Calculus of Variations Summer Term 2014

Lecture 18

11. Juli 2014

Purpose of Lesson:

- To introduce Pontryagin’s Maximum Principle (PMP)
- To discuss several PMP examples

Pontryagin's Maximum Principle

Modern optimal control theory often starts from the PMP. It is a simple, coincise condition for an optimal control.

General control problem

Minimize functional

$$
J[\mathbf{x}, \mathbf{u}]=\int_{t_{0}}^{t_{1}} F_{0}(t, \mathbf{x}, \mathbf{u}) d t
$$

subject to constraints $\dot{\mathbf{x}}=\mathbf{F}(t, \mathbf{x}, \mathbf{u})$, or more fully,

$$
\dot{x}_{i}=F_{i}(t, \mathbf{x}, \mathbf{u})
$$

- notice no dependence on $\dot{\mathbf{x}}$ in F_{0}
- this differs from many CoV problems
- no dependence on $\dot{\mathbf{x}}$ in F_{i} because we rearrange the equations so that derivatives are on the LHS.

Pontryagin's Maximum Principle (PMP)

Let $\mathbf{u}(t)$ be an admissible control vector that transfers (t_{0}, \mathbf{x}_{0}) to a target $\left(t_{1}, \mathbf{x}\left(t_{1}\right)\right)$. Let $\mathbf{x}(t)$ be the trajectory corresponding to $\mathbf{u}(t)$. In order that $\mathbf{u}(t)$ be optimal, it is necessary that there exists $\mathbf{p}(t)=\left(p_{1}(t), p_{2}(t), \ldots, p_{n}(t)\right)$ and a constant scalar p_{0} such that

- \mathbf{p} and \mathbf{x} are the solution to the canonical system

$$
\dot{\mathbf{x}}=\frac{\partial \mathbb{H}}{\partial \mathbf{p}} \quad \text { and } \quad \dot{\mathbf{p}}=-\frac{\partial \mathbb{H}}{\partial \mathbf{x}}
$$

- where the Hamiltonian is $\mathbb{H}=\sum_{i=0}^{n} p_{i} F_{i}$ with $p_{0}=-1$
- $\mathbb{H}(t, \mathbf{x}, \mathbf{u}, \mathbf{p}) \geqslant \mathbb{H}(t, \mathbf{x}, \widehat{\mathbf{u}}, \mathbf{p})$ for all alternate controls $\widehat{\mathbf{u}}$
- all boundary conditions are satisfied

PMP proof sketch-1

Consider the general problem: minimize functional

$$
J[\mathbf{x}, \mathbf{u}]=\int_{t_{0}}^{t_{1}} F_{0}(t, \mathbf{x}, \mathbf{u}) d t
$$

subject to constraints

$$
\dot{x}_{i}=F_{i}(t, \mathbf{x}, \mathbf{u}) .
$$

We can incorporate the constraints into the functional using the Lagrange multipliers λ_{i}, e.g.

$$
\begin{aligned}
\hat{J} & =\int_{t_{0}}^{t_{1}} L(t, \mathbf{x}, \dot{\mathbf{x}}, \mathbf{u}) d t \\
& =\int_{t_{0}}^{t_{1}} F_{0}(t, \mathbf{x}, \mathbf{u}) d t+\sum_{i=1}^{n} \lambda_{i}(t)\left[\dot{x}_{i}-F_{i}(t, \mathbf{x}, \mathbf{u})\right] d t
\end{aligned}
$$

PMP proof sketch-2

Given such a function we get (by definition)

$$
p_{i}=\frac{\partial L}{\partial \dot{x}_{i}}=\lambda_{i} .
$$

So we can identify the Lagrange multipliers λ_{i} with the generalized momentum terms p_{i}
(1) the p_{i} are known in economics literature as marginal valuation of x_{i} or the shadow prices
(2) shows how much a unit increment in x at time t contributes to the optimal objective functional \widehat{J}
(3) the p_{i} are known in control as co-state variables (sometimes written as z_{i}).

