Calculus of Variations Summer Term 2014

Lecture 18

11. Juli 2014

© Daria Apushkinskaya 2014 ()

Calculus of variations lecture 18

11. Juli 2014 1 / 25

Purpose of Lesson:

- To introduce Pontryagin's Maximum Principle (PMP)
- To discuss several PMP examples

© Daria Apushkinskaya 2014 ()

Pontryagin's Maximum Principle

Modern optimal control theory often starts from the PMP. It is a simple, coincise condition for an optimal control.

General control problem

Minimize functional

$$J[\mathbf{x},\mathbf{u}] = \int_{t_0}^{t_1} F_0(t,\mathbf{x},\mathbf{u}) dt$$

subject to constraints $\dot{\mathbf{x}} = \mathbf{F}(t, \mathbf{x}, \mathbf{u})$, or more fully,

$$\dot{x}_i = F_i(t, \mathbf{x}, \mathbf{u})$$

- notice no dependence on x in F₀
 - this differs from many CoV problems
- no dependence on x in F_i because we rearrange the equations so that derivatives are on the LHS.

Pontryagin's Maximum Principle (PMP)

Let $\mathbf{u}(t)$ be an admissible control vector that transfers (t_0, \mathbf{x}_0) to a target $(t_1, \mathbf{x}(t_1))$. Let $\mathbf{x}(t)$ be the trajectory corresponding to $\mathbf{u}(t)$.

In order that $\mathbf{u}(t)$ be optimal, it is necessary that there exists $\mathbf{p}(t) = (p_1(t), p_2(t), \dots, p_n(t))$ and a constant scalar p_0 such that

• p and x are the solution to the canonical system

$$\dot{\mathbf{x}} = rac{\partial \mathbb{H}}{\partial \mathbf{p}}$$
 and $\dot{\mathbf{p}} = -rac{\partial \mathbb{H}}{\partial \mathbf{x}}$

• where the Hamiltonian is $\mathbb{H} = \sum_{i=0}^{''} p_i F_i$ with $p_0 = -1$

• $\mathbb{H}(t, \mathbf{x}, \mathbf{u}, \mathbf{p}) \ge \mathbb{H}(t, \mathbf{x}, \widehat{\mathbf{u}}, \mathbf{p})$ for all alternate controls $\widehat{\mathbf{u}}$

• all boundary conditions are satisfied

・ ロ ト ・ 同 ト ・ 目 ト ・ 目 ト

Consider the general problem: minimize functional

$$J[\mathbf{x},\mathbf{u}] = \int_{t_0}^{t_1} F_0(t,\mathbf{x},\mathbf{u}) dt$$

subject to constraints

Daria Apus

(C)

$$\dot{x}_i = F_i(t, \mathbf{x}, \mathbf{u}).$$

We can incorporate the constraints into the functional using the Lagrange multipliers λ_i , e.g.

$$\widehat{J} = \int_{t_0}^{t_1} L(t, \mathbf{x}, \dot{\mathbf{x}}, \mathbf{u}) dt$$
$$= \int_{t_0}^{t_1} F_0(t, \mathbf{x}, \mathbf{u}) dt + \sum_{i=1}^n \lambda_i(t) \left[\dot{x}_i - F_i(t, \mathbf{x}, \mathbf{u}) \right] dt$$

Given such a function we get (by definition)

$$p_i = \frac{\partial L}{\partial \dot{x}_i} = \lambda_i.$$

So we can identify the Lagrange multipliers λ_i with the generalized momentum terms p_i

- the p_i are known in economics literature as marginal valuation of x_i or the shadow prices
- ② shows how much a unit increment in x at time t contributes to the optimal objective functional \hat{J}
- the *p_i* are known in control as co-state variables (sometimes written as *z_i*).

By definition (in previous lecture) the Hamiltonian is

$$\mathbb{H}(t, \mathbf{x}, \mathbf{p}, \mathbf{u}) = \sum_{i=1}^{n} p_i \dot{x}_i - L(t, \mathbf{x}, \dot{\mathbf{x}}, \mathbf{p}, \mathbf{u})$$
$$= \sum_{i=1}^{n} p_i \dot{x}_i - F_0(t, \mathbf{x}, \mathbf{u}) - \sum_{i=1}^{n} \lambda_i(t) \left[\dot{x}_i - F_i(t, \mathbf{x}, \mathbf{u}) \right]$$
$$= -F_0(t, \mathbf{x}, \mathbf{u}) + \sum_{i=1}^{n} p_i F_i(t, \mathbf{x}, \mathbf{u})$$

because $\lambda_i = p_i$, so the \dot{x}_i terms cancel. The final result is just the Hamiltonian as defined in the PMP.

