi}{\partial \dot{x}}\right|_{t=T}=\left.\frac{\partial C_{2}}{\partial \dot{x}}\right|_{t=T}=2 a_{2} \dot{x}+\left.b_{2}\right|_{t=T}=0
$$

So, rearranging, we get

$$
\dot{x}(T)=-\frac{b_{2}}{2 a_{2}}
$$

- constants A and B are determined by end-point conditions $x(0)=0$ and $\dot{x}(T)=-\frac{b_{2}}{2 a_{2}}$.
-Production costs

$$
C_{1}=x^{2}+5 x
$$

-Production increase costs

$$
C_{2}=2 \dot{x}^{2}+5 \dot{x}
$$

$$
\text { . } \quad p=10
$$

$$
\text { - } \quad T=1
$$

- $x_{0}=0, x_{T}=1$