PMP proof sketch-3

By definition (in previous lecture) the Hamiltonian is

$$
\begin{aligned}
\mathbb{H}(t, \mathbf{x}, \mathbf{p}, \mathbf{u}) & =\sum_{i=1}^{n} p_{i} \dot{x}_{i}-L(t, \mathbf{x}, \dot{\mathbf{x}}, \mathbf{p}, \mathbf{u}) \\
& =\sum_{i=1}^{n} p_{i} \dot{x}_{i}-F_{0}(t, \mathbf{x}, \mathbf{u})-\sum_{i=1}^{n} \lambda_{i}(t)\left[\dot{x}_{i}-F_{i}(t, \mathbf{x}, \mathbf{u})\right] \\
& =-F_{0}(t, \mathbf{x}, \mathbf{u})+\sum_{i=1}^{n} p_{i} F_{i}(t, \mathbf{x}, \mathbf{u})
\end{aligned}
$$

because $\lambda_{i}=p_{i}$, so the \dot{x}_{i} terms cancel. The final result is just the Hamiltonian as defined in the PMP.

PMP proof sketch-4

From previous slide the Hamiltonian can be written

$$
\mathbb{H}(t, \mathbf{x}, \mathbf{p}, \mathbf{u})=-F_{0}(t, \mathbf{x}, \mathbf{u})+\sum_{i=1}^{n} p_{i} F_{i}(t, \mathbf{x}, \mathbf{u})
$$

which is the Hamiltonian defined in the PMP. Then the canonical E-L equations (Hamilton's equations) are

$$
\frac{\partial \mathbb{H}}{\partial p_{i}}=\frac{d x_{i}}{d t} \quad \text { and } \quad \frac{\partial \mathbb{H}}{\partial x_{i}}=-\frac{d p_{i}}{d t} .
$$

Note that the equations $\frac{\partial H}{\partial p_{i}}=\frac{d x_{i}}{d t}$ just revert to

$$
F_{i}(t, \mathbf{x}, \mathbf{u})=\dot{x}_{i}
$$

which are just the system equations.

PMP proof sketch-5

Finally, note that Hamilton's equations above only relate x_{i} and p_{i}. What about equations for u_{i} ?

Take the conjugate variable to be z_{i}, and we get (by definition) that

$$
z_{i}=\frac{\partial L}{\partial \dot{u}_{i}}=0
$$

and the second of Hamilton's equations is therefore

$$
\frac{\partial \mathbb{H}}{\partial u_{i}}=-\frac{d z_{i}}{d t}=0
$$

which suggests a stationary point of \mathbb{H} WRT u_{i}.
In fact we look for a maximum (and note this may happen on the bounds of u_{i}).

PMP Example: plant growth

Example 18.1 (Plant growth-1)

Plant growth problem:

- market gardener wants to plants to grow toa fixed height 2 within a fixed window of time $[0,1]$
- can supplement natural growth with lights (at night)
- growth rate dictates

$$
\dot{x}=1+u
$$

- cost of lights

$$
J[u]=\int_{0}^{1} \frac{1}{2} u^{2} d t
$$

PMP Example: plant growth

Example 18.1 (Plant growth-2)
Minimize

$$
J[u]=\int_{0}^{1} \frac{1}{2} u^{2} d t
$$

subject to $x(0)=0$ and $x(1)=2$ and

$$
\dot{x}=F_{1}(t, x, u)=1+u .
$$

Hamiltonian is

$$
\begin{aligned}
\mathbb{H} & =-F_{0}(t, x, u)+p F_{1}(t, x, u) \\
& =-\frac{1}{2} u^{2}+p(1+u) .
\end{aligned}
$$

PMP Example: plant growth

Example 18.1 (Plant growth-3)
Hamiltonian is

$$
\mathbb{H}=-\frac{1}{2} u^{2}+p(1+u)
$$

Canonical equations

$$
\begin{array}{cc}
\frac{\partial \mathbb{H}}{\partial p}=\frac{d x}{d t} & \text { and } \\
\Downarrow & \frac{\partial \mathbb{H}}{\partial x}=-\frac{d p}{d t} \\
1+u=\dot{x} & \Downarrow \\
& 0=-\dot{p}
\end{array}
$$

LHS \Rightarrow system DE
RHS $\Rightarrow \dot{p}=0$ means that $p=c_{1}$ where c_{1} is a constant.