< ロ > < 同 > < 回 > < 回 > < 回 >

From previous slide the Hamiltonian can be written

$$\mathbb{H}(t,\mathbf{x},\mathbf{p},\mathbf{u}) = -F_0(t,\mathbf{x},\mathbf{u}) + \sum_{i=1}^n p_i F_i(t,\mathbf{x},\mathbf{u})$$

which is the Hamiltonian defined in the PMP. Then the canonical E-L equations (Hamilton's equations) are

$$\frac{\partial \mathbb{H}}{\partial p_i} = \frac{dx_i}{dt}$$
 and $\frac{\partial \mathbb{H}}{\partial x_i} = -\frac{dp_i}{dt}$

Note that the equations $\frac{\partial \mathbb{H}}{\partial p_i} = \frac{dx_i}{dt}$ just revert to

$$F_i(t, \mathbf{x}, \mathbf{u}) = \dot{x}_i$$

which are just the system equations.

Finally, note that Hamilton's equations above only relate x_i and p_i . What about equations for u_i ?

Take the conjugate variable to be z_i , and we get (by definition) that

$$z_i = \frac{\partial L}{\partial \dot{u}_i} = 0$$

and the second of Hamilton's equations is therefore

$$\frac{\partial \mathbb{H}}{\partial u_i} = -\frac{dz_i}{dt} = 0$$

which suggests a stationary point of \mathbb{H} WRT u_i .

In fact we look for a maximum (and note this may happen on the bounds of u_i).

・ ロ ト ・ 同 ト ・ 目 ト ・ 目 ト

Example 18.1 (Plant growth-1)

Plant growth problem:

- market gardener wants to plants to grow toa fixed height 2 within a fixed window of time [0, 1]
- can supplement natural growth with lights (at night)
- growth rate dictates

$$\dot{x} = 1 + u$$

cost of lights

$$J[u] = \int_0^1 \frac{1}{2} u^2 dt$$

11. Juli 2014 11 / 25

< ロ > < 同 > < 回 > < 回 >

Example 18.1 (Plant growth-2) Minimize

$$J[u] = \int_0^1 \frac{1}{2}u^2 dt$$

subject to x(0) = 0 and x(1) = 2 and

$$\dot{x}=F_1(t,x,u)=1+u.$$

Hamiltonian is

$$\mathbb{H} = -F_0(t, x, u) + \rho F_1(t, x, u)$$

= $-\frac{1}{2}u^2 + \rho(1 + u).$

© Daria Apushkinskaya 2014 ()

★ ● ● ● ● ○ Q C 11. Juli 2014 12 / 25

イロト イポト イヨト イヨト

Example 18.1 (Plant growth-3)

Hamiltonian is

$$\mathbb{H}=-\frac{1}{2}u^{2}+p\left(1+u\right).$$

Canonical equations

LHS \Rightarrow system DE

RHS \Rightarrow $\dot{p} = 0$ means that $p = c_1$ where c_1 is a constant.

4 **A b b b b b b**

Example 18.1 (Plant growth-4)

Maximum principle requires ${\mathbb H}$ be a maximum, for which

$$\frac{\partial \mathbb{H}}{\partial u} = -u + p = 0.$$

So u = p, and $\dot{x} = 1 + u$ so

$$x = (1 + c_1) t + c_2.$$

The solution which satisfies x(0) = 0 and x(1) = 2 is

$$x = 2t$$
.

So $u = c_1 = 1$, and the optimal cost is $\frac{1}{2}$.

< ロ > < 同 > < 回 > < 回 > < 回 >

PMP and natural boundary conditions

Typically we fix t_0 and $\mathbf{x}(t_0)$, but often the right-hand boundary condition is not fixed, so we need natural boundary conditions.

Here, they differ from traditional CoV problems in two respects:

- The terminal cost ϕ
- The function F_0 is not explicitly dependent on \dot{x} .

The resulting natural boundary conditions are

$$\sum_{i} \left(\frac{\partial \phi}{\partial x_{i}} + p_{i} \right) \delta x_{i} \Big|_{t=t_{1}} + \left(\frac{\partial \phi}{\partial t} - \mathbb{H} \right) \delta t \Big|_{t=t_{1}} = 0$$

for all allowed δx_i and δt .