PMP Example: plant growth

Example 18.1 (Plant growth-4)

Maximum principle requires \mathbb{H} be a maximum, for which

$$
\frac{\partial \mathbb{H}}{\partial u}=-u+p=0 .
$$

So $u=p$, and $\dot{x}=1+u$ so

$$
x=\left(1+c_{1}\right) t+c_{2} .
$$

The solution which satisfies $x(0)=0$ and $x(1)=2$ is

$$
x=2 t
$$

So $u=c_{1}=1$, and the optimal cost is $\frac{1}{2}$.

PMP and natural boundary conditions

Typically we fix t_{0} and $\mathbf{x}\left(t_{0}\right)$, but often the right-hand boundary condition is not fixed, so we need natural boundary conditions.

Here, they differ from traditional CoV problems in two respects:

- The terminal cost ϕ
- The function F_{0} is not explicitly dependent on \dot{x}.

The resulting natural boundary conditions are

$$
\left.\sum_{i}\left(\frac{\partial \phi}{\partial x_{i}}+p_{i}\right) \delta x_{i}\right|_{t=t_{1}}+\left.\left(\frac{\partial \phi}{\partial t}-\mathbb{H}\right) \delta t\right|_{t=t_{1}}=0
$$

for all allowed δx_{i} and δt.

PMP and natural boundary conditions

The resulting natural boundary condition is

$$
\left.\sum_{i}\left(\frac{\partial \phi}{\partial x_{i}}+p_{i}\right) \delta x_{i}\right|_{t=t_{1}}+\left.\left(\frac{\partial \phi}{\partial t}-\mathbb{H}\right) \delta t\right|_{t=t_{1}}=0
$$

Special cases

- when t_{1} is fixed and $\mathbf{x}\left(t_{1}\right)$ is completely free we get

$$
\left.\left(\frac{\partial \phi}{\partial x_{i}}+p_{i}\right) \delta x_{i}\right|_{t=t_{1}}=0, \quad \forall i
$$

- when $\mathbf{x}\left(t_{1}\right)$ is fixed, $\delta x_{i}=0$, and we get

$$
\left.\left(\frac{\partial \phi}{\partial t}-\mathbb{H}\right) \delta t\right|_{t=t_{1}}=0
$$

Example: stimulated plant growth

Example 18.2 (Stimulated plant growth-1)
Plant growth problem:

- market gardener wants to plants to grow as much as possible within a fixed window of time $[0,1]$
- supplement natural growth with lights as before
- growth rate dictates $\dot{x}=1+u$
- cost of lights

$$
J[u]=\int_{0}^{1} \frac{1}{2} u^{2}(t) d t
$$

- value of crop is proportional to the height

$$
\phi\left(t_{1}, \mathbf{x}\left(t_{1}\right)\right)=x\left(t_{1}\right)
$$

Plant growth problem statement

Example 18.2 (Stimulated plant growth-2)
Write as a minimization problem

$$
J[x, u]=-x\left(t_{1}\right)+\int_{0}^{1} \frac{1}{2} u^{2} d t
$$

subject to $x(0)=0$, and

$$
\dot{x}=1+u .
$$

- the terminal cost doesn't affect the shape of the solution
- but we need a natural end-point condition for t_{1}.

Plant growth: natural BC

Example 18.2 (Stimulated plant growth-3)
The problem is solved as before, but we write the natural boundary condition at $x=t_{1}$ as

$$
\left.\left(\frac{\partial \phi}{\partial x_{i}}+p_{i}\right)\right|_{t=t_{1}}=0, \quad \forall i
$$

which reduces to

$$
-1+\left.p\right|_{t=t_{1}}=0
$$

Given p is constant, this sets $p(t)=1$, and hence the control $u=1$ (as before).

Autonomous problems

Autonomous problems have no explicit dependence on t.

- time invariance symmetry
- hence \mathbb{H} is constant along the optimal trajectory
- if the end-time is free (and the terminal cost is zero) then the transversality conditions ensure $\mathbb{H}=0$ along the optimal trajectory.

PMP example: Gout

Example 18.3 (Gout-1)
Optimal treatment of Gout:

- disease characterized by excess of uric acid in blood
- define level of uric acid to be $x(t)$
- in absence of any control, tends to 1 according to

$$
\dot{x}=1-x
$$

- drugs are available to control disease (control u)

$$
\dot{x}=1-x-u
$$

- aim to reduce x to zero as quickly as possible
- drug is expensive, and unsafe (side effects)

PMP example: Gout

Example 18.3 (Gout-2)

Formulation: minimize

$$
J[u]=\int_{0}^{t_{1}} \frac{1}{2}\left(k^{2}+u^{2}\right) d t
$$

given constant k that measures the relative importance of the drugs cost vs the terminal time.

End-conditions are $x(0)=1$, and we wish $x\left(t_{1}\right)=0$, with t_{1} free. The constraint equation is

$$
\dot{x}=1-x-u,
$$

Hamiltonian

$$
\mathbb{H}=-\frac{1}{2}\left(k^{2}+u^{2}\right)+p(1-x-u) .
$$

PMP example: Gout

Example 18.3 (Gout-3)
Canonical equations

$$
\begin{array}{rlrl}
\frac{\partial \mathbb{H}}{\partial p}=\frac{d x}{d t} & \text { and } & \frac{\partial \mathbb{H}}{\partial x} & =-\frac{d p}{d t} \\
\Downarrow & \Downarrow \\
1-x-u=\dot{x} & & -p=-\dot{p}
\end{array}
$$

LHS \Rightarrow system DE
RHS $\Rightarrow \dot{p}=p$ has solution $p=c_{1} e^{t}$.
Now maximize \mathbb{H} WRT the u, i.e., find stationary point

$$
\frac{\partial \mathbb{H}}{\partial u}=-u-p=0
$$

So, $u=-p=-c_{1} e^{t}$.

PMP example: Gout

Example 18.3 (Gout-4)

Note

- this is an autonomous problem so $\mathbb{H}=$ const
- this is a free end-time problem, so $\mathbb{H}=0$.

Substitute values of p and u into \mathbb{H} for $t=0$ (i.e. $p=c_{1}=-u$, and $x(0)=1)$, and we get

$$
\begin{aligned}
\mathbb{H} & =-\frac{1}{2}\left(k^{2}+u^{2}\right)+p(1-x-u) \\
& =-\frac{k^{2}}{2}-\frac{c_{1}^{2}}{2}-c_{1}^{2} \\
& =0
\end{aligned}
$$

and so $c_{1}= \pm k$.

PMP example: Gout

Example 18.3 (Gout-5)

Finally solve $\dot{x}=1-x-u$ where $u=-k e^{t}$ to get

$$
x=1-\frac{k}{2} e^{t}+\frac{k}{2} e^{-t}=1-k \sinh t
$$

The terminal condition is $x\left(t_{1}\right)=0$, and so

$$
t_{1}=\sinh ^{-1}(1 / k)
$$

- when k is small the prime consideration is to use a small amount of the drug, and as $k \rightarrow 0$ then $t_{1} \rightarrow \infty$
- no optimal for $k=0$
- when k is large, we want to get to a safe level as fast as possible, so as $k \rightarrow \infty$ we get $t_{1} \sim 1 / k$.