PMP and natural boundary conditions

The resulting natural boundary condition is

$$\sum_{i} \left(\frac{\partial \phi}{\partial x_{i}} + p_{i} \right) \delta x_{i} \bigg|_{t=t_{1}} + \left(\frac{\partial \phi}{\partial t} - \mathbb{H} \right) \delta t \bigg|_{t=t_{1}} = 0.$$

Special cases

• when t_1 is fixed and $\mathbf{x}(t_1)$ is completely free we get

$$\left(\frac{\partial \phi}{\partial x_i} + p_i\right) \delta x_i \Big|_{t=t_1} = 0, \quad \forall i$$

• when $\mathbf{x}(t_1)$ is fixed, $\delta x_i = 0$, and we get

$$\left(\frac{\partial\phi}{\partial t}-\mathbb{H}\right)\delta t\bigg|_{t=t_1}=\mathbf{0}.$$

© Daria Apushkinskaya 2014 ()

Example: stimulated plant growth

Example 18.2 (Stimulated plant growth-1)

Plant growth problem:

- market gardener wants to plants to grow as much as possible within a fixed window of time [0, 1]
- supplement natural growth with lights as before
- growth rate dictates $\dot{x} = 1 + u$
- cost of lights

$$J[u] = \int_0^1 \frac{1}{2}u^2(t)dt$$

value of crop is proportional to the height

$$\phi(t_1,\mathbf{x}(t_1))=x(t_1).$$

Plant growth problem statement

Example 18.2 (Stimulated plant growth-2) Write as a minimization problem

$$J[x, u] = -x(t_1) + \int_{0}^{1} \frac{1}{2}u^2 dt$$

subject to x(0) = 0, and

 $\dot{x} = 1 + u$.

the terminal cost doesn't affect the shape of the solution

but we need a natural end-point condition for t₁.

Plant growth: natural BC

Example 18.2 (Stimulated plant growth-3)

The problem is solved as before, but we write the natural boundary condition at $x = t_1$ as

$$\left(\frac{\partial \phi}{\partial x_i} + p_i\right)\Big|_{t=t_1} = 0, \qquad \forall i$$

which reduces to

$$-1+\rho\big|_{t=t_1}=0.$$

Given *p* is constant, this sets p(t) = 1, and hence the control u = 1 (as before).

▲ 同 ▶ → 三 ▶

Autonomous problems have no explicit dependence on *t*.

- time invariance symmetry
- hence \mathbb{H} is constant along the optimal trajectory

Example 18.3 (Gout-1)

Optimal treatment of Gout:

- disease characterized by excess of uric acid in blood
 - define level of uric acid to be x(t)
 - in absence of any control, tends to 1 according to

$$\dot{x} = 1 - x$$

• drugs are available to control disease (control *u*)

$$\dot{x} = 1 - x - u$$

- aim to reduce x to zero as quickly as possible
- drug is expensive, and unsafe (side effects)

Example 18.3 (Gout-2)

Formulation: minimize

$$J[u] = \int_0^{t_1} \frac{1}{2} \left(k^2 + u^2\right) dt$$

given constant k that measures the relative importance of the drugs cost vs the terminal time.

End-conditions are x(0) = 1, and we wish $x(t_1) = 0$, with t_1 free. The constraint equation is

$$\dot{x}=1-x-u,$$

Hamiltonian

$$\mathbb{H} = -\frac{1}{2} \left(k^2 + u^2 \right) + p \left(1 - x - u \right).$$

Example 18.3 (Gout-3)

Canonical equations

 $\mathsf{LHS} \ \ \Rightarrow \ \ \mathsf{system} \ \mathsf{DE}$

RHS \Rightarrow $\dot{p} = p$ has solution $p = c_1 e^t$.

1

Now maximize \mathbb{H} WRT the *u*, i.e., find stationary point

$$\frac{\partial \mathbb{H}}{\partial u} = -u - p = 0$$

So, $u = -p = -c_1 e^t$.

Example 18.3 (Gout-4)

Note

- this is an autonomous problem so $\mathbb{H} = const$
- this is a free end-time problem, so $\mathbb{H}=0.$

Substitute values of *p* and *u* into \mathbb{H} for t = 0 (i.e. $p = c_1 = -u$, and x(0) = 1), and we get

$$\mathbb{H} = -\frac{1}{2} \left(k^2 + u^2 \right) + p \left(1 - x - u \right)$$
$$= -\frac{k^2}{2} - \frac{c_1^2}{2} - c_1^2$$
$$= 0$$

and so $c_1 = \pm k$.

Example 18.3 (Gout-5)

Finally solve $\dot{x} = 1 - x - u$ where $u = -ke^t$ to get

$$x = 1 - \frac{k}{2}e^{t} + \frac{k}{2}e^{-t} = 1 - k\sinh t$$

The terminal condition is $x(t_1) = 0$, and so

$$t_1 = \sinh^{-1}(1/k)$$

• when *k* is small the prime consideration is to use a small amount of the drug, and as $k \rightarrow 0$ then $t_1 \rightarrow \infty$

• no optimal for k = 0

 when k is large, we want to get to a safe level as fast as possible, so as k → ∞ we get t₁ ~ 1/k.